JP6967875B2 - Sliding mechanism and compressor - Google Patents

Sliding mechanism and compressor Download PDF

Info

Publication number
JP6967875B2
JP6967875B2 JP2017103357A JP2017103357A JP6967875B2 JP 6967875 B2 JP6967875 B2 JP 6967875B2 JP 2017103357 A JP2017103357 A JP 2017103357A JP 2017103357 A JP2017103357 A JP 2017103357A JP 6967875 B2 JP6967875 B2 JP 6967875B2
Authority
JP
Japan
Prior art keywords
sliding
sliding member
inclined surface
central axis
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017103357A
Other languages
Japanese (ja)
Other versions
JP2018197540A (en
Inventor
森 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017103357A priority Critical patent/JP6967875B2/en
Publication of JP2018197540A publication Critical patent/JP2018197540A/en
Application granted granted Critical
Publication of JP6967875B2 publication Critical patent/JP6967875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、摺動機構および圧縮機に関する。 The present invention relates to a sliding mechanism and a compressor.

空気調和機、冷凍機等で使用される圧縮機として、例えばベーンと、シリンダに設けられベーンが内側を摺動するベーン溝を有するシリンダと、シリンダ内に配置され偏心回転するピストンと、を備える圧縮機が提供されている。ベーンは、シリンダ内に配置されたピストンの偏心回転に伴ってベーン溝内を上下に往復移動する。この種の圧縮機のうち特に冷凍機で使用される圧縮機では、ピストンの回転速度が低くベーンが低速で上下に往復移動するため、ベーンとベーン溝の内壁との間に潤滑油が保持されにくい。従って、ベーンとベーン溝の内壁との接触によるエネルギ損失やベーンの摩耗が発生する虞がある。 As a compressor used in an air conditioner, a refrigerator, etc., for example, a vane, a cylinder provided in the cylinder having a vane groove in which the vane slides inside, and a piston arranged in the cylinder and rotating eccentrically are provided. A compressor is provided. The vane reciprocates up and down in the vane groove with the eccentric rotation of the piston arranged in the cylinder. Of these types of compressors, especially those used in refrigerators, the piston rotation speed is low and the vane reciprocates up and down at a low speed, so that lubricating oil is retained between the vane and the inner wall of the vane groove. Hateful. Therefore, there is a risk of energy loss and vane wear due to contact between the vane and the inner wall of the vane groove.

これに対して、摺動する2つの摺動部材の摺動面の少なくとも一方に潤滑油を保持する微細な窪み部が設けられ摺動抵抗が低減された摺動機構が提案されている(例えば特許文献1参照)。窪み部は、例えば摺動部材の摺動面に鋼球を押し付けることにより形成される。窪み部は、平面視円形の椀状、即ち、平面視で等方的な形状を有する。 On the other hand, a sliding mechanism has been proposed in which a fine recess for holding the lubricating oil is provided on at least one of the sliding surfaces of the two sliding members to reduce the sliding resistance (for example). See Patent Document 1). The recess is formed, for example, by pressing a steel ball against the sliding surface of the sliding member. The recess has a circular bowl shape in a plan view, that is, an isotropic shape in a plan view.

特開2013−130143号公報Japanese Unexamined Patent Publication No. 2013-130143

圧縮機に特許文献1に記載された摺動機構を適用した場合、窪み部は平面視円形、即ち、等方的な形状を有する。この場合、ベーンをベーン溝に対して摺動させるときにベーンとベーン溝との間に介在する潤滑油から十分な動圧を得ることができずベーンの摺動面とベーン溝の摺動面とが接触し、ベーンの摺動面とベーン溝の摺動面とが接触することによるエネルギ損失やベーンの摩耗が発生してしまう。 When the sliding mechanism described in Patent Document 1 is applied to the compressor, the recessed portion has a circular shape in a plan view, that is, an isotropic shape. In this case, when the vane is slid with respect to the vane groove, sufficient dynamic pressure cannot be obtained from the lubricating oil interposed between the vane and the vane groove, and the sliding surface of the vane and the sliding surface of the vane groove cannot be obtained. Contact with the vane and the sliding surface of the vane and the sliding surface of the vane groove cause energy loss and wear of the vane.

本発明は、上記事由に鑑みてなされたものであり、摺動部材の摺動面同士の接触によるエネルギ損失および摺動部材の摩耗が低減された摺動機構および圧縮機を提供することを目的とする。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide a sliding mechanism and a compressor in which energy loss due to contact between sliding surfaces of sliding members and wear of sliding members are reduced. And.

上記目的を達成するために、本発明に係る摺動機構は、複数の窪み部が形成された第1摺動面を有する第1摺動部材と、第1摺動部材の第1摺動面と潤滑油を介して対向する第2摺動面を有する第2摺動部材と、を備える。複数の窪み部は、それぞれ、平面視において、周縁全体が第1摺動面の周縁よりも内側に位置し、第1摺動部材に対して第2摺動部材が相対的に摺動する摺動方向に沿った中心軸方向の長さと中心軸方向と直交する方向の長さとが異なる異方的な形状を有し、中心軸と平行な一方向に向かって深さが増加する形で傾斜した第1傾斜面と、一方向に向かって深さが減少する形で傾斜した第2傾斜面と、を有する。そして、第1摺動面と直交する方向から見たときの複数の窪み部それぞれの中心軸は、前述の摺動方向に対して傾斜している。 In order to achieve the above object, the sliding mechanism according to the present invention includes a first sliding member having a first sliding surface in which a plurality of recessed portions are formed, and a first sliding surface of the first sliding member. And a second sliding member having a second sliding surface facing each other via a lubricating oil. In each of the plurality of recesses, the entire peripheral edge is located inside the peripheral edge of the first sliding surface in a plan view, and the second sliding member slides relative to the first sliding member. It has an anisotropic shape in which the length in the direction of the central axis along the direction of movement and the length in the direction orthogonal to the direction of the central axis are different, and it is inclined in a form that the depth increases in one direction parallel to the central axis. It has a first inclined surface and a second inclined surface inclined so as to decrease in depth in one direction. The central axes of the plurality of recesses when viewed from a direction orthogonal to the first sliding surface are inclined with respect to the above-mentioned sliding direction.

本発明によれば、第1摺動部材の第1摺動面に形成された複数の窪み部が、それぞれ、平面視において、上記中心軸方向の長さと前記中心軸方向と直交する方向の長さとが異なる異方的な形状を有し、上記中心軸に平行な一方向に向かって深さが増加する形で傾斜した第1傾斜面と、一方向に向かって深さが減少する形で傾斜した第2傾斜面と、を有する。そして、第1摺動面と直交する方向から見たときの複数の窪み部それぞれの中心軸は、前述の摺動方向に対して傾斜している。これにより、第1摺動部材と第2摺動部材との間に潤滑油が介在する場合、窪み部の平面視形状に応じて第1摺動部材と第2摺動部材との間に介在する潤滑油が窪み部の中心軸に沿って窪み部内へ流入する。そして、第1傾斜面に沿って窪み部内へ流入した潤滑油は、第2傾斜面に当たって第2傾斜面に沿って第2摺動部材へ近づく方向へ流れる。そして、この第2摺動部材へ近づく方向への潤滑油の流れにより、潤滑油から第2摺動部材に第1摺動部材から離れる方向への動圧を高めることができる。従って、第1摺動部材と第2摺動部材との接触が抑制されるので、第1摺動部材と第2摺動部材との摩擦によるエネルギ損失または第1摺動部材または第2摺動部材の摩耗が低減される。 According to the present invention, each of the plurality of recesses formed on the first sliding surface of the first sliding member has a length in the central axis direction and a length in a direction orthogonal to the central axis direction in a plan view. The first inclined surface, which has an anisotropic shape different from that of the above and is inclined in a direction increasing in one direction parallel to the central axis, and a shape in which the depth decreases in one direction. It has an inclined second inclined surface. The central axes of the plurality of recesses when viewed from a direction orthogonal to the first sliding surface are inclined with respect to the above-mentioned sliding direction. As a result, when the lubricating oil intervenes between the first sliding member and the second sliding member, it intervenes between the first sliding member and the second sliding member according to the plan view shape of the recessed portion. Lubricating oil flows into the recess along the central axis of the recess. Then, the lubricating oil that has flowed into the recess along the first inclined surface hits the second inclined surface and flows in the direction approaching the second sliding member along the second inclined surface. Then, the flow of the lubricating oil in the direction approaching the second sliding member can increase the dynamic pressure from the lubricating oil to the second sliding member in the direction away from the first sliding member. Therefore, since the contact between the first sliding member and the second sliding member is suppressed, energy loss due to friction between the first sliding member and the second sliding member or the first sliding member or the second sliding member is suppressed. Friction of members is reduced.

(A)は本発明の実施の形態1に係る摺動機構を備えた装置を示す斜視図、(B)は(A)に示す装置の一部を示す側面図(A) is a perspective view showing a device provided with a sliding mechanism according to the first embodiment of the present invention, and (B) is a side view showing a part of the device shown in (A). (A)は実施の形態1に係る第1摺動部材の平面図、(B)は実施の形態1に係る第1摺動部材の一部を(A)における内側から見たときの断面図(A) is a plan view of the first sliding member according to the first embodiment, and (B) is a cross-sectional view when a part of the first sliding member according to the first embodiment is viewed from the inside in (A). (A)は実施の形態1に係る第1摺動部材の製造方法を説明するための断面図、(B)は実施の形態1に係る第1摺動部材の一部の拡大平面図(A) is a cross-sectional view for explaining a method of manufacturing the first sliding member according to the first embodiment, and (B) is an enlarged plan view of a part of the first sliding member according to the first embodiment. (A)は本発明の実施の形態2に係る圧縮機の断面図、(B)は実施の形態2に係るベーンの斜視図(A) is a cross-sectional view of the compressor according to the second embodiment of the present invention, and (B) is a perspective view of the vane according to the second embodiment. (A)は変形例に係る第1摺動部材の平面図、(B)は変形例に係る第1摺動部材の一部を(A)における内側から見たときの断面図(A) is a plan view of the first sliding member according to the modified example, and (B) is a sectional view of a part of the first sliding member according to the modified example when viewed from the inside in (A). (A)は変形例に係る第1摺動部材の製造方法を説明するための断面図、(B)は変形例に係る第1摺動部材の一部の拡大平面図(A) is a cross-sectional view for explaining a method of manufacturing the first sliding member according to the modified example, and (B) is an enlarged plan view of a part of the first sliding member according to the modified example. 変形例に係る第1摺動部材の平面図Top view of the first sliding member according to the modified example 変形例に係る第1摺動部材の平面図Top view of the first sliding member according to the modified example 変形例に係る第1摺動部材の平面図Top view of the first sliding member according to the modified example

(実施の形態1)
以下、本発明の一実施の形態に係る摺動機構を備えた装置(以下、「摺動装置」と称する。)について図面を参照しながら説明する。摺動装置は、図1(A)に示すように、潤滑油で満たされたプール18と、摺動機構1と、主軸17と、を備える。なお、以下、適宜図1(A)における+Z方向を上方向、図1(B)における−Z方向を下方向として説明する。摺動機構1は、プール18の底に固定された第1摺動部材11と、第1摺動部材11に対向配置された第2摺動部材12と、を有する。図1(B)に示すように、第2摺動部材12は、第1摺動部材11の第1摺動面111と潤滑油を介して対向する平坦な第2摺動面121を有する。主軸17は、図1(A)に示すように、第2摺動部材12に固定されており、矢印AR1に示すように、第2摺動部材12を第1摺動部材11に向けて押圧する力を加えつつ、矢印AR2に示すように、第2摺動部材12を第1摺動部材11に対して相対的に回転させる。これにより、第1摺動部材11が静止した状態で、第2摺動部材12を第1摺動部材11に対して摺動させる。
(Embodiment 1)
Hereinafter, a device provided with a sliding mechanism according to an embodiment of the present invention (hereinafter, referred to as “sliding device”) will be described with reference to the drawings. As shown in FIG. 1A, the sliding device includes a pool 18 filled with lubricating oil, a sliding mechanism 1, and a spindle 17. Hereinafter, the + Z direction in FIG. 1 (A) will be described as an upward direction, and the −Z direction in FIG. 1 (B) will be described as a downward direction. The sliding mechanism 1 has a first sliding member 11 fixed to the bottom of the pool 18 and a second sliding member 12 arranged to face the first sliding member 11. As shown in FIG. 1 (B), the second sliding member 12 has a flat second sliding surface 121 facing the first sliding surface 111 of the first sliding member 11 via the lubricating oil. The spindle 17 is fixed to the second sliding member 12 as shown in FIG. 1 (A), and the second sliding member 12 is pressed toward the first sliding member 11 as shown by the arrow AR1. As shown by the arrow AR2, the second sliding member 12 is rotated relative to the first sliding member 11. As a result, the second sliding member 12 is slid with respect to the first sliding member 11 in a state where the first sliding member 11 is stationary.

第1摺動部材11は、図2(A)に示すように、円環状であり、周方向全体に亘って複数の窪み部112が形成された第1摺動面111を有する。第2摺動部材12は、矢印AR2に示すように、上方から見て第1摺動部材11に対して時計回りに回転して摺動する。窪み部112は、図2(B)に示すように、第1摺動面111に平行であり且つ第2摺動部材12の摺動方向AR2に直交する方向から見た断面が逆三角形状である。また、窪み部112は、平面視において、摺動方向AR2に沿った中心軸J11方向の長さL11+L12と、中心軸J11と直交する方向の長さW11と、が異なる異方的な形状を有する。ここで、「摺動方向AR2に沿った中心軸J11」とは、摺動方向AR2に平行な中心軸J11を意味する。また、窪み部112は、中心軸J11に沿った第1摺動面111に直交する断面の形状と、中心軸J11と直交する方向に沿った第1摺動面111に直交する断面の形状とが異なっている。そして、窪み部112は、中心軸J11に平行な一方向に向かって深さが増加する形で傾斜した第1傾斜面112aと、上記一方向に向かって深さが減少する形で傾斜した第2傾斜面112bと、を有する。第1傾斜面112aの第1摺動面111に対する傾斜角θ11は、45度よりも小さく、第2傾斜面112bの第1摺動面111に対する傾斜角θ12よりも小さく設定されている。そして、Z軸方向および第2摺動部材12の摺動方向AR2に直交する方向から見て、第1傾斜面112aと第2傾斜面112bとのなす角度は90度に設定されている。これにより、平面視において、第1傾斜面112aの摺動方向AR2の長さL11が、第2傾斜面112bの摺動方向AR2の長さL12よりも長くなっている。また、第2傾斜面112bは、第1傾斜面112aと第2傾斜面112bの境界部分から離れるにつれて第2摺動部材12の摺動方向AR2に直交する方向の幅が狭くなる先細りの形状である。 As shown in FIG. 2A, the first sliding member 11 has an annular shape and has a first sliding surface 111 in which a plurality of recesses 112 are formed over the entire circumferential direction. As shown by the arrow AR2, the second sliding member 12 rotates clockwise with respect to the first sliding member 11 and slides. As shown in FIG. 2B, the recessed portion 112 has an inverted triangular cross section when viewed from a direction parallel to the first sliding surface 111 and orthogonal to the sliding direction AR2 of the second sliding member 12. be. Further, the recessed portion 112 has an anisotropic shape in which the length L11 + L12 in the central axis J11 direction along the sliding direction AR2 and the length W11 in the direction orthogonal to the central axis J11 are different in a plan view. .. Here, the "central axis J11 along the sliding direction AR2" means the central axis J11 parallel to the sliding direction AR2. Further, the recessed portion 112 has a cross-sectional shape orthogonal to the first sliding surface 111 along the central axis J11 and a cross-sectional shape orthogonal to the first sliding surface 111 along the direction orthogonal to the central axis J11. Is different. The recessed portion 112 has a first inclined surface 112a that is inclined so that the depth increases in one direction parallel to the central axis J11, and a first inclined surface 112a that is inclined so that the depth decreases toward the one direction. It has two inclined surfaces 112b. The inclination angle θ11 of the first inclined surface 112a with respect to the first sliding surface 111 is set to be smaller than 45 degrees and smaller than the inclination angle θ12 of the second inclined surface 112b with respect to the first sliding surface 111. The angle between the first inclined surface 112a and the second inclined surface 112b is set to 90 degrees when viewed from the Z-axis direction and the direction orthogonal to the sliding direction AR2 of the second sliding member 12. As a result, in a plan view, the length L11 of the sliding direction AR2 of the first inclined surface 112a is longer than the length L12 of the sliding direction AR2 of the second inclined surface 112b. Further, the second inclined surface 112b has a tapered shape in which the width in the direction orthogonal to the sliding direction AR2 of the second sliding member 12 becomes narrower as the distance from the boundary portion between the first inclined surface 112a and the second inclined surface 112b increases. be.

第1摺動部材11と第2摺動部材12との間に潤滑油が介在した状態で、第2摺動部材12が第1摺動部材11に対して摺動すると、第1摺動部材11と第2摺動部材12との間に介在する潤滑油は、第2摺動部材12と同じ方向へ流れる。そして、矢印AR21に示すように第1摺動部材11の第1傾斜面112aに沿って窪み部112内へ流入した潤滑油は、矢印AR22に示すように第2傾斜面112bに当たって第2傾斜面112bに沿って第2摺動部材12へ近づく方向へ流れる。前述のように第1傾斜面112aと第2傾斜面112bとのなす角度が90度に設定されていることにより、第1傾斜面112aに沿って窪み部112に流入した潤滑油が、第1傾斜面112aの法線方向へ流れる。この窪み部112から第2摺動部材12へ近づく方向への潤滑油の流れによって、第2摺動部材12には、第1摺動部材11から離れる方向、即ち、上方へ押し上げられる方向へ力が加わる。 When the second sliding member 12 slides with respect to the first sliding member 11 with the lubricating oil interposed between the first sliding member 11 and the second sliding member 12, the first sliding member The lubricating oil interposed between the 11 and the second sliding member 12 flows in the same direction as the second sliding member 12. Then, as shown by the arrow AR21, the lubricating oil that has flowed into the recessed portion 112 along the first inclined surface 112a of the first sliding member 11 hits the second inclined surface 112b and hits the second inclined surface 112b as shown by the arrow AR22. It flows in a direction approaching the second sliding member 12 along 112b. As described above, the angle formed by the first inclined surface 112a and the second inclined surface 112b is set to 90 degrees, so that the lubricating oil that has flowed into the recessed portion 112 along the first inclined surface 112a is the first. It flows in the normal direction of the inclined surface 112a. Due to the flow of the lubricating oil from the recess 112 toward the second sliding member 12, the second sliding member 12 is forced to move away from the first sliding member 11, that is, in a direction of being pushed upward. Is added.

また、複数の窪み部112は、それぞれ、第1傾斜面112aの中心軸J11が最も深くなるように湾曲している。これにより、窪み部112の周囲に存在する潤滑油が、窪み部112へ効率良く流入するので、窪み部112から第2摺動部材12へ近づく方向への潤滑油の流れが生じ易くなる。更に、窪み部112の第2傾斜面112bは、第1傾斜面112aと第2傾斜面112bの境界部分から離れるにつれて第2摺動部材12の摺動方向AR2に直交する方向の幅が狭くなる先細りの形状である。これにより、第2摺動部材12を第1摺動部材11に対して矢印AR2に示す方向へ摺動させたときにおいて、第1傾斜面112aの法線方向へ流れる潤滑油の量が増加するので、第2摺動部材12を上方へ押し上げる方向への力が増加する。 Further, each of the plurality of recesses 112 is curved so that the central axis J11 of the first inclined surface 112a is the deepest. As a result, the lubricating oil existing around the recessed portion 112 efficiently flows into the recessed portion 112, so that the lubricating oil tends to flow in the direction approaching the second sliding member 12 from the recessed portion 112. Further, the width of the second inclined surface 112b of the recessed portion 112 in the direction orthogonal to the sliding direction AR2 of the second sliding member 12 becomes narrower as the distance from the boundary portion between the first inclined surface 112a and the second inclined surface 112b increases. It has a tapered shape. As a result, when the second sliding member 12 is slid with respect to the first sliding member 11 in the direction indicated by the arrow AR2, the amount of lubricating oil flowing in the normal direction of the first inclined surface 112a increases. Therefore, the force in the direction of pushing up the second sliding member 12 increases.

次に、本実施の形態に係る第1摺動部材11の製造方法について図3(A)および(B)を参照しながら説明する。なお、図3(A)および(B)において、基材9011の主面9111に直交する一方向をZ方向、Z方向に対して工具91の中心軸が傾く方向をP方向、P方向とZ方向とに直交する一方向をQ方向として説明する。P方向は、図1(A)における摺動方向AR2に対応し、Q方向は、図1(A)における摺動方向AR2に直交する方向に対応する。まず、第1摺動部材11の基となる基材9011を準備する準備工程を行う。基材9011は、例えば金属から形成された円環状の板材である。 Next, a method of manufacturing the first sliding member 11 according to the present embodiment will be described with reference to FIGS. 3A and 3B. In FIGS. 3A and 3B, one direction orthogonal to the main surface 9111 of the base material 9011 is the Z direction, and the direction in which the central axis of the tool 91 is tilted with respect to the Z direction is the P direction, the P direction and Z. One direction orthogonal to the direction will be described as the Q direction. The P direction corresponds to the sliding direction AR2 in FIG. 1 (A), and the Q direction corresponds to the direction orthogonal to the sliding direction AR2 in FIG. 1 (A). First, a preparatory step for preparing the base material 9011 which is the base of the first sliding member 11 is performed. The base material 9011 is, for example, an annular plate material formed of metal.

次に、基材9011の主面9111に複数の窪み部112を形成する窪み部形成工程を行うことにより、第1摺動部材11が生成される。窪み部形成工程では、例えば刃先が90度の円筒状のスクエアエンドミルまたは砥石である工具91を使用する。工具91は、工作機械のスピンドルモータ(図示せず)に連結され、その筒軸J91周りに回転する。工具91の先端部は、側方から見て矩形状であり角部の角度が90度である。そして、工具91を回転させながら、工具91を基材9011の主面9111に押し当てて切削または研削することにより、基材9011の主面9111に窪み部112を形成する。このとき、工具91の筒軸J91が傾くP方向を、第1摺動部材11に対して第2摺動部材12が摺動する方向、即ち、基材9011の周方向に沿った方向に設定する。そして、工具91の筒軸J91を、基材9011の主面9111に対して45度よりも小さい角度θ11だけ傾斜させる。 Next, the first sliding member 11 is generated by performing a recessed portion forming step of forming a plurality of recessed portions 112 on the main surface 9111 of the base material 9011. In the recess forming step, for example, a cylindrical square end mill having a cutting edge of 90 degrees or a tool 91 which is a grindstone is used. The tool 91 is connected to a spindle motor (not shown) of the machine tool and rotates around the cylinder shaft J91. The tip of the tool 91 is rectangular when viewed from the side, and the angle of the corner is 90 degrees. Then, while rotating the tool 91, the tool 91 is pressed against the main surface 9111 of the base material 9011 to be cut or ground to form a recessed portion 112 on the main surface 9111 of the base material 9011. At this time, the P direction in which the cylinder shaft J91 of the tool 91 is tilted is set to the direction in which the second sliding member 12 slides with respect to the first sliding member 11, that is, the direction along the circumferential direction of the base material 9011. do. Then, the cylinder shaft J91 of the tool 91 is tilted with respect to the main surface 9111 of the base material 9011 by an angle θ11 smaller than 45 degrees.

このようにして形成された窪み部112は、そのZ軸方向および摺動方向AR2に直交する方向から見た断面が左右非対称となる。また、窪み部112の第1傾斜面112aは、Q軸方向における中央部が最も深くなるように湾曲したものとなる。更に、図3(B)に示すように、窪み部112の第2傾斜面112bは、第1傾斜面112aと第2傾斜面112bの境界部分から離れるにつれてQ軸方向の幅が小さくなる先細り形状となる。また、窪み部112のQ軸方向の幅は、窪み部112の最深部の深さと工具91の直径とにより決定することができる。ここにおいて、窪み部112の幅の精度を重要視する場合、工具91としてツルーイングしやすい砥石を使用するのが好ましい。また、工具91として、窪み部112における最も幅が広い部分の幅よりも小径の工具を用いることによりならい加工を行うことにより、窪み部の形状のバリエーションを増やすこともできる。 The recessed portion 112 formed in this way has a left-right asymmetric cross section when viewed from the direction orthogonal to the Z-axis direction and the sliding direction AR2. Further, the first inclined surface 112a of the recessed portion 112 is curved so that the central portion in the Q-axis direction is the deepest. Further, as shown in FIG. 3B, the second inclined surface 112b of the recessed portion 112 has a tapered shape in which the width in the Q-axis direction decreases as the distance from the boundary portion between the first inclined surface 112a and the second inclined surface 112b increases. It becomes. Further, the width of the recessed portion 112 in the Q-axis direction can be determined by the depth of the deepest portion of the recessed portion 112 and the diameter of the tool 91. Here, when the accuracy of the width of the recessed portion 112 is important, it is preferable to use a grindstone that is easy to true as the tool 91. Further, by using a tool having a diameter smaller than the width of the widest portion of the recessed portion 112 as the tool 91, it is possible to increase the variation in the shape of the recessed portion.

ところで、前述の窪み部生成工程において、例えばローラを基材9011に押し当てて基材9011の主面9111を塑性加工する場合、窪み部112の周囲が盛り上がってしまう。従って、基材9011の主面9111に窪み部112を形成した後、窪み部112の周囲の***部分を平坦化するための表面研磨処理が必要となる。これに対して、本実施の形態に係る窪み部生成工程のように、基材9011の主面9111を切削または研削して基材9011の窪み部112に対応する部分を除去する方法を採用することにより、窪み部112生成後の表面研磨処理が不要となる。従って、製造工程の簡素化を図ることができるという利点がある。 By the way, in the above-mentioned recessed portion generation step, for example, when a roller is pressed against the base material 9011 to plastically process the main surface 9111 of the base material 9011, the periphery of the recessed portion 112 rises. Therefore, after forming the recessed portion 112 on the main surface 9111 of the base material 9011, a surface polishing treatment for flattening the raised portion around the recessed portion 112 is required. On the other hand, as in the recessed portion generation step according to the present embodiment, a method of cutting or grinding the main surface 9111 of the base material 9011 to remove the portion corresponding to the recessed portion 112 of the base material 9011 is adopted. This eliminates the need for surface polishing after the recess 112 is formed. Therefore, there is an advantage that the manufacturing process can be simplified.

また、前述の窪み部生成工程において、前述のように塑性加工を行う場合、基材9011がいわゆる硬脆材料であるとクラックなどの欠陥が入り易い。これに対して、本実施の形態に係る窪み部形成工程のように切削加工または研削加工を採用することにより、基材9011がいわゆる硬脆材料であっても欠陥の発生が抑制される。 Further, in the above-mentioned recessed portion forming step, when plastic working is performed as described above, if the base material 9011 is a so-called hard and brittle material, defects such as cracks are likely to occur. On the other hand, by adopting cutting or grinding as in the recess forming step according to the present embodiment, the generation of defects is suppressed even if the base material 9011 is a so-called hard and brittle material.

以上説明したように、本実施の形態に係る摺動機構1によれば、第1摺動部材11の第1摺動面111に形成された複数の窪み部112が、それぞれ、平面視において異方的な形状であり、摺動方向AR2に向かって深さが増加する形で傾斜した第1傾斜面112aと、摺動方向AR2に向かって深さが減少する形で傾斜した第2傾斜面112bと、を有する。これにより、窪み部112の平面視形状に応じて第1摺動部材11と第2摺動部材12との間に介在する潤滑油の窪み部112内への流入が促進される。そして、第1傾斜面112aに沿って窪み部112内へ流入した潤滑油は、摺動方向AR2へ流れて第2傾斜面112bに当たって第2傾斜面112bに沿って第2摺動部材12へ近づく方向へ流れる。そして、この第2摺動部材12へ近づく方向への潤滑油の流れにより、潤滑油から第2摺動部材12に第1摺動部材11から離れる方向、即ち、上方への十分な動圧を得ることができる。従って、第1摺動部材11と第2摺動部材12との接触が抑制されるので、第1摺動部材11と第2摺動部材12との摩擦によるエネルギ損失または第1摺動部材11または第2摺動部材12の摩耗が低減される。 As described above, according to the sliding mechanism 1 according to the present embodiment, the plurality of recesses 112 formed on the first sliding surface 111 of the first sliding member 11 are different in plan view. A first inclined surface 112a that has an anisotropic shape and is inclined so that the depth increases toward the sliding direction AR2, and a second inclined surface that is inclined so that the depth decreases toward the sliding direction AR2. 112b and. As a result, the inflow of the lubricating oil interposed between the first sliding member 11 and the second sliding member 12 into the recessed portion 112 is promoted according to the plan view shape of the recessed portion 112. Then, the lubricating oil that has flowed into the recessed portion 112 along the first inclined surface 112a flows in the sliding direction AR2, hits the second inclined surface 112b, and approaches the second sliding member 12 along the second inclined surface 112b. Flow in the direction. Then, due to the flow of the lubricating oil in the direction approaching the second sliding member 12, a sufficient dynamic pressure is applied to the second sliding member 12 from the lubricating oil in the direction away from the first sliding member 11, that is, upward. Obtainable. Therefore, since the contact between the first sliding member 11 and the second sliding member 12 is suppressed, energy loss due to friction between the first sliding member 11 and the second sliding member 12 or the first sliding member 11 Alternatively, the wear of the second sliding member 12 is reduced.

また、本実施の形態に係る窪み部112は、第1傾斜面112aの第1摺動面111に対する傾斜角θ11が、第2傾斜面112bの第1摺動面111に対する傾斜角θ12よりも小さい。これにより、第2摺動部材12を第1摺動部材11に対して矢印AR2に示す方向へ摺動させたときにおいて、潤滑油が第2摺動部材12へ近づく方向へ効率良く流れる。従って、第2摺動部材12を上方へ押し上げる方向への圧力を高めることができる。 Further, in the recessed portion 112 according to the present embodiment, the inclination angle θ11 of the first inclined surface 112a with respect to the first sliding surface 111 is smaller than the inclination angle θ12 of the second inclined surface 112b with respect to the first sliding surface 111. .. As a result, when the second sliding member 12 is slid with respect to the first sliding member 11 in the direction indicated by the arrow AR2, the lubricating oil efficiently flows in the direction approaching the second sliding member 12. Therefore, the pressure in the direction of pushing up the second sliding member 12 can be increased.

更に、本実施の形態に係る窪み部112の第2傾斜面112bは、第1傾斜面112aと第2傾斜面112bの境界部分から離れるにつれて第2摺動部材12の摺動方向AR2に直交する方向の幅が狭くなる先細りの形状である。これにより、第2摺動部材12を第1摺動部材11に対して矢印AR2に示す方向へ摺動させたときにおいて、第1傾斜面112aの法線方向、即ち、第2摺動部材12へ近づく方向へ流れる潤滑油の量が増加するので、第2摺動部材12を上方へ押し上げる方向への圧力を高めることができる。 Further, the second inclined surface 112b of the recessed portion 112 according to the present embodiment is orthogonal to the sliding direction AR2 of the second sliding member 12 as the distance from the boundary portion between the first inclined surface 112a and the second inclined surface 112b increases. It is a tapered shape with a narrower width in the direction. As a result, when the second sliding member 12 is slid with respect to the first sliding member 11 in the direction indicated by the arrow AR2, the normal direction of the first inclined surface 112a, that is, the second sliding member 12 Since the amount of the lubricating oil flowing in the direction approaching is increased, the pressure in the direction of pushing the second sliding member 12 upward can be increased.

なお、前述では、第1摺動部材11が静止しており、第2摺動部材12が第1摺動部材11に対して摺動方向AR2へ摺動する例について説明したが、第2摺動部材12が静止しており、第1摺動部材11が第2摺動部材12に対して摺動するものであってもよい。この場合、第1摺動部材11が第2摺動部材12に対して、矢印AR2で示す方向とは逆回りの方向へ摺動するとき、第2摺動部材12が第1摺動部材11に対して相対的に矢印AR2の方向へ摺動するものと解釈する。 In the above description, an example in which the first sliding member 11 is stationary and the second sliding member 12 slides in the sliding direction AR2 with respect to the first sliding member 11 has been described. The moving member 12 may be stationary and the first sliding member 11 may slide with respect to the second sliding member 12. In this case, when the first sliding member 11 slides with respect to the second sliding member 12 in the direction opposite to the direction indicated by the arrow AR2, the second sliding member 12 is the first sliding member 11. It is interpreted that it slides in the direction of the arrow AR2 relative to the arrow AR2.

(実施の形態2)
本実施の形態に係る圧縮機は、ロータリ圧縮機であり、ベーンがシリンダに設けられたベーン溝内を摺動する。ベーンの表面には実施の形態1で説明した形状と同様の形状を有する窪み部が複数設けられている。これにより、ベーンがベーン溝内を鉛直下方向へ摺動する際のベーンの外壁とベーン溝の内壁との間での摺動抵抗が低減されているものである。
(Embodiment 2)
The compressor according to the present embodiment is a rotary compressor, and the vane slides in the vane groove provided in the cylinder. The surface of the vane is provided with a plurality of recesses having the same shape as that described in the first embodiment. As a result, the sliding resistance between the outer wall of the vane and the inner wall of the vane groove when the vane slides vertically downward in the vane groove is reduced.

図4(A)に示すように、本実施の形態に係る圧縮機6001は、ベーン6051と、ピストン6052と、シリンダ6053と、を備える。圧縮機6001は、図4(A)におけるY軸方向が鉛直方向となる姿勢で使用される。シリンダ6053は、圧縮室R2と、鉛直方向に延長され下端で圧縮室R2に連通し内側にベーン6051が配置されるベーン溝6054と、を有する。また、シリンダ6053は、図4(A)におけるベーン溝6054よりも右側に位置し圧縮室R2に連通する吸気孔6055と、図4(A)におけるベーン溝6054よりも左側に位置し圧縮室R2に連通する排気孔6056と、を有する。 As shown in FIG. 4A, the compressor 6001 according to the present embodiment includes a vane 6051, a piston 6052, and a cylinder 6053. The compressor 6001 is used in a posture in which the Y-axis direction in FIG. 4A is the vertical direction. The cylinder 6053 has a compression chamber R2 and a vane groove 6054 that extends in the vertical direction and communicates with the compression chamber R2 at the lower end and the vane 6051 is arranged inside. Further, the cylinder 6053 is located on the right side of the vane groove 6054 in FIG. 4A and communicates with the compression chamber R2, and is located on the left side of the vane groove 6054 in FIG. 4A and is located on the left side of the compression chamber R2. It has an exhaust hole 6056 and a communication with the exhaust hole 6056.

ピストン6052は、圧縮室R2内に配置され、矢印AR61に示すように回転軸J61周りに偏心回転する。このとき、ピストン6052の周壁は、シリンダ6053の圧縮室R2の内壁に対して摺動する。 The piston 6052 is arranged in the compression chamber R2 and rotates eccentrically around the rotation axis J61 as shown by the arrow AR61. At this time, the peripheral wall of the piston 6052 slides with respect to the inner wall of the compression chamber R2 of the cylinder 6053.

ベーン6051は、ベーン溝6054の内側に配置された状態で、圧縮室R2内における吸気口6055に連通する領域と排気口6056に連通する領域とを隔てる隔壁として機能する。ベーン6051は、下端部がピストン6052の周壁に当接した状態でピストン6052の偏心回転に伴って矢印AR62に示すようにベーン溝6054内を上下に摺動する。ここで、ベーン6051の第1摺動面6511が、ベーン溝6054の第2摺動面6541に対向している。ここにおいて、ピストン6052の中心軸J62が回転軸J61の下側に位置する状態から中心軸J62が回転軸J61の上側に位置する状態へピストン6052が回転軸J61周りに回転するのに伴って、ベーン6051は、ピストン6052により鉛直上方へ押し上げられる。一方、ピストン6052の中心軸J62が回転軸J61の上側に位置する状態から中心軸J62が回転軸J61の上側に位置する状態へピストン6052が回転軸J61周りに回転するのに伴って、ベーン6051は、背面にあるバネ(図示せず)によりベーン溝6054内を鉛直下方へ移動する。 The vane 6051, in a state of being arranged inside the vane groove 6054, functions as a partition wall in the compression chamber R2 that separates the region communicating with the intake port 6055 and the region communicating with the exhaust port 6056. The vane 6051 slides up and down in the vane groove 6054 as shown by the arrow AR62 with the eccentric rotation of the piston 6052 in a state where the lower end thereof is in contact with the peripheral wall of the piston 6052. Here, the first sliding surface 6511 of the vane 6051 faces the second sliding surface 6541 of the vane groove 6054. Here, as the piston 6052 rotates around the rotary shaft J61 from the state where the central shaft J62 of the piston 6052 is located below the rotary shaft J61 to the state where the central shaft J62 is located above the rotary shaft J61, The vane 6051 is pushed vertically upward by the piston 6052. On the other hand, as the piston 6052 rotates around the rotating shaft J61 from the state where the central axis J62 of the piston 6052 is located above the rotating shaft J61 to the state where the central axis J62 is located above the rotating shaft J61, the vane 6051 Moves vertically downward in the vane groove 6054 by a spring (not shown) on the back surface.

ベーン6051の両面の第1摺動面6511には、図4(B)に示すように、ベーン6051の摺動方向に並んだ複数の窪み部6112が形成されている。ベーン6051が下方へ移動するとき、ベーン溝6054の内壁がベーン6051に対して相対的に上方へ摺動する。図4(B)の矢印AR63は、ベーン溝6054の内壁がベーン6051に対して相対的に摺動する摺動方向を示す。窪み部6112は、平面視において、摺動方向AR63に沿った中心軸J63方向の長さL61+L62と、中心軸J63と直交する方向の長さW61と、が異なる異方的な形状を有する。そして、窪み部6112の中心軸J63は、摺動方向AR63に平行である。窪み部6112は、第1傾斜面112aと第2傾斜面112bとを有する。第1傾斜面112aは、ベーン6051が鉛直下方向へ摺動するときにベーン6051から見てベーン溝6054が相対的に摺動する摺動方向AR63に向かって深さが増加する形で傾斜している。第2傾斜面112bは、ベーン6051が鉛直下方向へ摺動するときにベーン6051から見てベーン溝6054が相対的に摺動する摺動方向AR63に向かって深さが減少する形で傾斜している。また、平面視において、第1傾斜面112aの中心軸J63方向の長さL61が、第2傾斜面112bの中心軸J63方向の長さL62よりも長くなっている。これにより、ベーン6051がベーン溝6054内を下降するときのベーン6051の第1摺動面6511とベーン溝6054の第2摺動面6541との間に生じる摺動抵抗が低減されている。 As shown in FIG. 4B, a plurality of recesses 6112 arranged in the sliding direction of the vane 6051 are formed on the first sliding surfaces 6511 on both sides of the vane 6051. When the vane 6051 moves downward, the inner wall of the vane groove 6054 slides upward relative to the vane 6051. The arrow AR63 in FIG. 4B indicates a sliding direction in which the inner wall of the vane groove 6054 slides relative to the vane 6051. The recessed portion 6112 has an anisotropic shape in which the length L61 + L62 in the direction of the central axis J63 along the sliding direction AR63 and the length W61 in the direction orthogonal to the central axis J63 are different in a plan view. The central axis J63 of the recessed portion 6112 is parallel to the sliding direction AR63. The recessed portion 6112 has a first inclined surface 112a and a second inclined surface 112b. The first inclined surface 112a is inclined so that the depth increases toward the sliding direction AR63 in which the vane groove 6054 relatively slides when viewed from the vane 6051 when the vane 6051 slides in the vertical downward direction. ing. The second inclined surface 112b is inclined so that the depth decreases toward the sliding direction AR63 in which the vane groove 6054 relatively slides when viewed from the vane 6051 when the vane 6051 slides in the vertical downward direction. ing. Further, in a plan view, the length L61 of the first inclined surface 112a in the central axis J63 direction is longer than the length L62 of the second inclined surface 112b in the central axis J63 direction. As a result, the sliding resistance generated between the first sliding surface 6511 of the vane 6051 and the second sliding surface 6541 of the vane groove 6054 when the vane 6051 descends in the vane groove 6054 is reduced.

ところで、第1摺動面6511と第2摺動面6541との間に生じる摺動抵抗が大きくなると、ベーン6051が鉛直下方へ移動する際の移動速度が低下してしまい、ベーン6051の移動がピストン6052の偏心回転に追従できず、ベーン6051の下端部とピストン6052の周壁との間に空隙が発生してしまう虞がある。この場合、圧縮室R2における吸気口6055に連通する領域と排気口6056に連通する領域とが繋がってしまうため、圧縮機6001の圧縮効率が低下してしまう。 By the way, if the sliding resistance generated between the first sliding surface 6511 and the second sliding surface 6541 becomes large, the moving speed when the vane 6051 moves vertically downward decreases, and the vane 6051 moves. It cannot follow the eccentric rotation of the piston 6052, and there is a possibility that a gap may be generated between the lower end of the vane 6051 and the peripheral wall of the piston 6052. In this case, since the region communicating with the intake port 6055 and the region communicating with the exhaust port 6056 in the compression chamber R2 are connected, the compression efficiency of the compressor 6001 is lowered.

これに対して、本実施の形態に係る圧縮機6001では、ベーン6051の第1摺動面6511に、前述のような第1傾斜面112aと第2傾斜面112bとを有する複数の窪み部6112が形成されている。これにより、ベーン6051が下方へ移動する際のベーン6051の第1摺動面6511とベーン溝6054の第2摺動面6541との間に生じる摺動抵抗が低減されるので、ベーン6051が鉛直下方へ移動する際の移動速度が向上する。従って、ベーン6051の下端部とピストン6052の周壁との間に空隙が生じることを抑制できるので、圧縮機6001の圧縮効率が改善される。 On the other hand, in the compressor 6001 according to the present embodiment, the first sliding surface 6511 of the vane 6051 has a plurality of recessed portions 6112 having the first inclined surface 112a and the second inclined surface 112b as described above. Is formed. As a result, the sliding resistance generated between the first sliding surface 6511 of the vane 6051 and the second sliding surface 6541 of the vane groove 6054 when the vane 6051 moves downward is reduced, so that the vane 6051 is vertical. The movement speed when moving downward is improved. Therefore, it is possible to suppress the formation of a gap between the lower end portion of the vane 6051 and the peripheral wall of the piston 6052, so that the compression efficiency of the compressor 6001 is improved.

また、現在、地球環境に対する意識の高まりから、空気調和機として環境負荷が小さいものが選択される傾向となっている。空気調和機においては、特に、圧縮機の性能が環境負荷に与える影響が大きく、圧縮機の効率改善が環境負荷の低減が必須となっている。これに対して、本実施の形態に係る圧縮機6001では、前述のように、ベーン6051の第1摺動面6511とベーン溝6054の第2摺動面6541との間に生じる摺動抵抗を低減することによりその圧縮効率が改善される。従って、本実施の形態に係る圧縮機6001を空気調和機に用いることにより、環境負荷の低減を図ることができる。 In addition, due to the growing awareness of the global environment, there is a tendency to select air conditioners with a small environmental load. In air conditioners, the performance of the compressor has a large effect on the environmental load, and it is essential to improve the efficiency of the compressor to reduce the environmental load. On the other hand, in the compressor 6001 according to the present embodiment, as described above, the sliding resistance generated between the first sliding surface 6511 of the vane 6051 and the second sliding surface 6541 of the vane groove 6054 is generated. By reducing it, the compression efficiency is improved. Therefore, by using the compressor 6001 according to the present embodiment as an air conditioner, it is possible to reduce the environmental load.

(変形例)
以上、本発明の実施の形態について説明したが、本発明は前述の実施の形態によって限定されるものではない。例えば、図5(A)および(B)に示す第1摺動部材2011のように、窪み部2112について、第1傾斜面2112aの第1摺動面111に対する傾斜角θ21と、第2傾斜面2112bの第1摺動面111に対する傾斜角θ22と、が同じに設定されている構成であってもよい。窪み部2112は、平面視において、摺動方向AR2に沿った中心軸J21方向の長さL21+L22と、中心軸J21と直交する方向の長さW21と、が異なる異方的な形状を有する。ここで、「摺動方向AR2に沿った中心軸J21」とは、摺動方向AR2に平行な中心軸J21を意味する。そして、平面視において、第1傾斜面2112aの中心軸J21方向の長さL21と第2傾斜面2112bの中心軸J21方向の長さL22とが等しい。図5(B)に示すように、Z軸方向および第2摺動部材12の摺動方向AR2に直交する方向から見て、第1傾斜面2112aと第2傾斜面2112bとのなす角度は90度に設定されている。また、第2傾斜面2112bは、第2摺動部材12の摺動方向に直交する方向の幅が先細り形状である。これにより、第2摺動部材12を第1摺動部材2011に対して矢印AR2に示す方向へ摺動させたときにおいて、第1傾斜面2112aの法線方向へ流れる潤滑油の量が増加するので、第2摺動部材12を上方へ押し上げる方向への圧力が増加する。これにより、第1摺動部材2011の摺動面2111と第2摺動部材12の第2摺動面121との間に生じる摺動抵抗を低減できる。
(Modification example)
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. For example, as in the first sliding member 2011 shown in FIGS. 5A and 5B, the recessed portion 2112 has an inclination angle θ21 with respect to the first sliding surface 111 of the first inclined surface 2112a and a second inclined surface. The inclination angle θ22 with respect to the first sliding surface 111 of 2112b may be set to be the same. The recessed portion 2112 has an anisotropic shape in which the length L21 + L22 in the direction of the central axis J21 along the sliding direction AR2 and the length W21 in the direction orthogonal to the central axis J21 are different in a plan view. Here, the "central axis J21 along the sliding direction AR2" means the central axis J21 parallel to the sliding direction AR2. Then, in a plan view, the length L21 of the first inclined surface 2112a in the central axis J21 direction and the length L22 of the second inclined surface 2112b in the central axis J21 direction are equal. As shown in FIG. 5B, the angle formed by the first inclined surface 2112a and the second inclined surface 2112b is 90 when viewed from the Z-axis direction and the direction orthogonal to the sliding direction AR2 of the second sliding member 12. It is set every time. Further, the width of the second inclined surface 2112b in the direction orthogonal to the sliding direction of the second sliding member 12 is tapered. As a result, when the second sliding member 12 is slid with respect to the first sliding member 2011 in the direction indicated by the arrow AR2, the amount of lubricating oil flowing in the normal direction of the first inclined surface 2112a increases. Therefore, the pressure in the direction of pushing up the second sliding member 12 increases. As a result, the sliding resistance generated between the sliding surface 2111 of the first sliding member 2011 and the second sliding surface 121 of the second sliding member 12 can be reduced.

本変形例に係る第1摺動部材2011の製造方法は、実施の形態1で説明した第1摺動部材11の製造方法と比べて、図6(A)に示すように、窪み部形成工程における工具91の筒軸J92の基材9011の主面9111に対する傾斜角θ21が異なる。なお、図6(A)および(B)において、実施の形態1と同様の構成については図3(A)および(B)と同一の符号を付している。窪み部形成工程において、工具91の筒軸J92の基材9011の主面9111に対する角度θ21は、45度に設定されている。これにより、窪み部2112は、そのZ軸方向および摺動方向AR2に直交する方向から見た断面が左右対称となる。また、図6(B)に示すように、窪み部2112の第2傾斜面2112bは、楕円形状、即ち、第1傾斜面2112aと第2傾斜面2112bの境界部分から離れるにつれてQ軸方向の幅が小さくなる先細り形状となっている。また、窪み部2112の第1傾斜面2112aも、第1傾斜面2112aと第2傾斜面2112bの境界部分から離れるにつれてQ軸方向の幅が小さくなる先細り形状となっている。 As shown in FIG. 6A, the manufacturing method of the first sliding member 2011 according to the present modification is a recessed portion forming step as compared with the manufacturing method of the first sliding member 11 described in the first embodiment. The inclination angle θ21 of the cylinder shaft J92 of the tool 91 with respect to the main surface 9111 of the base material 9011 is different. In FIGS. 6A and 6B, the same components as those in the first embodiment are designated by the same reference numerals as those in FIGS. 3A and 3B. In the recess forming step, the angle θ21 of the tubular shaft J92 of the tool 91 with respect to the main surface 9111 of the base material 9011 is set to 45 degrees. As a result, the cross section of the recessed portion 2112 is symmetrical when viewed from the Z-axis direction and the direction orthogonal to the sliding direction AR2. Further, as shown in FIG. 6B, the second inclined surface 2112b of the recessed portion 2112 has an elliptical shape, that is, the width in the Q-axis direction as the distance from the boundary portion between the first inclined surface 2112a and the second inclined surface 2112b increases. It has a tapered shape that makes it smaller. Further, the first inclined surface 2112a of the recessed portion 2112 also has a tapered shape in which the width in the Q-axis direction decreases as the distance from the boundary portion between the first inclined surface 2112a and the second inclined surface 2112b increases.

本構成によれば、第1摺動部材2011に対して第2摺動部材12を矢印AR2に示す方向へ摺動させる場合と、矢印AR2とは反対方向へ摺動させる場合との両方において、同様に第1摺動面2111と第2摺動面121との間に生じる摺動抵抗が低減される。 According to this configuration, in both the case where the second sliding member 12 is slid with respect to the first sliding member 2011 in the direction indicated by the arrow AR2 and the case where the second sliding member 12 is slid in the direction opposite to the arrow AR2. Similarly, the sliding resistance generated between the first sliding surface 2111 and the second sliding surface 121 is reduced.

実施の形態1では、窪み部112の中心軸J11が第1摺動部材11に対する第2摺動部材の摺動方向AR2と平行である構成について説明したが、窪み部の形状はこれに限定されない。例えば図7に示す第1摺動部材3011のように、各窪み部3112の中心軸J31、J31が第2摺動部材の摺動方向AR2に対して傾斜している構成であってもよい。窪み部3112は、平面視において、摺動方向AR2に沿った中心軸J31(J32)方向の長さL31+L32と、中心軸J31(J32)と直交する方向の長さW31と、が異なる異方的な形状を有する。ここで、「摺動方向AR2に沿った中心軸J31(J32)」とは、摺動方向AR2に対して傾斜した中心軸J31(J32)を意味する。そして、平面視において、第1傾斜面3112aの中心軸J31(J32)方向の長さL31は、第2傾斜面3112bの中心軸J31(J32)方向の長さL32に比べて長い。窪み部3112の中心軸の第2摺動部材の摺動方向AR2に対する傾斜角θ3は、例えば5度乃至20度に設定される。第1摺動部材3011の径方向で隣接する2つの窪み部3112の中心軸J31、J32は互いに交差している。つまり、複数の窪み部3112は、摺動方向AR2に対していわゆるヘリングボーン型に配置されている。 In the first embodiment, the configuration in which the central axis J11 of the recessed portion 112 is parallel to the sliding direction AR2 of the second sliding member with respect to the first sliding member 11 has been described, but the shape of the recessed portion is not limited to this. .. For example, as in the first sliding member 3011 shown in FIG. 7, the central axes J31 and J31 of each recessed portion 3112 may be inclined with respect to the sliding direction AR2 of the second sliding member. The recessed portion 3112 is anisotropic in that the length L31 + L32 in the central axis J31 (J32) direction along the sliding direction AR2 and the length W31 in the direction orthogonal to the central axis J31 (J32) are different in a plan view. Has a unique shape. Here, the "central axis J31 (J32) along the sliding direction AR2" means the central axis J31 (J32) inclined with respect to the sliding direction AR2. Then, in a plan view, the length L31 of the first inclined surface 3112a in the central axis J31 (J32) direction is longer than the length L32 of the second inclined surface 3112b in the central axis J31 (J32) direction. The inclination angle θ3 with respect to the sliding direction AR2 of the second sliding member of the central axis of the recessed portion 3112 is set to, for example, 5 degrees to 20 degrees. The central axes J31 and J32 of the two recesses 3112 adjacent to each other in the radial direction of the first sliding member 3011 intersect with each other. That is, the plurality of recessed portions 3112 are arranged in a so-called herringbone type with respect to the sliding direction AR2.

本構成によれば、第1摺動部材3011に対して第2摺動部材を矢印AR2方向へ摺動させた場合、第1摺動部材3011の径方向で隣り合う窪み部3112からの第2傾斜面3112bに沿った潤滑油の流れが衝突する。これにより、第2摺動部材に加わる第1摺動部材3011から離れる方向への圧力が増加するので、第1摺動部材3011および第2摺動部材の摩擦損失や摩耗を更に低減できる。 According to this configuration, when the second sliding member is slid with respect to the first sliding member 3011 in the direction of arrow AR2, the second sliding member from the recess 3112 adjacent to each other in the radial direction of the first sliding member 3011. The flow of lubricating oil along the inclined surface 3112b collides. As a result, the pressure applied to the second sliding member in the direction away from the first sliding member 3011 increases, so that the friction loss and wear of the first sliding member 3011 and the second sliding member can be further reduced.

実施の形態1では、窪み部112が第1摺動部材11の周方向に沿って2列に配列しており、径方向で隣り合う2つの窪み部112の間隔が第1摺動部材11の全周に亘って同じである例について説明した。但し、窪み部の配置はこれに限定されるものではない。例えば図8に示す第1摺動部材4011のように、周方向で隣り合う2組の窪み部4113、4114について、径方向で隣り合う2つの窪み部4113同士の間隔W42と径方向で隣り合う2つの窪み部4114同士の間隔W43とが互いに異なる構成であってもよい。なお、間隔W42、W43は、径方向で隣り合う2つの窪み部4113、4114における第1傾斜面4112aと第2傾斜面4112bとの境界部分と窪み部4113、4114の中心軸J41、J42との交点間の間隔に相当する。ここにおいて、2つの窪み部4113と2つの窪み部4114とを有する窪み部組4112が、第1摺動部材4011の周方向に沿って等間隔に位置する複数の領域A4それぞれに形成されている。 In the first embodiment, the recesses 112 are arranged in two rows along the circumferential direction of the first sliding member 11, and the distance between the two recesses 112 adjacent to each other in the radial direction is the distance of the first sliding member 11. An example that is the same over the entire circumference has been described. However, the arrangement of the recessed portion is not limited to this. For example, as in the first sliding member 4011 shown in FIG. 8, for two sets of recesses 4113 and 4114 that are adjacent to each other in the circumferential direction, they are adjacent to each other in the radial direction with the distance W42 between the two recesses 4113 that are adjacent in the radial direction. The spacing W43 between the two recesses 4114 may be different from each other. The intervals W42 and W43 are such that the boundary portion between the first inclined surface 4112a and the second inclined surface 4112b in the two recessed portions 4113 and 4114 adjacent to each other in the radial direction and the central axes J41 and J42 of the recessed portions 4113 and 4114. Corresponds to the distance between intersections. Here, a recessed portion 4112 having two recessed portions 4113 and two recessed portions 4114 is formed in each of a plurality of regions A4 located at equal intervals along the circumferential direction of the first sliding member 4011. ..

2つの窪み部4113のうち径方向における外側に位置する一方の中心軸J41と2つの窪み部4114のうち径方向における外側に位置する一方の中心軸J41とは、一致している。また、2つの窪み部4113のうち径方向における内側に位置する一方の中心軸J42と2つの窪み部4114のうち径方向における内側に位置する一方の中心軸J42とは、一致している。また、窪み部4113、4114の中心軸J41、J42は、第2摺動部材の摺動方向AR2に対して傾斜している。窪み部4113、4114は、平面視において、摺動方向AR2に沿った中心軸J41(J42)方向の長さL41+L42と、中心軸J41(J42)と直交する方向の長さW41と、が異なる異方的な形状を有する。ここで、「摺動方向AR2に沿った中心軸J41(J42)」とは、摺動方向AR2に対して傾斜した中心軸J41(J42)を意味する。そして、平面視において、第1傾斜面4112aの中心軸J41(J42)方向の長さL41は、第2傾斜面4112bの中心軸J41(J42)方向の長さL42に比べて長い。窪み部4113、4114の中心軸J41、J42の第2摺動部材の摺動方向AR2に対する傾斜角θ4は、例えば5度乃至20度に設定される。そして、中心軸J41、J42は、窪み部4113、4114の摺動方向AR2側で互いに交差している。つまり、第1摺動部材4011の径方向における外側で周方向に並ぶ2つの窪み部4113、4114と第1摺動部材4011の径方向における内側で周方向に並ぶ2つの窪み部4113、4114とが、摺動方向AR2に対していわゆるヘリングボーン型に配置されている。これに伴い、2つの窪み部4114同士の間隔W43は、2つの窪み部4113同士の間隔W42よりも狭くなっている。なお、窪み部4113、4114の幅を狭くして窪み部4113、4114の径方向の幅を更に狭くしてもよい。 The central axis J41 located on the outer side in the radial direction of the two recessed portions 4113 and the central axis J41 located on the outer side in the radial direction of the two recessed portions 4114 coincide with each other. Further, the central axis J42 of the two recesses 4113 located inward in the radial direction and the central axis J42 of the two recesses 4114 located inward in the radial direction coincide with each other. Further, the central axes J41 and J42 of the recessed portions 4113 and 4114 are inclined with respect to the sliding direction AR2 of the second sliding member. The recessed portions 4113 and 4114 differ in length L41 + L42 in the central axis J41 (J42) direction along the sliding direction AR2 and length W41 in the direction orthogonal to the central axis J41 (J42) in a plan view. It has a rectangular shape. Here, the "central axis J41 (J42) along the sliding direction AR2" means the central axis J41 (J42) inclined with respect to the sliding direction AR2. Then, in a plan view, the length L41 of the first inclined surface 4112a in the central axis J41 (J42) direction is longer than the length L42 of the second inclined surface 4112b in the central axis J41 (J42) direction. The inclination angle θ4 with respect to the sliding direction AR2 of the second sliding member of the central axes J41 and J42 of the recessed portions 4113 and 4114 is set to, for example, 5 degrees to 20 degrees. The central axes J41 and J42 intersect each other on the AR2 side in the sliding direction of the recessed portions 4113 and 4114. That is, two recesses 4113, 4114 arranged in the radial direction on the outside of the first sliding member 4011 and two recesses 4113, 4114 arranged in the circumferential direction on the inside in the radial direction of the first sliding member 4011. Is arranged in a so-called herringbone type with respect to the sliding direction AR2. Along with this, the distance W43 between the two recesses 4114 is narrower than the distance W42 between the two recesses 4113. The width of the recesses 4113 and 4114 may be narrowed to further narrow the radial width of the recesses 4113 and 4114.

本構成によれば、第1摺動部材4011に対して第2摺動部材を矢印AR2方向へ摺動させた場合、第1摺動部材4011の径方向における外側、内側それぞれの窪み部4113、4114からの潤滑油の流れが衝突する。これにより、第2摺動部材に加わる第1摺動部材4011から離れる方向への圧力が増加するので、第1摺動部材4011と第2摺動部材との接触によるエネルギ損失や第1摺動部材4011または第2摺動部材の摩耗が低減される。 According to this configuration, when the second sliding member is slid with respect to the first sliding member 4011 in the direction of arrow AR2, the outer and inner recesses 4113 in the radial direction of the first sliding member 4011, respectively. Lubricating oil flows from 4114 collide. As a result, the pressure applied to the second sliding member in the direction away from the first sliding member 4011 increases, so that energy loss due to contact between the first sliding member 4011 and the second sliding member and the first sliding are performed. Wear of member 4011 or the second sliding member is reduced.

実施の形態1では、窪み部112が第1摺動部材11の周方向に沿って2列に配列している例について説明したが、窪み部112の配置は2列に限定されるものではない。例えば、図9に示す第1摺動部材5011のように、窪み部5112が第1摺動部材5011の周方向に沿って6列に配列している構成であってもよい。 In the first embodiment, an example in which the recesses 112 are arranged in two rows along the circumferential direction of the first sliding member 11 has been described, but the arrangement of the recesses 112 is not limited to the two rows. .. For example, as in the case of the first sliding member 5011 shown in FIG. 9, the recessed portions 5112 may be arranged in six rows along the circumferential direction of the first sliding member 5011.

第1摺動部材5011の径方向に並ぶ6つの窪み部5112の中心軸J51は、いずれも第2摺動部材の摺動方向AR2に対して傾斜角θ5だけ傾斜している。窪み部5112は、平面視において、摺動方向AR2に沿った中心軸J51方向の長さL51+L52と、中心軸J51と直交する方向の長さW51と、が異なる異方的な形状を有する。ここで、「摺動方向AR2に沿った中心軸J51」とは、摺動方向AR2に対して傾斜した中心軸J51を意味する。そして、平面視において、第1傾斜面5112aの中心軸J51方向の長さL51は、第2傾斜面5112bの中心軸J51方向の長さL52に比べて長い。また、各窪み部5112の中心軸J51は、いわゆるスパイラル型に配置されており、窪み部5112の摺動方向AR2側ほど第1摺動部材5011の中心に近づくように傾斜している。 The central axes J51 of the six recessed portions 5112 arranged in the radial direction of the first sliding member 5011 are all inclined by an inclination angle θ5 with respect to the sliding direction AR2 of the second sliding member. The recessed portion 5112 has an anisotropic shape in which the length L51 + L52 in the direction of the central axis J51 along the sliding direction AR2 and the length W51 in the direction orthogonal to the central axis J51 are different in a plan view. Here, the "central axis J51 along the sliding direction AR2" means the central axis J51 inclined with respect to the sliding direction AR2. Then, in a plan view, the length L51 of the first inclined surface 5112a in the central axis J51 direction is longer than the length L52 of the second inclined surface 5112b in the central axis J51 direction. Further, the central axis J51 of each recessed portion 5112 is arranged in a so-called spiral shape, and is inclined so as to be closer to the center of the first sliding member 5011 toward the AR2 side in the sliding direction of the recessed portion 5112.

なお、窪み部5112の幅を狭くして第1摺動部材5011の径方向で隣り合う2つの窪み部5112同士の間隔を更に狭くしてもよい。また、第1摺動部材5011の外側に設ける窪み部5112の数を増加することにより、第1摺動部材5011の外側の窪み部5112の密度を向上させてもよい。また、複数の窪み部5112が、それらの第1傾斜面5112a、第2傾斜面5112bの傾斜角が第1摺動部材5011の外側から内側に向かって漸次変化する形で形成されていてもよい。 The width of the recessed portion 5112 may be narrowed to further narrow the distance between the two recessed portions 5112 adjacent to each other in the radial direction of the first sliding member 5011. Further, the density of the recessed portions 5112 on the outer side of the first sliding member 5011 may be improved by increasing the number of the recessed portions 5112 provided on the outer side of the first sliding member 5011. Further, the plurality of recessed portions 5112 may be formed so that the inclination angles of the first inclined surface 5112a and the second inclined surface 5112b gradually change from the outside to the inside of the first sliding member 5011. ..

本構成によれば、第1摺動部材5011に対して第2摺動部材を矢印AR2方向へ摺動させた場合、各窪み部5112からの潤滑油の流れが第1摺動部材5011の中央部に集中する。これにより、第2摺動部材に加わる第1摺動部材5011から離れる方向への圧力が増加するので、第1摺動部材5011に対して第2摺動部材を流体潤滑領域で摺動させることができる。従って、第1摺動部材5011と第2摺動部材との接触によるエネルギ損失や第1摺動部材5011または第2摺動部材の摩耗が低減される。 According to this configuration, when the second sliding member is slid with respect to the first sliding member 5011 in the direction of arrow AR2, the flow of the lubricating oil from each recess 5112 is at the center of the first sliding member 5011. Focus on the club. As a result, the pressure applied to the second sliding member in the direction away from the first sliding member 5011 increases, so that the second sliding member is slid with respect to the first sliding member 5011 in the fluid lubrication region. Can be done. Therefore, energy loss due to contact between the first sliding member 5011 and the second sliding member and wear of the first sliding member 5011 or the second sliding member are reduced.

実施の形態および前述の変形例では、第1摺動部材の径方向に並ぶ窪み部の数が2つ、4つ、6つの場合について説明したが、第1摺動部材の径方向に並ぶ窪み部の数はこれらに限定されない。例えば第1摺動部材の径方向に並ぶ窪み部の数が、1つであってもよいし、3つであってもよいし、5つであってもよいし、7つ以上であってもよい。 In the embodiment and the above-mentioned modification, the case where the number of the number of the dents arranged in the radial direction of the first sliding member is two, four, or six has been described, but the dents arranged in the radial direction of the first sliding member have been described. The number of copies is not limited to these. For example, the number of recesses arranged in the radial direction of the first sliding member may be one, three, five, or seven or more. May be good.

実施の形態1で説明した窪み部形成工程において、工具91と基材9011との間に電圧を印加したときに工具91と基材9011との間に流れる電流を検出することにより工具91と基材9011との位置関係を監視してもよい。例えば窪み部形成工程において、工具91による基材9011の単位時間当たりの切削量(切削深さ)を示す切削量情報を記憶する記憶部と、工具91と基材9011との間に電圧を印加する電圧印加部と、工具91から基材9011へ流れる電流を検出する電流検出部と、を備える工作機械を使用すればよい。工作機械は、窪み部形成工程において、工具91と基材9011との間の通電状況を監視しながら工具91を基材9011へ近づけていく。そして、工作機械は、工具91と基材9011との間を流れる電流を検出した時点を基準にして、記憶部が記憶する単位時間当たりの切削量に基づいて切削加工を実行する。 In the recess forming step described in the first embodiment, when a voltage is applied between the tool 91 and the base material 9011, the current flowing between the tool 91 and the base material 9011 is detected to form the tool 91 and the base. The positional relationship with the material 9011 may be monitored. For example, in the recess forming step, a voltage is applied between the tool 91 and the base material 9011 and a storage unit that stores cutting amount information indicating the cutting amount (cutting depth) of the base material 9011 by the tool 91 per unit time. A machine tool may be used that includes a voltage application unit and a current detection unit that detects a current flowing from the tool 91 to the base material 9011. In the recess forming process, the machine tool brings the tool 91 closer to the base material 9011 while monitoring the energization status between the tool 91 and the base material 9011. Then, the machine tool executes the cutting process based on the cutting amount per unit time stored in the storage unit with reference to the time point when the current flowing between the tool 91 and the base material 9011 is detected.

或いは、窪み部形成工程において、AE(Acoustic Emission)計測技術を利用して工具91と基材9011との位置関係を監視してもよい。この場合、窪み部形成工程において、工具91による基材9011の単位時間当たりの切削量を示す切削量情報を記憶する記憶部と、工具91が基材9011に接触したときに基材9011内を伝播するAE波を検出するAE波検出部と、を備える工作機械を使用すればよい。工作機械は、AE波検出部によりAE波が検出されるか否かを監視しながら工具91を基材9011へ近づけていく。そして、工作機械は、AE波を検出した時点を基準にして、記憶部が記憶する単位時間当たりの切削量に基づいて切削加工を実行する。以上説明したような工作機械を用いることにより、窪み部112の深さ方向の加工精度を向上させることができる。 Alternatively, in the recess forming step, the positional relationship between the tool 91 and the base material 9011 may be monitored by using the AE (Acoustic Emission) measurement technique. In this case, in the recess forming step, the storage unit for storing the cutting amount information indicating the cutting amount of the base material 9011 by the tool 91 per unit time and the inside of the base material 9011 when the tool 91 comes into contact with the base material 9011. A machine tool provided with an AE wave detection unit that detects a propagating AE wave may be used. The machine tool brings the tool 91 closer to the base material 9011 while monitoring whether or not the AE wave is detected by the AE wave detection unit. Then, the machine tool executes the cutting process based on the cutting amount per unit time stored in the storage unit with reference to the time point when the AE wave is detected. By using the machine tool as described above, it is possible to improve the machining accuracy of the recessed portion 112 in the depth direction.

実施の形態1では、窪み部形成工程において、円筒状の工具91を筒軸J91周りに回転させながら、基材9011の主面9111に押し当てて切削または研削する例について説明したが、切削または研削する方法はこの方法に限定されない。例えば、彫刻刃型のような工具の刃先を基材9011の主面9111に押し当てて基材9011を切削する方法であってもよい。この場合、実施の形態1に係る摺動機構の製造方法と同様に、窪み部112生成後の表面研磨処理が不要となる。従って、製造工程の簡素化を図ることができるという利点がある。また、基材9011がいわゆる硬脆材料であっても欠陥の発生が抑制される。 In the first embodiment, in the recess forming step, an example in which the cylindrical tool 91 is pressed against the main surface 9111 of the base material 9011 while rotating around the cylinder shaft J91 to be cut or ground has been described. The method of grinding is not limited to this method. For example, a method of cutting the base material 9011 by pressing the cutting edge of a tool such as an engraving blade against the main surface 9111 of the base material 9011 may be used. In this case, as in the method for manufacturing the sliding mechanism according to the first embodiment, the surface polishing treatment after the dent portion 112 is formed becomes unnecessary. Therefore, there is an advantage that the manufacturing process can be simplified. Further, even if the base material 9011 is a so-called hard and brittle material, the occurrence of defects is suppressed.

実施の形態1では、窪み部形成工程において、切削加工または研削加工を採用する例について説明したが、これに限定されるものではない。例えば、窪み部形成工程において、外形が基材9011の主面9111に形成する複数の窪み部112それぞれの内側の形状と同じ同一形状部分を有する工具を用いて、同一形状部分を基材9011の主面9111に転写するいわゆる塑性加工方法を採用してもよい。この場合、窪み部形成工程において、例えば、基材9011よりも硬度の高い材料から形成された円柱状の工具を使用する。そして、工具の先端部を基材9011の主面9111に押し当てて基材9011を塑性変形させることにより、基材9011の主面9111に窪み部を形成する。このとき、工具の中心軸が傾く方向を、第1摺動部材11に対して第2摺動部材12が摺動する方向に設定する。そして、工具の中心軸を、基材9011の主面9111に対して45度よりも小さい角度だけ傾斜させる。これにより、実施の形態1で説明した窪み112と同様の窪み部を基材9011の主面9111に形成することができる。このように窪み部形成工程において塑性加工方法を採用することにより、窪み部形成工程に要する処理時間の短縮を図ることができる。 In the first embodiment, an example in which cutting or grinding is adopted in the recess forming step has been described, but the present invention is not limited to this. For example, in the recess forming step, a tool having the same shape as the inner shape of each of the plurality of recesses 112 whose outer shape is formed on the main surface 9111 of the base material 9011 is used to form the same shape portion of the base material 9011. A so-called plastic working method of transferring to the main surface 9111 may be adopted. In this case, in the recess forming step, for example, a columnar tool formed of a material having a hardness higher than that of the base material 9011 is used. Then, the tip portion of the tool is pressed against the main surface 9111 of the base material 9011 to plastically deform the base material 9011 to form a recessed portion on the main surface 9111 of the base material 9011. At this time, the direction in which the central axis of the tool is tilted is set to the direction in which the second sliding member 12 slides with respect to the first sliding member 11. Then, the central axis of the tool is tilted with respect to the main surface 9111 of the base material 9011 by an angle smaller than 45 degrees. Thereby, the same recessed portion as the recessed 112 described in the first embodiment can be formed on the main surface 9111 of the base material 9011. By adopting the plastic working method in the recessed portion forming step in this way, the processing time required for the recessed portion forming step can be shortened.

また、実施の形態1に係る窪み部形成工程において、工具91の代わりに電極を用いて、電極と基材9011との間で放電させることにより基材9011に窪み部112を形成してもよい。 Further, in the recessed portion forming step according to the first embodiment, the recessed portion 112 may be formed in the base material 9011 by using an electrode instead of the tool 91 and discharging the electrode between the electrode and the base material 9011. ..

実施の形態1では、窪み部形成工程において、刃先が90度の円筒状のスクエアエンドミルまたは砥石である工具91を使用する例について説明したが、使用する工具の形状はこれに限定されるものではない。例えば、刃先に丸みが形成された工具、刃先が面取りされた工具、刃先が90度よりも小さい角度に設定された工具、或いは、刃先が90度よりも大きい角度に設定された工具を採用してもよい。 In the first embodiment, an example of using a tool 91 which is a cylindrical square end mill or a grindstone having a cutting edge of 90 degrees has been described in the recess forming step, but the shape of the tool to be used is not limited to this. No. For example, a tool with a rounded cutting edge, a tool with a chamfered cutting edge, a tool with a cutting edge set at an angle smaller than 90 degrees, or a tool with a cutting edge set at an angle larger than 90 degrees is adopted. You may.

実施の形態2では、窪み部6112の第1傾斜面112aと第2傾斜面112bの第1摺動面6511に対する傾斜角が互いに異なる例について説明したが、窪み部の形状はこれに限定されない。例えば、ベーン6051に対してベーン溝6054が相対的に摺動する方向において、第1傾斜面の第1摺動面6511に対する傾斜角と第2傾斜面の第1摺動面6511に対する傾斜角とが等しい構成であってもよい。本構成によれば、ベーン6051が鉛直下方へ移動する場合のみならず、ベーン6051が鉛直上方へ移動する場合も、ベーン6051の第1摺動面6511とベーン溝6054の第2摺動面6541との間に生じる摺動抵抗を低減することができる。 In the second embodiment, an example in which the inclination angles of the recessed portion 6112 with respect to the first inclined surface 112a and the second inclined surface 112b with respect to the first sliding surface 6511 are different from each other has been described, but the shape of the recessed portion is not limited to this. For example, in the direction in which the vane groove 6054 slides relative to the vane 6051, the inclination angle of the first inclined surface with respect to the first sliding surface 6511 and the inclination angle of the second inclined surface with respect to the first sliding surface 6511. May be equal. According to this configuration, not only when the vane 6051 moves vertically downward, but also when the vane 6051 moves vertically upward, the first sliding surface 6511 of the vane 6051 and the second sliding surface 6541 of the vane groove 6054 It is possible to reduce the sliding resistance generated between the and.

実施の形態2では、ベーン6051が、第1傾斜面112aと第2傾斜面112bとのなす角度が90度である窪み部6112を有する例について説明したが、窪み部の形状はこれに限定されない。ベーン6051は、例えば第1傾斜面112aと第2傾斜面112bとのなす角度が90度よりも大きい角度に設定された窪み部を有する構成であってもよい。 In the second embodiment, an example in which the vane 6051 has a recessed portion 6112 in which the angle formed by the first inclined surface 112a and the second inclined surface 112b is 90 degrees has been described, but the shape of the recessed portion is not limited thereto. .. The vane 6051 may have, for example, a configuration having a recessed portion in which the angle formed by the first inclined surface 112a and the second inclined surface 112b is set to an angle larger than 90 degrees.

以上、本発明の実施の形態および変形例(なお書きに記載したものを含む。)について説明したが、本発明はこれらに限定されるものではない。本発明は、実施の形態及び変形例が適宜組み合わされたもの、それに適宜変更が加えられたものを含む。 Although embodiments and modifications of the present invention (including those described in the description) have been described above, the present invention is not limited thereto. The present invention includes a combination of embodiments and modifications as appropriate, and modifications thereof as appropriate.

本発明は、空気調和機の圧縮機に好適に利用することができる。 The present invention can be suitably used for a compressor of an air conditioner.

1,2001 摺動機構、11,2011,3011,4011,5011 第1摺動部材、12 第2摺動部材、17 主軸、18 プール、91 工具、111,2111,3111,4111,5111,6511 第1摺動面、112,2112,3112,4113,4114,5112,6112 窪み部、112a,2112a,3112a,4112a,5112a 第1傾斜面、112b,2112b,3112b,4112b,5112b 第2傾斜面、121,6541 第2摺動面、4112 窪み部組、6001 圧縮機、6051 ベーン、6052 ピストン、6053 シリンダ、6054 ベーン溝、6055 吸気孔、6056 排気孔、9011 基材、9111 主面、A4 領域、AR2,AR63 摺動方向、R2 圧縮室、J61 回転軸、J11,J21,J31,J32,J41,J42,J51,J62,J63 中心軸、J91,J92 筒軸 1,2001 Sliding mechanism 11,2011,3011,4011,5011 First sliding member, 12 Second sliding member, 17 Spindle, 18 Pool, 91 Tools, 111,2111,3111,4111,5111,6511 1 Sliding surface, 112, 211,3112, 4113, 4114, 5112, 6112 recessed portion, 112a, 2112a, 3112a, 4112a, 5112a 1st inclined surface, 112b, 2112b, 3112b, 4112b, 5112b 2nd inclined surface, 121 , 6541 2nd sliding surface, 4112 recessed part, 6001 compressor, 6051 vane, 6052 piston, 6053 cylinder, 6054 vane groove, 6055 intake hole, 6056 exhaust hole, 9011 base material, 9111 main surface, A4 area, AR2 , AR63 Sliding direction, R2 compression chamber, J61 rotating shaft, J11, J21, J31, J32, J41, J42, J51, J62, J63 central shaft, J91, J92 tubular shaft

Claims (6)

複数の窪み部が形成された第1摺動面を有する第1摺動部材と、
前記第1摺動部材の第1摺動面と潤滑油を介して対向する第2摺動面を有する第2摺動部材と、を備え、
前記複数の窪み部は、それぞれ、平面視において、周縁全体が前記第1摺動面の周縁よりも内側に位置し、前記第1摺動部材に対して前記第2摺動部材が相対的に摺動する摺動方向に沿った中心軸方向の長さと前記中心軸方向と直交する方向の長さとが異なる異方的な形状を有し、前記中心軸と平行な一方向に向かって深さが増加する形で傾斜した第1傾斜面と、前記一方向に向かって深さが減少する形で傾斜した第2傾斜面と、を有し、
前記第1摺動面と直交する方向から見たときの前記複数の窪み部それぞれの中心軸は、前記摺動方向に対して傾斜している、
摺動機構。
A first sliding member having a first sliding surface on which a plurality of recesses are formed,
A second sliding member having a second sliding surface facing the first sliding surface of the first sliding member via a lubricating oil is provided.
In each of the plurality of recesses, the entire peripheral edge is located inside the peripheral edge of the first sliding surface in a plan view, and the second sliding member is relative to the first sliding member. It has an anisotropic shape in which the length in the central axis direction along the sliding sliding direction and the length in the direction orthogonal to the central axis direction are different, and the depth is toward one direction parallel to the central axis. There possess a first inclined surface inclined in a manner that increases, and the second inclined surface depth toward the one direction is inclined with decreasing form, a,
The central axis of each of the plurality of recesses when viewed from a direction orthogonal to the first sliding surface is inclined with respect to the sliding direction.
Sliding mechanism.
前記第1傾斜面の前記第1摺動面に対する傾斜角は、前記第2傾斜面の第1摺動面に対する傾斜角よりも小さい、
請求項1に記載の摺動機構。
The inclination angle of the first inclined surface with respect to the first sliding surface is smaller than the inclination angle of the second inclined surface with respect to the first sliding surface.
The sliding mechanism according to claim 1.
前記複数の窪み部それぞれの前記第2傾斜面は、前記第1傾斜面と前記第2傾斜面との境界部分から離れるにつれて前記摺動方向に直交する方向の幅が狭くなっている、
請求項1または2に記載の摺動機構。
The width of the second inclined surface of each of the plurality of recessed portions becomes narrower in the direction orthogonal to the sliding direction as the distance from the boundary portion between the first inclined surface and the second inclined surface increases.
The sliding mechanism according to claim 1 or 2.
前記第1摺動面と直交する方向から見たときの、前記摺動方向に直交する方向で隣り合う2つの窪み部それぞれの中心軸は、前記摺動方向側で互いに交差している、
請求項に記載の摺動機構。
When viewed from a direction orthogonal to the first sliding surface, the central axes of the two recesses adjacent to each other in the direction orthogonal to the sliding direction intersect each other on the sliding direction side.
The sliding mechanism according to claim 1.
前記第1摺動面と直交する方向から見たときの、前記摺動方向に直交する方向で隣り合う2つの窪み部それぞれの中心軸は、互いに平行である、
請求項に記載の摺動機構。
When viewed from a direction orthogonal to the first sliding surface, the central axes of the two recesses adjacent to each other in the direction orthogonal to the sliding direction are parallel to each other.
The sliding mechanism according to claim 1.
ベーンと、
前記ベーンが内側を摺動するベーン溝を有するシリンダと、
前記シリンダ内に配置され偏心回転するピストンと、を備え、
前記ベーンの摺動面に複数の窪み部が形成され、
前記複数の窪み部は、それぞれ、平面視において、周縁全体が前記摺動面の周縁よりも内側に位置し、前記ベーンに対して前記ベーン溝の内壁が相対的に摺動する摺動方向に沿った中心軸方向の長さと前記中心軸方向と直交する方向の長さとが異なる異方的な形状を有し、前記中心軸に平行な一方向に向かって深さが増加する形で傾斜した第1傾斜面と、前記一方向に向かって深さが減少する形で傾斜した第2傾斜面と、を有し、
前記摺動面と直交する方向から見たときの前記複数の窪み部それぞれの中心軸は、前記摺動方向に対して傾斜している、
圧縮機。
With Vane,
A cylinder having a vane groove on which the vane slides inside,
With a piston arranged in the cylinder and rotating eccentrically,
A plurality of recesses are formed on the sliding surface of the vane.
In each of the plurality of recesses, in a plan view, the entire peripheral edge is located inside the peripheral edge of the sliding surface, and the inner wall of the vane groove slides relative to the vane in the sliding direction. It has an anisotropic shape in which the length in the direction along the central axis and the length in the direction orthogonal to the central axis are different, and it is inclined so that the depth increases in one direction parallel to the central axis. a first inclined surface, and the second inclined surface depth toward the one direction is inclined with decreasing form, was closed,
The central axis of each of the plurality of recesses when viewed from a direction orthogonal to the sliding surface is inclined with respect to the sliding direction.
Compressor.
JP2017103357A 2017-05-25 2017-05-25 Sliding mechanism and compressor Active JP6967875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017103357A JP6967875B2 (en) 2017-05-25 2017-05-25 Sliding mechanism and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017103357A JP6967875B2 (en) 2017-05-25 2017-05-25 Sliding mechanism and compressor

Publications (2)

Publication Number Publication Date
JP2018197540A JP2018197540A (en) 2018-12-13
JP6967875B2 true JP6967875B2 (en) 2021-11-17

Family

ID=64663824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017103357A Active JP6967875B2 (en) 2017-05-25 2017-05-25 Sliding mechanism and compressor

Country Status (1)

Country Link
JP (1) JP6967875B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737064B (en) * 2018-12-29 2023-12-15 广东汉德精密机械股份有限公司 Air compressor with electric field oil-gas separation function

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754826B2 (en) * 1990-02-05 1998-05-20 松下電器産業株式会社 Rotary compressor
JP5799258B2 (en) * 2011-06-15 2015-10-21 パナソニックIpマネジメント株式会社 Sliding member and compressor
JP6032958B2 (en) * 2012-06-14 2016-11-30 三菱重工業株式会社 Rotary compressor
JP2016160916A (en) * 2015-03-05 2016-09-05 東芝キヤリア株式会社 Airtight type rotary compressor, refrigeration cycle device and vane film manufacturing method

Also Published As

Publication number Publication date
JP2018197540A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
KR102249115B1 (en) Compressor
CN106041649B (en) Grinding processing method and grinding attachment
SE539610C2 (en) Tools and process for machining a profile in a cylindrical surface
JP6967875B2 (en) Sliding mechanism and compressor
JP2008095721A (en) Sliding member
KR0173342B1 (en) Fine processing method of cardiocle type and blated cardioid type casing curve for eccentric rotor vane pump
CN106337756A (en) Machine With Reduced Cylinder Friction
JP6238784B2 (en) Manufacturing method of rotary compressor and rotary compressor obtained by the manufacturing method
JP2007046660A (en) Slide receiving member
JP2012154235A (en) Rotary compressor
JP6012574B2 (en) Scroll member and scroll type fluid machine
CN105051386A (en) Sliding surface
CN208787565U (en) Cutter tip, cutting element and processing unit (plant)
JP5787744B2 (en) Sliding mechanism, rotary compressor and scroll compressor
CN113906208B (en) Sliding structure of internal combustion engine
JP4103602B2 (en) Sliding member, crankshaft, and variable compression ratio engine
JP2005113684A (en) Oil ring, its manufacturing method and piston structure using this oil ring
JP6437088B2 (en) Rotary compressor and method for manufacturing the same
WO2021260759A1 (en) Rotary compressor
JP3833855B2 (en) Hermetic compressor and piston processing method thereof
JP2012237197A (en) Rotary compressor
JP5879474B2 (en) Rotary compressor
JP6485623B2 (en) Scroll compressor
CN205243851U (en) Compresser cylinder, rolling rotor formula compressing mechanism and compressor
JP6032958B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211026

R150 Certificate of patent or registration of utility model

Ref document number: 6967875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150