JP6977700B2 - Molecular weight analysis method and separation / purification method for compounds by size exclusion chromatography - Google Patents

Molecular weight analysis method and separation / purification method for compounds by size exclusion chromatography Download PDF

Info

Publication number
JP6977700B2
JP6977700B2 JP2018213389A JP2018213389A JP6977700B2 JP 6977700 B2 JP6977700 B2 JP 6977700B2 JP 2018213389 A JP2018213389 A JP 2018213389A JP 2018213389 A JP2018213389 A JP 2018213389A JP 6977700 B2 JP6977700 B2 JP 6977700B2
Authority
JP
Japan
Prior art keywords
molecular weight
compound
size exclusion
eluent
exclusion chromatography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018213389A
Other languages
Japanese (ja)
Other versions
JP2020079758A (en
Inventor
貴司 内田
安則 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2018213389A priority Critical patent/JP6977700B2/en
Publication of JP2020079758A publication Critical patent/JP2020079758A/en
Application granted granted Critical
Publication of JP6977700B2 publication Critical patent/JP6977700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、サイズ排除クロマトグラフィ法により、化合物の分子量(重量平均分子量(Mw)、数平均分子量(Mn)、ピークトップ分子量(Mp)、分子量分布等)を分析する方法、またはサイズ排除クロマトグラフィ法による化合物を分離精製する方法に関する。 The present invention is a method for analyzing the molecular weight (weight average molecular weight (M w ), number average molecular weight (M n ), peak top molecular weight (M p ), molecular weight distribution, etc.) of a compound by a size exclusion chromatography method, or size exclusion. The present invention relates to a method for separating and purifying a compound by a chromatographic method.

サイズ排除クロマトグラフィ法によりフッ素系化合物の分析を行う場合の溶離液やフッ素系化合物の溶液を調製するための溶媒にはハイドロクロロフルオロカーボン(HCFC)類が用いられてきた(特許文献1〜4)。 Hydrochlorofluorocarbons (HCFCs) have been used as eluents for analyzing fluorocarbons by size exclusion chromatography and as solvents for preparing solutions of fluorocarbons (Patent Documents 1 to 4).

しかし、HCFC類はオゾン層を破壊するため、それに代わるオゾン層を破壊しない溶媒および溶離液が求められている。 However, since HCFCs destroy the ozone layer, a solvent and an eluent that do not destroy the ozone layer are required instead.

特開平5‐20673号公報Japanese Unexamined Patent Publication No. 5-20673 特開平11‐166920公報JP-A-11-166920 特開2001‐208736公報Japanese Unexamined Patent Publication No. 2001-208736 特許第3669130号公報Japanese Patent No. 3669130

したがって、本発明において解決すべき課題はオゾン層を破壊しない溶媒および溶離液を用いたサイズ排除クロマトグラフィ法による化合物の分子量分析および分離精製の方法を提供することである。 Therefore, a problem to be solved in the present invention is to provide a method for molecular weight analysis and separation and purification of a compound by a size exclusion chromatography method using a solvent and an eluent that do not destroy the ozone layer.

本発明者らは、上記目的を達成するために鋭意研究した結果、サイズ排除クロマトグラフィ法において、溶離液としてハイドロフルオロカーボンを含む溶媒を用いれば、上記課題を解決できることを見出し、本発明を完成した。 As a result of diligent research to achieve the above object, the present inventors have found that the above-mentioned problems can be solved by using a solvent containing hydrofluorocarbon as an eluent in the size exclusion chromatography method, and completed the present invention.

本発明は、以下のサイズ排除クロマトグラフィ法による化合物の分子量分析方法および精製方法を提供するものである。 The present invention provides a method for molecular weight analysis and purification of a compound by the following size exclusion chromatography method.

[1]
サイズ排除クロマトグラフィ法において、溶離液としてハイドロフルオロカーボンを含む溶媒を用い、かつ、分子量標準試料としてポリメタクリル酸メチルを用いることを特徴とする化合物の分子量分析方法。
[2]
溶離液が、ハイドロフルオロカーボンを80〜100質量%含む溶媒である[1]に記載の分子量分析方法。
[3]
ハイドロフルオロカーボンが、1,1,1,3,3−ペンタフルオロブタンである[1]又は[2]に記載の分子量分析方法。
[4]
分析対象化合物がフッ素系化合物である[1]〜[3]のいずれかに記載の分子量分析方法。
[5]
[1]〜[4]のいずれかに記載の化合物の分子量分析方法を用いることを特徴とする化合物の分離精製方法。
[1]
A method for analyzing the molecular weight of a compound, which comprises using a solvent containing hydrofluorocarbon as an eluent and using methyl polymethacrylate as a molecular weight standard sample in the size exclusion chromatography method.
[2]
The molecular weight analysis method according to [1], wherein the eluent is a solvent containing 80 to 100% by mass of hydrofluorocarbon.
[3]
The molecular weight analysis method according to [1] or [2], wherein the hydrofluorocarbon is 1,1,1,3,3-pentafluorobutane.
[4]
The molecular weight analysis method according to any one of [1] to [3], wherein the compound to be analyzed is a fluorine-based compound.
[5]
A method for separating and purifying a compound, which comprises using the method for analyzing the molecular weight of the compound according to any one of [1] to [4].

本発明の方法によれば、ハイドロフルオロカーボンを溶媒および溶離液に用いてサイズ排除クロマトグラフィ法による分析を行うことにより、分析対象の化合物について、ポリメタクリル酸メチル標準試料換算の分子量分布曲線が得られ、それに基づき、ポリメタクリル酸メチル換算の分子量(重量平均分子量(Mw)、数平均分子量(Mn)、ピークトップ分子量(Mp)等)を決定することができる。また、この様な分析方法により予め決定された分子量と溶出時間の関係から、化合物の分子量による分離精製を行うことができる。したがって本発明の方法では、オゾン層を破壊しないハイドロフルオロカーボンを溶媒および溶離液に用いるため、化合物の分子量分析や分離精製においてオゾン層を破壊するハイドロクロロフルオロカーボンを用いる必要がない。 According to the method of the present invention, by performing an analysis by a size exclusion chromatography method using hydrofluorocarbon as a solvent and an eluent, a molecular weight distribution curve equivalent to a polymethyl methacrylate standard sample can be obtained for the compound to be analyzed. Based on this, the molecular weight in terms of polymethyl methacrylate (weight average molecular weight (M w ), number average molecular weight (M n ), peak top molecular weight (M p ), etc.) can be determined. In addition, separation and purification can be performed according to the molecular weight of the compound based on the relationship between the molecular weight and the elution time determined in advance by such an analysis method. Therefore, in the method of the present invention, since hydrofluorocarbon that does not destroy the ozone layer is used as the solvent and eluent, it is not necessary to use hydrochlorofluorocarbon that destroys the ozone layer in the molecular weight analysis and separation and purification of the compound.

実施例1で計測されたポリメタクリル酸メチル標準試料のクロマトグラムChromatogram of polymethylmethacrylate standard sample measured in Example 1 図1の結果と既知のポリメタクリル酸メチル分子量から得られたlog分子量と溶出時間との相関を示すグラフA graph showing the correlation between the log molecular weight obtained from the result of FIG. 1 and the known polymethyl methacrylate molecular weight and the elution time. 実施例2で得られたパーフルオロポリエーテル(A)の分子量分布曲線を示すグラフA graph showing the molecular weight distribution curve of the perfluoropolyether (A) obtained in Example 2. 実施例3で得られたパーフルオロポリエーテル(B)の分子量分布曲線を示すグラフA graph showing the molecular weight distribution curve of the perfluoropolyether (B) obtained in Example 3. 実施例4で得られたパーフルオロポリエーテル(C)の分子量分布曲線を示すグラフA graph showing the molecular weight distribution curve of the perfluoropolyether (C) obtained in Example 4.

本発明について以下に詳述する。 The present invention will be described in detail below.

本発明のサイズ排除クロマトグラフィ法(特には、ゲル浸透クロマトグラフィ法)を利用した化合物の分子量分析方法及び分離精製方法で用いる溶離液は、ハイドロフルオロカーボン(即ち、分子中に炭素原子に結合した塩素原子を有せず、かつ、分子中に炭素原子に結合したフッ素原子及び炭素原子に結合した水素原子を有する、通常、炭素数10個以下、好ましくは炭素数3〜6個、より好ましくは炭素数4個又は5個程度の、部分フッ素化された脂肪族飽和炭化水素)を含む溶媒であるが、ハイドロフルオロカーボンのみでも、ハイドロフルオロカーボンと他の溶媒の混合液でもよい。溶離液中のハイドロフルオロカーボンの含有量は、80質量%以上(80〜100質量%)、好ましくは90質量%以上(90〜100質量%)、より好ましくは93質量%以上(93〜100質量%)、さらに好ましくは94〜99質量%である。 The eluent used in the molecular weight analysis method and the separation and purification method of the compound using the size exclusion chromatography method (particularly, the gel permeation chromatography method) of the present invention contains hydrocarbon atoms (that is, chlorine atoms bonded to carbon atoms in the molecule). It does not have and has a fluorine atom bonded to a carbon atom and a hydrogen atom bonded to a carbon atom in the molecule, and usually has 10 or less carbon atoms, preferably 3 to 6 carbon atoms, and more preferably 4 carbon atoms. It is a solvent containing, or about 5 or so, partially fluorinated aliphatic saturated hydrocarbons), but may be hydrofluorocarbon alone or a mixed solution of hydrofluorocarbon and another solvent. The content of hydrofluorocarbon in the eluent is 80% by mass or more (80 to 100% by mass), preferably 90% by mass or more (90 to 100% by mass), and more preferably 93% by mass or more (93 to 100% by mass). ), More preferably 94 to 99% by mass.

本発明で用いるハイドロフルオロカーボンとしては、例えば、1,1,1,3,3−ペンタフルオロブタン(HFC365mfc)が挙げられ、これは蒸留精製等により高純度化したものが好ましい。 Examples of the hydrofluorocarbon used in the present invention include 1,1,1,3,3-pentafluorobutane (HFC365mfc), which is preferably purified by distillation or purification.

ハイドロフルオロカーボンに混合する他の溶媒の例としては、アセトン、アセトニトリル、メタノール、エタノール、2−プロパノール、テトラヒドロフラン、酢酸メチル、酢酸エチル、メチルエチルケトン、ヘキサフルオロ‐2‐プロパノール、2‐エトキシ‐2‐メチルプロパン等が挙げられる。ハイドロフルオロカーボンに混合する他の溶媒は、分析対象試料を溶解できる溶媒を適宜選択できる。溶離液中の他の溶媒の含有量は、20質量%以下(20〜0質量%)、好ましくは10質量%以下(10〜0質量%)、より好ましくは7質量%以下(7〜0質量%)、さらに好ましくは6〜1質量%である。 Examples of other solvents to mix with hydrofluorocarbons include acetone, acetonitrile, methanol, ethanol, 2-propanol, tetrahydrofuran, methyl acetate, ethyl acetate, methyl ethyl ketone, hexafluoro-2-propanol, 2-ethoxy-2-methylpropane. And so on. As the other solvent to be mixed with the hydrofluorocarbon, a solvent capable of dissolving the sample to be analyzed can be appropriately selected. The content of the other solvent in the eluent is 20% by mass or less (20 to 0% by mass), preferably 10% by mass or less (10 to 0% by mass), and more preferably 7% by mass or less (7 to 0% by mass). %), More preferably 6 to 1% by mass.

本発明では、分子量分析のための標準試料としては、ポリメタクリル酸メチルを挙げることができる。さまざまな分子量の単分散ポリメタクリル酸メチルが市販されており、それらを標準試料として用いるのが好ましい。標準試料に用いるポリメタクリル酸メチルの分子量範囲は、ハイドロフルオロカーボンを含む溶媒に溶解できる限り限定されるものではなく、通常は100程度から100,000程度である。 In the present invention, polymethyl methacrylate can be mentioned as a standard sample for molecular weight analysis. Monodisperse polymethylmethacrylates of various molecular weights are commercially available and are preferably used as standard samples. The molecular weight range of the polymethyl methacrylate used in the standard sample is not limited as long as it can be dissolved in a solvent containing hydrofluorocarbon, and is usually about 100 to 100,000.

本発明では、サイズ排除クロマトグラフィ法のカラムとしては、有機溶媒を溶離液として使用するものであって、分析対象である化合物の個々の分子量が100程度から100,000程度の範囲を分析できるものを用いることができる。カラムは上記の範囲内であれば、異なる分析分子量範囲のカラムを直列に連結し、分析に用いることができる。また、同じ分析分子量範囲のカラムを直列に接続し分析を行うことで、分子量の分離分解能を向上できる。 In the present invention, the column for the size exclusion chromatography method uses an organic solvent as an eluent and can analyze the individual molecular weight of the compound to be analyzed in the range of about 100 to about 100,000. Can be used. As long as the column is within the above range, columns having different analytical molecular weight ranges can be connected in series and used for analysis. Further, by connecting columns in the same analysis molecular weight range in series and performing analysis, the resolution of molecular weight separation can be improved.

本発明の方法による分子量の分析と分離精製の対象となる化合物は、溶離液として用いるハイドロフルオロカーボンを含む溶媒に溶解可能である限り特に限定されない。分子量分析と分離精製を行うことができる分子量(重量平均分子量(Mw)、数平均分子量(Mn)、ピークトップ分子量(Mp)等)の範囲は標準試料に用いるポリメタクリル酸メチルの分子量により、通常は100程度から100,000程度である。本発明の方法では、当業者に知られる方法で、ポリメタクリル酸メチル標準試料換算の分子量分布曲線を得ることができ、それに基づいて、重量平均分子量(Mw)、数平均分子量(Mn)、ピークトップ分子量(Mp)等を決定することができる。 The compound to be analyzed for molecular weight and separation and purification by the method of the present invention is not particularly limited as long as it can be dissolved in a solvent containing hydrofluorocarbon used as an eluent. The range of molecular weights (weight average molecular weight (M w ), number average molecular weight (M n ), peak top molecular weight (M p ), etc.) that can be used for molecular weight analysis and separation and purification is the molecular weight of methyl polymethacrylate used in the standard sample. Therefore, it is usually about 100 to 100,000. In the method of the present invention, a molecular weight distribution curve equivalent to a polymethyl methacrylate standard sample can be obtained by a method known to those skilled in the art, and based on this, a weight average molecular weight (M w ) and a number average molecular weight (M n ) can be obtained. , Peak top molecular weight (M p ) and the like can be determined.

本発明の方法は、溶解性の観点から特にフッ素系化合物の分子量分析や分離精製に有効である。より具体的にはフッ素系高分子化合物が分析対象化合物として好適である。フッ素系高分子化合物としては、パーフルオロポリエーテル、ヘキサフルオロプロペンオキシドやそれらの誘導体およびこれらの混合物、共重合化合物等が挙げられる。 The method of the present invention is particularly effective for molecular weight analysis and separation and purification of fluorine-based compounds from the viewpoint of solubility. More specifically, a fluorine-based polymer compound is suitable as the compound to be analyzed. Examples of the fluorine-based polymer compound include perfluoropolyether, hexafluoropropene oxide, derivatives thereof, a mixture thereof, and a copolymer compound.

本発明では、サイズ排除クロマトグラフィ法による分析の検出器として、蒸発光散乱検出器やコロナ荷電化粒子検出器を用いるのが有効である。これは一般的なフッ素系化合物が紫外線を透過し、かつ溶離液との屈折率差が微小であるため、紫外光吸収や屈折率差による検出が難しいためであり、分析対象化合物が紫外光を吸収するもしくは溶離液との屈折率に差がある場合には紫外光吸収検出器や屈折率検出器も用いることができる。 In the present invention, it is effective to use an evaporation light scattering detector or a corona charged particle detector as a detector for analysis by the size exclusion chromatography method. This is because a general fluorine-based compound transmits ultraviolet rays and the difference in refractive index from the eluent is small, so it is difficult to detect due to absorption of ultraviolet light or the difference in refractive index. An ultraviolet light absorption detector or a refractive index detector can also be used when it absorbs or has a difference in the refractive index from the eluent.

本発明では、フッ素系化合物の分子量分析に加えて、配管分岐等の工夫を施すことにより、溶出した試料液を分離精製することができる。具体的には蒸発光散乱検出器やコロナ荷電化粒子検出器を用いる場合は、カラムからの配管を分岐し、一方は検出器に接続し、もう一方をフラクションコレクタ等の分取装置に接続することで分離精製が可能となる。分岐後の検出器に接続する配管径は検出器の溶離液流量許容値に基づいて調整する必要がある。紫外光検出器や屈折率検出器を用いる場合は、検出器出口配管を分取装置の入口配管に接続し分離精製を行うことができる。 In the present invention, the eluted sample liquid can be separated and purified by devising a pipe branching or the like in addition to the molecular weight analysis of the fluorine-based compound. Specifically, when using an evaporative light scattering detector or a corona charged particle detector, the piping from the column is branched, one is connected to the detector, and the other is connected to a sorting device such as a fraction collector. This enables separation and purification. The diameter of the pipe connected to the detector after branching should be adjusted based on the eluent flow rate tolerance of the detector. When an ultraviolet light detector or a refractive index detector is used, the detector outlet pipe can be connected to the inlet pipe of the preparative device for separation and purification.

本発明では、前記のような標準試料、カラム、検出器、分取装置と共に、送液ポンプ、カラム恒温槽、溶離液脱気装置、自動および手動の試料注入部等を組み合わせて自動化装置を構成し、実施してもよい。 In the present invention, an automated device is configured by combining a standard sample, a column, a detector, a preparative device as described above, a liquid feed pump, a column constant temperature bath, an eluent deaerator, an automatic and manual sample injection unit, and the like. And may be carried out.

実施例1
標準試料を用いた検量線の作成
溶離液として蒸留精製を1回行ったソルカン(HFC365mfc、ソルベイ社製)94質量部に対してメタノール6質量部を混合した溶液(以下、ソルカン−メタノールという)を用い、ポリメタクリル酸メチルの分子量を測定した。
Example 1
Preparation of calibration curve using standard sample As an eluent, a solution (hereinafter referred to as solcan-methanol) in which 94 parts by mass of solcan (HFC365mfc, manufactured by Solbay) that has been distilled and purified once is mixed with 6 parts by mass of methanol is prepared. Using, the molecular weight of polymethylmethacrylate was measured.

分析には、ポアサイズが125オングストロームのポリエトキシシラン粒子が充填された内径4.6mm、長さ150mmカラムであるWaters社製ACQUITY APC XT 125を直列で2個接続し使用した。 For the analysis, two ACQUITY APC XT 125 manufactured by Waters, which is a column having an inner diameter of 4.6 mm and a length of 150 mm filled with polyethoxysilane particles having a pore size of 125 angstroms, were connected and used in series.

全10種のポリメタクリル酸メチル標準試料は分子量分布が単分散のもので既知分子量が1020から49,600のものをそれぞれの濃度が0.1質量部になるようにソルカン−メタノールに溶解し試料溶液とした。 All 10 types of polymethylmethacrylate standard samples have a monodisperse molecular weight distribution and known molecular weights of 1020 to 49,600 are dissolved in Solcan-methanol so that the respective concentrations are 0.1 parts by mass. It was made into a solution.

試料注入量は20μL、溶離液流量は毎分0.5mL、カラム温度は35℃、検出器は蒸発光散乱検出器を用いた。 The sample injection amount was 20 μL, the eluent flow rate was 0.5 mL per minute, the column temperature was 35 ° C., and the detector used was an evaporative light scattering detector.

図1に全10種のポリメタクリル酸メチル標準試料のクロマトグラムを示す。これらの標準試料は上記条件の分析系で測定可能であることがわかった。 FIG. 1 shows chromatograms of all 10 types of polymethylmethacrylate standard samples. It was found that these standard samples can be measured by the analysis system under the above conditions.

また、図1に示した結果をもとに、既知分子量と検出した溶出時間から図2に示す検量線が作成できることがわかった。 Further, based on the results shown in FIG. 1, it was found that the calibration curve shown in FIG. 2 can be prepared from the known molecular weight and the detected elution time.

実施例2
パーフルオロポリエーテル(A)の分子量測定
実施例1に示した分析と同一条件で、19F−NMR法による平均分子量が1,500のパーフルオロポリエーテル(A)(HOCH2CF2O−(CF2CF2O)n(CF2O)m−CF2CH2OH、n、mは整数。n:m=1:1。繰返し単位はランダム。)を分析した。図3に分子量分布曲線を示した。重量平均分子量(Mw)、数平均分子量(Mn)、ピークトップ分子量(Mp)、Mw/Mn比はそれぞれ、3,336、2,988、2,727、1.12であり、本発明の方法でパーフルオロポリエーテル(A)を分析可能であることが分かった。
Example 2
Measurement of molecular weight of perfluoropolyether (A) Perfluoropolyether (A) (HOCH 2 CF 2 O- ( HOCH 2 CF 2 O-) having an average molecular weight of 1,500 by the 19 F-NMR method under the same conditions as the analysis shown in Example 1. CF 2 CF 2 O) n ( CF 2 O) m -CF 2 CH 2 OH, n, m is an integer .n: m = 1:. 1 repeat units were analyzed random).. FIG. 3 shows a molecular weight distribution curve. The weight average molecular weight (M w ), number average molecular weight (M n ), peak top molecular weight (M p ), and M w / M n ratio are 3,336, 2,988, 2,727, and 1.12, respectively. , It was found that the perfluoropolyether (A) can be analyzed by the method of the present invention.

実施例3
パーフルオロポリエーテル(B)の分子量測定
実施例1に示した分析と同一条件で、19F−NMR法による平均分子量が4,000のパーフルオロポリエーテル(B)(HOCH2CF2O−(CF2CF2O)n(CF2O)m−CF2CH2OH、n、mは整数。n:m=1:1。繰返し単位はランダム。)を分析した。図4に分子量分布曲線を示した。Mw、Mn、Mp、Mw/Mn比はそれぞれ、6,044、5,749、5,575、1.05であり、本発明の方法でパーフルオロポリエーテル(B)を分析可能であることが分かった。
Example 3
Measurement of Molecular Weight of Perfluoropolyether (B) Under the same conditions as the analysis shown in Example 1, perfluoropolyether (B) (HOCH 2 CF 2 O- (HOCH 2 CF 2 O-) having an average molecular weight of 4,000 by the 19 F-NMR method. CF 2 CF 2 O) n ( CF 2 O) m -CF 2 CH 2 OH, n, m is an integer .n: m = 1:. 1 repeat units were analyzed random).. FIG. 4 shows a molecular weight distribution curve. The M w , M n , M p , and M w / M n ratios were 6,044, 5,749, 5,575, and 1.05, respectively, and the perfluoropolyether (B) was analyzed by the method of the present invention. It turned out to be possible.

実施例4
パーフルオロポリエーテル(C)の分子量測定
実施例1に示した分析と同一条件で、19F−NMR法による平均分子量が6,000のパーフルオロポリエーテル(C)(HOCH2CF2O−(CF2CF2O)n(CF2O)m−CF2CH2OH、n、mは整数。n:m=1:1。繰返し単位はランダム。)を分析した。図5に分子量分布曲線を示した。Mw、Mn、Mp、Mw/Mn比はそれぞれ、7,932、7,686、7,671、1.03であり、本発明の方法でパーフルオロポリエーテル(C)を分析可能であることが分かった。
Example 4
Measurement of molecular weight of perfluoropolyether (C) Under the same conditions as the analysis shown in Example 1, perfluoropolyether (C) (HOCH 2 CF 2 O- (HOCH 2 CF 2 O-) having an average molecular weight of 6,000 by the 19 F-NMR method. CF 2 CF 2 O) n ( CF 2 O) m -CF 2 CH 2 OH, n, m is an integer .n: m = 1:. 1 repeat units were analyzed random).. FIG. 5 shows a molecular weight distribution curve. The M w , M n , M p , and M w / M n ratios are 7,932, 7,686, 7,671, and 1.03, respectively, and the perfluoropolyether (C) is analyzed by the method of the present invention. It turned out to be possible.

比較例1
サイズ排除クロマトグラフィ法において溶離液として通常用いられるテトラヒドロフランに対するパーフルオロポリエーテル(A)、(B)及び(C)の溶解性を確認した。テトラヒドロフラン99質量部に対して比較例1で得られたパーフルオロポリエーテル(A)、(B)及び(C)1質量部を溶解させた結果を表1に示す。実施例1、2、3及び4で用いたソルカン−メタノールはパーフルオロポリエーテル(A)、(B)及び(C)を溶解するのに対し、テトラヒドロフランは溶解しなかった。

Figure 0006977700
Comparative Example 1
The solubility of perfluoropolyethers (A), (B) and (C) in tetrahydrofuran, which is usually used as an eluent in size exclusion chromatography, was confirmed. Table 1 shows the results of dissolving 1 part by mass of the perfluoropolyethers (A), (B) and (C) obtained in Comparative Example 1 with 99 parts by mass of tetrahydrofuran. The solcan-methanol used in Examples 1, 2, 3 and 4 dissolved perfluoropolyethers (A), (B) and (C), whereas tetrahydrofuran did not.
Figure 0006977700

Claims (5)

サイズ排除クロマトグラフィ法において、溶離液として、分子中に炭素原子に結合した塩素原子を有せず、かつ、分子中に炭素原子に結合したフッ素原子及び炭素原子に結合した水素原子を有する、炭素数3〜10個の、部分フッ素化された脂肪族飽和炭化水素であるハイドロフルオロカーボンを含む溶媒を用い、かつ、分子量標準試料としてポリメタクリル酸メチルを用いることを特徴とする化合物の分子量分析方法。 In the size exclusion chromatography method, the eluent has no chlorine atom bonded to a carbon atom in the molecule and has a fluorine atom bonded to the carbon atom and a hydrogen atom bonded to the carbon atom in the molecule. A method for analyzing the molecular weight of a compound, which comprises using 3 to 10 solvents containing hydrofluorocarbon, which is a partially fluorinated aliphatic saturated hydrocarbon, and using methyl polymethacrylate as a molecular weight standard sample. 溶離液が、ハイドロフルオロカーボンを80〜100質量%含む溶媒である請求項1に記載の分子量分析方法。 The molecular weight analysis method according to claim 1, wherein the eluent is a solvent containing 80 to 100% by mass of hydrofluorocarbon. ハイドロフルオロカーボンが、1,1,1,3,3−ペンタフルオロブタンである請求項1又は2に記載の分子量分析方法。 The molecular weight analysis method according to claim 1 or 2, wherein the hydrofluorocarbon is 1,1,1,3,3-pentafluorobutane. 分析対象化合物がフッ素系化合物である請求項1〜3のいずれか1項に記載の分子量分析方法。 The molecular weight analysis method according to any one of claims 1 to 3, wherein the compound to be analyzed is a fluorine-based compound. 請求項1〜4のいずれか1項に記載の化合物の分子量分析方法を用いることを特徴とする化合物の分離精製方法。

A method for separating and purifying a compound, which comprises using the method for analyzing the molecular weight of the compound according to any one of claims 1 to 4.

JP2018213389A 2018-11-14 2018-11-14 Molecular weight analysis method and separation / purification method for compounds by size exclusion chromatography Active JP6977700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018213389A JP6977700B2 (en) 2018-11-14 2018-11-14 Molecular weight analysis method and separation / purification method for compounds by size exclusion chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018213389A JP6977700B2 (en) 2018-11-14 2018-11-14 Molecular weight analysis method and separation / purification method for compounds by size exclusion chromatography

Publications (2)

Publication Number Publication Date
JP2020079758A JP2020079758A (en) 2020-05-28
JP6977700B2 true JP6977700B2 (en) 2021-12-08

Family

ID=70801875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018213389A Active JP6977700B2 (en) 2018-11-14 2018-11-14 Molecular weight analysis method and separation / purification method for compounds by size exclusion chromatography

Country Status (1)

Country Link
JP (1) JP6977700B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070443A (en) * 2020-09-16 2023-05-23 에이지씨 가부시키가이샤 Separation method
JP7448869B2 (en) 2022-07-29 2024-03-13 ダイキン工業株式会社 Method for measuring the molecular weight of fluoropolymer

Also Published As

Publication number Publication date
JP2020079758A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
KR101381494B1 (en) Purification process of fluorine-based solvent-containing solution
Yan et al. Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine
JP6977700B2 (en) Molecular weight analysis method and separation / purification method for compounds by size exclusion chromatography
Möller et al. Determination of a flame retardant hydrolysis product in human urine by SPE and LC–MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger
CN104024303B (en) Be used for the method for the difunctionality content of enrichment (entirely) perfluoroalkyl polyether mixture
Veenaas et al. Analysis of volatile organic compounds in indoor environments using thermal desorption with comprehensive two‐dimensional gas chromatography and high‐resolution time‐of‐flight mass spectrometry
Curvers et al. Possibilities and limitations of dynamic headspace sampling as a pre-concentration technique for trace analysis of organics by capillary gas chromatography
Agrahari et al. Essential concepts of mobile phase selection for reversed phase HPLC
Nouri et al. Complementarity of purge-and-trap and head-space capillary gas chromatographic methods for determination of methyl-tert.-butyl ether in water
CN107167535B (en) Method for detecting raltitrexed enantiomer by reversed phase liquid chromatography
JP2021067479A (en) Liquid chromatography method
Arnold et al. Determination of catechol-containing compounds in tissue samples by gas-liquid chromatography
de Geus et al. Determination of Enantiomer Ratios of Bornane Congeners in Biological Samples Using Heart‐Cut Multidimensional Gas Chromatography
Xu et al. Development of fluorous porous polymer monolith (FPPM) for the capillary electrochromatographic separation of fluorous analytes based on fluorous–fluorous interaction
Saunders Practical aspects of adsorption HPLC
Selim et al. Comparison of LC–MS and GC–MS for the analysis of pharmaceuticals and personal care products in surface water and treated wastewaters
Takahashi et al. Optimization of experimental parameters for separation of nonionic surfactants by supercritical fluid chromatography
Huang et al. An efficient mixed-mode strong anion-exchange adsorbent based on functionalized polyethyleneimine for simultaneous solid phase extraction and purification of bisphenol analogues and monoalkyl phthalate esters in human urine
Krejčí et al. Analysis of non-ionic surfactants of the alkylphenol type in the presence of mineral oil by means of liquid chromatography
Poplewska et al. Behavior of adsorbed and fluid phases versus retention properties of amino acids on the teicoplanin chiral selector
JP3879279B2 (en) Size exclusion chromatography
Strubinger et al. Mobile fluid interaction with the stationary phase in supercritical fluid chromatography
Talamona Laboratory chromatography guide
Takada et al. HPLC Fluorescence Method for Eugenols in Basil Products Derivatized with DIBI
Lawrence et al. Ion Pairing as a Means of Detection in Liquid Chromatography

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6977700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150