JP6990815B2 - Hydrogen recombination catalyst - Google Patents

Hydrogen recombination catalyst Download PDF

Info

Publication number
JP6990815B2
JP6990815B2 JP2017161867A JP2017161867A JP6990815B2 JP 6990815 B2 JP6990815 B2 JP 6990815B2 JP 2017161867 A JP2017161867 A JP 2017161867A JP 2017161867 A JP2017161867 A JP 2017161867A JP 6990815 B2 JP6990815 B2 JP 6990815B2
Authority
JP
Japan
Prior art keywords
catalyst
platinum
geopolymer
hydrogen
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017161867A
Other languages
Japanese (ja)
Other versions
JP2019037936A (en
Inventor
勇 工藤
圭佐 谷澤
尚悟 平
久幸 末松
和之 高瀬
太禄 内海
信弘 小田
Original Assignee
久幸 末松
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久幸 末松 filed Critical 久幸 末松
Priority to JP2017161867A priority Critical patent/JP6990815B2/en
Publication of JP2019037936A publication Critical patent/JP2019037936A/en
Application granted granted Critical
Publication of JP6990815B2 publication Critical patent/JP6990815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Description

本発明は、含水放射性廃棄物の保管時に発生する水素の濃度を低減させるために用いられる、水素再結合触媒に関する。 The present invention relates to a hydrogen recombination catalyst used to reduce the concentration of hydrogen generated during storage of hydrous radioactive waste.

現在、福島第一原子力発電所では、廃炉に向けて、原子炉建屋等の汚染水から放射性セシウムを除去するための処理が行われている。この処理において、汚染水中に含まれる放射性セシウムは吸着塔により除去されるが、使用済みの吸着塔は放射能濃度が低下するまで長期保管されることになる。そして、この長期保管時において、吸着塔内に残留する水分が放射線により水素と酸素に分解され、保管容器内に蓄積した水素が放射性セシウムの崩壊熱による温度上昇によって引火爆発する虞があった。そこで、現在、保管容器の弁を開放し、保管容器内で発生した水素ガスが保管容器内に留まらないようにしている。しかし、この方法では放射性物質が環境中に放出される危険性があった。 Currently, at the Fukushima Daiichi Nuclear Power Station, treatment is being carried out to remove radioactive cesium from contaminated water in the reactor building, etc. toward decommissioning. In this treatment, radioactive cesium contained in the contaminated water is removed by the adsorption tower, but the used adsorption tower will be stored for a long time until the radioactive concentration decreases. During this long-term storage, the water remaining in the adsorption tower is decomposed into hydrogen and oxygen by radiation, and the hydrogen accumulated in the storage container may ignite and explode due to the temperature rise due to the decay heat of radioactive cesium. Therefore, at present, the valve of the storage container is opened so that the hydrogen gas generated in the storage container does not stay in the storage container. However, with this method, there was a risk that radioactive substances would be released into the environment.

このため、水素再結合触媒を備えた静的触媒式水素再結合容器を用いて、発生した水素と酸素を再結合させることが検討されている。なお、米国では、スリーマイル島原発2号機の事故で発生した燃料デブリの保管の際に、一部、白金からなる水素再結合触媒が用いらているが、国内ではまだ用いられていない。この水素再結合触媒には、大量の汚染水を処理するために大量の水素結合触媒が必要とされることから、大量生産可能であって安価であるとともに、長期安定性に優れているという特性が要求されている。 Therefore, it has been studied to recombinate generated hydrogen and oxygen by using a static catalytic hydrogen recombination vessel equipped with a hydrogen recombination catalyst. In the United States, a hydrogen recombination catalyst made of platinum is partially used for storage of fuel debris generated in the accident at Three Mile Island Nuclear Generating Unit 2, but it has not been used in Japan yet. Since this hydrogen rebonding catalyst requires a large amount of hydrogen bonding catalyst to treat a large amount of contaminated water, it can be mass-produced, is inexpensive, and has excellent long-term stability. Is required.

ところで、ジオポリマーは、アルミノケイ酸塩を基とした非晶質の無機高分子材料であり、組成の柔軟性、耐熱性、化学的安定性、耐放射線性などの優れた性質を有している。緻密で強度もあることから、構造材料の分野では、セメントの代わりとなる材料として注目されている(例えば、特許文献1、2)。また、ジオポリマーは、活性フィラーとしてのアルミナシリカ粉末と、アルカリシリカ溶液から製造される。アルミナシリカ粉末とアルカリシリカ溶液とを混合し養生すると重合反応が進み、固化することでジオポリマーが得られる。なお、原料のアルミナシリカ粉末には、フライアッシュや高炉スラグを用いることができる。 By the way, geopolymer is an amorphous inorganic polymer material based on aluminosilicate, and has excellent properties such as composition flexibility, heat resistance, chemical stability, and radiation resistance. .. Since it is dense and strong, it is attracting attention as a substitute material for cement in the field of structural materials (for example, Patent Documents 1 and 2). In addition, the geopolymer is produced from alumina silica powder as an active filler and an alkali silica solution. When the alumina silica powder and the alkali silica solution are mixed and cured, the polymerization reaction proceeds and the solidification produces a geopolymer. Fly ash or blast furnace slag can be used as the raw material alumina silica powder.

したがって、ジオポリマーを水素再結合触媒の担持材料として用いることができれば、大量生産可能であって安価であるとともに、長期安定性に優れた水素結合触媒が得られるものと考えられた(非特許文件1)。 Therefore, if a geopolymer can be used as a supporting material for a hydrogen rebinding catalyst, it is considered that a hydrogen bonding catalyst that can be mass-produced, is inexpensive, and has excellent long-term stability can be obtained (non-patent statement). 1).

ジオポリマーを水素再結合触媒の担持材料として用いる場合、触媒として用いられる高価な貴金属を効率よく使用して水素再結合能力を高めるために、ジオポリマーの比表面積を大きくすることが望ましい。そこで、比表面積を大きくするためには、ジオポリマーをハニカム構造体や多孔質体にすることが考えられた(非特許文献2)。しかし、構造材料として注目されるほど強度の高いジオポリマーであっても、ハニカム構造体や多孔質体にすると強度の低下は避けられない。 When the geopolymer is used as a supporting material for the hydrogen recombination catalyst, it is desirable to increase the specific surface area of the geopolymer in order to efficiently use the expensive noble metal used as the catalyst and increase the hydrogen recombination ability. Therefore, in order to increase the specific surface area, it was considered to make the geopolymer into a honeycomb structure or a porous body (Non-Patent Document 2). However, even if the geopolymer has a high strength enough to attract attention as a structural material, a decrease in strength is unavoidable when a honeycomb structure or a porous body is used.

一方、水素再結合触媒を取り扱う作業においては、作業者を放射線から防護するために、遠隔操作ロボットを用いたり、人手を介する場合においては作業を短時間で終わらせる必要があり、水素再結合触媒の取り扱いは粗雑になりやすい。このため、水素結合触媒は、粗雑な取り扱いに耐えられる一定以上の強度が要求される。 On the other hand, in the work of handling the hydrogen recombination catalyst, in order to protect the worker from radiation, it is necessary to use a remote-controlled robot or, in the case of manual intervention, to complete the work in a short time, and the hydrogen recombination catalyst. Handling tends to be crude. Therefore, the hydrogen bond catalyst is required to have a certain strength or higher that can withstand rough handling.

特開2012-116677号公報Japanese Unexamined Patent Publication No. 2012-116677 特開2008-239446号公報Japanese Unexamined Patent Publication No. 2008-239446

日本経済新聞、「放射性廃棄物、容器内で長期安全保管 長岡技科大など研究」、[online]、2017年2月11日、日本経済新聞社、[平成29年8月9日検索]、インターネット〈URL:http://www.nikkei.com/article/DGXLASFB10H10_Q7A210C1L21000/〉Nihon Keizai Shimbun, "Radioactive waste, long-term safe storage in containers, Nagaoka University of Technology, etc.", [online], February 11, 2017, Nihon Keizai Shimbun, [Search on August 9, 2017], Internet <URL: http://www.nikkei.com/article/DGXLASFB10H10_Q7A210C1L21000/> 長岡技術科学大学、「廃棄物長期保管容器内に発生する可燃性ガスの濃度低減技術に関する研究開発」、[online]、科学技術振興機構、[平成29年8月9日検索]、インターネット〈URL:https://www.jst.go.jp/nuclear/field/h28/hairo01_04.pdf〉Nagaoka University of Technology, "Research and Development on Technology for Reducing the Concentration of Combustible Gas Generated in Long-Term Waste Storage Containers", [online], Japan Science and Technology Agency, [Search on August 9, 2017], Internet <URL : https://www.jst.go.jp/nuclear/field/h28/hairo01_04.pdf>

そこで、本発明は、ジオポリマーを含む無機材料を担持材料として用い、十分な強度と高い水素再結合能力とを有する、新規の水素再結合触媒を提供することを目的とする。 Therefore, an object of the present invention is to provide a novel hydrogen recombination catalyst having sufficient strength and high hydrogen recombination ability by using an inorganic material containing a geopolymer as a supporting material.

本発明の水素再結合触媒は、ジオポリマーを含む無機材料からなる担体と、この担体の表面に担持された無機粉末と、この無機粉末の表面に担持された触媒とからなることを特徴とする。 The hydrogen recombination catalyst of the present invention is characterized by comprising a carrier made of an inorganic material containing a geopolymer, an inorganic powder supported on the surface of the carrier, and a catalyst supported on the surface of the inorganic powder. ..

また、平均直径3~50mmの略球形状であることを特徴とする。 Further, it is characterized by having a substantially spherical shape having an average diameter of 3 to 50 mm.

また、前記無機粉末は、比表面積が40~200m/gであることを特徴とする。 Further, the inorganic powder is characterized by having a specific surface area of 40 to 200 m 2 / g.

また、前記無機粉末は、γアルミナ粉末であることを特徴とする。 Further, the inorganic powder is characterized by being a γ-alumina powder.

また、前記触媒は、白金又はパラジウムからなることを特徴とする。 Further, the catalyst is characterized by being made of platinum or palladium.

また、前記触媒は、白金又はパラジウムを含み、白金、パラジウム、又は白金とパラジウムの合計が30質量%以上であることを特徴とする。 Further, the catalyst contains platinum or palladium, and the total amount of platinum, palladium, or platinum and palladium is 30% by mass or more.

本発明によれば、強度の高いジオポリマーを含む無機材料を担体とすることによって十分な強度を有するとともに、大きい比表面積をもつ無機粉末の表面に触媒を担持させることによって高い水素再結合能力を有する水素再結合触媒が提供される。 According to the present invention, an inorganic material containing a high-strength geopolymer is used as a carrier to have sufficient strength, and a catalyst is supported on the surface of an inorganic powder having a large specific surface area to obtain high hydrogen recombination ability. A hydrogen recombination catalyst having is provided.

本発明の水素再結合触媒の模式図である。It is a schematic diagram of the hydrogen recombination catalyst of this invention. 本発明の水素再結合触媒の製造工程において、アルミナ粉末に白金やパラジウムからなる触媒を担持させる工程の一実施例を示すフロー図である。FIG. 5 is a flow chart showing an embodiment of a step of supporting a catalyst made of platinum or palladium on alumina powder in the process of manufacturing a hydrogen recombination catalyst of the present invention. 本発明の水素再結合触媒の製造工程において、ジオポリマーを成形してジオポリマーにアルミナ粉末を担持させる工程の一実施例を示すフロー図である。It is a flow diagram which shows an Example of the step of molding a geopolymer and supporting an alumina powder on a geopolymer in the process of manufacturing a hydrogen recombination catalyst of the present invention. 本発明の水素結合触媒の一実施例を示す外観写真である。It is an appearance photograph which shows one Example of the hydrogen bond catalyst of this invention. 本発明の水素結合触媒の一実施例における白金を担持したアルミナ粉末の透過型電子顕微鏡像である。It is a transmission type electron microscope image of the alumina powder carrying platinum in one Example of the hydrogen bond catalyst of this invention. 本発明の水素結合触媒の一実施例における白金を担持したアルミナ粉末の電子線回析像である。It is an electron beam diffraction image of the alumina powder carrying platinum in one Example of the hydrogen bond catalyst of this invention. 本発明の水素結合触媒の一実施例における触媒性能を示すグラフである。It is a graph which shows the catalyst performance in one Example of the hydrogen bond catalyst of this invention.

本発明の水素再結合触媒は、図1に模式的に示すように、ジオポリマーを含む無機材料を担持材料としている。なお、aは担持材料がジオポリマーのみからなるもの、bはジオポリマー中にジオポリマー以外の無機の骨材が存在するもの、cはジオポリマー以外の無機の球状体からなる中心核を有しジオポリマー層を表層に形成したものを示す。 As schematically shown in FIG. 1, the hydrogen recombination catalyst of the present invention uses an inorganic material containing a geopolymer as a supporting material. In addition, a has a support material made of only a geopolymer, b has an inorganic aggregate other than the geopolymer in the geopolymer, and c has a central core made of an inorganic sphere other than the geopolymer. The one in which the geopolymer layer was formed on the surface layer is shown.

担持材料のジオポリマーは、ゼオライトに類似した非晶質構造を有する無機高分子材料であり、SiO四面体及びAlO四面体が酸素原子を介して3次元的に連結し、チャージバランスを保つため構造中に陽イオンを取り込んでいる。その硬化反応式は以下に示すようなものであるとされている。 The geopolymer of the supporting material is an inorganic polymer material having an amorphous structure similar to zeolite, and the SiO4 tetrahedron and AlO4 tetrahedron are three-dimensionally connected via oxygen atoms to maintain charge balance. Therefore, cations are incorporated into the structure. The curing reaction formula is said to be as shown below.

Figure 0006990815000001
Figure 0006990815000001

本発明の水素再結合触媒を構成するジオポリマーを含む無機材料からなる担体は、高い強度を確保するためと製造の容易さから中実であることが好ましいが、強度を確保できれば、無機材料からなる骨材を含むことや、中空であってもよい、また、中心核に他の無機材料からなる球状体を使用することを妨げるものではない。また、担体の形状は限定されないが、取り扱いの容易さから略球形であることが好ましい。担体の大きさは限定されないが、実用上、保管容器への投入や触媒の保持を考慮すると、直径3~50mmが望ましい。 The carrier made of an inorganic material containing the geopolymer constituting the hydrogen recombination catalyst of the present invention is preferably solid in order to secure high strength and easy to manufacture, but if the strength can be ensured, the carrier made of the inorganic material is used. It does not preclude the inclusion of an aggregate, which may be hollow, and the use of spheres of other inorganic materials for the core. Further, the shape of the carrier is not limited, but it is preferably substantially spherical from the viewpoint of ease of handling. The size of the carrier is not limited, but practically, a diameter of 3 to 50 mm is desirable in consideration of loading into a storage container and holding of the catalyst.

そして、このジオポリマーを含む無機材料の表面にアルミナ粉末などの無機粉末が担持され、さらにこの無機粉末の表面に白金やパラジウムなどの触媒が担持された構造を有している。この構造により、水素再結合触媒の高い強度と大きい比表面積が確保され、その結果として高い触媒性能が得られるようになっている。 Further, it has a structure in which an inorganic powder such as alumina powder is supported on the surface of the inorganic material containing the geopolymer, and a catalyst such as platinum or palladium is supported on the surface of the inorganic powder. This structure ensures high strength and a large specific surface area of the hydrogen recombination catalyst, resulting in high catalytic performance.

本発明の水素再結合触媒を構成する無機粉末としては、例えば、アルミナ粉末、シリカ粉末、ジルコニア粉末、セリア粉末、酸化チタン粉末などの金属酸化物粉末、炭化ケイ素、炭化ホウ素などの金属炭化物粉末、窒化ケイ素、窒化ホウ素などの金属窒化物粉末が挙げられる。これらの中では、安価であって、化学的に安定、入手可能な粒径の種類が多い、ジオポリマーの原料の一種であり担体のジオポリマーとなじみやすい、などの理由から、アルミナ粉末が好適に用いられ、アルミナ粉末の中でも比表面積の大きいγアルミナ粉末がより好適に用いられる。無機粉末の粒径は、ジオポリマーとの結合(接着)力が強くなる数十~数百μmが好ましく、入手可能な範囲では40~200μmであることが好ましい。また、無機粉末の比表面積は、比表面積が大きい方が白金が分散し白金自体の粒径が小さくなり、白金の表面積も大きくなるため、大きければ大きい方が良いが、入手可能な範囲では40~200m/gであることが好ましい。 Examples of the inorganic powder constituting the hydrogen recombination catalyst of the present invention include metal oxide powders such as alumina powder, silica powder, zirconia powder, ceria powder and titanium oxide powder, and metal carbide powders such as silicon carbide and boron carbide. Examples thereof include metal nitride powders such as silicon nitride and boron nitride. Among these, alumina powder is preferable because it is inexpensive, chemically stable, has many types of particle sizes available, and is a kind of raw material for geopolymers and is easily compatible with the geopolymer of the carrier. Among the alumina powders, γ-alumina powder having a large specific surface area is more preferably used. The particle size of the inorganic powder is preferably several tens to several hundreds μm, which strengthens the bonding (adhesive) force with the geopolymer, and is preferably 40 to 200 μm within the available range. Further, as for the specific surface area of the inorganic powder, the larger the specific surface area, the more platinum is dispersed and the particle size of platinum itself becomes smaller, and the surface area of platinum also becomes larger. Therefore, the larger the specific surface area, the better. It is preferably about 200 m 2 / g.

本発明の水素再結合触媒を構成する触媒としては、例えば、白金、パラジウム、ロジウム、ルテニウムなどの貴金属、酸化チタン、酸化銅、酸化亜鉛、酸化ニッケル、酸化バナジウムなどの金属酸化物、からなるものとすることができる。これらの中では、水素再結合能力の高さから、白金又はパラジウムからなる触媒が好適に用いられる。さらに、本発明の水素再結合触媒を構成する触媒は、白金、パラジウム、又は白金とパラジウムの合計が30質量%以上であることが望ましい。 The catalyst constituting the hydrogen recombination catalyst of the present invention includes, for example, precious metals such as platinum, palladium, rhodium and ruthenium, and metal oxides such as titanium oxide, copper oxide, zinc oxide, nickel oxide and vanadium oxide. Can be. Among these, a catalyst made of platinum or palladium is preferably used because of its high hydrogen recombination ability. Further, it is desirable that the catalyst constituting the hydrogen recombination catalyst of the present invention has platinum, palladium, or a total of platinum and palladium of 30% by mass or more.

以上のように、本発明の水素再結合触媒は、強度の高いジオポリマーを含む無機材料を担持材料とすることによって十分な強度を有するとともに、大きい比表面積をもつ無機粉末の表面に触媒を担持させることによって高い水素再結合能力を有する。本発明の水素再結合触媒を含水性放射性廃棄物を貯蔵する保管容器内に設置することにより、水の放射線分解により発生した水素と酸素を再結合させ、水に戻すことにより容器内の水素濃度の上昇を抑制することができる。 As described above, the hydrogen recombination catalyst of the present invention has sufficient strength by using an inorganic material containing a high-strength geopolymer as a supporting material, and supports the catalyst on the surface of an inorganic powder having a large specific surface area. It has a high hydrogen recombination ability by making it. By installing the hydrogen recombination catalyst of the present invention in a storage container for storing water-containing radioactive waste, hydrogen and oxygen generated by radiolysis of water are recombined and returned to water to concentrate the hydrogen in the container. Can be suppressed from rising.

本発明の水素再結合触媒は、例えば、以下の手順で得ることができる。 The hydrogen recombination catalyst of the present invention can be obtained, for example, by the following procedure.

はじめに、触媒が担持された無機粉末を作製する。なお、触媒が担持された無機粉末は、無機粉末や触媒の種類に応じて、公知の方法によって作製することができる。 First, an inorganic powder on which a catalyst is supported is prepared. The inorganic powder on which the catalyst is supported can be produced by a known method depending on the type of the inorganic powder or the catalyst.

つぎに、ジオポリマーの原料である、活性フィラーとしてのアルミナシリカ粉末と、アルカリシリカ溶液を混合して、ジオポリマー溶液を作製する。アルミナシリカ粉末には、メタカオリンとマイクロシリカ(シリカフューム)を混合したものが好適に用いられる。マイクロシリカの代わりに、二酸化ケイ素を含有するフライアッシュ、高炉スラグ、下水汚泥などを用いてもよい。また、アルカリシリカ溶液には、ケイ酸カリウム溶液、水酸化カリウム、水を混合したものが好適に用いられる。ケイ酸カリウム溶液の代わりにケイ酸ナトリウム溶液(水ガラス)を用いてもよく、水酸化カリウムの代わりに水酸化ナトリウムを用いてもよい。 Next, the alumina silica powder as an active filler, which is a raw material of the geopolymer, and the alkaline silica solution are mixed to prepare a geopolymer solution. As the alumina silica powder, a mixture of metakaolin and microsilica (silica fume) is preferably used. Instead of microsilica, fly ash containing silicon dioxide, blast furnace slag, sewage sludge, or the like may be used. Further, as the alkali silica solution, a mixture of potassium silicate solution, potassium hydroxide and water is preferably used. A sodium silicate solution (water glass) may be used instead of the potassium silicate solution, and sodium hydroxide may be used instead of potassium hydroxide.

そして、このジオポリマー溶液を型に流し込んで養生し、表面が完全に固化していないジオポリマーを型から取り出す。養生の条件は、例えば、70~90℃で20~50分間とするのが好ましい。 Then, this geopolymer solution is poured into a mold and cured, and the geopolymer whose surface is not completely solidified is taken out from the mold. The curing conditions are preferably, for example, 70 to 90 ° C. for 20 to 50 minutes.

そして、このジオポリマーの表面に、触媒が担持された無機粉末を付着させることにより、ジオポリマーの表面に触媒が担持された無機粉末をコーティングする。 Then, the catalyst-supported inorganic powder is coated on the surface of the geopolymer by adhering the catalyst-supported inorganic powder to the surface of the geopolymer.

その後、養生して、ジオポリマーを完全に固化させる。養生の条件は、例えば、70~90℃で1~3日間とするのが好ましい。 It is then cured to completely solidify the geopolymer. The curing conditions are preferably, for example, 70 to 90 ° C. for 1 to 3 days.

または、同様の手順で、ジオポリマーの表面に、触媒が担持されていない無機粉末を付着させ、コーティングと養生を行った後に、触媒を担持させてもよい。 Alternatively, the catalyst may be supported on the surface of the geopolymer in the same procedure after the inorganic powder on which the catalyst is not supported is attached and coated and cured.

以上の手順により、本発明の水素再結合触媒を得ることができる。 By the above procedure, the hydrogen recombination catalyst of the present invention can be obtained.

以下、本発明の水素再結合触媒について具体的に説明する。なお、本発明は以下の実施例に限定されるものではなく、種々の変形実施が可能である。 Hereinafter, the hydrogen recombination catalyst of the present invention will be specifically described. The present invention is not limited to the following examples, and various modifications can be carried out.

[アルミナ粉末への白金の担持]
アルミナ粉末を白金硝酸塩溶液中に浸漬して白金硝酸塩溶液と混合し、その後、乾燥させて大気中で焼成することで、表面に白金を担持させたアルミナ粉末を作製した。白金材料として、ジニトロジアンミン白金(II)硝酸溶液(Pt(NH(NO/HNO)を用いた。白金を担持するアルミナ粉末として、比表面積の大きなγアルミナ粉末を用いた。比較のため、白金を担持させるアルミナ粉末を3種類準備した。それぞれのアルミナ粉末の物性は、表1に示すとおりであった。
[Supporting platinum on alumina powder]
Alumina powder was immersed in a platinum nitrate solution, mixed with the platinum nitrate solution, then dried and calcined in the air to prepare an alumina powder having platinum supported on its surface. As a platinum material, a dinitrodiammine platinum (II) nitric acid solution (Pt (NH 3 ) 2 (NO 2 ) 2 / HNO 3 ) was used. As the alumina powder supporting platinum, γ-alumina powder having a large specific surface area was used. For comparison, three types of alumina powder supporting platinum were prepared. The physical characteristics of each alumina powder are as shown in Table 1.

Figure 0006990815000002
Figure 0006990815000002

図2に示すように、使用するアルミナ粉末に対して白金が0.1~1質量%となるように水で希釈したジニトロジアンミン白金(II)硝酸溶液を準備し、アルミナ粉末をこの白金硝酸塩溶液中に浸漬した。そして、分散媒にエタノールを用い、アルミナ粉末と白金硝酸塩水溶液を、回転数520回/分のボールミルにより10分間混合した。混合した試料を乾燥機により90℃で4時間乾燥させた後、粉砕し、大気雰囲気で500℃で3時間焼成することにより、白金を担持させたアルミナ粉末を得た。 As shown in FIG. 2, a dinitrodiammine platinum (II) nitric acid solution diluted with water so that platinum is 0.1 to 1% by mass with respect to the alumina powder to be used is prepared, and the alumina powder is used as this platinum nitrate solution. Soaked in. Then, ethanol was used as the dispersion medium, and the alumina powder and the platinum nitrate aqueous solution were mixed for 10 minutes by a ball mill at a rotation speed of 520 times / min. The mixed sample was dried at 90 ° C. for 4 hours by a dryer, pulverized, and calcined at 500 ° C. for 3 hours in an air atmosphere to obtain an alumina powder carrying platinum.

[白金担持アルミナ粉末のジオポリマー担体への担持]
略球形のジオポリマー担体を作製し、その表面に、白金を担持したアルミナ粉末をコーティングした。ジオポリマー担体の原料の配合割合を表2に示す。コーティングは、ジオポリマー担体の養生中であってジオポリマーが完全に固化する前に、ジオポリマー担体の表面にアルミナ粉末を付着させることにより行った。
[Supporting platinum-supported alumina powder on a geopolymer carrier]
A substantially spherical geopolymer carrier was prepared, and the surface thereof was coated with an alumina powder carrying platinum. Table 2 shows the mixing ratio of the raw materials of the geopolymer carrier. The coating was performed by adhering alumina powder to the surface of the geopolymer carrier during curing of the geopolymer carrier and before the geopolymer was completely solidified.

Figure 0006990815000003
Figure 0006990815000003

図3に示すように、ケイ酸カリウム、純水、水酸化カリウム、マイクロシリカ、メタカオリンを表2に示す配合比率で配合、混合してジオポリマー溶液を作製し、このジオポリマー溶液を略球形の型に流し込んだ。70℃で20~50分間養生した後、表面が完全に固化していないジオポリマーを型から取り出し、このジオポリマーの表面に白金担持アルミナ粉末を付着させることにより、ジオポリマーの表面に白金担持アルミナ粉末をコーティングした。その後、70℃で1~3日間養生して、ジオポリマーを完全に固化させ、白金担持アルミナ粉末を担持させたジオポリマー担体、すなわち、本発明の水素再結合触媒を得た。実際に得られた本発明の水素再結合触媒の外観を図4に示す。 As shown in FIG. 3, potassium silicate, pure water, potassium hydroxide, microsilica, and metacaolin are blended and mixed at the blending ratios shown in Table 2 to prepare a geopolymer solution, and the geopolymer solution is substantially spherical. I poured it into a mold. After curing at 70 ° C. for 20 to 50 minutes, the geopolymer whose surface is not completely solidified is removed from the mold, and platinum-supported alumina powder is adhered to the surface of the geopolymer, whereby platinum-supported alumina is attached to the surface of the geopolymer. The powder was coated. Then, it was cured at 70 ° C. for 1 to 3 days to completely solidify the geopolymer, and a geopolymer carrier carrying platinum-supported alumina powder, that is, the hydrogen recombination catalyst of the present invention was obtained. The appearance of the hydrogen recombination catalyst of the present invention actually obtained is shown in FIG.

[電子顕微鏡観察]
透過型電子顕微鏡(TEM)を用いて、表面に白金を担持したアルミナ粉末の観察を行った。得られたTEM像を図5に示す。また、表面に白金を担持したアルミナ粉末の電子線回折を行った。そして、得られた電子線回折像から半径を測り、半径の逆数から面間隔であるd値を求め、白金の化学状態の同定を行った。電子線回折像を図6に、得られたd値、アルミナのカードデータ、白金のカードデータを、それぞれ表3、表4、表5に示す。その結果、電子線回析像から白金の(200)面に対応するd値が得られ、金属の白金が存在していることが確認された。
[Electron microscope observation]
Using a transmission electron microscope (TEM), the alumina powder supporting platinum on the surface was observed. The obtained TEM image is shown in FIG. In addition, electron diffraction of alumina powder supporting platinum on the surface was performed. Then, the radius was measured from the obtained electron diffraction image, the d value, which is the surface spacing, was obtained from the reciprocal of the radius, and the chemical state of platinum was identified. The electron diffraction image is shown in FIG. 6, and the obtained d value, the alumina card data, and the platinum card data are shown in Tables 3, 4, and 5, respectively. As a result, the d value corresponding to the (200) plane of platinum was obtained from the electron beam diffraction image, and it was confirmed that the metallic platinum was present.

Figure 0006990815000004
Figure 0006990815000004

Figure 0006990815000005
Figure 0006990815000005

Figure 0006990815000006
Figure 0006990815000006

[触媒性能の評価]
実施例1で得られた表面に白金を担持したアルミナ粉末について、触媒性能の評価を行った。評価条件は、以下のとおりであった。
サンプル量:250mg
ガス組成:1.0%-H、1.0%-O、残り-Ar
ガス流量:50cc/分(総量)
昇温速度:10℃/分
図7に、表面に白金を担持したアルミナ粉末の触媒性能の評価結果を示す(◆、■、×)。水素を酸素と結合させた割合を示す水素転化率が高い値を示し、水素再結合触媒として良好な触媒性能を持つことが示された。
[Evaluation of catalyst performance]
The catalytic performance of the alumina powder obtained in Example 1 in which platinum was supported on the surface was evaluated. The evaluation conditions were as follows.
Sample amount: 250 mg
Gas composition: 1.0% -H 2 , 1.0% -O 2 , remaining -Ar
Gas flow rate: 50cc / min (total amount)
Temperature rise rate: 10 ° C./min Figure 7 shows the evaluation results of the catalytic performance of the alumina powder carrying platinum on the surface (◆, ■, ×). The hydrogen conversion rate, which indicates the ratio of hydrogen bonded to oxygen, was high, indicating that it has good catalytic performance as a hydrogen recombination catalyst.

[アルミナ粉末へのパラジウムの担持]
ジニトロジアンミン白金(II)硝酸溶液(Pt(NH(NO/HNO)の代わりにジニトロジアンミンパラジウム(II)硝酸溶液(Pd(NH(NO/HNO)を用い、使用するアルミナ粉末に対してパラジウムが0.1質量%となるようにし、焼成温度を550℃としたほかは実施例1と同様にして、表面にパラジウムを担持させたアルミナ粉末を作製した。
[Supporting palladium on alumina powder]
Dinitrodiammine Palladium (II) Nitric Acid Solution (Pd (NH 3 ) 2 (NO 2 ) 2 / HNO 3 ) Instead of Dinitrodiammine Platinum (II) Nitric Acid Solution (Pt (NH 3 ) 2 (NO 2 ) 2 / HNO 3 ) ) Was used to make the amount of palladium 0.1% by mass with respect to the alumina powder used, and the firing temperature was set to 550 ° C. Made.

[触媒性能の評価]
実施例3で得られた表面にパラジウムを担持したアルミナ粉末について、触媒性能の評価を行った。評価条件は、実施例2と同様とした。
[Evaluation of catalyst performance]
The catalytic performance of the alumina powder obtained in Example 3 on which palladium was supported on the surface was evaluated. The evaluation conditions were the same as in Example 2.

図7に、表面にパラジウムを担持したアルミナ粉末の触媒性能の評価結果を示す(▲、+)。水素を酸素と結合させた割合を示す水素転化率が高い値を示し、水素再結合触媒として良好な触媒性能を持つことが示された。 FIG. 7 shows the evaluation results of the catalytic performance of the alumina powder supporting palladium on the surface (▲, +). The hydrogen conversion rate, which indicates the ratio of hydrogen bonded to oxygen, was high, indicating that it has good catalytic performance as a hydrogen recombination catalyst.

[アルミナ粉末への白金とパラジウムの担持]
ジニトロジアンミン白金(II)硝酸溶液(Pt(NH(NO/HNO)とジニトロジアンミンパラジウム(II)硝酸溶液(Pd(NH(NO/HNO)の両方を用い、使用するアルミナ粉末に対して白金とパラジウムの合計が0.1質量%となるようにし、焼成温度を550℃としたほかは実施例1と同様にして、表面に白金とパラジウムを担持させたアルミナ粉末を作製した。
[Support of platinum and palladium on alumina powder]
Dinitrodiammine platinum (II) nitric acid solution (Pt (NH 3 ) 2 (NO 2 ) 2 / HNO 3 ) and dinitrodiammine palladium (II) nitric acid solution (Pd (NH 3 ) 2 (NO 2 ) 2 / HNO 3 ) Using both, platinum and palladium were applied to the surface in the same manner as in Example 1 except that the total of platinum and palladium was 0.1% by mass with respect to the alumina powder used and the firing temperature was 550 ° C. A supported alumina powder was prepared.

[触媒性能の評価]
実施例5で得られた表面に白金とパラジウムを担持したアルミナ粉末について、触媒性能の評価を行った。評価条件は、実施例2と同様とした。
[Evaluation of catalyst performance]
The catalytic performance of the alumina powder obtained in Example 5 on which platinum and palladium were supported was evaluated. The evaluation conditions were the same as in Example 2.

図7に、表面に白金とパラジウムを担持したアルミナ粉末の触媒性能の評価結果を示す(●)。水素を酸素と結合させた割合を示す水素転化率が高い値を示し、水素再結合触媒として良好な触媒性能を持つことが示された。 FIG. 7 shows the evaluation results of the catalytic performance of the alumina powder supporting platinum and palladium on the surface (●). The hydrogen conversion rate, which indicates the ratio of hydrogen bonded to oxygen, was high, indicating that it has good catalytic performance as a hydrogen recombination catalyst.

Claims (1)

ジオポリマーを含む無機材料からなる担体と、この担体の表面に担持された無機粉末と、この無機粉末の表面に担持された白金又はパラジウム触媒とからなり、平均直径3~50mmの略球形状であることを特徴とする水素再結合触媒It consists of a carrier made of an inorganic material containing a geopolymer, an inorganic powder supported on the surface of the carrier, and a platinum or palladium catalyst supported on the surface of the inorganic powder, and has a substantially spherical shape with an average diameter of 3 to 50 mm. Hydrogen recombination catalyst characterized by being present
JP2017161867A 2017-08-25 2017-08-25 Hydrogen recombination catalyst Active JP6990815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017161867A JP6990815B2 (en) 2017-08-25 2017-08-25 Hydrogen recombination catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017161867A JP6990815B2 (en) 2017-08-25 2017-08-25 Hydrogen recombination catalyst

Publications (2)

Publication Number Publication Date
JP2019037936A JP2019037936A (en) 2019-03-14
JP6990815B2 true JP6990815B2 (en) 2022-01-12

Family

ID=65727351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017161867A Active JP6990815B2 (en) 2017-08-25 2017-08-25 Hydrogen recombination catalyst

Country Status (1)

Country Link
JP (1) JP6990815B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543701A (en) 2005-05-09 2008-12-04 コーニング インコーポレイテッド Geopolymer composite and structure formed therefrom
JP2011500494A (en) 2007-10-18 2011-01-06 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Process for the preparation of geopolymers with controlled porosity, the resulting geopolymers and their various uses
JP2011230064A (en) 2010-04-28 2011-11-17 Hitachi-Ge Nuclear Energy Ltd Hydrogen and oxygen recombination catalyst, recombination apparatus, and nuclear plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680489B2 (en) * 1991-08-07 1997-11-19 株式会社東芝 Catalyst for recombiners of radioactive gas waste treatment facilities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543701A (en) 2005-05-09 2008-12-04 コーニング インコーポレイテッド Geopolymer composite and structure formed therefrom
JP2011500494A (en) 2007-10-18 2011-01-06 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Process for the preparation of geopolymers with controlled porosity, the resulting geopolymers and their various uses
JP2011230064A (en) 2010-04-28 2011-11-17 Hitachi-Ge Nuclear Energy Ltd Hydrogen and oxygen recombination catalyst, recombination apparatus, and nuclear plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
放射性廃棄物、容器内で長期安全保管 長岡技科大など研究,日本経済新聞,日本経済新聞社,2017年02月11日,https://www.nikkei.com/article/dgxlasfb10H10_q7a210c1l21000/,[online],[令和3年4月27日検索]

Also Published As

Publication number Publication date
JP2019037936A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US6133498A (en) Method for producing chemically bonded phosphate ceramics and for stabilizing contaminants encapsulated therein utilizing reducing agents
JP5791510B2 (en) Hydrogen capture materials, preparation methods and uses
EP2433287B1 (en) Solid nanocomposite material on the basis of hexa-and octacyanometallates, their preparation method and method for immobilizing mineral polluants by using the same
JP6472460B2 (en) Nuclear fuel pellets with enhanced thermal conductivity and method for preparing the same
US6153809A (en) Polymer coating for immobilizing soluble ions in a phosphate ceramic product
JP2015166083A5 (en) Bifunctional catalyst for selective ammonia oxidation
CN105772069A (en) Sulfur-resistant catalyst coated with micro/nano scale type core-shell molecular sieve
JP2012096234A (en) Carrier carrying metal-containing colloidal particle and method of producing the same
JP5987855B2 (en) Exhaust gas purification catalyst
CN112466503A (en) Preparation method of glass ceramic body for solidifying Cs-containing soil
JP7129989B2 (en) Compositions for the treatment of hazardous sludges and ion exchange media
JP6990815B2 (en) Hydrogen recombination catalyst
Chaerun et al. Retention mechanism of cesium in chabazite embedded into metakaolin-based alkali activated materials
JP2018514495A (en) Method for preparing functionalized geopolymer foam, this functionalized foam and use thereof
JP5255388B2 (en) Metal particle-supported catalyst and method for producing the same
JP2016180593A (en) Molten nuclear fuel storage container
CN100589877C (en) Photocatalyst product and preparing method
KR20180007370A (en) Trapping filter of radioactive cesium gas made of kaolinite raw material and preparation method thereof
JP6237350B2 (en) Photocatalytic glass and method for producing the same
JP2902587B2 (en) Collection method of radioactive cesium using coal ash
STCMTON et al. Coating of crystalline nuclear waste forms to improve inertness
WO2005061387A1 (en) Liquid stock for dropping, method for preparing liquid stock for dropping, method for preparing uranyl nitrate solution, and method for preparing polyvinyl alcohol solution
JPS63162040A (en) Heat resistant and corrosion resistant adsorbent for iodine
JP5051743B2 (en) Method for producing zirconium trisilicate compound and zirconium trisilicate compound obtained from the method
JP6210477B2 (en) Spent nuclear fuel reprocessing system and reprocessing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R150 Certificate of patent or registration of utility model

Ref document number: 6990815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150