JP6985961B2 - Piston ring and its manufacturing method - Google Patents

Piston ring and its manufacturing method Download PDF

Info

Publication number
JP6985961B2
JP6985961B2 JP2018048455A JP2018048455A JP6985961B2 JP 6985961 B2 JP6985961 B2 JP 6985961B2 JP 2018048455 A JP2018048455 A JP 2018048455A JP 2018048455 A JP2018048455 A JP 2018048455A JP 6985961 B2 JP6985961 B2 JP 6985961B2
Authority
JP
Japan
Prior art keywords
particles
mass
powder
nicr
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018048455A
Other languages
Japanese (ja)
Other versions
JP2018165402A (en
Inventor
健 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Publication of JP2018165402A publication Critical patent/JP2018165402A/en
Application granted granted Critical
Publication of JP6985961B2 publication Critical patent/JP6985961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、ピストンリング及びその製造方法に関し、さらに詳しくは、耐摩耗性、耐スカッフ性及び初期なじみ性に優れ、かつ相手攻撃性の低い溶射皮膜が密着性よく形成されてなるピストンリング及びその製造方法に関する。 The present invention relates to a piston ring and a method for manufacturing the piston ring, and more specifically, a piston ring having an excellent adhesion, scuff resistance, initial familiarity, and a thermal spray coating having low attack resistance to the other party is formed with good adhesion. Regarding the manufacturing method.

近年、内燃機関の高出力化と高性能化に伴い、ピストンリング等の摺動部材の使用環境はますます厳しくなっており、良好な耐摩耗性、耐スカッフ性を有する摺動部材が要求されている。ピストンリングは、その外周面がシリンダライナと摺動するので、特に外周摺動面には高い耐摩耗性や耐スカッフ性等が要求される。こうした要求に対し、特許文献1〜3では、ピストンリングの外周摺動面に溶射皮膜を設ける技術を提案している。 In recent years, as the output and performance of internal combustion engines have increased, the usage environment for sliding members such as piston rings has become increasingly severe, and sliding members with good wear resistance and scuff resistance are required. ing. Since the outer peripheral surface of the piston ring slides with the cylinder liner, high wear resistance and scuff resistance are particularly required for the outer peripheral sliding surface. In response to these demands, Patent Documents 1 to 3 propose a technique for providing a thermal spray coating on the outer peripheral sliding surface of a piston ring.

特許文献1では、Mo粉末とNi基自溶性合金粉末とCu又はCu合金粉末とを少なくとも含む混合粉末を溶射してなる溶射下地層と、Cuを含有する溶射表面層とをその順で摺動面に形成したピストンリングであって、その溶射下地層は、50〜80質量%のMoと、1〜12質量%のCu又はCu合金と、残部:Ni基自溶性合金とを少なくとも含有する等したピストンリングが提案されている。 In Patent Document 1, a sprayed base layer formed by spraying a mixed powder containing at least Mo powder, a Ni-based self-soluble alloy powder, and Cu or Cu alloy powder, and a sprayed surface layer containing Cu slide in that order. It is a piston ring formed on the surface, and the thermal spraying base layer contains at least 50 to 80% by mass of Mo, 1 to 12% by mass of Cu or Cu alloy, and the balance: Ni-based self-soluble alloy, etc. The alloyed piston ring has been proposed.

特許文献2では、粉末組成物をプラズマ溶射法によってピストンリング基材の外周摺動面上に溶射して得られるピストンリング用溶射被膜であって、その粉末組成物が、モリブデン粒子、ニッケルクロム合金粒子、及び炭化クロム粒子を含み、炭化クロム粒子のメディアン径を特定範囲内とする等した溶射被膜が提案されている。 In Patent Document 2, a thermal spray coating for a piston ring obtained by spraying a powder composition onto the outer peripheral sliding surface of a piston ring base material by a plasma spraying method, wherein the powder composition is molybdenum particles or a nickel-chromium alloy. A sprayed coating containing particles and chromium carbide particles and having the median diameter of the chromium carbide particles within a specific range has been proposed.

特許文献3では、溶射被膜が、モリブデン相、炭化クロム相及びニッケルクロム合金相を含み、モリブデン相、炭化クロム相及びニッケルクロム合金相が基材の摺動面上に堆積し、基材の摺動面に対して垂直な方向における炭化クロム相の厚さの平均値と、モリブデン相の厚さ平均値との比を特定する等した溶射被膜が提案されている。 In Patent Document 3, the thermal spray coating contains a molybdenum phase, a chromium carbide phase and a nickel-chromium alloy phase, and the molybdenum phase, the chromium carbide phase and the nickel-chromium alloy phase are deposited on the sliding surface of the base material, and the base material is rubbed. A thermal spray coating has been proposed in which the ratio between the average value of the thickness of the chromium carbide phase in the direction perpendicular to the moving surface and the average value of the thickness of the molybdenum phase is specified.

特許文献4では、Mo粉末と、Cr32粉末及びNiCr粉末の混合粉末とを少なくとも含む原料粉末を溶射してなる溶射皮膜を有するピストンリングであって、混合粉末の平均粒径が50μm以上であり、Mo粉末の平均粒径が混合粉末の平均粒径よりも小さくする等したピストンリングが提案されている。 In Patent Document 4, a Mo powder, a piston ring having a Cr 3 C 2 powder and the sprayed coating formed by thermal spraying a raw material powder containing at least a mixed powder of NiCr powder, the average particle diameter of the mixed powder is more than 50μm Therefore, a piston ring in which the average particle size of the Mo powder is smaller than the average particle size of the mixed powder has been proposed.

特開2012−46821号公報Japanese Unexamined Patent Publication No. 2012-46821 WO2014/091831号WO2014 / 091831 特開2015−214719号公報Japanese Unexamined Patent Publication No. 2015-2141719 特開2016−102233号公報Japanese Unexamined Patent Publication No. 2016-102233

本発明の目的は、耐摩耗性、耐スカッフ性及び初期なじみ性に優れ、かつ相手攻撃性の低い溶射皮膜が密着性よく形成されてなるピストンリング及びその製造方法を提供することにある。 An object of the present invention is to provide a piston ring and a method for manufacturing the same, wherein a thermal spray coating having excellent wear resistance, scuff resistance, initial compatibility, and low attack resistance to the opponent is formed with good adhesion.

(1)本発明に係るピストンリングは、ピストンリング基材の少なくとも摺動面に、Mo粒子と、Ni基自溶性合金粒子と、Co合金粒子及び/又はCr32粒子とを有する溶射皮膜が設けられていることを特徴とする。この発明によれば、Ni基自溶性合金粒子とCo合金粒子及び/又はCr32粒子とを含むので、特に密着性が良く、相手攻撃性を低くする溶射皮膜とすることができる。 (1) The piston ring according to the present invention is a thermal spray coating having Mo particles, Ni-based self-soluble alloy particles, Co alloy particles and / or Cr 3 C 2 particles on at least the sliding surface of the piston ring base material. Is provided. According to the present invention, since it contains Ni-based self-soluble alloy particles, Co alloy particles and / or Cr 3 C 2 particles, it is possible to obtain a thermal spray coating having particularly good adhesion and low attack on the other party.

本発明に係るピストンリングにおいて、前記Mo粒子と前記Ni基自溶性合金粒子と前記Co合金粒子及びCr32粒子の合計との含有割合を100質量%としたとき、前記Ni基自溶性合金粒子が20質量%以上40質量%以下の範囲内であり、前記Co合金粒子及びCr32粒子の合計が15質量%以上30質量%以下の範囲内であり、残りがMo粒子であるように構成される。 In the piston ring according to the present invention, when the content ratio of the total of the Mo particles, the Ni-based self-soluble alloy particles, the Co alloy particles, and the Cr 3 C 2 particles is 100% by mass, the Ni-based self-soluble alloy is used. It seems that the particles are in the range of 20% by mass or more and 40% by mass or less, the total of the Co alloy particles and the Cr 3 C 2 particles is in the range of 15% by mass or more and 30% by mass or less, and the rest are Mo particles. It is composed of.

本発明に係るピストンリングにおいて、前記溶射皮膜が、NiCr粒子をさらに含んでいてもよい。 In the piston ring according to the present invention, the thermal spray coating may further contain NiCr particles.

本発明に係るピストンリングにおいて、前記Ni基自溶性合金粒子の含有量Aと前記NiCr粒子の含有量Bとの割合(A/B)が、質量比で1.5以上であることが好ましい。 In the piston ring according to the present invention, the ratio (A / B) of the content A of the Ni-based self-soluble alloy particles to the content B of the NiCr particles is preferably 1.5 or more in terms of mass ratio.

本発明に係るピストンリングにおいて、前記NiCr粒子が含まれた場合において、当該NiCr粒子と前記Cr32粒子との造粒物構造を含んでいてもよい。 When the NiCr particles are contained in the piston ring according to the present invention, the piston ring may include a granulated structure of the NiCr particles and the Cr 3 C 2 particles.

(2)本発明に係るピストンリングの製造方法は、Mo粉末と、Ni基自溶性合金粉末と、Co合金粉末及び/又はCr32粉末との混合粉末組成物をプラズマ溶射し、ピストンリング基材の外周摺動面に溶射皮膜を形成してなることを特徴とする。 (2) In the method for producing a piston ring according to the present invention, a mixed powder composition of Mo powder, Ni-based self-soluble alloy powder, Co alloy powder and / or Cr 3 C 2 powder is sprayed by plasma spraying, and the piston ring is manufactured. It is characterized in that a thermal spray coating is formed on the outer peripheral sliding surface of the base material.

本発明によれば、耐摩耗性と耐スカッフ性に優れ、かつ相手攻撃性の低い溶射皮膜が密着性よく形成されてなるピストンリング及びその製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a piston ring and a method for manufacturing the same, in which a thermal spray coating having excellent wear resistance and scuff resistance and low attack resistance to the opponent is formed with good adhesion.

本発明に係るピストンリングの一例を示す断面図である。It is sectional drawing which shows an example of the piston ring which concerns on this invention. 実施例1,2及び比較例1,2で得られた溶射皮膜の断面写真である。It is a cross-sectional photograph of the thermal spray coating obtained in Examples 1 and 2 and Comparative Examples 1 and 2. 摩耗量測定に用いた高負荷型摩耗試験機の構成原理図である。It is a structural principle diagram of the high load type wear tester used for the wear amount measurement.

以下、本発明に係るピストンリング及びその製造方法について詳しく説明する。なお、本発明は、その要旨の範囲内であれば、以下の実施形態に限定されない。 Hereinafter, the piston ring and the method for manufacturing the piston ring according to the present invention will be described in detail. The present invention is not limited to the following embodiments as long as it is within the scope of the gist thereof.

[ピストンリング]
本発明に係るピストンリング1は、図1に示すように、ピストンリング基材2の少なくとも摺動面に、特徴的な溶射皮膜3が設けられているものである。その溶射皮膜3は、Mo粒子と、Ni基自溶性合金粒子と、Co合金粒子及び/又はCr32粒子とを有するものである。こうしたピストンリング1は、Mo粉末と、Ni基自溶性合金粉末と、Co合金粉末及び/又はCr32粉末との混合粉末組成物をプラズマ溶射し、ピストンリング基材2の外周摺動面に溶射皮膜3を形成して製造される。溶射皮膜3が形成されたピストンリング1は、特に密着性が良く、相手攻撃性を低くする溶射皮膜とすることができる。
[piston ring]
As shown in FIG. 1, the piston ring 1 according to the present invention is provided with a characteristic thermal spray coating 3 on at least a sliding surface of the piston ring base material 2. The sprayed coating 3 has Mo particles, Ni-based self-soluble alloy particles, Co alloy particles and / or Cr 3 C 2 particles. Such piston rings 1, and Mo powder, and Ni-based self-fluxing alloy powder, plasma sprayed a mixed powder composition of the Co alloy powder and / or Cr 3 C 2 powder, the outer peripheral sliding surface of the piston ring substrate 2 It is manufactured by forming a thermal spray coating 3 on the surface. The piston ring 1 on which the thermal spray coating 3 is formed can be a thermal spray coating having particularly good adhesion and lowering the aggression against the opponent.

本発明に係るピストンリング1の各構成を説明する。 Each configuration of the piston ring 1 according to the present invention will be described.

<ピストンリング基材>
溶射皮膜3を形成する対象となるピストンリング基材2としては、ピストンリング1の基材として用いられている各種のものを挙げることができ、特に限定されない。例えば各種の鋼材、ステンレス鋼材、鋳物材、鋳鋼材等を適用することができる。これらのうち、マルテンサイト系ステンレス鋼、クロムマンガン鋼(SUP9材)、クロムバナジウム鋼(SUP10材)、シリコンクロム鋼(SWOSC−V材)等を好ましく挙げることができる。また、鋳物材としては、ボロン鋳鉄、片状黒鉛鋳鉄、球状黒鉛鋳鉄、CV鋳鉄等を好ましく挙げることができる。ピストンリング基材2は、一般的なピストンリングを製造する手段によって作製される。
<Piston ring base material>
Examples of the piston ring base material 2 on which the thermal spray coating 3 is formed include various types used as the base material of the piston ring 1, and are not particularly limited. For example, various steel materials, stainless steel materials, casting materials, cast steel materials and the like can be applied. Among these, martensitic stainless steel, chromium manganese steel (SUP9 material), chromium vanadium steel (SUP10 material), silicon chromium steel (SWOSC-V material) and the like can be preferably mentioned. Further, as the casting material, boron cast iron, flake graphite cast iron, spheroidal graphite cast iron, CV cast iron and the like can be preferably mentioned. The piston ring base material 2 is manufactured by a general means for manufacturing a piston ring.

ピストンリング基材2には、必要に応じて前処理を行ってもよい。前処理としては、表面研磨して表面粗さを調整する処理を挙げることができる。この表面粗さの調整は、例えばピストンリング基材2の表面をダイヤモンド砥粒でラッピング加工して表面研磨する方法等を例示できる。 The piston ring base material 2 may be pretreated if necessary. Examples of the pretreatment include a treatment of surface polishing to adjust the surface roughness. For the adjustment of the surface roughness, for example, a method of lapping the surface of the piston ring base material 2 with diamond abrasive grains to polish the surface can be exemplified.

<溶射皮膜>
溶射皮膜3は、ピストンリング基材2の少なくとも摺動面に設けられる。この溶射皮膜3は、Mo粒子と、Ni基自溶性合金粒子と、Co合金粒子及び/又はCr32粒子とを有するものであり、Mo粉末と、Ni基自溶性合金粉末と、Co合金粉末及び/又はCr32粉末とを有する原料粉末を溶射して成膜される。
<Spray coating>
The thermal spray coating 3 is provided on at least the sliding surface of the piston ring base material 2. The sprayed coating 3 has Mo particles, Ni-based self-soluble alloy particles, Co alloy particles and / or Cr 3 C 2 particles, and has Mo powder, Ni-based self-soluble alloy powder, and Co alloy. A raw material powder having powder and / or Cr 3 C 2 powder is sprayed to form a film.

溶射皮膜3の成分組成は、Mo粒子と、Ni基自溶性合金粒子と、Co合金粒子及びCr32粒子の合計との含有割合を100質量%としたとき、Ni基自溶性合金粒子が20質量%以上40質量%以下の範囲内であり、Co合金粒子及びCr32粒子の合計が15質量%以上30質量%以下の範囲内であり、残りがMo粒子であるように構成されている。含有割合は質量比であり、Mo粒子とNi基自溶性合金粒子とCo合金粒子及びCr32粒子の合計との含有量が100質量%となるようにしてそれぞれの質量%を算出する。これら以外の粒子が含まれている場合は、その粒子を除いた合計を100質量%として算出する。 The component composition of the spray film 3 is such that the Ni-based self-soluble alloy particles are composed of 100% by mass when the content ratio of the Mo particles, the Ni-based self-soluble alloy particles, and the total of the Co alloy particles and the Cr 3 C 2 particles is 100% by mass. It is configured such that it is in the range of 20% by mass or more and 40% by mass or less, the total of Co alloy particles and Cr 3 C 2 particles is in the range of 15% by mass or more and 30% by mass or less, and the rest is Mo particles. ing. The content ratio is a mass ratio, and the mass% of each is calculated so that the total content of the Mo particles, the Ni-based self-soluble alloy particles, the Co alloy particles, and the Cr 3 C 2 particles is 100% by mass. If particles other than these are included, the total excluding the particles is calculated as 100% by mass.

原料粉末には、本発明の奏する効果を阻害しない範囲内で、例えばCo,B,Si,Cu,Al,Fe等を任意に含んでいてもよい。なお、溶射皮膜3を構成する各粒子成分の含有量と原料粉末中の組成割合とは通常同じであるので、溶射皮膜3の各成分の含有量は、原料粉末の成分割合と言うことができる。したがって、溶射皮膜3を所望の成分割合とするために、原料粉末を構成する各粉末の配合量を調整することができる。なお、溶射皮膜3に含まれる各粒子の含有量は、後方散乱測定装置を用いて定量して得ることができる。また、溶射皮膜3を構成する各粒子の含有量は、溶射原料に含まれる各原料粉末の配合量と通常は一致するので、溶射皮膜3の各粒子の含有量を測定することによって、原料粉末を構成する各粉末の配合割合も特定することができる。 The raw material powder may optionally contain, for example, Co, B, Si, Cu, Al, Fe and the like as long as the effect of the present invention is not impaired. Since the content of each particle component constituting the thermal spray coating 3 and the composition ratio in the raw material powder are usually the same, the content of each component of the thermal spray coating 3 can be said to be the component ratio of the raw material powder. .. Therefore, the blending amount of each powder constituting the raw material powder can be adjusted so that the sprayed coating 3 has a desired component ratio. The content of each particle contained in the thermal spray coating 3 can be quantified and obtained by using a backscatter measuring device. Further, since the content of each particle constituting the thermal spray coating 3 is usually the same as the blending amount of each raw material powder contained in the thermal spraying raw material, the raw material powder is measured by measuring the content of each particle of the thermal spray coating 3. It is also possible to specify the blending ratio of each powder constituting the above.

(Mo粒子)
Mo粒子は、溶射皮膜3を構成する主要要素であり、NiCr自溶性合金粒子とCo合金粒子及びCr32粒子の合計との含有量以外の含有量で含まれており、例えば40質量%以上、60質量%以下の範囲内で含まれる。高融点金属であるMo粒子が上記範囲で含まれることにより、耐摩耗性及び耐スカッフ性に優れ、ピストンリング基材との密着性に優れた溶射皮膜を得ることができる。含有量が40質量%未満では、得られた溶射皮膜3の耐摩耗性と耐スカッフ性が劣ることがある。一方、含有量が60質量%を超えると、コスト高の原因になる。
(Mo particles)
Mo particles is a major element constituting the thermal spray coating 3, it is included in the content other than the content of the sum of NiCr self-fluxing alloy particles and Co alloy particles and Cr 3 C 2 particles, for example 40 wt% As mentioned above, it is included in the range of 60% by mass or less. When Mo particles, which are refractory metals, are contained in the above range, a thermal spray coating having excellent wear resistance and scuff resistance and excellent adhesion to a piston ring base material can be obtained. If the content is less than 40% by mass, the wear resistance and scuff resistance of the obtained thermal spray coating 3 may be inferior. On the other hand, if the content exceeds 60% by mass, it causes a high cost.

Mo粒子の平均粒径は、一般的な溶射原料粉末と同程度であればよく、例えば10μm以上、50μm以下の範囲内であることが好ましく、20μm以上、40μm以下の範囲内が密着性の観点からより好ましい。本願では、このMo粒子やその他の粒子の平均粒径は、粒子径分布測定装置(例えば日機装株式会社製のマイクロトラックHRA)で測定したD50の値で表している。なお、Mo粒子の形状等は特に限定されず、造粒焼結粒子であってもよい。Mo粒子を造粒した造粒焼結粒子は、小径のMo粒子を造粒したのち、加熱して焼結させることにより得られる。造粒に用いられるMo粒子の平均粒径は、例えば1〜10μmである。Mo粒子のビッカース硬度は320〜420の範囲内である。なお、本願でのビッカース硬度は、マイクロビッカース硬度計(株式会社アカシ製)を用い、荷重0.05kgfでランダムに5箇所を測定し、得られた結果の平均値で表した。 The average particle size of the Mo particles may be about the same as that of general thermal spraying raw material powder, for example, preferably in the range of 10 μm or more and 50 μm or less, and in the range of 20 μm or more and 40 μm or less from the viewpoint of adhesion. More preferred from. In the present application, the average particle size of the Mo particles and other particles is represented by the value of D 50 measured by a particle size distribution measuring device (for example, Microtrac HRA manufactured by Nikkiso Co., Ltd.). The shape of the Mo particles is not particularly limited, and may be granulated sintered particles. Granulated sintered particles obtained by granulating Mo particles can be obtained by granulating Mo particles having a small diameter and then heating and sintering them. The average particle size of Mo particles used for granulation is, for example, 1 to 10 μm. The Vickers hardness of Mo particles is in the range of 320 to 420. The Vickers hardness in the present application was measured at 5 points at random with a load of 0.05 kgf using a Micro Vickers hardness tester (manufactured by Akashi Co., Ltd.) and expressed as an average value of the obtained results.

(NiCr自溶性合金粒子)
Ni基自溶性合金粒子は、溶射皮膜3を構成する主要要素であり、Ni基自溶性合金粉末を溶射して得られるものである。このNi基自溶性合金粒子は、ニッケル基からなる合金がホウ素やケイ素等のフラックス成分を含有するものであり、溶射した後にフュージング処理等を行うことにより、気孔が少なく密着強度の高い溶射皮膜を得ることができる作用を有する原料粉末として利用される合金粒子である。本発明では、Crを含有するNi基自溶性合金粒子を粉末原料として用いている。このNi基自溶性合金粒子は、14〜18質量%のCrと、2〜4質量%のホウ素と、3〜4.5質量%のケイ素と、2〜5質量%の鉄と、微量の不可避不純物とを含む。さらに、1〜3質量%のモリブデン及び1〜4質量%の銅の一方又は両方を含有してもよい。こうしたNi基自溶性合金は、ベース金属であるMoのバインダーとして作用する。さらに、このNi基自溶性合金は自溶性であることから、良好な耐摩耗性が得られるという利点がある。Ni基自溶性合金には、NiCr自溶性合金とNiCo自溶性合金がよく知られているが、本発明ではNiCr自溶性合金を用いる。特に本発明では、溶射皮膜3に含まれるNiCr自溶性合金粒子が、Mo粒子とCo合金粒子やCr32粒子との硬度差を少なくするように作用することが新しい知見として得られ、硬度差によるCo合金粒子やCr32粒子の脱落を防止できるという効果を奏し、その結果、相手攻撃性を抑制できるという利点がある。NiCr自溶性合金粒子のビッカース硬度は700〜850の範囲内である。
(NiCr self-soluble alloy particles)
The Ni-based self-soluble alloy particles are the main elements constituting the thermal spray coating 3, and are obtained by spraying Ni-based self-soluble alloy powder. The Ni-based self-soluble alloy particles are such that the nickel-based alloy contains a flux component such as boron and silicon, and by performing a fusing treatment after spraying, a sprayed coating having few pores and high adhesion strength can be obtained. It is an alloy particle used as a raw material powder having an action that can be obtained. In the present invention, Ni-based self-soluble alloy particles containing Cr are used as a powder raw material. The Ni-based self-soluble alloy particles contain 14 to 18% by mass of Cr, 2 to 4% by mass of boron, 3 to 4.5% by mass of silicon, and 2 to 5% by mass of iron, and a small amount of unavoidable. Contains impurities. Further, it may contain 1 to 3% by mass of molybdenum and 1 to 4% by mass of copper, or both. Such a Ni-based self-soluble alloy acts as a binder for Mo, which is a base metal. Further, since this Ni-based self-soluble alloy is self-soluble, there is an advantage that good wear resistance can be obtained. NiCr self-soluble alloys and NiCo self-soluble alloys are well known as Ni-based self-soluble alloys, but in the present invention, NiCr self-soluble alloys are used. In particular, according to the present invention, NiCr self-fluxing alloy particles contained in the thermal spray film 3, it is obtained as a new finding that acts to reduce hardness difference between the Mo particles and Co alloy particles or Cr 3 C 2 particles, hardness It has the effect of preventing the Co alloy particles and Cr 3 C 2 particles from falling off due to the difference, and as a result, has the advantage of suppressing the aggression against the opponent. The Vickers hardness of NiCr self-soluble alloy particles is in the range of 700 to 850.

NiCr自溶性合金粒子は、Mo粒子とNi基自溶性合金粒子とCo合金粒子及びCr32粒子の合計との含有割合を100質量%としたとき、20質量%以上、40質量%以下の範囲内で含まれることが好ましい。この範囲とすることにより、上記効果をより奏するものとすることができる。含有量が20質量%未満では、Moのバインダーとして作用する効果が薄れ、Mo粒子間の密着力が低下することがある。一方、含有量が40質量%を超えると、耐スカッフ性が低下することがある。より好ましい含有量は、25質量%以上、35質量%以下の範囲内であり、密着性と耐スカッフ性を向上させるという利点がある。 The NiCr self-soluble alloy particles are 20% by mass or more and 40% by mass or less when the content ratio of the total of Mo particles, Ni-based self-soluble alloy particles, Co alloy particles and Cr 3 C 2 particles is 100% by mass. It is preferably contained within the range. By setting it within this range, the above effect can be more exerted. If the content is less than 20% by mass, the effect of acting as a binder for Mo may be diminished, and the adhesion between Mo particles may be reduced. On the other hand, if the content exceeds 40% by mass, the scuff resistance may decrease. A more preferable content is in the range of 25% by mass or more and 35% by mass or less, and has an advantage of improving adhesion and scuff resistance.

NiCr自溶性合金粒子の平均粒径は、一般的な溶射原料粉末と同程度であればよく、例えば15μm以上、53μm以下の範囲内であることが好ましく、15μm以上、30μm以下の範囲内が耐摩耗性の観点からより好ましい。NiCr自溶性合金粒子の平均粒径も、粒子径分布測定装置(例えば日機装株式会社製のマイクロトラックHRA)で測定したもので表している。なお、NiCr自溶性合金粒子の形状等も特に限定されず、造粒焼結粒子であってもよい。NiCr自溶性合金粒子を造粒した造粒焼結粒子は、小径のNiCr自溶性合金粒子を造粒したのち、加熱して焼結させることにより得られる。造粒に用いられるNiCr自溶性合金粒子の平均粒径は、例えば1〜10μmである。 The average particle size of the NiCr self-soluble alloy particles may be about the same as that of general thermal spraying raw material powder, and is preferably in the range of, for example, 15 μm or more and 53 μm or less, and the resistance is in the range of 15 μm or more and 30 μm or less. More preferable from the viewpoint of wear resistance. The average particle size of the NiCr self-soluble alloy particles is also represented by the one measured by a particle size distribution measuring device (for example, Microtrac HRA manufactured by Nikkiso Co., Ltd.). The shape of the NiCr self-soluble alloy particles is not particularly limited, and may be granulated sintered particles. Granulated sintered particles obtained by granulating NiCr self-soluble alloy particles are obtained by granulating small-diameter NiCr self-soluble alloy particles and then heating and sintering them. The average particle size of the NiCr self-soluble alloy particles used for granulation is, for example, 1 to 10 μm.

(Co合金粒子、Cr32粒子)
Co合金粒子とCr32粒子は、溶射皮膜3を構成する主要要素であり、そのいずれか又は両方を含む原料粉末を溶射して得られるものである。Co合金粒子は、耐摩耗性がよいという特徴があり、溶射皮膜3に含まれることにより高い耐摩耗性効果を与えることができる。一方、Cr32粒子は、硬質粒子であり、溶射皮膜3に含まれることにより溶射皮膜3に良好な耐摩耗性や密着性を付与することができる。本発明では、Co合金粒子とCr32粒子の一方又は両方を含む溶射皮膜3とすることにより、上記効果を奏することができる。なお、Co合金粒子は、Crを16〜20質量%含むCo基合金粒子である。
(Co alloy particles, Cr 3 C 2 particles)
Co alloy particles and Cr 3 C 2 particles are the main elements constituting the thermal spray coating 3, and are obtained by spraying a raw material powder containing either or both of them. The Co alloy particles are characterized by having good wear resistance, and by being contained in the thermal spray coating 3, a high wear resistance effect can be given. On the other hand, the Cr 3 C 2 particles are hard particles, and by being contained in the thermal spray coating 3, good wear resistance and adhesion can be imparted to the thermal spray coating 3. In the present invention, the above effect can be obtained by forming the thermal spray coating 3 containing one or both of the Co alloy particles and the Cr 3 C 2 particles. The Co alloy particles are Co-based alloy particles containing 16 to 20% by mass of Cr.

Co合金粒子とCr32粒子は、Mo粒子とNi基自溶性合金粒子とCo合金粒子及びCr32粒子の合計との含有割合を100質量%としたとき、15質量%以上、30質量%以下の範囲内で含まれることが好ましい。この範囲とすることにより、上記効果をより奏するものとすることができる。含有量が15質量%未満では、得られた溶射皮膜3の耐摩耗性と密着性が劣ることがある。一方、含有量が30質量%を超えると、溶射皮膜の表面で例えばCr32粒子が脱落する場合もあり、相手攻撃性が大きくなるおそれがある。より好ましい含有量は、15質量%以上、25質量%以下の範囲内であり、耐摩耗性向上と相手攻撃性抑制という利点がある。 The Co alloy particles and Cr 3 C 2 particles are 15% by mass or more, 30% by mass, where the total content of Mo particles, Ni-based self-soluble alloy particles, Co alloy particles and Cr 3 C 2 particles is 100% by mass. It is preferably contained in the range of mass% or less. By setting it within this range, the above effect can be more exerted. If the content is less than 15% by mass, the wear resistance and adhesion of the obtained thermal spray coating 3 may be inferior. On the other hand, if the content exceeds 30% by mass, for example, Cr 3 C 2 particles may fall off on the surface of the sprayed coating, which may increase the aggression against the other party. A more preferable content is in the range of 15% by mass or more and 25% by mass or less, and has advantages of improving wear resistance and suppressing opponent attack.

混合粉末にCo合金粒子とCr32粒子の両方を含有させるか、いずれか一方を含有させるかは、得る溶射皮膜3の特性を考慮して選択される。例えば耐食性に重点をおいた溶射皮膜3を得る場合には、Co合金粒子を選択すればよいし、耐摩耗性と密着性に重点をおいた溶射皮膜3を得る場合には、Cr32粒子を選択すればよいし、その両方の効果のある溶射皮膜3を得る場合には、Co合金粒子とCr32粒子の両方を選択すればよい。なお、Co合金粒子だけを含有させた溶射皮膜3では、上記含有量を17〜23質量%の範囲内とすることが好ましく、Cr32粒子だけを含有させた溶射皮膜3では、上記含有量を18〜28質量%の範囲内とすることが好ましく、両方を含有させた溶射皮膜3では、合計含有量を35〜55質量%の範囲内とするとともに、Co合金粒子の含有量を20〜30質量%の範囲内とし、Cr32粒子の含有量を15〜25質量%の範囲内とすることが好ましい。 Whether the mixed powder contains both Co alloy particles and Cr 3 C 2 particles is selected in consideration of the characteristics of the thermal spray coating 3 to be obtained. For example, Co alloy particles may be selected when obtaining a thermal spray coating 3 with an emphasis on corrosion resistance, and Cr 3 C 2 when obtaining a thermal spray coating 3 with an emphasis on wear resistance and adhesion. The particles may be selected, and in the case of obtaining the thermal spray coating 3 having both effects, both the Co alloy particles and the Cr 3 C 2 particles may be selected. In the thermal spray coating 3 was contained only Co alloy particles is preferably in the range of the content of 17 to 23 wt%, the thermal spray coating 3 was contained only Cr 3 C 2 particles, the content The amount is preferably in the range of 18 to 28% by mass, and in the sprayed coating 3 containing both, the total content is in the range of 35 to 55% by mass and the content of Co alloy particles is 20. It is preferably in the range of about 30% by mass, and the content of Cr 3 C 2 particles is preferably in the range of 15 to 25% by mass.

Co合金粒子とCr32粒子の平均粒径は、一般的な溶射原料粉末と同程度であればよく、例えば10μm以上、45μm以下の範囲内であることが好ましく、10μm以上、30μm以下の範囲内が耐摩耗性の観点からより好ましい。これら粒子の平均粒径も、粒子径分布測定装置(例えば日機装株式会社製のマイクロトラックHRA)で測定したもので表している。なお、Co合金粒子とCr32粒子の形状等も特に限定されず、造粒焼結粒子であってもよい。Co合金粒子を造粒した造粒焼結粒子やCr32粒子を造粒した造粒焼結粒子は、小径の粒子を造粒したのち、加熱して焼結させることにより得られる。造粒に用いられる粒子の平均粒径は、例えば1〜10μmである。Cr32粒子のビッカース硬度は1600〜1800の範囲内である。 The average particle size of Co alloy particles and Cr 3 C 2 particles may be any general spraying material powder as much, for example 10 [mu] m or more, preferably within the range of 45 [mu] m, 10 [mu] m or more, the following 30μm The range is more preferable from the viewpoint of wear resistance. The average particle size of these particles is also represented by the one measured by a particle size distribution measuring device (for example, Microtrac HRA manufactured by Nikkiso Co., Ltd.). The shapes of the Co alloy particles and the Cr 3 C 2 particles are not particularly limited, and may be granulated sintered particles. Granulated sintered particles obtained by granulating Co alloy particles and granulated sintered particles obtained by granulating Cr 3 C 2 particles are obtained by granulating particles having a small diameter and then heating and sintering them. The average particle size of the particles used for granulation is, for example, 1 to 10 μm. The Vickers hardness of Cr 3 C 2 particles is in the range of 1600 to 1800.

(NiCr粒子)
溶射皮膜3には、必要に応じてNiCr粒子が含まれていてもよい。一般に、NiCr粒子は溶射皮膜3に良好な耐摩耗性や密着性を付与するものとして含有される場合があるが、本発明では、耐摩耗性と密着性については、Co合金粒子とCr32粒子の一方又は両方の粒子を所定量含有させることによりそれらの効果を満たしている。さらに、上記のように、NiCr自溶性合金粒子を含有させることにより、ピストンリング基材2との密着性を向上させるように作用させたり、Mo粒子とCo合金粒子やCr32粒子との硬度差を少なくするように作用させたりしている。こうしたことから、本発明では、NiCr粒子は必須の構成とはせずに、任意成分として配合させている。なお、NiCr自溶性合金粒子とNiCr粒子との違いは、NiCr自溶性合金粒子にはホウ素やケイ素が所定の割合で含まれていることから、蛍光X線による分析で両者を区別したり仕分けたりすることができる。
(NiCr particles)
The thermal spray coating 3 may contain NiCr particles, if necessary. Generally, NiCr particles which may be contained as to impart good abrasion resistance and adhesion to the thermal sprayed coating 3, in the present invention, for the adhesion and abrasion resistance, Co alloy particles and Cr 3 C These effects are satisfied by containing a predetermined amount of one or both of the two particles. Further, as described above, by containing NiCr self-soluble alloy particles, it acts to improve the adhesion to the piston ring base material 2, and Mo particles and Co alloy particles or Cr 3 C 2 particles can be combined with each other. It works to reduce the difference in hardness. For these reasons, in the present invention, NiCr particles are not an essential composition, but are blended as an optional component. The difference between NiCr self-soluble alloy particles and NiCr particles is that the NiCr self-soluble alloy particles contain boron and silicon in a predetermined ratio, so they can be distinguished or sorted by analysis using fluorescent X-rays. can do.

NiCr粒子が溶射皮膜3に含まれているとき、Ni基自溶性合金粒子の含有量(A)とNiCr粒子の含有量(B)との割合(A/B)が、質量比で1.5以上であることが好ましい。この範囲にすることにより、NiCr自溶性合金粒子の作用効果を実現することができる。割合(A/B)が1.5未満では、相対的にNiCr粒子の影響が大きくなって、NiCr自溶性合金粒子が作用する密着性向上効果や硬度差低減効果が十分でなくなる。なお、NiCr粒子は溶射皮膜3に含まれないこともあるので。割合の上限は特に限定されないが、含まれる場合には、例えば20とすることができる。含まれる場合のNiCr粒子の含有量は、0.01質量%以上、10質量%以下の範囲内とすることができる。 When the NiCr particles are contained in the thermal spray coating 3, the ratio (A / B) between the content (A) of the Ni-based self-soluble alloy particles and the content (B) of the NiCr particles is 1.5 by mass ratio. The above is preferable. Within this range, the action and effect of NiCr self-soluble alloy particles can be realized. When the ratio (A / B) is less than 1.5, the influence of the NiCr particles becomes relatively large, and the effect of improving the adhesion and the effect of reducing the hardness difference on which the NiCr self-soluble alloy particles act are not sufficient. The NiCr particles may not be included in the thermal spray coating 3. The upper limit of the ratio is not particularly limited, but if it is included, it may be, for example, 20. The content of NiCr particles when contained can be in the range of 0.01% by mass or more and 10% by mass or less.

NiCr粒子が溶射原料に含まれる場合において、NiCr粒子の平均粒径は、一般的な溶射原料粉末と同程度であればよく、例えば5μm以上、45μm以下の範囲内であることが好ましい。NiCr粒子の平均粒径も、粒子径分布測定装置(例えば日機装株式会社製のマイクロトラックHRA)で測定したもので表すことができる。なお、NiCr粒子の形状等も特に限定されず、造粒焼結粒子であってもよい。NiCr粒子のビッカース硬度は400〜550の範囲内である。なお、このNiCr粒子と上記したCr32粒子とを造粒した造粒粒子(「Cr32/NiCr造粒粒子」と表す。)のビッカース硬度は1000〜1200の範囲内である。 When the NiCr particles are contained in the thermal spraying raw material, the average particle size of the NiCr particles may be about the same as that of general thermal spraying raw material powder, and is preferably in the range of, for example, 5 μm or more and 45 μm or less. The average particle size of NiCr particles can also be expressed by measuring with a particle size distribution measuring device (for example, Microtrac HRA manufactured by Nikkiso Co., Ltd.). The shape of the NiCr particles is not particularly limited, and the granulated sintered particles may be used. The Vickers hardness of NiCr particles is in the range of 400 to 550. The Vickers hardness of the granulated particles obtained by granulating the NiCr particles and the above-mentioned Cr 3 C 2 particles (referred to as “Cr 3 C 2 / NiCr granulated particles”) is in the range of 1000 to 1200.

(他の元素)
溶射原料となる混合粉末には、上記以外の他の成分を含んでいてもよい。上記他の成分としては、例えばFe,C,Mn,S等が挙げられる。これらの成分は不純物として不可避的に含むことがある。上記不純物の含有量は、本発明の効果を阻害しない程度に低ければよい。
(Other elements)
The mixed powder used as a thermal spraying raw material may contain components other than the above. Examples of the other components include Fe, C, Mn, S and the like. These components may inevitably be contained as impurities. The content of the above impurities may be low enough not to impair the effect of the present invention.

(溶射皮膜の成膜手段)
溶射皮膜3は、プラズマ溶射によってピストンリング1の摺動面に形成されている。プラズマ溶射は、プラズマ溶射ガンで生じるプラズマジェットを用いて上記した原料粉末を用い、その原料粉末を加熱・加速し、溶融又はそれに近い状態にして基材に吹き付ける溶射のことである。原理は公知のとおりであるが、陰極と陽極との間に電圧をかけて直流アークを発生させると、後方から送給される作動ガス(アルゴンガス等)が電離し、プラズマを発生する。そのプラズマフレーム中に原料粉末をアルゴンガス等で送給し、ピストンリング基材2に吹き付けることによって溶射皮膜3がピストンリング基材2上に形成される。本発明に係る溶射皮膜3はこうしたプラズマ溶射で形成されたものであり、下記のHVOF溶射に比べて原料粉末が溶融又はそれに近い温度で溶射するので、本発明特有の効果を奏することができる。摺動面としては、ピストンリング1がシリンダライナ(図示しない)に接触して摺動する外周摺動面を挙げることができるが、その他の面に設けられていてもよい。
(Means for forming a thermal spray coating)
The thermal spray coating 3 is formed on the sliding surface of the piston ring 1 by plasma spraying. Plasma spraying is thermal spraying in which the above-mentioned raw material powder is used by using a plasma jet generated by a plasma spraying gun, the raw material powder is heated and accelerated, and the raw material powder is melted or brought into a state close to that and sprayed onto a base material. The principle is known, but when a voltage is applied between the cathode and the anode to generate a DC arc, the working gas (argon gas, etc.) supplied from the rear is ionized and plasma is generated. The thermal spray coating 3 is formed on the piston ring base material 2 by feeding the raw material powder into the plasma frame with argon gas or the like and spraying the raw material powder onto the piston ring base material 2. The thermal spray coating 3 according to the present invention is formed by such plasma spraying, and the raw material powder is melted or sprayed at a temperature close to that of the following HVOF thermal spraying, so that the effect peculiar to the present invention can be exhibited. As the sliding surface, an outer peripheral sliding surface on which the piston ring 1 slides in contact with a cylinder liner (not shown) can be mentioned, but it may be provided on another surface.

なお、本発明を構成する溶射皮膜3の形成手段ではないが、HVOF(High Velocity Oxygen Fuelの略)溶射は、酸素と燃料を使用した高速度ジェットフレームの溶射のことである。具体的には、高圧の酸素及び燃料の混合ガスを燃焼室内で燃焼させ、その燃焼炎がノズルにより絞られ、大気に出た瞬間に急激なガス膨張が発生し、超音速のジェットとなる。高い加速エネルギーにより加速された原料粉末は、ほとんど酸化や組成変化せず、高密度の溶射皮膜3がピストンリング基材2上に形成される。このHVOF溶射は、成膜スピードは速いものの、温度を高くしないので、原料粉末はあまり溶融せずに溶射される。そのため、原料粉末としては、小さな微細粒が用いられている。 Although it is not a means for forming the thermal spray coating 3 constituting the present invention, HVOF (abbreviation of High Velocity Oxygen Fuel) thermal spraying is thermal spraying of a high-speed jet frame using oxygen and fuel. Specifically, a mixed gas of high-pressure oxygen and fuel is burned in a combustion chamber, the combustion flame is throttled by a nozzle, and a rapid gas expansion occurs at the moment when it goes out to the atmosphere, resulting in a supersonic jet. The raw material powder accelerated by the high acceleration energy hardly oxidizes or changes in composition, and a high-density sprayed coating 3 is formed on the piston ring base material 2. Although this HVOF spraying has a high film forming speed, it does not raise the temperature, so that the raw material powder is sprayed without being melted so much. Therefore, small fine particles are used as the raw material powder.

溶射皮膜3の厚さは特に限定されないが、例えば200μm以上、600μm以下の範囲内であることが好ましい。これらの厚さ範囲を有することにより、本発明特有の効果を奏することができる。 The thickness of the thermal spray coating 3 is not particularly limited, but is preferably in the range of, for example, 200 μm or more and 600 μm or less. By having these thickness ranges, the effect peculiar to the present invention can be obtained.

溶射皮膜3の空孔率も特に限定されないが、面積%で例えば5%以下であることが好ましい。なお、溶射皮膜3の緻密性と保油性に基づく耐摩耗性の観点からは空孔率が4%以下であることがより好ましい。また、空孔率の下限は特に限定されないが、例えば0.5%とすることができる。空孔率の測定は、例えば画像解析ソフトで解析することができる。 The porosity of the thermal spray coating 3 is also not particularly limited, but is preferably 5% or less in terms of area%. From the viewpoint of the denseness of the sprayed coating 3 and the wear resistance based on the oil retention property, the porosity is more preferably 4% or less. The lower limit of the porosity is not particularly limited, but may be, for example, 0.5%. The porosity can be measured by, for example, image analysis software.

(応用例)
応用例としては、溶射表面層(図示しない)を溶射皮膜3の上に任意に設けてもよい。溶射表面層は特に限定されないが、例えばAl,Fe,Cuを含有する層、等を挙げることができる。溶射表面層は、相手攻撃性をより一層低下させること、初期なじみ性を向上させること、等を目的として設けてもよい。こうした溶射表面層も、溶射皮膜3と同様のプラズマ溶射やアーク溶射、ガス溶射等によって溶射皮膜3上に形成することができる。
(Application example)
As an application example, a thermal spraying surface layer (not shown) may be arbitrarily provided on the thermal spray coating 3. The sprayed surface layer is not particularly limited, and examples thereof include a layer containing Al, Fe, and Cu. The thermal spraying surface layer may be provided for the purpose of further reducing the aggression against the opponent, improving the initial familiarity, and the like. Such a thermal spraying surface layer can also be formed on the thermal spray coating 3 by plasma spraying, arc spraying, gas spraying, or the like similar to the thermal spray coating 3.

[製造方法]
本発明に係るピストンリング1の製造方法は、ピストンリング基材2の少なくとも摺動面に、特徴的な溶射皮膜3を有するものの製造方法であって、Mo粉末と、Ni基自溶性合金粉末と、Co合金粉末及び/又はCr32粉末との混合粉末組成物をプラズマ溶射し、ピストンリング基材2の外周摺動面に溶射皮膜3を形成する。この製造方法については、上記したピストンリングの説明欄、特に溶射皮膜3の形成についての説明欄で詳細に説明したのでここではその説明を省略する。原料粉末には、上記した造粒焼結粉末を任意に適用してもよい。なお、本願では、原料粉末を構成するものを「粉末」といい、溶射皮膜を構成するものを「粒子」といっている。
[Production method]
The method for manufacturing the piston ring 1 according to the present invention is a method for manufacturing a piston ring base material 2 having a characteristic sprayed coating 3 on at least a sliding surface, which comprises Mo powder and Ni-based self-soluble alloy powder. , Co alloy powder and / or a mixed powder composition with Cr 3 C 2 powder is sprayed by plasma to form a thermal spray coating 3 on the outer peripheral sliding surface of the piston ring base material 2. Since this manufacturing method has been described in detail in the above-mentioned explanation column for the piston ring, particularly in the explanation column for the formation of the thermal spray coating 3, the description thereof will be omitted here. The above-mentioned granulated sintered powder may be optionally applied to the raw material powder. In the present application, what constitutes the raw material powder is referred to as "powder", and what constitutes the thermal spray coating is referred to as "particle".

実施例と比較例を挙げて、本発明をさらに詳しく説明する。 The present invention will be described in more detail with reference to Examples and Comparative Examples.

[実施例1]
平均粒径が31μmのMo粉末(45質量%)と、平均粒径が43μmのNiCr自溶性合金粉末(25質量%)と、Cr32粉末(22.5質量%)及びNiCr粉末(7.5質量%)を造粒してなる平均粒径が36μmのCr32/NiCr造粒焼結粉末とを配合して原料粉末を調整した。表1は、原料粉末の配合量である。このとき、Mo粉末とNiCr自溶性合金粉末とCr32/NiCr造粒焼結粉末との含有割合を100質量%としたとき、NiCr自溶性合金粉末は25質量%であり、Cr32/NiCr造粒焼結粉末は30質量%(Cr32粉末:22.5質量%、NiCr粉末:7.5質量%)であり、残りの45質量%がMo粉末である。なお、NiCr自溶性合金粉末の成分組成は、Ni:70質量%、Cr:17質量%、B:3.5質量%、Si:4質量%、Fe:4質量%、残:不可避不純物であった。また、Cr32粉末の成分組成は、Cr:86質量%、C:13質量%、残:不可避不純物であった。また、NiCr粉末の成分組成は、Ni:78質量%、Cr:20質量%、残:不可避不純物であった。成分組成の分析は、後方散乱測定装置(株式会社NHVコーポレーション製)を用いて定量した値であり、平均粒径は、粒子径分布測定装置(日機装株式会社製、マイクロトラックHRA)で測定したD50の値で表している。
[Example 1]
And Mo powder having an average particle diameter of 31 .mu.m (45 wt%), and NiCr self-fluxing alloy powder having an average particle diameter of 43 .mu.m (25 wt%), Cr 3 C 2 powder (22.5 wt%) and NiCr powder (7 The raw material powder was prepared by blending Cr 3 C 2 / NiCr granulated sintered powder having an average particle size of 36 μm obtained by granulating (5.5% by mass). Table 1 shows the blending amount of the raw material powder. At this time, when the content ratio of Mo powder, NiCr self-soluble alloy powder and Cr 3 C 2 / NiCr granulated sintered powder is 100% by mass, the NiCr self-soluble alloy powder is 25% by mass, and Cr 3 C. The 2 / NiCr granulated sintered powder is 30% by mass (Cr 3 C 2 powder: 22.5% by mass, NiCr powder: 7.5% by mass), and the remaining 45% by mass is Mo powder. The composition of the NiCr self-soluble alloy powder is Ni: 70% by mass, Cr: 17% by mass, B: 3.5% by mass, Si: 4% by mass, Fe: 4% by mass, and the balance: unavoidable impurities. rice field. The composition of the Cr 3 C 2 powder was Cr: 86% by mass, C: 13% by mass, and the balance: unavoidable impurities. The composition of the NiCr powder was Ni: 78% by mass, Cr: 20% by mass, and the balance: unavoidable impurities. The composition of the components was analyzed using a backscattering measuring device (manufactured by NHV Corporation), and the average particle size was measured by a particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., Microtrack HRA). It is represented by a value of 50.

この原料粉末を用い、以下の条件でプラズマ溶射し、ボロン鋳鉄からなるピストンリング基材2の摺動面に厚さ300μmの溶射皮膜3を形成した。プラズマ溶射は、スルザーメテコ社製の9MBプラズマ溶射ガンを用いて行い、電圧60〜70V、電流500Aで溶射した。 Using this raw material powder, plasma spraying was performed under the following conditions to form a thermal spray coating 3 having a thickness of 300 μm on the sliding surface of the piston ring base material 2 made of boron cast iron. Plasma spraying was performed using a 9MB plasma spraying gun manufactured by Sulzer Meteco, and sprayed at a voltage of 60 to 70 V and a current of 500 A.

得られた溶射皮膜3の成分組成は、上記同様、後方散乱測定装置(株式会社NHVコーポレーション製)を用いて定量し、原料である原料粉末の組成と同じく、Mo:45質量%、NiCr自溶性合金:25質量%、Cr32:22.5質量%、NiCr:7.5質量%であった。また、NiCr自溶性合金の含有量AとNiCrの含有量Bとの割合(A/B)は質量比で3.3である。 The component composition of the obtained thermal spray coating 3 was quantified using a backscattering measuring device (manufactured by NHV Corporation) in the same manner as described above, and Mo: 45% by mass and NiCr self-solubilization were the same as the composition of the raw material powder as a raw material. The alloy was 25% by mass, Cr 3 C 2 : 22.5% by mass, and NiCr: 7.5% by mass. The ratio (A / B) of the NiCr self-soluble alloy content A and the NiCr content B is 3.3 by mass ratio.

[実施例2]
原料粉末を変更した他は、実施例1と同様にして実施例2の溶射皮膜3を形成した。溶射皮膜3の成分組成も下記原料粉末の組成と同じく、Mo:50質量%、NiCr自溶性合金:30質量%、Co合金:20質量%であった。
[Example 2]
The thermal spray coating 3 of Example 2 was formed in the same manner as in Example 1 except that the raw material powder was changed. The component composition of the thermal spray coating 3 was also the same as the composition of the following raw material powder, Mo: 50% by mass, NiCr self-soluble alloy: 30% by mass, Co alloy: 20% by mass.

原料粉末は、平均粒径が31μmのMo粉末(50質量%)と、平均粒径が43μmのNiCr自溶性合金粉末(30質量%)と、平均粒径が31μmのCo合金粉末(20質量%)とを配合したものであり、表1に示した。このとき、Mo粉末とNiCr自溶性合金粉末とCo合金粉末との含有割合を100質量%としたときの各粉末の含有割合は上記粉末組成と同じである。なお、NiCr自溶性合金粉末の成分組成は実施例1と同じであり、Co合金粉末の成分組成は、Co:49.8質量%、Mo:28質量%、Cr:18質量%、Si:3.4質量%、残:不可避不純物であった。 The raw material powders are Mo powder (50% by mass) with an average particle size of 31 μm, NiCr self-soluble alloy powder (30% by mass) with an average particle size of 43 μm, and Co alloy powder (20% by mass) with an average particle size of 31 μm. ) And are shown in Table 1. At this time, when the content ratio of Mo powder, NiCr self-soluble alloy powder and Co alloy powder is 100% by mass, the content ratio of each powder is the same as the above powder composition. The composition of the NiCr self-soluble alloy powder is the same as that of Example 1, and the composition of the Co alloy powder is Co: 49.8% by mass, Mo: 28% by mass, Cr: 18% by mass, Si: 3. .4% by mass, residual: unavoidable impurities.

[実施例3]
原料粉末を表1に示すように変更した他は、実施例1と同様にして実施例3の溶射皮膜3を形成した。溶射皮膜3の成分組成も表1の原料粉末の組成と同じであった。なお、この実施例3では、実施例1とは、NiCr自溶性合金粉末として、平均粒径が43μmでNi:70質量%、Cr:17質量%、B:3質量%、Si:4質量%、Mo:2質量%、Cu:3質量%、残:不可避不純物の成分組成のものを用いている点が異なるが、それ以外は同じである。
[Example 3]
The thermal spray coating 3 of Example 3 was formed in the same manner as in Example 1 except that the raw material powder was changed as shown in Table 1. The composition of the component of the sprayed coating 3 was also the same as the composition of the raw material powder in Table 1. In Example 3, NiCr self-soluble alloy powder has an average particle size of 43 μm, Ni: 70% by mass, Cr: 17% by mass, B: 3% by mass, Si: 4% by mass. , Mo: 2% by mass, Cu: 3% by mass, residual: unavoidable impurities are the same except that they are used.

[実施例4〜6]
原料粉末を表1に示すように変更した他は、実施例1と同様にして実施例4〜6の溶射皮膜3を形成した。溶射皮膜3の成分組成も表1の原料粉末の組成と同じであった。なお、この実施例4〜6のNiCr自溶性合金粉末は実施例1と同じである。
[Examples 4 to 6]
The thermal spray coatings 3 of Examples 4 to 6 were formed in the same manner as in Example 1 except that the raw material powder was changed as shown in Table 1. The composition of the component of the sprayed coating 3 was also the same as the composition of the raw material powder in Table 1. The NiCr self-soluble alloy powders of Examples 4 to 6 are the same as those of Example 1.

[比較例1]
原料粉末を変更した他は、実施例1と同様にして比較例1の溶射皮膜3を形成した。溶射皮膜3の成分組成も下記原料粉末の組成と同じく、Mo:33質量%、NiCr合金:17質量%、Cr32:50質量%であった。
[Comparative Example 1]
The thermal spray coating 3 of Comparative Example 1 was formed in the same manner as in Example 1 except that the raw material powder was changed. Component composition of the thermal spray coating 3 also like the composition of the following raw powder, Mo: 33 wt%, NiCr alloy: 17 wt%, Cr 3 C 2: was 50 wt%.

原料粉末は、平均粒径が31μmのMo粉末(33質量%)と、平均粒径が21μmのNiCr粉末(17質量%)と、平均粒径が21μmのCr32粉末(50質量%)とを配合した混合粉であり、表1に示した。なお、NiCr粉末とCr32粉末の成分組成は実施例1と同じである。 Raw material powder, a Mo powder having an average particle diameter of 31 .mu.m (33 wt%), and NiCr powder having an average particle size of 21 [mu] m (17 wt%), Cr 3 C 2 powder having an average particle size of 21 [mu] m (50 wt%) It is a mixed powder containing and is shown in Table 1. Incidentally, the component composition of the NiCr powder and Cr 3 C 2 powder were the same as in Example 1.

[比較例2]
原料粉末を変更した他は、実施例1と同様にして比較例2の溶射皮膜3を形成した。溶射皮膜3の成分組成も下記原料粉末の組成と同じく、Mo:50質量%、NiCr合金:15質量%、Cr32:35質量%であった。
[Comparative Example 2]
The thermal spray coating 3 of Comparative Example 2 was formed in the same manner as in Example 1 except that the raw material powder was changed. Component composition of the thermal spray coating 3 also like the composition of the following raw powder, Mo: 50 wt%, NiCr alloy: 15 wt%, Cr 3 C 2: was 35 wt%.

原料粉末は、平均粒径が31μmのMo粉末(50質量%)と、平均粒径が22μmのNiCr粉末(15質量%)と、平均粒径が13μmのCr32粉末(35質量%)とを配合した混合粉であり、表1に示した。なお、NiCr粉末とCr32粉末の成分組成は実施例1と同じである。 Raw material powder, a Mo powder having an average particle diameter of 31 .mu.m (50 wt%), and NiCr powder having an average particle diameter of 22 .mu.m (15 wt%), Cr 3 C 2 powder having an average particle diameter of 13 .mu.m (35 wt%) It is a mixed powder containing and is shown in Table 1. Incidentally, the component composition of the NiCr powder and Cr 3 C 2 powder were the same as in Example 1.

[比較例3,4]
原料粉末を表1に示すように変更した他は、実施例1と同様にして比較例3,4の溶射皮膜3を形成した。溶射皮膜3の成分組成も表1の原料粉末の組成と同じであった。なお、この比較例3,4のNiCr自溶性合金粉末は実施例1と同じである。
[Comparative Examples 3 and 4]
The thermal spray coatings 3 of Comparative Examples 3 and 4 were formed in the same manner as in Example 1 except that the raw material powder was changed as shown in Table 1. The composition of the component of the sprayed coating 3 was also the same as the composition of the raw material powder in Table 1. The NiCr self-soluble alloy powders of Comparative Examples 3 and 4 are the same as those of Example 1.

Figure 0006985961
Figure 0006985961

[測定方法及び測定結果]
(耐摩耗性指数と相手材耐摩耗性指数)
耐摩耗性指数と相手材耐摩耗性指数は、摩耗試験により測定した。摩耗試験は、図3に示す高負荷型摩耗試験機6を使用し、実施例1〜6及び比較例1〜4で得られたピストンリングと同じ条件で得た固定片である供試材7を用い、供試材7(固定片)と、回転片である相手材8とを接触させ、荷重Pを負荷して行った。ここでの供試材7は、片状黒鉛鋳鉄からなる3本のピン(φ5mm、58.9mm)と外径40mmの円盤とを一体型とし、円盤は外径40mm、厚さはピンを含め12mmとした。また、相手材8(回転片)は、外径40mm、厚さ12mmのボロン鋳鉄である。摩耗試験条件は、潤滑油:スピンドル油相当品、油温:125℃、周速:1.65m/秒(1050rpm)、接触面圧:76.4MPa、試験時間:8時間の条件下で行った。
[Measurement method and measurement results]
(Abrasion resistance index and mating material wear resistance index)
The wear resistance index and the mating material wear resistance index were measured by a wear test. In the wear test, the high load type wear tester 6 shown in FIG. 3 was used, and the test material 7 was a fixed piece obtained under the same conditions as the piston rings obtained in Examples 1 to 6 and Comparative Examples 1 to 4. The test material 7 (fixed piece) and the mating material 8 which is a rotating piece were brought into contact with each other, and a load P was applied. The test material 7 here is an integrated type of three pins (φ5 mm, 58.9 mm 2 ) made of flake graphite cast iron and a disk with an outer diameter of 40 mm. The disk has an outer diameter of 40 mm and the thickness is a pin. 12 mm including. The mating material 8 (rotating piece) is boron cast iron having an outer diameter of 40 mm and a thickness of 12 mm. The wear test conditions were such as lubricating oil: spindle oil equivalent, oil temperature: 125 ° C., peripheral speed: 1.65 m / sec (1050 rpm), contact surface pressure: 76.4 MPa, and test time: 8 hours. ..

耐摩耗性及び相手材耐摩耗性は、実施例1〜6及び比較例2〜4に相当する各供試材の摩耗量を、比較例1に対応する供試材の摩耗量に対しての相対比として比較し、耐摩耗性指数とした。したがって、各供試材の耐摩耗性指数が100より小さいほど、比較例1に対して摩耗量が小さいことを表す。結果を表2に示した。 For the wear resistance and the wear resistance of the mating material, the wear amount of each test material corresponding to Examples 1 to 6 and Comparative Examples 2 to 4 is compared with the wear amount of the test material corresponding to Comparative Example 1. Compared as a relative ratio, it was used as the wear resistance index. Therefore, the smaller the wear resistance index of each test material is, the smaller the amount of wear as compared with Comparative Example 1. The results are shown in Table 2.

(密着強度)
密着力の測定は、JIS H 8667に準拠し、溶射皮膜3を形成した円筒試験片の端面と、溶射皮膜3を形成していない円筒試験片の端面とを熱硬化性樹脂で接着して一体化し、その筒の両端を引張試験機の上下のチャックで固定して引張試験を行った。引張試験は、引張速度を1mm/分とし、溶射皮膜3がボロン鋳鉄の界面から剥がれたとき又は溶射皮膜3内で層間剥離したときの荷重を測定し、その荷重を円筒端面の面積で除した値を求めた。比較例1の溶射皮膜3の値を100(基準)として実施例1〜6及び比較例2〜4に相当する各試験試料の密着力を相対評価し、密着力指数として表した。密着力指数が大きいほど、密着力に優れている。なお、硬化性樹脂との界面での剥離や硬化性樹脂層内での層間剥離は評価から除外した。その結果を表2に示す。
(Adhesion strength)
The adhesion force is measured in accordance with JIS H 8667, and the end face of the cylindrical test piece on which the thermal spray coating 3 is formed and the end face of the cylindrical test piece on which the thermal spray coating 3 is not formed are bonded and integrated with a thermosetting resin. Then, both ends of the cylinder were fixed with the upper and lower chucks of the tensile tester, and the tensile test was performed. In the tensile test, the tensile speed was set to 1 mm / min, and the load when the thermal spray coating 3 was peeled off from the interface of the boron cast iron or when the sprayed coating 3 was delaminated was measured, and the load was divided by the area of the cylindrical end face. The value was calculated. The adhesion of each test sample corresponding to Examples 1 to 6 and Comparative Examples 2 to 4 was relatively evaluated with the value of the sprayed coating 3 of Comparative Example 1 as 100 (reference), and expressed as an adhesion index. The larger the adhesion index, the better the adhesion. Delamination at the interface with the curable resin and delamination within the curable resin layer were excluded from the evaluation. The results are shown in Table 2.

(評価)
表2に示すように、実施例1〜6の溶射皮膜は、耐摩耗性指数及び相手材耐摩耗性指数、さらに密着力においても、比較例1よりも優れていることが確認された。
(evaluation)
As shown in Table 2, it was confirmed that the sprayed coatings of Examples 1 to 6 were superior to Comparative Example 1 in the wear resistance index, the wear resistance index of the mating material, and the adhesion.

Figure 0006985961
Figure 0006985961

NiCr合金よりも硬度が高いNi基自溶性合金を使用することで、Mo粒子とCr32粒子との硬度差を少なくすることができることがわかり、また、Ni基自溶性合金に加えCr32/NiCr造粒焼結粉末を使用することで、それらの硬度差によるCr32粒子の脱落等を防止して、シリンダライナへの攻撃を抑制することができるものと考えられる。 It was found that the difference in hardness between Mo particles and Cr 3 C 2 particles can be reduced by using a Ni-based self-soluble alloy, which has a higher hardness than the Ni Cr alloy, and in addition to the Ni-based self-soluble alloy, Cr 3 It is considered that by using the C 2 / NiCr granulated sintered powder, it is possible to prevent the Cr 3 C 2 particles from falling off due to the difference in hardness between them and suppress the attack on the cylinder liner.

1 ピストンリング
2 ピストンリング基材
3 溶射皮膜
4 溶射表面層
6 高負荷型摩耗試験機
7 供試材
8 回転片
P 荷重
1 Piston ring 2 Piston ring base material 3 Thermal spray coating 4 Thermal spray surface layer 6 High load type wear tester 7 Test material 8 Rotating piece P load

Claims (5)

ピストンリング基材の少なくとも摺動面に、Mo粒子と、Ni基自溶性合金粒子と、Co合金粒子及び/又はCr粒子とを有する溶射皮膜が設けられており、
前記Mo粒子と前記Ni基自溶性合金粒子と前記Co合金粒子及びCr 粒子の合計との含有割合を100質量%としたとき、前記Ni基自溶性合金粒子が20質量%以上40質量%以下の範囲内であり、前記Co合金粒子及びCr 粒子の合計が15質量%以上30質量%以下の範囲内であり、残りがMo粒子である、ことを特徴とするピストンリング。
At least the sliding surface of the piston ring substrate, and Mo particles, and Ni-based self-fluxing alloy particles, sprayed coating is provided having a Co alloy particles and / or Cr 3 C 2 particles,
Wherein when the Mo particles and the Ni-based self-fluxing alloy particles content ratio of the sum of the Co alloy particles and Cr 3 C 2 particles is 100 mass%, the Ni-based self-fluxing alloy particles 20 mass% to 40 mass % Or less, the total of the Co alloy particles and Cr 3 C 2 particles is in the range of 15% by mass or more and 30% by mass or less, and the rest is Mo particles .
前記溶射皮膜が、NiCr粒子をさらに含む、請求項に記載のピストンリング。 The thermal spray coating further comprises NiCr particles, piston ring according to claim 1. 前記Ni基自溶性合金粒子の含有量Aと前記NiCr粒子の含有量Bとの割合(A/B)が、質量比で1.5以上である、請求項に記載のピストンリング。 The piston ring according to claim 2 , wherein the ratio (A / B) of the content A of the Ni-based self-soluble alloy particles to the content B of the NiCr particles is 1.5 or more by mass ratio. 前記NiCr粒子が含まれた場合において、当該NiCr粒子と前記Cr粒子との造粒物構造を含んでいる、請求項2又は3に記載のピストンリング。 The piston ring according to claim 2 or 3 , wherein when the NiCr particles are contained, the piston ring includes a granulated structure of the NiCr particles and the Cr 3 C 2 particles. Mo粉末と、Ni基自溶性合金粉末と、Co合金粉末及び/又はCr粉末との混合粉末組成物をプラズマ溶射し、ピストンリング基材の外周摺動面に溶射皮膜を形成してなるピストンリングの製造方法であって、
前記Mo粒子と前記Ni基自溶性合金粒子と前記Co合金粒子及びCr 粒子の合計との含有割合を100質量%としたとき、前記Ni基自溶性合金粒子が20質量%以上40質量%以下の範囲内であり、前記Co合金粒子及びCr 粒子の合計が15質量%以上30質量%以下の範囲内であり、残りがMo粒子である、ことを特徴とするピストンリングの製造方法。
And Mo powder, and Ni-based self-fluxing alloy powder, plasma sprayed a mixed powder composition of the Co alloy powder and / or Cr 3 C 2 powder, to form a sprayed coating on the outer circumferential sliding surface of the piston ring substrate Is a method of manufacturing a piston ring.
When the content ratio of the Mo particles, the Ni-based self-soluble alloy particles, the total of the Co alloy particles and the Cr 3 C 2 particles is 100% by mass, the Ni-based self-soluble alloy particles are 20% by mass or more and 40% by mass. % Or less, the total of the Co alloy particles and Cr 3 C 2 particles is in the range of 15% by mass or more and 30% by mass or less, and the rest is Mo particles . Production method.
JP2018048455A 2017-03-28 2018-03-15 Piston ring and its manufacturing method Active JP6985961B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017063941 2017-03-28
JP2017063941 2017-03-28

Publications (2)

Publication Number Publication Date
JP2018165402A JP2018165402A (en) 2018-10-25
JP6985961B2 true JP6985961B2 (en) 2021-12-22

Family

ID=63782014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048455A Active JP6985961B2 (en) 2017-03-28 2018-03-15 Piston ring and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6985961B2 (en)
KR (1) KR102080540B1 (en)
CN (1) CN108660408A (en)
DK (1) DK180330B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023113035A1 (en) 2021-12-16 2023-06-22 日本ピストンリング株式会社 Thermal spray coating film, sliding member and piston ring

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559283B2 (en) * 1990-03-08 1996-12-04 帝国ピストンリング株式会社 piston ring
JP4790135B2 (en) * 2001-02-28 2011-10-12 日本ピストンリング株式会社 Wear-resistant sliding member
WO2004035852A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Riken Piston ring and thermal sprayed coating for use therein, and method for manufacture thereof
EP2402474B1 (en) * 2009-02-26 2013-10-23 Nippon Piston Ring Co., Ltd. Piston ring
JP5689735B2 (en) 2010-07-29 2015-03-25 日本ピストンリング株式会社 piston ring
KR101731746B1 (en) * 2012-12-11 2017-04-28 가부시끼가이샤 리켄 Piston ring sprayed coating, piston ring, and method for producing piston ring sprayed coating
JP6416498B2 (en) * 2014-05-08 2018-10-31 株式会社リケン Sliding member and piston ring
JP6411875B2 (en) 2014-11-28 2018-10-24 日本ピストンリング株式会社 Piston ring and manufacturing method thereof

Also Published As

Publication number Publication date
DK180330B1 (en) 2020-11-25
JP2018165402A (en) 2018-10-25
DK201870188A1 (en) 2018-11-29
KR102080540B1 (en) 2020-02-24
CN108660408A (en) 2018-10-16
KR20180109732A (en) 2018-10-08

Similar Documents

Publication Publication Date Title
US9291264B2 (en) Coatings and powders, methods of making same, and uses thereof
JP4464685B2 (en) Corrosion resistant powder and coating
US9919358B2 (en) Sintered molybdenum carbide-based spray powder
CA2567089C (en) Wear resistant alloy powders and coatings
JP5689735B2 (en) piston ring
WO2014091831A1 (en) Piston ring sprayed coating, piston ring, and method for producing piston ring sprayed coating
JP5514187B2 (en) piston ring
JP2003064463A (en) Wear-resistant sprayed coating film on sliding member
JP6985961B2 (en) Piston ring and its manufacturing method
JP6411875B2 (en) Piston ring and manufacturing method thereof
JP2005155711A (en) Spray piston ring and its manufacturing method
WO2023113035A1 (en) Thermal spray coating film, sliding member and piston ring
WO2014073392A1 (en) Powder for use in formation of sprayed layer
JP5449936B2 (en) Co-based alloy excellent in wear resistance and lubricity, its production method and its sintered body
KR100379015B1 (en) The method of coating of synchronizer ring with large friction coefficient
JP2006057507A (en) Piston ring and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6985961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150