JP6987625B2 - Machine parts such as slab-baked steel for machine structures with excellent pitching resistance used for carburized skin and slab-baked gears made of the steel. - Google Patents

Machine parts such as slab-baked steel for machine structures with excellent pitching resistance used for carburized skin and slab-baked gears made of the steel. Download PDF

Info

Publication number
JP6987625B2
JP6987625B2 JP2017235401A JP2017235401A JP6987625B2 JP 6987625 B2 JP6987625 B2 JP 6987625B2 JP 2017235401 A JP2017235401 A JP 2017235401A JP 2017235401 A JP2017235401 A JP 2017235401A JP 6987625 B2 JP6987625 B2 JP 6987625B2
Authority
JP
Japan
Prior art keywords
steel
less
carburizing
layer
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017235401A
Other languages
Japanese (ja)
Other versions
JP2019099893A (en
Inventor
貴史 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2017235401A priority Critical patent/JP6987625B2/en
Publication of JP2019099893A publication Critical patent/JP2019099893A/en
Application granted granted Critical
Publication of JP6987625B2 publication Critical patent/JP6987625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、例えば、自動車などの動力伝達に用いられる歯車など、浸炭または浸炭窒化後、研削などを行わずに表面に熱処理ままの肌を残した状態で、使用された際に、耐ピッチング特性に優れた機械構造用のはだ焼きされた鋼および該鋼からなる浸炭もしくは浸炭窒化処理された歯車等の機械部品に関するものである。 INDUSTRIAL APPLICABILITY The present invention has anti-pitching characteristics when used, for example, in gears used for power transmission of automobiles, etc., in a state where the surface remains heat-treated without grinding after carburizing or nitriding. It relates to machine parts such as blasted steel for excellent mechanical structure and carburized or nitrided gears made of the steel.

自動車用の歯車の破損形態の1つとして、歯面の剥離(以降、ピッチング)がある。ピッチングは、表面からき裂が生成し、伝播することで剥離を起こすことである。機械部品の歯車等は、一般に、はだ焼鋼をガス浸炭またはガス浸炭窒化して使用することが多いため、鋼材表層には浸炭異常層が存在する状態で使用されてきた。 One of the forms of damage to gears for automobiles is peeling of the tooth surface (hereinafter referred to as pitching). Pitching is the formation of cracks from the surface and their propagation, causing exfoliation. Since gears and the like of machine parts are generally used by gas carburizing or gas nitriding of burnt steel, they have been used in a state where an abnormal carburizing layer is present on the surface layer of the steel material.

こうしたガス浸炭後の浸炭異常層は、浸炭時の酸化により形成された粒界酸化及び、合金酸化物形成に伴う合金欠乏により、生じる不完全焼入れ組織により形成されている。これらの浸炭異常層は耐ピッチング強度の劣化を引き起こす原因となる。そこで、歯面研削や真空浸炭の利用により浸炭異常層を除去または低減することで耐ピッチング特性を向上させることが試行されているが、これらは高コストであり、かつ製造工程の変更などによる製造負荷も大きい。 The abnormal carburized layer after gas carburizing is formed by an incompletely hardened structure caused by intergranular oxidation formed by oxidation during carburizing and alloy deficiency associated with alloy oxide formation. These abnormal carburized layers cause deterioration of pitching resistance. Therefore, attempts have been made to improve the pitching resistance by removing or reducing the abnormal carburizing layer by using tooth surface grinding or vacuum carburizing, but these are expensive and manufactured by changing the manufacturing process. The load is also heavy.

また、歯車は歯面同士の金属すべりによる摩擦によって高温になると、硬度が下がることから耐ピッチング特性が低下する。そのため、耐ピッチング特性向上のために、Si、Cr、Moといった焼戻し軟化抵抗を高める元素を配合することで、金属摩耗を抑え、金属すべりによる摩擦熱で鋼材が軟化するのを抑える技術が提案されている(例えば、特許文献1参照。)。 Further, when the temperature of the gear becomes high due to the friction between the tooth surfaces due to the metal slip, the hardness decreases and the pitching resistance property deteriorates. Therefore, in order to improve the pitching resistance, a technology has been proposed that suppresses metal wear and suppresses softening of steel due to frictional heat due to metal slip by blending elements such as Si, Cr, and Mo that increase temper softening resistance. (See, for example, Patent Document 1).

そして、浸炭ままでの歯車の使用を考え、浸炭異常層の形態として不完全焼入れ組織の深さを5〜40μmとすることで、初期なじみ性を向上させたピッチング特性を向上させた歯車が提案されている(例えば、特許文献2参照。)。 Considering the use of gears as they are carburized, we propose gears with improved pitching characteristics with improved initial familiarity by setting the depth of the incompletely hardened structure to 5 to 40 μm as the form of the abnormal carburized layer. (See, for example, Patent Document 2).

さらに、発明者らは、特定の成分組成の鋼であって、さらにガス浸炭した場合またはガス浸炭窒化した場合における最大粒界酸化深さD1が15μm以下で、合金欠乏層である不完全焼入層の最大深さD2が8〜25μmであり、かつ、当該鋼の最表面から不完全焼入層の最大深さまでの不完全焼入層の面積割合が20〜50%であり、さらにD2−D1が、2≦D2−D1≦15を満たす状態で使用される鋼であることを特徴とする耐ピッチング特性に優れる機械構造用肌焼鋼を提案している(特許文献3参照。)。 Furthermore, the inventors have found that the maximum grain boundary oxidation depth D1 of a steel having a specific composition and when further gas carburized or gas carburized and nitrided is 15 μm or less, and the alloy-deficient layer is incompletely quenched. The maximum depth D2 of the layer is 8 to 25 μm, and the area ratio of the incompletely hardened layer from the outermost surface of the steel to the maximum depth of the incompletely hardened layer is 20 to 50%, and further D2- We have proposed a hardened steel for machine structure having excellent pitching resistance, which is characterized in that D1 is a steel used in a state of satisfying 2 ≦ D2-D1 ≦ 15 (see Patent Document 3).

特許4320764号公報Japanese Patent No. 4320764 特許4000616号公報Japanese Patent No. 4000616 特開2016−222982号公報Japanese Unexamined Patent Publication No. 2016-222982

従前より、耐ピッチング特性を向上させるために浸炭異常層を除去することが知られてはいるが、浸炭異常層を除去する工程は高コストであり、製造工程の変更も伴うことから製造負荷が大きくなってしまう。また、浸炭異常層を除去することで、摩耗が極端に少なくなると、今度は焼付き発生や発熱による軟化が顕著になり、かえって短寿命となる場合がある。したがって、耐ピッチング特性の向上は浸炭異常層の除去で解決されるとは限らない。 It has been known to remove the abnormal carburized layer in order to improve the pitching resistance, but the process of removing the abnormal carburized layer is expensive and involves changes in the manufacturing process, which increases the manufacturing load. It gets bigger. Further, if the wear is extremely reduced by removing the abnormal carburizing layer, the seizure occurs and the softening due to heat generation becomes remarkable, and the life may be shortened. Therefore, the improvement of pitching resistance is not always solved by removing the abnormal carburized layer.

一方、特許文献1のように、元素添加により、焼戻し軟化抵抗を向上させる技術は、工程変更や工程の追加などの必要がないため、製造上の付加は小さいものの、軟化抵抗性の向上のみでは耐ピッチング特性の向上には不十分であった。たしかにこの手段は、鋼材が軟化する状況となれば有効となりうるであろうが、実際の歯車使用においては、歯車に使用すると摩擦発熱により接触部が高温となるものの、鋼材が軟化するほどに高温となることは少ないことからすると、焼戻し軟化抵抗の向上のみでは耐ピッチング特性の向上に対する対策としては不十分であった。 On the other hand, as in Patent Document 1, the technique of improving the tempering softening resistance by adding an element does not require process change or addition of processes, so that the addition in manufacturing is small, but only the improvement of softening resistance is possible. It was insufficient to improve the pitching resistance. Certainly, this means could be effective if the steel material softens, but in actual gear use, the contact area becomes hot due to frictional heat generation when used for gears, but the temperature is high enough to soften the steel material. Given that this is rare, improving the temper softening resistance alone was not sufficient as a countermeasure for improving the pitching resistance.

また、特許文献2は、ガス浸炭後の浸炭異常層への着眼があるものの、不完全焼入れ組織の定義が組織観察に依存するため、客観性が乏しく曖昧であり、また、不完全焼入れ層の摩耗に関する着眼のみに留まっている。するとこの技術は粒界酸化を考慮しないことから、粒界酸化が小さい場合には軟質な不完全焼入れ組織が過多となり、摩耗量が大幅に増加してしまうことから、歯当たりが悪くなり、歯当たりの端部での剥離を発生させることともなるので、かえって耐ピッチング特性を劣化させる。逆に、粒界酸化が大きい場合には、粒界酸化が残存し、粒界酸化起点におけるき裂生成により早期に破損するなどすることとなるので、耐ピッチング特性の向上としては不十分であった。 Further, in Patent Document 2, although the focus is on the abnormal carburized layer after gas carburizing, the definition of the incompletely hardened structure depends on the structure observation, so that the objectivity is poor and ambiguous, and the incompletely hardened layer is unclear. The focus is only on wear. Then, since this technique does not consider the intergranular oxidation, when the intergranular oxidation is small, the soft incompletely hardened structure becomes excessive and the amount of wear increases significantly, resulting in poor tooth contact and teeth. It also causes peeling at the end of the hit, which rather deteriorates the pitching resistance. On the contrary, when the intergranular oxidation is large, the intergranular oxidation remains and the cracks are generated at the origin of the intergranular oxidation to cause early damage, which is insufficient for improving the pitching resistance. rice field.

そこで、本願の発明者らは、ガス浸炭後の粒界酸化深さ、不完全焼入れ層の厚さの両方に着眼し、粒界酸化深さに対して不完全焼入れ層の深さが浅く、鋼材使用時の摩耗量が極端に少ないときには、粒界酸化が残存し、粒界酸化を起点としたピッチングが起こるため短寿命となることを見いだした。また、粒界酸化深さに対して不完全焼入れ層の深さが過剰に深いときには、鋼材が過剰に摩耗して、接触幅の増加による動力伝達のロスや歯当たりの悪化による早期破損が発生するという点から、粒界酸化深さと不完全焼入れ層の厚さの制御が必要であることを見いだした。 Therefore, the inventors of the present application focused on both the intergranular oxidation depth after gas carburizing and the thickness of the incompletely quenched layer, and the depth of the incompletely quenched layer is shallower than the intergranular oxidation depth. It was found that when the amount of wear when using steel materials is extremely small, intergranular oxidation remains and pitching occurs starting from the intergranular oxidation, resulting in a short life. In addition, when the depth of the incompletely hardened layer is excessively deep with respect to the grain boundary oxidation depth, the steel material is excessively worn, causing loss of power transmission due to an increase in contact width and early breakage due to deterioration of tooth contact. From this point of view, it was found that it is necessary to control the intergranular oxidation depth and the thickness of the incompletely hardened layer.

しかし、不完全焼入れ層自体は、ベイナイト組織やパーライト組織といった組織観察に依存することとなるところ、組織観察によるとなれば、どうしても客観性が乏しく曖昧とならざるを得ない部分が生じるので、必ずしも所望の特性が得られるのか十分ではないところがあった。そこで、習熟した判断を要さずとも安定して正確に所望の特性を備えた製品が得られることが望まれていた。 However, the incompletely hardened layer itself depends on the tissue observation such as the bainite structure and the pearlite structure, and according to the structure observation, there is a part that is inevitably lacking in objectivity and must be ambiguous. It was not enough to obtain the desired characteristics. Therefore, it has been desired to obtain a product having desired characteristics stably and accurately without requiring a proficient judgment.

そこで、本発明が解決しようとする課題は、浸炭異常層の残った状態の浸炭肌のままでありながら、過剰な摩耗による短寿命化と粒界酸化起点の短寿命化の双方を的確かつ安定的に回避することによって、耐ピッチング特性に優れたはだ焼きされた鋼を提供することである。 Therefore, the problem to be solved by the present invention is to accurately and stably shorten the life due to excessive wear and shorten the life of the grain boundary oxidation starting point while the carburized skin remains in the state where the abnormal carburized layer remains. By avoiding this, it is possible to provide a carburized steel having excellent pitching resistance.

本願の発明者らは、粒界酸化深さと不完全焼入れ層の厚さの制御の必要性に関する上述した自らの着眼に加えて、さらに、圧子を試料に押し込む時の荷重Fと押し込み深さhから得られる荷重変位曲線(F−h曲線)を解析することで、インデンテーション硬さを求める手法であるナノインデンテーションによって、最表面近傍の硬度分布を正確に把握すれば、客観的にインデンテーション硬度を指標とすることで、軟質組織層を不完全焼入れ組織と捉え、不完全焼入れ層自体を組織観察によって判別することなしに、より正確かつ簡便に判別することが可能であることを見出し、さらに、粒界酸化深さに対して不完全焼入れ組織の深さを過不足ない状態に調整することで、浸炭異常層を残した状態で使用する場合でありながら、的確かつ安定的に、過剰な摩耗による短寿命化と、粒界酸化起点の短寿命化の双方の不都合をいずれも回避することができて、従前よりも簡便かつ的確に耐ピッチング特性の向上に非常に優れるはだ焼きされた鋼や該鋼を用いた歯車等の機械部品を製造できることを見出した。 In addition to their own focus on the need to control grain boundary oxidation depth and incompletely hardened layer thickness, the inventors of the present application further load F and indentation depth h when indenting the indenter into the sample. If the hardness distribution near the outermost surface can be accurately grasped by nanoindentation, which is a method for obtaining indentation hardness by analyzing the load displacement curve (Fh curve) obtained from, the indentation can be objectively performed. By using the hardness as an index, it was found that the soft structure layer can be regarded as an incompletely hardened structure, and the incompletely hardened layer itself can be discriminated more accurately and easily without discriminating by microstructure observation. Furthermore, by adjusting the depth of the incompletely quenched structure to the state where the incompletely quenched structure is not excessive or insufficient with respect to the grain boundary oxidation depth, even if it is used with the abnormal carburized layer left, it is accurate, stable and excessive. It is possible to avoid both the inconveniences of shortening the life due to excessive wear and shortening the life of the grain boundary oxidation starting point, and it is easier and more accurate than before, and it is extremely excellent in improving pitching resistance. It has been found that it is possible to manufacture mechanical parts such as hardened steel and gears using the steel.

そこで、本願の課題を解決するための手段は、第1の手段では、質量%で、C:0.10〜0.35%、Si:0.40〜1.00%、Mn:0.15〜0.45%、P:0.030%以下、S:0.030%以下、Cr:1.50〜2.50%、Ni:0.20%以下、Mo:0.10%以下を含有し、さらにV:0.01〜0.50%、Nb:0.01〜0.20%、Ti:0.01〜0.20%から選択した1種または2種以上を含有し、残部がFeおよび不可避不純物からなる鋼であり、当該鋼のガス浸炭またはガス浸炭窒化における最表面から0.30mm位置での硬さが700HV以上、最大粒界酸化深さD1が15μm以下、かつインデンテーション硬さが9000HIT以下となる最表面からの最大深さD2が下記式(1)を満たす浸炭異常層が残った状態であることを特徴とする耐ピッチング特性に優れた機械構造用のはだ焼きされた鋼である。
−5μm≦D2−D1≦10μm ・・・(1)
Therefore, the means for solving the problem of the present application is, in the first means, in terms of mass%, C: 0.10 to 0.35%, Si: 0.40 to 1.00%, Mn: 0.15. ~ 0.45%, P: 0.030% or less, S: 0.030% or less, Cr: 1.50 to 2.50%, Ni: 0.20% or less, Mo: 0.10% or less Further, it contains one or more selected from V: 0.01 to 0.50%, Nb: 0.01 to 0.20%, and Ti: 0.01 to 0.20%, and the balance is A steel composed of Fe and unavoidable impurities, the hardness of the steel at 0.30 mm from the outermost surface in gas carburizing or gas carburizing nitriding is 700 HV or more, the maximum grain boundary oxidation depth D 1 is 15 μm or less, and indentation. excellent for a mechanical structure pitting characteristics, wherein the maximum depth D 2 from the outermost surface the hardness is equal to or less than 9000H iT is ready to carburization anomaly layer remained to satisfy the following formula (1) It is a carburized steel.
-5 μm ≤ D 2 −D 1 ≤ 10 μm ・ ・ ・ (1)

すなわち、これらの機械構造用の肌焼された鋼とは、上記の化学成分からなる鋼をガス浸炭またはガス浸炭窒化処理した後に浸炭異常層が残った状態である鋼であって、部品の形状に加工してその後にガス浸炭やガス浸炭窒化による熱処理をした鋼や、上記の鋼を材質として用いてなる歯車等の機械部品や機械部品の素形材を含む。 That is, these skin-baked steels for mechanical structures are steels in which an abnormal carburizing layer remains after gas carburizing or gas carburizing and nitriding of steels composed of the above chemical components, and the shape of the parts. Includes steel that has been processed into steel and then heat-treated by gas carburizing or gas carburizing nitriding, mechanical parts such as gears made of the above steel as a material, and raw materials for mechanical parts.

また、その他の手段は、質量%で、C:0.10〜0.35%、Si:0.40〜1.00%、Mn:0.15〜0.45%、P:0.030%以下、S:0.030%以下、Cr:1.50〜2.50%、Ni:0.20%以下、Mo:0.10%以下を含有し、さらにV:0.01〜0.50%、Nb:0.01〜0.20%、Ti:0.01〜0.20%から選択した1種または2種以上を含有し、残部がFeおよび不可避不純物からなる鋼からなる歯車等の機械部品であって、当該歯車等の機械部品のガス浸炭またはガス浸炭窒化における最表面から0.30mm位置での硬さが700HV以上、最大粒界酸化深さD1が15μm以下、かつインデンテーション硬さが9000HIT以下となる最表面からの最大深さD2が下記式(1)を満たす浸炭異常層が残った状態であることを特徴とする耐ピッチング特性に優れたはだ焼きされた歯車、機械構造用部品、あるいは機械構造用部品素材である。
−5μm≦D2−D1≦10μm ・・・(1)
In addition, other means are C: 0.10 to 0.35%, Si: 0.40 to 1.00%, Mn: 0.15 to 0.45%, P: 0.030% in mass%. Hereinafter, S: 0.030% or less, Cr: 1.50 to 2.50%, Ni: 0.20% or less, Mo: 0.10% or less, and V: 0.01 to 0.50. %, Nb: 0.01 to 0.20%, Ti: 0.01 to 0.20%, such as a gear containing one or more selected from steel, the balance of which is Fe and unavoidable impurities. It is a mechanical part, and the hardness of the mechanical part such as the gear is 700HV or more at the position of 0.30mm from the outermost surface in gas carburizing or gas carburizing nitriding, the maximum grain boundary oxidation depth D 1 is 15μm or less, and the indentation. maximum depth D 2 from the outermost surface the hardness is equal to or less than 9000H iT is hardened excellent pitting resistance characteristic, which is a state where carburization anomaly layer remained to satisfy the following formula (1) It is a gear, a mechanical structural part, or a mechanical structural component material.
-5 μm ≤ D 2 −D 1 ≤ 10 μm ・ ・ ・ (1)

上記の手段とすることで、この手段からなる機械構造用はだ焼きされた鋼は、ガス浸炭またはガス浸炭窒化した後の最表面から0.30mm位置での硬さが700HV以上であり、最大粒界酸化深さD1が15μm以下であり、さらに最表面からの最大深さD2におけるインデンテーション硬さが9000HIT以下であり、したがって、−5μm≦D2−D1≦10μmを満たす浸炭異常層が残った状態で使用する、耐ピッチング特性に優れる機械構造用はだ焼きされた鋼および当該鋼からなる歯車等の機械部品が得られた。 By using the above means, the hardened steel for mechanical structure made by this means has a hardness of 700 HV or more at a position of 0.30 mm from the outermost surface after gas carburizing or gas carburizing and nitriding, and has a maximum hardness. intergranular oxidation depth D 1 is at 15μm or less, a further indentation hardness at the maximum depth D 2 from the uppermost surface below 9000H iT, therefore, carburizing satisfying -5μm ≦ D 2 -D 1 ≦ 10μm Mechanical parts such as carburized steel for machine structures with excellent pitching resistance and gears made of the steel, which are used with the abnormal layer remaining, were obtained.

(a)がローラーピッチング試験片の側面図であり、(b)がローラーピッチング試験の概念図である。(A) is a side view of a roller pitching test piece, and (b) is a conceptual diagram of a roller pitching test. 浸炭焼入焼戻しパターンを示す図である。It is a figure which shows the charcoal-burning tempering tempering pattern.

発明を実施するための形態の記載に先立って、本願の鋼の化学成分の限定理由および鋼の特性の限定理由について説明する。なお、化学成分における%は、質量%である。 Prior to the description of the embodiment for carrying out the invention, the reasons for limiting the chemical composition of the steel of the present application and the reasons for limiting the properties of the steel will be described. In addition,% in the chemical composition is mass%.

C:0.10〜0.35%
Cは、鋼素材の芯部の焼入性、鍛造性および機械加工性に影響する元素である。Cが0.10%未満では十分な鋼素材の芯部の硬さが十分に得られず強度が低下し、被削性および鍛造性などの加工性を阻害する。一方、Cが0.35%より多いと、鋼素材の芯部硬さが過剰となり歯車の曲げ強度が劣化する。そこで、Cは0.10〜0.35%とし、望ましくは、0.13〜0.30%とする。
C: 0.10 to 0.35%
C is an element that affects the hardenability, forgeability, and machinability of the core of the steel material. If C is less than 0.10%, sufficient hardness of the core portion of the steel material cannot be sufficiently obtained and the strength is lowered, which hinders workability such as machinability and forgeability. On the other hand, if C is more than 0.35%, the core hardness of the steel material becomes excessive and the bending strength of the gear deteriorates. Therefore, C is 0.10 to 0.35%, and preferably 0.13 to 0.30%.

Si:0.40〜1.00%
Siは、製錬時の脱酸に必要な元素である。また、Siは、鋼素材の焼戻し軟化抵抗性を高めピッチング特性の向上に有効な元素である。しかし、Siが0.40%以上になると、粒界酸化深さが低減するため、ピッチング特性の向上のためには、0.40%以上が必要である。一方、Siは、鋼素材の硬さを増加して被削性および鍛造性などの加工性を阻害し、また、浸炭阻害を起こし、耐ピッチング強度の劣化につながる元素である。そこで、Siは0.40〜1.00%とし、望ましくは、0.45〜0.70%とする。
Si: 0.40 to 1.00%
Si is an element required for deoxidation during smelting. Further, Si is an element effective for enhancing the temper softening resistance of the steel material and improving the pitching characteristics. However, when Si is 0.40% or more, the intergranular oxidation depth is reduced, so 0.40% or more is required to improve the pitching characteristics. On the other hand, Si is an element that increases the hardness of the steel material, hinders workability such as machinability and forgeability, and also causes carburizing inhibition, leading to deterioration of pitching resistance. Therefore, Si is 0.40 to 1.00%, and preferably 0.45 to 0.70%.

Mn:0.15〜0.45%
Mnは、焼入れ性の確保に必要な元素であり、浸炭時に粒界酸化や合金酸化物に濃化することで不完全焼入れ層を形成する。不完全焼入れ層を形成するにはMnは0.15%以上は必要である。一方、Mnは、多くなると鋼素材の硬さが増加し、被削性および鍛造性などの加工性を阻害する。また、Mnは0.45%より過多になると、浸炭時に粒界酸化や合金酸化物に濃化しきれなくなり、表層の焼入れ性が増すことで不完全焼入れ組織の生成を抑制する。そこで、必要な不完全焼入れ組織の生成には、Mnは0.45%以下とする必要がある。そこで、Mnは0.15〜0.45%とし、望ましくは、0.20〜0.35%とする。
Mn: 0.15-0.45%
Mn is an element necessary for ensuring hardenability, and forms an incompletely hardened layer by intergranular oxidation or concentration in alloy oxides during carburizing. Mn of 0.15% or more is required to form an incompletely hardened layer. On the other hand, when the amount of Mn increases, the hardness of the steel material increases, which hinders workability such as machinability and forgeability. Further, when Mn is more than 0.45%, it cannot be completely concentrated in grain boundary oxidation or alloy oxide during carburizing, and the hardenability of the surface layer is increased, thereby suppressing the formation of an incompletely hardened structure. Therefore, in order to generate the required incompletely hardened structure, Mn needs to be 0.45% or less. Therefore, Mn is set to 0.15 to 0.45%, and preferably 0.20 to 0.35%.

P:0.030%以下
Pは、鋼を脆化する元素であり、鋼素材の疲労強度を下げる。そこで、Pは0.030%以下とする。
P: 0.030% or less P is an element that embrittles steel and lowers the fatigue strength of the steel material. Therefore, P is set to 0.030% or less.

S:0.030%以下
Sは、冷間加工性を阻害する元素であり、鋼素材の疲労強度を劣化する。そこで、Sは0.030%以下とする。
S: 0.030% or less
S is an element that inhibits cold workability and deteriorates the fatigue strength of the steel material. Therefore, S is set to 0.030% or less.

Cr:1.50〜2.50%
Crは、鋼素材の焼入れ性の確保に必要な元素であり、かつ焼戻し軟化抵抗性を高める元素でもある。また、浸炭時に粒界酸化や合金酸化物に非常に濃化し易く、なじみ性に有用な不完全焼入れ層を形成する。十分な、不完全焼入れ層を形成するには、Crは最低1.50%以上は必要である。一方、Crは、2.50%より多すぎると、浸炭阻害を起こし、素材硬さの低減につながるほか、浸炭時に粗大炭化物を形成し、ピッチング寿命の低下につながる。そこで、Crは1.50〜2.50%とし、望ましくは、1.65〜2.10%とする。
Cr: 1.50 to 2.50%
Cr is an element necessary for ensuring the hardenability of the steel material and also an element for increasing the temper softening resistance. In addition, it is very easy to concentrate on intergranular oxidation and alloy oxides during carburizing, and forms an incompletely hardened layer that is useful for compatibility. Cr must be at least 1.50% or more in order to form a sufficient incompletely hardened layer. On the other hand, if Cr is more than 2.50%, it causes carburizing inhibition and leads to reduction of material hardness, and also forms coarse carbides at the time of carburizing, leading to shortening of pitching life. Therefore, Cr is 1.50 to 2.50%, and preferably 1.65 to 2.10%.

Ni:0.20%以下
Niは、鋼素材のコストを大きく増加する元素であり、また、ガス浸炭時に酸素との反応性が低いため、最表面近傍にはほとんど偏在せずに、不完全焼入れ組織の生成を抑制する。しかし、必要な不完全焼入れ組織の生成には、Niは0.20%以下とする必要がある。
Ni: 0.20% or less Ni is an element that greatly increases the cost of steel materials, and since it has low reactivity with oxygen during gas carburizing, it is hardly unevenly distributed near the outermost surface and is incompletely quenched. Suppress the formation of tissue. However, Ni needs to be 0.20% or less in order to generate the required incompletely hardened structure.

Mo:0.10%以下
Moは、Niと同様に鋼素材のコストを大きく増加する元素であり、また、ガス浸炭時に酸素との反応性が低いため、最表面近傍にはほとんど偏在せずに、不完全焼入れ組織の生成を抑制する。しかし、必要な不完全焼入れ組織の生成には、Moは0.10%以下とする必要がある。
Mo: 0.10% or less Mo is an element that greatly increases the cost of steel materials like Ni, and since it has low reactivity with oxygen during gas carburizing, it is hardly unevenly distributed near the outermost surface. , Suppresses the formation of incompletely hardened tissue. However, Mo needs to be 0.10% or less in order to generate the required incompletely hardened structure.

V:0.01〜0.20%
Vは、鋼素材の浸炭または浸炭窒化時に炭化物または炭窒化物を形成し、結晶粒を微細化させるために有効な元素である。さらに、Vは結晶粒を微細化することで、粒界酸化深さを浅くするとともに、粒界酸化となるき裂が生成した際にも、き裂長さが小さくなる。しかし、Vが0.01%未満では、効果が得られない。しかし、Vは、0.20%を超えると、結晶粒微細化の効果が飽和し、コストアップとなる。さらに、Vは多量に炭窒化物を形成することができ、加工特性を悪化させる。そこで、Vは0.01〜0.20%とする。
V: 0.01 to 0.20%
V is an element effective for forming carbides or carbonitrides during carburizing or carburizing and nitriding of steel materials and for refining crystal grains. Further, V makes the grain boundary oxidation depth shallow by refining the crystal grains, and also reduces the crack length when cracks that become grain boundary oxidation are generated. However, if V is less than 0.01%, no effect can be obtained. However, if V exceeds 0.20%, the effect of grain refinement is saturated and the cost increases. Further, V can form a large amount of carbonitride, which deteriorates the processing characteristics. Therefore, V is set to 0.01 to 0.20%.

Nb:0.01〜0.20%
Nbは、鋼素材の浸炭または浸炭窒化時に炭化物または炭窒化物を形成し、結晶粒を微細化させるために有効である。さらに、Nbは結晶粒を微細化することで、粒界酸化深さを浅くするとともに、粒界酸化となるき裂が生成した際にも、き裂長さが小さくなる。しかし、Nbが0.01%未満では、効果が得られない。しかし、Nbは0.20%を超えると結晶粒微細化の効果は飽和し、コストアップとなる。さらに、Nbは多量に炭窒化物を形成することでき、加工特性を悪化させる。そこで、Nbは0.01〜0.20%とする。
Nb: 0.01 to 0.20%
Nb is effective for forming carbides or carbonitrides during carburizing or carburizing and nitriding of steel materials and for refining crystal grains. Further, Nb makes the grain boundary oxidation depth shallow by refining the crystal grains, and also reduces the crack length when cracks that become grain boundary oxidation are generated. However, if Nb is less than 0.01%, no effect can be obtained. However, when Nb exceeds 0.20%, the effect of grain refinement is saturated and the cost increases. Further, Nb can form a large amount of carbonitride, which deteriorates the processing characteristics. Therefore, Nb is set to 0.01 to 0.20%.

Ti:0.01〜0.20%
Tiは、鋼素材の浸炭または浸炭窒化時に炭化物または炭窒化物を形成し、結晶粒を微細化させるために有効である。さらに、Tiは結晶粒を微細化することで、粒界酸化深さを浅くするとともに、粒界酸化となるき裂が生成した際にも、き裂長さが小さくなる。しかし、Tiは0.01%未満では、効果が得られない。しかし、Tiは0.20%を超えると結晶粒微細化の効果は飽和し、コストアップとなる。さらに、Tiは多量に炭窒化物を形成することでき、加工特性を悪化させる。そこで、Tiは0.01〜0.20%とする。
Ti: 0.01 to 0.20%
Ti is effective for forming carbides or carbonitrides during carburizing or carburizing and nitriding of steel materials and for refining crystal grains. Further, Ti makes the grain boundary oxidation depth shallow by refining the crystal grains, and also reduces the crack length when cracks that become grain boundary oxidation are generated. However, if Ti is less than 0.01%, no effect can be obtained. However, if Ti exceeds 0.20%, the effect of grain refinement is saturated and the cost increases. Further, Ti can form a large amount of carbonitride, which deteriorates the processing characteristics. Therefore, Ti is set to 0.01 to 0.20%.

ガス浸炭後またはガス浸炭窒化後の最表面から0.30mm位置での硬さ:700HV以上
ガス浸炭またはガス浸炭窒化後の浸炭層内または浸炭窒化層内の硬度が低いと、鋼材内部でのせん断応力の影響により、変形の過多や内部はく離(スポーリング)が発生し、早期破損に至る。そこで、これらの早期破損を抑制するためには、特に高い内部せん断応力が付加される最表面から0.30mm位置での硬さは700HV以上とする。
Hardness at 0.30 mm from the outermost surface after gas carburizing or gas carburizing nitriding: 700 HV or more If the hardness in the carburized layer or carburized nitride layer after gas carburizing or gas carburizing nitriding is low, shearing inside the steel material Due to the influence of stress, excessive deformation and internal peeling (spauling) occur, leading to early breakage. Therefore, in order to suppress these early breakages, the hardness at the position of 0.30 mm from the outermost surface to which a particularly high internal shear stress is applied is set to 700 HV or more.

ガス浸炭またはガス浸炭窒化後の最大粒界酸化深さD1:15μm以下
ガス浸炭またはガス浸炭窒化後の最大粒界酸化深さD1が、15μmより深いと、粒界酸化深さが摩耗しても粒界酸化層が除去されずに存在し続けるため、粒界酸化を起点としたき裂が発生し、ピッチング強度が劣化する。そこで、粒界酸化深さD1は15μm以下とし、望ましくは、10μm以下とする。
Maximum grain boundary oxidation depth after gas carburizing or gas carburizing nitriding D 1 : 15 μm or less When the maximum grain boundary oxidation depth D 1 after gas carburizing or gas carburizing nitriding is deeper than 15 μm, the grain boundary oxidation depth wears. However, since the intergranular oxide layer continues to exist without being removed, cracks are generated starting from the intergranular oxidation, and the pitching strength deteriorates. Therefore, the grain boundary oxidation depth D 1 is set to 15 μm or less, preferably 10 μm or less.

ガス浸炭後のインデンテーション硬さが9000HIT以下となる最表面からの深さD2とするとき、D2−D1:−5〜10μm
軟質組織層が存在しない場合や少ない場合には、軟質組織層の摩耗によるなじみ性の向上効果が得られない。また、粒界酸化深さに対して軟質組織層が少すぎると、粒界酸化が摩耗後も残存するため、粒界酸化を起点とした早期のき裂生成が発生し、十分なピッチング特性が得られない。しかし、ピッチング特性の向上に十分ななじみ性の確保と粒界酸化起点のき裂生成の抑制のためには、D2−D1を−5μm以上とする必要がある。一方、軟質組織層が多すぎると過多に摩耗し、歯当たりが悪くなって歯当たりの端部でのはく離を発生することで、かえって耐ピッチング特性が劣化する。また、軟質組織層が過剰に存在すると、荷重を負荷した際に製品形状が大きく変形し、寸法精度を損なうため、粒界酸化深さに対して、軟質組織層が過多とならないようにすることが重要である。そのために、D2−D1を10μm以下とする必要がある。そこで、D2−D1は−5〜10μmとする。便宜的に、式(1)として以下に示す。
−5μm≦D2−D1≦10μm ・・・(1)
When indentation hardness after gas carburizing is to a depth D 2 from the outermost surface to be less 9000H IT, D 2 -D 1: -5~10μm
When the soft tissue layer is not present or is small, the effect of improving the familiarity due to the wear of the soft tissue layer cannot be obtained. In addition, if the soft tissue layer is too small with respect to the grain boundary oxidation depth, the grain boundary oxidation remains even after wear, so that early crack formation starting from the grain boundary oxidation occurs and sufficient pitching characteristics are obtained. I can't get it. However, it is necessary to set D 2 − D 1 to −5 μm or more in order to secure sufficient familiarity for improving the pitching characteristics and to suppress crack formation at the grain boundary oxidation starting point. On the other hand, if there is too much soft tissue layer, it will be excessively worn, and the tooth contact will be poor, causing peeling at the end of the tooth contact, and the pitching resistance will be deteriorated. In addition, if the soft structure layer is excessively present, the product shape is greatly deformed when a load is applied and the dimensional accuracy is impaired. Therefore, the soft structure layer should not be excessive with respect to the intergranular oxidation depth. is important. Therefore, it is necessary to set D 2- D 1 to 10 μm or less. Therefore, D 2 − D 1 is set to −5 to 10 μm. For convenience, it is shown below as equation (1).
-5 μm ≤ D 2 −D 1 ≤ 10 μm ・ ・ ・ (1)

ガス浸炭後のインデンテーション硬さが9000HIT以下の意味
ナノインデンテーション法を用いることで、不明瞭な組織観察ではなく、絶対値として明確に軟質組織層の深さを定義することが可能となる。表面近傍の浸炭層内のマルテンサイト組織のインデンテーション硬さHITは10000〜11000であり、浸炭後の鋼材表面に9000HIT以下のマルテンサイトに対して軟質な組織層が存在する場合には、これらの軟質組織層の領域が使用時に摩耗することで寿命初期のなじみ性が向上すると同時に、粒界酸化した箇所が摩耗により残存しにくくなることから、粒界酸化を起点としたき裂生成の抑制にもつながるため、インデンテーション硬さを指標とすることで、浸炭異常層に相当する軟質組織層を客観的に的確に補足しうることとなる。
By indentation hardness after gas carburization used 9000H IT following meanings nanoindentation method, rather than opaque structure observation, clearly it is possible to define the depth of soft tissue layer as an absolute value .. Indentation hardness H IT martensite structure of the carburized layer near the surface is 10000-11000, when the soft tissue layer is present against 9000H IT following martensite steel surface after carburizing, The area of these soft tissue layers wears during use, which improves the familiarity at the initial stage of life, and at the same time, it becomes difficult for the grain boundary oxidized parts to remain due to wear. Since it also leads to suppression, by using the indentation hardness as an index, the soft tissue layer corresponding to the abnormal carburized layer can be objectively and accurately supplemented.

ここで、発明を実施するための形態について、以下の実施例を通じて説明する。
なお、本発明にいう歯車等の機械部品とは、具体的には、歯車、軸付き歯車、クランクシャフトなどのシャフト類、無段変速機(CVT)プーリ、等速ジョイント(CVJ)、軸受等が挙げられる。本発明はこうした機械部品の素材、とりわけ歯車に好適である。こうした機械部品の素材は、たとえば鍛造や切削加工によって所望の形状に形成させることができ、後述のように、表面にガス浸炭、あるいはガス浸炭窒化を施すことで最表面から0.30mm位置での硬さが700HV以上に表面硬化させつつも、式(1)の範囲を満足する浸炭異常層を残したままの状態とする。
Here, a mode for carrying out the invention will be described through the following examples.
The mechanical parts such as gears referred to in the present invention are specifically gears, gears with shafts, shafts such as crankshafts, continuously variable transmission (CVT) pulleys, constant velocity joints (CVJ), bearings and the like. Can be mentioned. The present invention is suitable for materials of such machine parts, especially gears. The material of such mechanical parts can be formed into a desired shape by, for example, forging or cutting, and as described later, the surface is subjected to gas carburizing or gas carburizing nitriding at a position of 0.30 mm from the outermost surface. While the surface is hardened to a hardness of 700 HV or more, the abnormal carburized layer satisfying the range of the formula (1) remains.

さて、表1に示す化学成分と残部のFeおよび不可避不純物からなる鋼(以下、「実施例鋼」という)の、各No.1〜14の実施例鋼の組成と比較用の鋼(以下、「比較例鋼」という。)の各No.15〜22の比較例鋼の組成を、それぞれ100kg真空溶解炉で溶製して鋼とした。溶製された比較例鋼のNo.20、21、22は、同順でJIS規格のSCr420、SCM420、SNCM420である。 By the way, each No. Each No. 1 of the composition of the example steels 1 to 14 and the steel for comparison (hereinafter referred to as "comparative example steel"). Comparative Examples of 15 to 22 The composition of the steel was melted in a 100 kg vacuum melting furnace to obtain steel. No. of molten comparative example steel. Reference numerals 20, 21, and 22 are JIS standards SCr420, SCM420, and SNCM420 in the same order.

Figure 0006987625
Figure 0006987625

次いで、これらの溶製された実施例鋼および比較例鋼を1250℃で直径32mmに鍛伸した後、925℃で1時間の焼ならしを行った。その後、図1(a)のローラーピッチング試験片1(図1(b)のローラーピッチング試験片(小ローラー)1)の形状図に示すように、粗加工を実施した。粗加工の際には、試験部2の仕上げ加工を実施しており、つかみ部3のみ浸炭後に研削仕上げを行うために、片肉0.2mmの余肉を付与した。なお、図1(b)はローラーピッチング試験の概念図を示す。次に、図2の浸炭焼入焼戻しパターンに示す条件、すなわち、浸炭温度930℃および狙いCp(炭素ポテンシャル)=0.90%で、ガス浸炭焼入焼戻しを実施した。 Then, these molten example steels and comparative example steels were forged at 1250 ° C. to a diameter of 32 mm, and then normalized at 925 ° C. for 1 hour. Then, as shown in the shape diagram of the roller pitching test piece 1 of FIG. 1 (a) (roller pitching test piece (small roller) 1 of FIG. 1 (b)), roughing was performed. At the time of roughing, the finishing process of the test section 2 was carried out, and in order to perform the grinding finish after carburizing only the grip portion 3, a surplus wall thickness of 0.2 mm was added. Note that FIG. 1B shows a conceptual diagram of the roller pitching test. Next, gas carburizing, quenching and tempering were carried out under the conditions shown in the carburizing and tempering and tempering pattern of FIG. 2, that is, the carburizing temperature was 930 ° C. and the target Cp (carbon potential) was 0.90%.

また、実施例鋼のNo.4に示す化学成分からなる鋼に対して、図2と同様の温度条件でCp=1.2狙いで、高濃度浸炭焼入焼戻しを行った。こちらも同様に、浸炭後に、つかみ部3の仕上げ加工を行い、ローラーピッチング試験片1を作製した。 In addition, No. of the example steel. The steel composed of the chemical components shown in No. 4 was subjected to high-concentration charcoal-burning and tempering under the same temperature conditions as in FIG. 2 with the aim of Cp = 1.2. Similarly, after carburizing, the grip portion 3 was finished to prepare a roller pitching test piece 1.

上記で作製したローラーピッチング試験片1を用い、未使用の状態で試験部2を材料の長手方向と垂直な断面であるT面で切断し、SEM(走査顕微鏡電子)を用いて最大粒界酸化深さD1の測定を行った。 Using the roller pitching test piece 1 produced above, the test section 2 is cut at the T-plane, which is a cross section perpendicular to the longitudinal direction of the material, in an unused state, and maximum grain boundary oxidation is performed using SEM (scanning microscope electron). A depth D 1 was measured.

また、ナノインデンターを用いて、軟質組織層であるインデンテーション硬さが9000HIT以下となる最表面からの深さD2を測定した。なお、ナノインデンターを用いた表面近傍での硬さ測定において、荷重は圧痕サイズが1μmとなるように設定し、50μm深さまで硬さ測定を行っても、インデンテーション硬さが9000HIT以下とならない場合には、一律50μm以上とした。D2−D1については、下記の表3のD2−D1の欄において "−" と表示して測定不能を示した。 Further, by using the nano-indenter, the indentation hardness is soft tissue layer was measured the depth D 2 from the outermost surface to be less 9000H IT. Note that in the hardness measurement near the surface using nano indenter, a load is set so that the indentation size is 1 [mu] m, even if the hardness measurement to 50μm depth, the indentation hardness is 9000H IT less If not, the thickness was uniformly set to 50 μm or more. For D 2- D 1 , "-" was displayed in the column of D 2- D 1 in Table 3 below to indicate that measurement was impossible.

表1の実施例鋼No.1〜14を用い、ガス浸炭にて作製したローラーピッチング試験片1を下記の表3の実施例1〜14とし、表1の比較例鋼No15〜22を用い、ガス浸炭して作製したローラーピッチング試験片1を下記の表3の比較例15〜22とした。表1の実施例鋼No.5を用い、高濃度浸炭を行って作製したローラーピッチング試験片1を下記の表3の比較例23とした。 Example Steel No. of Table 1 Roller pitching test pieces 1 produced by gas carburizing using 1 to 14 are designated as Examples 1 to 14 in Table 3 below, and roller pitching produced by gas carburizing using Comparative Examples Steels Nos. 15 to 22 in Table 1. The test piece 1 was designated as Comparative Examples 15 to 22 in Table 3 below. Example Steel No. of Table 1 The roller pitching test piece 1 produced by high-concentration carburizing using No. 5 was designated as Comparative Example 23 in Table 3 below.

Figure 0006987625
Figure 0006987625

Figure 0006987625
Figure 0006987625

さらに、上記で作製したローラーピッチング試験片1を用い、耐ピッチング特性の評価のため、上記の表2に示す条件でローラーピッチング試験(図1(b)参照)を行った。ローラーピッチング試験は、振動計(図示していない)を用いて、剥離および変形過多による振動過多を検出して試験を停止する仕様とし、試験停止までのサイクル数をローラーピッチング試験片1の寿命値とした。さらに、ローラーピッチング試験を100万サイクルで停止し、粒界酸化の残存の有無をSEMを用いて観察した。 Further, using the roller pitching test piece 1 produced above, a roller pitching test (see FIG. 1 (b)) was performed under the conditions shown in Table 2 above in order to evaluate the pitching resistance. The roller pitching test is designed to stop the test by detecting excessive vibration due to peeling and excessive deformation using a vibration meter (not shown), and the number of cycles until the test is stopped is the life value of the roller pitching test piece 1. And said. Furthermore, the roller pitching test was stopped after 1 million cycles, and the presence or absence of residual grain boundary oxidation was observed using SEM.

以上、最表面から0.30mm位置における硬さ(HV)、最大粒界酸化深さD1(μm)、インデンテーション硬さが9000HIT以下となる深さD2(μm)、100万サイクル時の粒界酸化の残存の有無、ローラーピッチング試験におけるL50寿命(サイクル)の測定結果およびSCM420とのL50寿命比を計算した結果を、上記の表3に示す。 Above, hardness at 0.30mm position from the outermost surface (HV), the maximum grain boundary oxidation depth D 1 (μm), indentation hardness is equal to or less than 9000H IT depth D 2 (μm), when million cycles Table 3 above shows the presence or absence of residual grain boundary oxidation, the measurement result of the L 50 life (cycle) in the roller pitching test, and the calculation result of the L 50 life ratio with SCM420.

表3に示すように、表1の実施例鋼のNo.1〜14をガス浸炭して作製した、表3の実施例のNo.1〜14のL50寿命で示すピッチング寿命は、表1の比較例鋼のNo.21のSCM420を同様にガス浸炭して作製した表3の比較例のNo.21のSCM420のL50寿命で示すピッチング寿命と比較すると、表3の実施例のNo.1〜14のL50寿命は比較例のNo.21のSCM420のL50寿命に比して2倍以上であり、優れた耐ピッチング特性を示した。これは、粒界酸化深さに対して軟質層深さが適切な深さであったため、100万サイクル時の粒界酸化が残存しておらず、粒界酸化起点のき裂生成が抑制されたためである。 As shown in Table 3, No. 1 of the example steel in Table 1. No. 1 of Example of Table 3 produced by gas carburizing 1 to 14. The pitching life indicated by the L 50 life of 1 to 14 is No. 1 of the comparative example steel in Table 1. No. 2 of the comparative example in Table 3 produced by gas carburizing 21 SCM420 in the same manner. Compared to the pitting life indicated by SCM420 of L 50 life of 21, No. of examples in Table 3 The L 50 life of 1 to 14 is No. 1 of the comparative example. Compared to SCM420 of L 50 life of 21 are more than twice, showed excellent pitting resistance properties. This is because the depth of the soft layer was appropriate for the depth of grain boundary oxidation, so that grain boundary oxidation did not remain after 1 million cycles, and crack formation at the origin of grain boundary oxidation was suppressed. This is because of the fact.

一方、表1の比較例鋼のNo.15、16、19〜21をガス浸炭して作製した表3の比較例のNo.15、16、19〜21と、比較例のNo.23は、いずれも粒界酸化深さに対して軟質層の量が不足しており、100万サイクル時に粒界酸化が残存することで、粒界酸化起点のき裂生成からピッチングに至ったため、表3の実施例のNo.1〜14と比較して十分な耐ピッチング特性となっていない。また、表3の比較例のNo.17は、粒界酸化深さに対して、軟質層深さが適切な深さであるが、表1に示すようにTiを0.31%と多量に添加したことで、TiCが析出し、摩耗が極端に抑制され、粒界酸化が残存し、ピッチングに至ったためである。比較例のNo.18および比較例のNo.22は0.3mm位置での硬さが同順でHV611、HV665と低く、前者は変形過多により、後者は内部起点はく離により早期に破損に至った。 On the other hand, No. 1 of the comparative example steel in Table 1. No. of Comparative Example in Table 3 produced by gas carburizing 15, 16, 19 to 21. Nos. 15, 16, 19 to 21 and Comparative Examples. In No. 23, the amount of the soft layer was insufficient with respect to the grain boundary oxidation depth, and the grain boundary oxidation remained after 1 million cycles, resulting in pitching from crack formation at the grain boundary oxidation starting point. No. of Examples in Table 3 It does not have sufficient pitching resistance as compared with 1 to 14. In addition, No. of the comparative example in Table 3. In No. 17, the soft layer depth is an appropriate depth with respect to the grain boundary oxidation depth, but as shown in Table 1, TiC is precipitated by adding a large amount of Ti as 0.31%. This is because wear was extremely suppressed, intergranular oxidation remained, and pitching was achieved. Comparative example No. No. 18 and Comparative Example No. The hardness of 22 was as low as HV611 and HV665 in the same order at the 0.3 mm position, and the former was damaged due to excessive deformation and the latter was damaged at an early stage due to peeling from the internal origin.

1 ローラーピッチング試験片(小ローラー)
2 試験部
3 つかみ部
4 ローラーピッチング試験片(大ローラー)
1 Roller pitching test piece (small roller)
2 Test part 3 Grasp part 4 Roller pitching test piece (large roller)

Claims (1)

質量%で、C:0.10〜0.35%、Si:0.40〜1.00%、Mn:0.15〜0.45%、P:0.030%以下、S:0.030%以下、Cr:1.50〜2.50%、Ni:0.20%以下、Mo:0.10%以下を含有し、さらにV:0.01〜0.50%、Nb:0.01〜0.20%、Ti:0.01〜0.20%から選択した1種または2種以上を含有し、残部がFeおよび不可避不純物からなる鋼であり、当該鋼のガス浸炭またはガス浸炭窒化における最表面から0.30mm位置での硬さが700HV以上、最大粒界酸化深さD1が15μm以下、かつインデンテーション硬さが9000HIT以下となる最表面からの最大深さD2が下記式(1)を満たす浸炭異常層が残った状態であることを特徴とする耐ピッチング特性に優れた機械構造用のはだ焼きされた鋼。
−5μm≦D2−D1≦10μm・・・(1)
By mass%, C: 0.10 to 0.35%, Si: 0.40 to 1.00%, Mn: 0.15 to 0.45%, P: 0.030% or less, S: 0.030 % Or less, Cr: 1.50 to 2.50%, Ni: 0.20% or less, Mo: 0.10% or less, and V: 0.01 to 0.50%, Nb: 0.01. ~ 0.20%, Ti: One or more selected from 0.01 to 0.20%, the balance is a steel consisting of Fe and unavoidable impurities, and the steel is gas carburized or gas carburized nitriding. hardness at 0.30mm position from the uppermost surface above 700 HV, the maximum depth D 2 from the outermost surface to the maximum grain boundary oxidation depth D 1 is 15μm or less, and indentation hardness is equal to or less than 9000H iT below in A blasted steel for machine structures with excellent pitching resistance, characterized in that an abnormal carburized layer satisfying the formula (1) remains.
−5 μm ≦ D 2 −D 1 ≦ 10 μm ・ ・ ・ (1)
JP2017235401A 2017-12-07 2017-12-07 Machine parts such as slab-baked steel for machine structures with excellent pitching resistance used for carburized skin and slab-baked gears made of the steel. Active JP6987625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235401A JP6987625B2 (en) 2017-12-07 2017-12-07 Machine parts such as slab-baked steel for machine structures with excellent pitching resistance used for carburized skin and slab-baked gears made of the steel.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235401A JP6987625B2 (en) 2017-12-07 2017-12-07 Machine parts such as slab-baked steel for machine structures with excellent pitching resistance used for carburized skin and slab-baked gears made of the steel.

Publications (2)

Publication Number Publication Date
JP2019099893A JP2019099893A (en) 2019-06-24
JP6987625B2 true JP6987625B2 (en) 2022-01-05

Family

ID=66976176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235401A Active JP6987625B2 (en) 2017-12-07 2017-12-07 Machine parts such as slab-baked steel for machine structures with excellent pitching resistance used for carburized skin and slab-baked gears made of the steel.

Country Status (1)

Country Link
JP (1) JP6987625B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408331B2 (en) * 2019-09-27 2024-01-05 山陽特殊製鋼株式会社 Case-hardened steel for mechanical structures with excellent tooth surface fatigue strength on carburized surfaces, and mechanical structural parts using the case-hardened steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163242B2 (en) * 2008-04-07 2013-03-13 新日鐵住金株式会社 Case-hardened steel
JP5777090B2 (en) * 2011-04-21 2015-09-09 山陽特殊製鋼株式会社 Steel for machine structural use with excellent surface fatigue strength
JP6432932B2 (en) * 2014-09-01 2018-12-05 山陽特殊製鋼株式会社 High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
JP2016098426A (en) * 2014-11-26 2016-05-30 山陽特殊製鋼株式会社 Case hardened steel for mechanical structure excellent in pitching resistance used for carburization case
JP6832618B2 (en) * 2015-06-01 2021-02-24 山陽特殊製鋼株式会社 Skin-baked steel for machine structure and parts material for machine structure with excellent pitching resistance

Also Published As

Publication number Publication date
JP2019099893A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
JP5503344B2 (en) High-strength case-hardened steel parts and manufacturing method thereof
JP4872846B2 (en) Rough shape for nitriding gear and nitriding gear
WO2019244503A1 (en) Mechanical component
JP2013112827A (en) Gear excellent in pitching resistance and manufacturing method therefor
WO2013031587A1 (en) Rolled steel bar or wire for hot forging
JP2008057017A (en) Carburized component or carbo-nitrided component made of steel
JP4853366B2 (en) Steel carburized or carbonitrided parts with shot peening
JP6558016B2 (en) Carburized machine structural parts
JP6601358B2 (en) Carburized parts and manufacturing method thereof
JP6987625B2 (en) Machine parts such as slab-baked steel for machine structures with excellent pitching resistance used for carburized skin and slab-baked gears made of the steel.
JP6606978B2 (en) Product member manufacturing method and product member
JP7270343B2 (en) Method for manufacturing mechanical parts
TWI630278B (en) Surface hardened steel
JP2016188421A (en) Carburized component
JP6447064B2 (en) Steel parts
JP6623686B2 (en) Manufacturing method of product member and product member
TW201540849A (en) Steel material for vacuum carburizing and method for producing same
JP6832618B2 (en) Skin-baked steel for machine structure and parts material for machine structure with excellent pitching resistance
JP2019104972A (en) Carburized component
WO2016158375A1 (en) Steel for carbonitriding and carbonitrided component
WO2020138432A1 (en) Steel material
JP5077814B2 (en) Shaft and manufacturing method thereof
JP7417059B2 (en) Induction hardened nitrided steel and induction hardened nitrided parts
JP7417058B2 (en) Induction hardened ropes and induction hardened parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6987625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150