JP6964089B2 - Dopants for conductive polymers, conductive polymers using them, and methods for producing conductive polymers - Google Patents

Dopants for conductive polymers, conductive polymers using them, and methods for producing conductive polymers Download PDF

Info

Publication number
JP6964089B2
JP6964089B2 JP2018552562A JP2018552562A JP6964089B2 JP 6964089 B2 JP6964089 B2 JP 6964089B2 JP 2018552562 A JP2018552562 A JP 2018552562A JP 2018552562 A JP2018552562 A JP 2018552562A JP 6964089 B2 JP6964089 B2 JP 6964089B2
Authority
JP
Japan
Prior art keywords
conductive polymer
dopant
polymer
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018552562A
Other languages
Japanese (ja)
Other versions
JPWO2018097085A1 (en
Inventor
文明 小林
秀二 岡本
智弘 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Chemical and Engineering Co Ltd
Original Assignee
Soken Chemical and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Chemical and Engineering Co Ltd filed Critical Soken Chemical and Engineering Co Ltd
Publication of JPWO2018097085A1 publication Critical patent/JPWO2018097085A1/en
Application granted granted Critical
Publication of JP6964089B2 publication Critical patent/JP6964089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/30Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen phosphorus-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/395Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Silicon Polymers (AREA)
  • Conductive Materials (AREA)

Description

本発明は、導電性高分子用ドーパント及びそれを用いた導電性高分子の製造方法、並びに導電性高分子に関するものである。 The present invention relates to a dopant for a conductive polymer, a method for producing a conductive polymer using the dopant, and a conductive polymer.

従来の導電性高分子として、ポリエチレンジオキシチオフェン(PEDOT)にポリスチレンスルホン酸(PSS)をドープしたPEDOT−PSSが代表として挙げられ、工業的に利用されている。(例えば、特許文献1)しかし、このPEDOT−PSSはPSSのドープとして用いられないスルホン酸基によって、水中における分散安定を特徴としているため、高い酸性度による金属腐食性を有する、といった課題や、有機溶剤には安定的に分散しない、といった課題があった。また、各種材料を混合し、塗料として配合する際には、バインダー及び各種添加剤は水系に限定される、といった課題があった。 As a conventional conductive polymer, PEDOT-PSS obtained by doping polyethylene dioxythiophene (PEDOT) with polystyrene sulfonic acid (PSS) is a typical example, and is used industrially. (For example, Patent Document 1) However, since this PEDOT-PSS is characterized by dispersion stability in water due to a sulfonic acid group that is not used as a dope for PSS, there is a problem that it has metal corrosiveness due to high acidity. There is a problem that the organic solvent does not disperse stably. Further, when various materials are mixed and blended as a paint, there is a problem that the binder and various additives are limited to an aqueous system.

これらの課題に対して、本質的に溶剤に可溶しないポリアニリンを、ナノサイズレベルまで粉砕微粉化しポリアニリンおよび溶剤に親和性の高いパラトルエンスルホン酸や(特許文献2)、ドデシルベンゼンスルホン酸(特許文献3)等のスルホン酸アニオン乳化剤を分散剤として用いながら溶剤に共分散させ、ナノレベルでの微分散体溶液の提供に関する検討や、更に立体障害性の高い分岐型アルキルを用いた、ジ(2−エチルヘキシル)スルホコハク酸を用いた検討(特許文献4)がなされている。また、溶剤への溶解性を目的として、スルホン酸基含有ポリ(メタ)アクリル酸エステルをドープした導電性高分子に関する検討もなされている(特許文献5)。 To address these issues, polyaniline, which is essentially insoluble in solvents, is pulverized to a nano-sized level and paratoluene sulfonic acid, which has high affinity for polyaniline and solvents (Patent Document 2), and dodecylbenzene sulfonic acid (Patent). Di (di A study using 2-ethylhexyl) sulfosuccinic acid has been made (Patent Document 4). Further, a conductive polymer doped with a sulfonic acid group-containing poly (meth) acrylic acid ester has been studied for the purpose of solubility in a solvent (Patent Document 5).

特開平7−90060号公報Japanese Unexamined Patent Publication No. 7-90060 特表2007−518859号公報Special Table 2007-518859 特開2014−075415号公報Japanese Unexamined Patent Publication No. 2014-075451 特許第4137583号Patent No. 4137583 特許第5435436号Patent No. 5435436

しかし、特許文献2、3における検討では、分子サイズの小さいドーパントである事や各種有機溶剤との親和性に制限があるためπ共役系部分間のスタック抑制効果が小さく、溶剤分散性を十分に付与できないという課題がある。 However, in the studies in Patent Documents 2 and 3, the effect of suppressing the stack between the π-conjugated system portions is small due to the fact that the dopant has a small molecular size and the affinity with various organic solvents is limited, and the solvent dispersibility is sufficiently sufficient. There is a problem that it cannot be granted.

特許文献4における検討では、分散性がまだ十分ではなく、幅広い極性の溶剤に分散させることは困難であった。 In the study in Patent Document 4, the dispersibility was not yet sufficient, and it was difficult to disperse in a solvent having a wide range of polarities.

また、特許文献5における検討では、ある程度の溶剤分散性を得ることができるものの、高分子ドーパント上に不均一にπ共役が生成されるため、不溶部位であるπ共役部分が分子内及び分子間で凝集状態を取りやすい構造となり、導電性高分子の粒子径が大きくなることが多く、分散安定状態を確保することが難しい、という課題がある。 Further, in the study in Patent Document 5, although a certain degree of solvent dispersibility can be obtained, π-conjugated part is generated non-uniformly on the polymer dopant, so that the π-conjugated part, which is an insoluble site, is intramolecular and intermolecular. The structure is such that it is easy to take an aggregated state, and the particle size of the conductive polymer is often large, so there is a problem that it is difficult to secure a stable dispersion state.

本発明はこのような事情に鑑みてなされたもので、有機溶剤への分散性に優れた導電性高分子を得ることを可能にする、導電性高分子用ドーパントを提供するものである。 The present invention has been made in view of such circumstances, and provides a dopant for a conductive polymer, which makes it possible to obtain a conductive polymer having excellent dispersibility in an organic solvent.

本発明によれば、重量平均分子量500以上であり、シリコーン骨格を有し、かつ、置換基を少なくとも1つ以上有する化合物であり、前記置換基がスルホン酸基又はリン酸基若しくはそれらの塩のいずれかである導電性高分子用ドーパント、が提供される。 According to the present invention, the compound has a weight average molecular weight of 500 or more, has a silicone skeleton, and has at least one substituent, and the substituent is a sulfonic acid group, a phosphoric acid group, or a salt thereof. A dopant for a conductive polymer, which is either, is provided.

本発明者らは、導電性高分子の溶剤分散性を向上させるべく鋭意検討を行った結果、導電性高分子用ドーパントが重量平均分子量500以上であり、シリコーン骨格を有しており、スルホン酸又はリン酸若しくはそれらの塩を1つ以上有する化合物である場合に、導電性高分子の溶剤分散性が優れることを見出し、本発明の完成に到った。 As a result of diligent studies to improve the solvent dispersibility of the conductive polymer, the present inventors have found that the dopant for the conductive polymer has a weight average molecular weight of 500 or more, has a silicone skeleton, and is a sulfonic acid. Alternatively, the present invention has been completed by finding that the conductive polymer has excellent solvent dispersibility when it is a compound having one or more phosphoric acid or a salt thereof.

以下、本発明の種々の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。 Hereinafter, various embodiments of the present invention will be illustrated. The embodiments shown below can be combined with each other.

好ましくは、前記置換基が、シリコーン骨格における片末端又は両末端に結合されている、導電性高分子用ドーパントである。 Preferably, the substituent is a dopant for a conductive polymer bonded to one end or both ends of the silicone skeleton.

好ましくは、前記シリコーン骨格が、下記の一般式(1)で表される構造単位を有する化合物である、導電性高分子用ドーパントである。

Figure 0006964089
[式中、ここで、nは2〜200の整数を示し、各Rは独立に炭素数が3以下のアルキル基又は非置換もしくは置換フェニル基を示す。]Preferably, the silicone skeleton is a dopant for a conductive polymer, which is a compound having a structural unit represented by the following general formula (1).
Figure 0006964089
[In the formula, where n represents an integer of 2 to 200, and each R independently represents an alkyl group having 3 or less carbon atoms or an unsubstituted or substituted phenyl group. ]

好ましくは、前記重量平均分子量が、500〜20000である、導電性高分子用ドーパントである。 Preferably, it is a dopant for a conductive polymer having the weight average molecular weight of 500 to 20000.

本発明によれば、前記導電性高分子用ドーパントと、π共役系高分子を含む導電性高分子、が提供される。 According to the present invention, the dopant for a conductive polymer and a conductive polymer containing a π-conjugated polymer are provided.

好ましくは、前記π共役系高分子が、チオフェン、アニリン、ピロール及びこれらの誘導体からなる群から選択される少なくとも1つのモノマーを重合してなる、導電性高分子である。 Preferably, the π-conjugated polymer is a conductive polymer obtained by polymerizing at least one monomer selected from the group consisting of thiophene, aniline, pyrrole and derivatives thereof.

本発明によれば、前記導電性高分子を有機溶剤に分散させた導電性高分子の分散液、が提供される。 According to the present invention, there is provided a dispersion liquid of a conductive polymer in which the conductive polymer is dispersed in an organic solvent.

本発明によれば、前記導電性高分子用ドーパントを準備する工程と、前記導電性高分子用ドーパント及びπ共役系高分子のモノマーを含む混合物を準備する工程と、前記混合物において重合を行う工程とを有する導電性高分子の製造方法、が提供される。 According to the present invention, a step of preparing the dopant for a conductive polymer, a step of preparing a mixture containing the dopant for a conductive polymer and a monomer of a π-conjugated polymer, and a step of performing polymerization in the mixture. A method for producing a conductive polymer having the above is provided.

以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described. The various features shown in the embodiments shown below can be combined with each other. In addition, the invention is independently established for each feature.

<1.導電性高分子用ドーパントA>
本発明の導電性高分子用ドーパントは、重量平均分子量500以上であり、シリコーン骨格を有し、スルホン酸基又はリン酸基若しくはそれらの塩である置換基を少なくとも1つ以上有する化合物である(以下、導電性高分子用ドーパントAと称する)。すなわち、上記構成とすることで有機溶剤への溶解性を得ることができる。また、導電性高分子用ドーパントAは、化合物中に親水性基の部位と疎水性基の部位とを有しているが、上記構成であることで極性溶媒、非極性溶媒にかかわらず広範な種類の溶剤への溶解性を得ることができる。
<1. Dopant A for conductive polymers>
The dopant for a conductive polymer of the present invention is a compound having a weight average molecular weight of 500 or more, a silicone skeleton, and at least one substituent which is a sulfonic acid group or a phosphoric acid group or a salt thereof ((). Hereinafter referred to as a dopant A for a conductive polymer). That is, with the above configuration, solubility in an organic solvent can be obtained. Further, the dopant A for a conductive polymer has a hydrophilic group site and a hydrophobic group site in the compound, but with the above configuration, it has a wide range regardless of whether it is a polar solvent or a non-polar solvent. Solubility in various solvents can be obtained.

<1.1 重量平均分子量>
本発明の導電性高分子用ドーパントAの重量平均分子量は、500以上であり、好ましくは1000以上であり、より好ましくは2000以上である。この場合、ドーパントA自体の溶剤溶解性が良好になり、且つこのドーパントAを用いて作製した導電性高分子の有機溶剤への分散性が向上する。ドーパントAの重量平均分子量は、好ましくは20000以下であり、より好ましくは15000以下であり、より好ましくは10000以下である。この場合、導電性高分子の合成時の重合場(水溶性)への溶解性及び導電性高分子の溶剤分散性を得ることができる。ドーパントAの重量平均分子量は、具体的には例えば、500、1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、7000、8000、9000、10000、12000、14000、16000、18000、20000であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<1.1 Weight average molecular weight>
The weight average molecular weight of the conductive polymer dopant A of the present invention is 500 or more, preferably 1000 or more, and more preferably 2000 or more. In this case, the solvent solubility of the dopant A itself becomes good, and the dispersibility of the conductive polymer produced by using the dopant A in the organic solvent is improved. The weight average molecular weight of the dopant A is preferably 20,000 or less, more preferably 15,000 or less, and even more preferably 10,000 or less. In this case, the solubility of the conductive polymer in the polymerization field (water-soluble) at the time of synthesis and the solvent dispersibility of the conductive polymer can be obtained. Specifically, the weight average molecular weight of the dopant A is, for example, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000, 9000, 10000, 12000, 14000. It is 16000, 18000, 20000, and may be within the range between any two of the numerical values exemplified here.

導電性高分子用ドーパントの重量平均分子量は、例えば、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定することができる。 The weight average molecular weight of the dopant for a conductive polymer can be measured by using, for example, GPC (gel permeation chromatography).

<1.2 シリコーン骨格>
導電性高分子用ドーパントAは、主鎖にシリコーン骨格を有しているものであれば特に限定されないが、例えば、下記の一般式(1)で表される構造単位を有する化合物等があげられる。
<1.2 Silicone skeleton>
The dopant A for a conductive polymer is not particularly limited as long as it has a silicone skeleton in the main chain, and examples thereof include compounds having a structural unit represented by the following general formula (1). ..

Figure 0006964089
[式中、ここで、nは2〜200の整数を示し、各Rは独立に炭素数が3以下のアルキル基又は非置換もしくは置換フェニル基を示す。]
Figure 0006964089
[In the formula, where n represents an integer of 2 to 200, and each R independently represents an alkyl group having 3 or less carbon atoms or an unsubstituted or substituted phenyl group. ]

ここで、アルキル基は、好ましくはメチル基であり、より好ましくは各Rが共にメチル基であることで、導電性高分子の凝集を抑制してさらに優れた溶剤分散性を確保できる点で好ましい。nの値は、2〜200であり、好ましくは2〜120であり、より好ましくは2〜60である。 Here, the alkyl group is preferably a methyl group, and more preferably each R is a methyl group, so that aggregation of the conductive polymer can be suppressed and further excellent solvent dispersibility can be ensured. .. The value of n is 2 to 200, preferably 2 to 120, and more preferably 2 to 60.

<1.3 置換基>
導電性高分子用ドーパントAは、置換基としてスルホン酸基又はリン酸基若しくはそれらの塩を少なくとも1つ以上有しているものであれば特に限定されない。すなわち、導電性高分子用ドーパントが上記置換基を有していることで水溶性を得ることができ、水中下での導電性高分子の重合を進行させ、且つ同時にドープすることができるようになる。ここで、より好ましくは置換基がスルホン酸基である。
<1.3 Substituents>
The dopant A for a conductive polymer is not particularly limited as long as it has at least one sulfonic acid group, a phosphoric acid group, or a salt thereof as a substituent. That is, since the dopant for the conductive polymer has the above-mentioned substituent, water solubility can be obtained, so that the polymerization of the conductive polymer can proceed in water and can be doped at the same time. Become. Here, the substituent is more preferably a sulfonic acid group.

上記スルホン酸塩あるいはリン酸塩としては、例えば、スルホン酸ナトリウム、スルホン酸カリウム等のスルホン酸金属塩やスルホン酸アンモニウム塩、スルホン酸ピリジウム塩等あるいはリン酸ナトリウム、リン酸カリウム等のリン酸金属塩やリン酸アンモニウム塩等があげられる。 Examples of the sulfonate or phosphate include metal sulfonates such as sodium sulfonate and potassium sulfonate, ammonium sulfonates, pyridium sulfonates and the like, and metals phosphates such as sodium phosphate and potassium phosphate. Examples include salts and ammonium phosphate salts.

導電性高分子用ドーパントAは、好ましくは置換基数が1つまたは2つである。より好ましくは前記置換基がシリコーン骨格の片末端又は両末端に結合されているものである。すなわち、そのような化合物であれば導電性高分子用ドーパントとしてドープした際に得られた導電性高分子の凝集を抑制し、導電性高分子の粒径が大きくなることを抑制することができ、有機溶剤に対して高い分散性を得ることができる。より優れた溶剤分散性を得るためには、前記置換基がシリコーン骨格の片末端に結合されているものであることが好ましい。 The conductive polymer dopant A preferably has one or two substituents. More preferably, the substituent is bonded to one end or both ends of the silicone skeleton. That is, such a compound can suppress the aggregation of the conductive polymer obtained when it is doped as a dopant for the conductive polymer, and can suppress the increase in the particle size of the conductive polymer. , High dispersibility in organic solvents can be obtained. In order to obtain better solvent dispersibility, it is preferable that the substituent is bonded to one end of the silicone skeleton.

<1.4 導電性高分子用ドーパントAの合成>
導電性高分子用ドーパントAの合成経路については特に限定されず、導電性高分子用ドーパント中の一部が有機基で変性された化合物に対してスルホン酸基あるいはその塩、又はリン酸基あるいはその塩を導入できるものであればよい。例えば、シリコーン化合物の一部がエポキシ基、カルビノール基、ジオール基、メタクリル基、カルボキシル基、ポリエーテル基、アミノ基、メルカプト基、フェノール、シラノール基、アクリル基等によって変性されたもの対してスルホン酸基又はリン酸基若しくはそれらの塩を導入したもの等があげられる。
<1.4 Synthesis of Dopant A for Conductive Polymers>
The synthetic route of the conductive polymer dopant A is not particularly limited, and the sulfonic acid group or a salt thereof, or the phosphoric acid group or a compound having a part of the conductive polymer dopant modified with an organic group is not particularly limited. Anything that can introduce the salt will do. For example, a part of the silicone compound is modified with an epoxy group, a carbinol group, a diol group, a methacryl group, a carboxyl group, a polyether group, an amino group, a mercapto group, a phenol, a silanol group, an acrylic group, etc. Examples thereof include those having an acid group, a phosphoric acid group, or a salt thereof introduced therein.

導電性高分子用ドーパントAは、例えば、次のようにして合成することができる。すなわち、重量平均分子量500以上であり、シリコーン骨格を有する化合物(例えば、片末端エポキシオルガノシロキサン(信越化学工業製 X−22−173BX))と、2−メルカプトエタンスルホン酸ナトリウムと、イソプロピルアルコールと、トリエチルアミンとを混合し、加熱還流下所定時間(例えば、15時間)反応させた後、反応物に水を加え減圧留去によりイソプロピルアルコールを除去してスルホン酸化合物の乳化液により導電性高分子用ドーパントAを得ることができる。ここで、有機置換基の結合位置は片末端に限られず両末端に結合しているものであってもよい。 The conductive polymer dopant A can be synthesized, for example, as follows. That is, a compound having a weight average molecular weight of 500 or more and having a silicone skeleton (for example, one-terminal epoxy organosiloxane (X-22-173BX manufactured by Shin-Etsu Chemical Industry Co., Ltd.)), sodium 2-mercaptoethanesulfonate, isopropyl alcohol, and the like. After mixing with triethylamine and reacting under heating and reflux for a predetermined time (for example, 15 hours), water is added to the reaction product, isopropyl alcohol is removed by distillation under reduced pressure, and an emulsion of a sulfonic acid compound is used for a conductive polymer. Dopant A can be obtained. Here, the bonding position of the organic substituent is not limited to one end, and may be bonded to both ends.

<2.導電性高分子>
本発明の導電性高分子は、導電性高分子用ドーパントAと、π共役系高分子を含む。この導電性高分子は、溶剤分散性を有している。ここで、導電性高分子用ドーパントについては本発明のドーパントAの構成の範囲内であれば適宜変更することが可能である。
<2. Conductive polymer>
The conductive polymer of the present invention includes a dopant A for a conductive polymer and a π-conjugated polymer. This conductive polymer has solvent dispersibility. Here, the dopant for the conductive polymer can be appropriately changed as long as it is within the configuration of the dopant A of the present invention.

また、前記高分子用ドーパントA以外に、導電性高分子の分野で一般的に使用されるドーパントを併用することも可能である。 In addition to the polymer dopant A, a dopant generally used in the field of conductive polymers can also be used in combination.

導電性高分子の分野で一般的に使用されるドーパントは、一般には電子受容性の物質であり、例えばハロゲン、ルイス酸、プロトン酸、遷移金属ハロゲン化物などが用いられる。前記導電性高分子用ドーパントAに加えて、前述の一般的なドーパントを導電性高分子用ドーパントBとして併用する場合は、ドーパントA及びドーパントBは、任意の割合で併用することができ、目的に合わせて適宜選択することが可能である。 Dopants generally used in the field of conductive polymers are generally electron-accepting substances, such as halogens, Lewis acids, protonic acids, transition metal halides and the like. When the above-mentioned general dopant is used in combination as the conductive polymer dopant B in addition to the conductive polymer dopant A, the dopant A and the dopant B can be used in arbitrary proportions, and the purpose is It is possible to select as appropriate according to the above.

前記π共役系高分子とは、π共役系高分子のモノマーの重合により得られる高分子をいい、具体的には、ポリチオフェン、ポリアニリン、ポリピロール、ポリ3,4−エチレンジオキシチオフェン、ポリ3−メトキシチオフェン、ポリ3,4−ジメトキシチオフェン、ポリ3−ヘキシルチオフェン、ポリ3−メチルピロール、ポリ3−メチルチオフェン、ポリo−トルイジン、ポリo−アニシジン、ポリo−エチルアニリン、ポリsec−ブチルアニリン等があげられる。 The π-conjugated polymer refers to a polymer obtained by polymerizing a monomer of the π-conjugated polymer, and specifically, polythiophene, polyaniline, polypyrrole, poly3,4-ethylenedioxythiophene, poly3-. Polythiophene, poly3,4-dimethoxythiophene, poly3-hexylthiophene, poly3-methylpyrrole, poly3-methylthiophene, polyo-toluidine, polyo-anisidine, polyo-ethylaniline, polysec-butylaniline And so on.

また、π共役系高分子の数平均分子量は、通常1000〜300000である。この範囲内であれば導電性高分子として用途を限定せず利用することができるという点で好ましい。この数平均分子量は、ドープ成分を脱離させた後にπ共役系高分子骨格が可溶となる溶剤を用いてGPCで測定した値であり、ドープ脱離行程(アルカリ処理や電気的分解等)の時点でのπ共役系高分子の分解等も包括された参考値である。 The number average molecular weight of the π-conjugated polymer is usually 1000 to 300,000. Within this range, it is preferable in that it can be used as a conductive polymer without limitation. This number average molecular weight is a value measured by GPC using a solvent in which the π-conjugated polymer skeleton becomes soluble after desorbing the dope component, and is a dope desorption process (alkali treatment, electrical decomposition, etc.). The decomposition of the π-conjugated polymer at the time of is also a comprehensive reference value.

本発明の導電性高分子は、ポリチオフェン、ポリアニリン、ポリピロール等のπ共役系高分子にドープして得られる導電性高分子が有する導電率(10−6[S/cm]以上)と同等以上の導電率を有しており、導電性が要求される部分に適用することが可能であり、用途については特に限定されない。導電性高分子の導電率は、具体的には例えば、10−6〜10−1[S/cm]、の範囲内の導電率を示すものであればよく、この範囲の導電率よりも高い導電率を示してもよい。また、導電性高分子の導電率は、10−6、10−5、10−4、10−3、10−2、10−1[S/cm]で示される数値から選択される何れか2つの間の範囲内であってもよい。その中でも、実用上、安定した性能を発現する観点から10−3[S/cm]以上の導電率を示すことが好ましい。 The conductive polymer of the present invention has a conductivity (10-6 [S / cm] or more) equal to or higher than that of the conductive polymer obtained by doping with a π-conjugated polymer such as polythiophene, polyaniline, or polypyrrole. It has conductivity, can be applied to a part where conductivity is required, and its application is not particularly limited. Specifically, the conductivity of the conductive polymer may be, for example, one showing a conductivity in the range of 10-6 to -1 [S / cm], which is higher than the conductivity in this range. It may show conductivity. The conductivity of the conductive polymer is any 2 selected from the numerical values indicated by 10-6 , 10-5 , 10-4 , 10-3 , 10-2 , and 10-1 [S / cm]. It may be within the range between the two. Among them, practically, it is preferable to exhibit a conductivity of 10 -3 [S / cm] or more from the viewpoint of exhibiting stable performance.

また、本発明の導電性高分子は、本発明の導電性高分子以外の高分子と併用して用いてもよい。ここで高分子としては特に限定されるものではなく、公知のものを適用でき、例えば、アクリル樹脂、メタクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂等の各種樹脂が挙げられる。 Further, the conductive polymer of the present invention may be used in combination with a polymer other than the conductive polymer of the present invention. Here, the polymer is not particularly limited, and known ones can be applied, and examples thereof include various resins such as acrylic resin, methacrylic resin, polyurethane resin, polyester resin, and epoxy resin.

<3.導電性高分子の分散液>
本発明の導電性高分子は、メチルエチルケトン、メチルイソブチルケトン、アセトン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、トルエン等の芳香族系溶剤、テトラヒドロフラン等のエーテル系溶剤等に安定的に分散可能である。ここで、本発明の導電性高分子をより安定的に分散でき、かつ種々の溶剤系樹脂の汎用溶剤として用いられるという点でメチルエチルケトン、酢酸エチルに分散させることが好ましい。
<3. Dispersion liquid of conductive polymer>
The conductive polymer of the present invention is stable to ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and acetone, ester solvents such as ethyl acetate and butyl acetate, aromatic solvents such as toluene, and ether solvents such as tetrahydrofuran. Dispersible. Here, it is preferable to disperse the conductive polymer of the present invention in methyl ethyl ketone and ethyl acetate in that it can be dispersed more stably and can be used as a general-purpose solvent for various solvent-based resins.

導電性高分子の分散液は、例えば、次のようにして準備することができる。前述の溶剤等を投入した容器に、分散機を用いてせん断をかけながら本発明の導電性高分子を投入して分散液を調製する。ここで、導電性高分子の投入は、一度に行ってもよいし、その一部を分割して複数回に亘って投入してもよい。一度に投入することが分散時間を短縮できるため好ましい。また、溶剤及び導電性高分子を同時に投入することで分散液を調製しても何ら問題はない。分散機としては、ホモミキサー、高圧ホモジナイザー、超音波ホモジナイザー等を使用できる。 The dispersion liquid of the conductive polymer can be prepared, for example, as follows. The conductive polymer of the present invention is put into the container containing the above-mentioned solvent or the like while shearing using a disperser to prepare a dispersion liquid. Here, the conductive polymer may be charged at one time, or a part thereof may be divided and charged a plurality of times. It is preferable to put them all at once because the dispersion time can be shortened. Further, there is no problem even if the dispersion liquid is prepared by adding the solvent and the conductive polymer at the same time. As the disperser, a homomixer, a high-pressure homogenizer, an ultrasonic homogenizer, or the like can be used.

以上のようにして得られる導電性高分子の分散液には、高導電化を促進する助剤や、分散安定性を底上げするための分散剤、その他にはレベリング剤、可塑剤、濡れ剤、増粘剤、酸化防止剤、紫外線吸収剤、充填剤、防錆剤、顔料などの各種汎用添加剤を用いても良い。 The dispersion liquid of the conductive polymer obtained as described above includes an auxiliary agent for promoting high conductivity, a dispersant for raising the dispersion stability, and other leveling agents, plasticizers, and wetting agents. Various general-purpose additives such as thickeners, antioxidants, ultraviolet absorbers, fillers, rust preventives, and pigments may be used.

<4.導電性高分子の製造方法>
本発明の導電性高分子の製造方法は、前記導電性高分子用ドーパントAを準備する工程と、前記導電性高分子用ドーパントA及びπ共役系高分子のモノマーを含む混合物を準備する工程と、前記混合物において重合する工程とを有するものである。すなわち、本発明の導電性高分子は、π共役系高分子のモノマーの重合時に前記導電性高分子用ドーパントAをドープして得ることができる。その結果、導電性高分子の凝集を抑制することができ、有機溶剤(例えば、極性、非極性を問わず、酢酸エチル、メチルエチルケトン、トルエン等)への安定的な分散性を得ることができる。
<4. Method of manufacturing conductive polymer>
The method for producing a conductive polymer of the present invention includes a step of preparing the dopant A for a conductive polymer and a step of preparing a mixture containing the dopant A for a conductive polymer and a monomer of a π-conjugated polymer. , The step of polymerizing in the mixture. That is, the conductive polymer of the present invention can be obtained by doping the conductive polymer dopant A at the time of polymerization of the monomer of the π-conjugated polymer. As a result, aggregation of the conductive polymer can be suppressed, and stable dispersibility in an organic solvent (for example, ethyl acetate, methyl ethyl ketone, toluene, etc., regardless of polarity or non-polarity) can be obtained.

本発明の導電性高分子は、例えば、つぎのようにして合成することができる。すなわち、前記π共役系高分子のモノマー(例えば、チオフェン)と、導電性高分子用ドーパントAと、濃塩酸、硫酸鉄を混合し、所定温度(例えば、30℃)を保持するように制御しながら所定時間撹拌した後、過硫酸アンモニウム等の酸化剤を所定時間(例えば、1時間)かけて滴下し、数時間(例えば、5時間)酸化重合させて、重合物を得る。その後、反応液を所定の方法により固液分離を行い導電性高分子の湿体品を得る。その後、導電性高分子の湿体品を所定時間、所定温度の条件で凍結乾燥し、導電性高分子を得ることができる。 The conductive polymer of the present invention can be synthesized, for example, as follows. That is, the monomer of the π-conjugated polymer (for example, thiophene), the dopant A for the conductive polymer, concentrated hydrochloric acid, and iron sulfate are mixed and controlled to maintain a predetermined temperature (for example, 30 ° C.). After stirring for a predetermined time while stirring, an oxidizing agent such as ammonium persulfate is added dropwise over a predetermined time (for example, 1 hour), and oxidative polymerization is carried out for several hours (for example, 5 hours) to obtain a polymer. Then, the reaction solution is solid-liquid separated by a predetermined method to obtain a wet product of a conductive polymer. Then, the wet product of the conductive polymer is freeze-dried for a predetermined time under the condition of a predetermined temperature to obtain the conductive polymer.

本発明の導電性高分子の製造方法において、導電性高分子用ドーパントAについては前述の方法により準備することができる。 In the method for producing a conductive polymer of the present invention, the dopant A for a conductive polymer can be prepared by the above-mentioned method.

つぎに、前記導電性高分子用ドーパントAにπ共役系高分子のモノマーを含むことで導電性高分子を重合するための混合物を得ることができる。また、前記高分子用ドーパントA以外のドーパントを併用しても良い。 Next, by including the monomer of the π-conjugated polymer in the dopant A for the conductive polymer, a mixture for polymerizing the conductive polymer can be obtained. Further, a dopant other than the polymer dopant A may be used in combination.

前記π共役系高分子のモノマーとは、重合して得られた高分子が、π電子が共役できる構造、または単結合と多重結合とが交互に連なった構造をとることが可能な高分子を得られるモノマーのことをいい、例えば、チオフェン、アニリン、ピロール、およびこれらの誘導体等のモノマーがあげられる。また、上記モノマーは、炭素数1〜4のアルキル置換基(例えば、メチル基、エチル基、プロピル基、ブチル基)およびアルコキシ置換基(例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基)の少なくとも一方の置換基を有しているものが、溶剤溶解性の点から、好ましい。 The monomer of the π-conjugated polymer is a polymer capable of having a structure in which π-electrons can be conjugated or a structure in which single bonds and multiple bonds are alternately linked. It refers to the obtained monomer, and examples thereof include monomers such as thiophene, aniline, pyrrole, and derivatives thereof. Further, the above-mentioned monomer is composed of an alkyl substituent having 1 to 4 carbon atoms (for example, a methyl group, an ethyl group, a propyl group and a butyl group) and an alkoxy substituent (for example, a methoxy group, an ethoxy group, a propoxy group and a butoxy group). Those having at least one substituent are preferable from the viewpoint of solvent solubility.

なお、前記π共役系高分子のモノマーの重合開始剤としては、例えば、過硫酸アンモニウム、過酸化水素水や過酸化ベンゾイル等の過酸化物、クロラニル等のベンゾキノン、塩化第二鉄等の化学酸化剤を用いることが可能である。 Examples of the polymerization initiator of the π-conjugated polymer monomer include ammonium persulfate, peroxides such as hydrogen peroxide solution and benzoyl peroxide, benzoquinone such as chloranil, and chemical oxidizing agents such as ferric chloride. Can be used.

本発明の導電性高分子は、先に述べた前記導電性高分子用ドーパントA及びπ共役系高分子のモノマーの混合物に対して所定の酸化剤等の添加剤を含み、重合反応させることで得ることができる。 The conductive polymer of the present invention contains an additive such as a predetermined oxidizing agent with the mixture of the above-mentioned dopant A for the conductive polymer and the monomer of the π-conjugated polymer, and is subjected to a polymerization reaction. Obtainable.

ここで、前記π共役系高分子のモノマーと前記導電性高分子用ドーパントAとのモル混合比は、π共役系高分子のモノマー/導電性高分子用ドーパントA=100/1〜100/70の範囲内であることが好ましく、より好ましくは、π共役系高分子のモノマー/導電性高分子用ドーパントA=100/5〜100/50の範囲内である。すなわち、π共役系高分子のモノマー/導電性高分子用ドーパントA=100/5〜100/50の範囲内であることでドーパントの立体障害によりπ共役高分子骨格同士のスタッキングが抑制され溶剤への安定分散が可能になると同時に、加熱乾燥により溶剤を揮発させた場合にはπ共役高分子骨格同士がスタッキングすることにより高い導電性を発現できるという理由で好ましい。 Here, the molar mixing ratio of the π-conjugated polymer monomer and the conductive polymer dopant A is such that the π-conjugated polymer monomer / conductive polymer dopant A = 100/1 to 100/70. It is preferably within the range of, more preferably, the range of the monomer of the π-conjugated polymer / the dopant A for the conductive polymer = 100/5 to 100/50. That is, when the π-conjugated polymer monomer / conductive polymer dopant A = 100/5 to 100/50, stacking between the π-conjugated polymer skeletons is suppressed due to steric damage of the dopant, and the π-conjugated polymer skeleton becomes a solvent. It is preferable because the π-conjugated polymer skeletons can be stacked to exhibit high conductivity when the solvent is volatilized by heating and drying.

本発明の導電性高分子は、その重合の際に非π共役系高分子のモノマーやこれらから誘導される高分子、導電剤等を必要に応じて適宜に配合しても差し支えない。 The conductive polymer of the present invention may be appropriately blended with a monomer of a non-π-conjugated polymer, a polymer derived from these, a conductive agent, or the like at the time of the polymerization.

本発明において、非π共役系高分子とは、前記π共役系高分子のように、単結合と多重結合とが交互に連なった高分子以外の高分子を意味する。 In the present invention, the non-π-conjugated polymer means a polymer other than a polymer in which single bonds and multiple bonds are alternately linked, such as the π-conjugated polymer.

前記非π共役系高分子としては、例えば、アクリル系高分子、メタクリル系高分子、ウレタン系高分子、ゴム系高分子などの熱可塑性樹脂、フェノール系高分子などの熱硬化性樹脂、熱可塑性エラストマー等があげられる。これらは単独でもしくは2種以上併せて用いてもよい。 Examples of the non-π-conjugated polymer include thermoplastic resins such as acrylic polymers, methacrylic polymers, urethane polymers, and rubber polymers, thermosetting resins such as phenolic polymers, and thermoplastics. Examples include polymers. These may be used alone or in combination of two or more.

つぎに、実施例について、比較例と併せて以下に説明する。 Next, Examples will be described below together with Comparative Examples.

<シリコーン化合物の合成>
合成例1:シリコーン化合物1の合成
片末端エポキシオルガノシロキサン(信越化学工業製 X−22−173BX)を30g、2−メルカプトエタンスルホン酸ナトリウムを1.98g、イソプロピルアルコールを23g、トリエチルアミンを0.3g混合し加熱還流下15時間反応させた。反応物に水を加え減圧留去によりイソプロピルアルコールを除去することでシリコーン化合物1の乳化液(不揮発分12.6%)を得た。化合物1の重量平均分子量をGPCによって測定したところ、3500であった。
<Synthesis of silicone compounds>
Synthesis Example 1: Synthesis of Silicone Compound 1 30 g of single-ended epoxy organosiloxane (X-22-173BX manufactured by Shin-Etsu Chemical Co., Ltd.), 1.98 g of sodium 2-mercaptoethanesulfonate, 23 g of isopropyl alcohol, 0.3 g of triethylamine. The mixture was mixed and reacted under heating and reflux for 15 hours. Water was added to the reaction product and isopropyl alcohol was removed by distillation under reduced pressure to obtain an emulsion of silicone compound 1 (nonvolatile content 12.6%). The weight average molecular weight of Compound 1 was measured by GPC and found to be 3500.

合成例2:シリコーン化合物2の合成
片末端エポキシオルガノシロキサン(信越化学工業製 X−22−173DX)と2−メルカプトエタンスルホン酸ナトリウムを合成例1と同様の手順で反応させシリコーン化合物2の乳化液を得た。化合物2の重量平均分子量をGPCによって測定したところ、5400であった。
Synthesis Example 2: Synthesis of Silicone Compound 2 One -terminal epoxy organosiloxane (X-22-173DX manufactured by Shin-Etsu Chemical Co., Ltd.) and sodium 2-mercaptoethanesulfonate are reacted in the same procedure as in Synthesis Example 1 to form an emulsion of silicone compound 2. Got The weight average molecular weight of Compound 2 was measured by GPC and found to be 5400.

合成例3:シリコーン化合物3の合成
片末端メタクリロイルオルガノシロキサン(信越化学工業製 X−22−2426)を15g、2−メルカプトエタンスルホン酸ナトリウムを2.08g、イソプロピルアルコールを48g混合し窒素雰囲気下、加熱還流下で30分攪拌した。その後、ベンゾイルペルオキシド1.55gを加え15時間反応させた。反応物に水を加え減圧留去によりイソプロピルアルコールを除去することでシリコーン化合物3の乳化液を得た。化合物3の重量平均分子量をGPCによって測定したところ、16300であった。
Synthesis Example 3: Synthesis of Silicone Compound 3 15 g of one-terminal methacryloyl organosiloxane (X-22-2426 manufactured by Shin-Etsu Chemical Co., Ltd.), 2.08 g of sodium 2-mercaptoethanesulfonate, and 48 g of isopropyl alcohol are mixed and mixed under a nitrogen atmosphere. The mixture was stirred under heating and reflux for 30 minutes. Then, 1.55 g of benzoyl peroxide was added and reacted for 15 hours. Water was added to the reaction product and isopropyl alcohol was removed by distillation under reduced pressure to obtain an emulsion of silicone compound 3. The weight average molecular weight of Compound 3 was measured by GPC and found to be 16300.

合成例4:シリコーン化合物4の合成
片末端メタクリロイルオルガノシロキサン(信越化学工業製 X−22−2404)を15g、2−メルカプトエタンスルホン酸ナトリウムを5.93g、イソプロピルアルコールを66g混合し窒素雰囲気下、加熱還流下で30分攪拌した。その後、ベンゾイルペルオキシド4.12gを加え7時間反応させた。反応物に水を加え減圧留去によりイソプロピルアルコールを除去することでシリコーン化合物4の乳化液を得た。化合物4の重量平均分子量をGPCによって測定したところ、750であった。
Synthesis Example 4: Synthesis of Silicone Compound 4 15 g of one-terminal methacryloyl organosiloxane (X-22-2404 manufactured by Shin-Etsu Chemical Co., Ltd.), 5.93 g of sodium 2-mercaptoethanesulfonate, and 66 g of isopropyl alcohol are mixed and mixed under a nitrogen atmosphere. The mixture was stirred under heating and reflux for 30 minutes. Then, 4.12 g of benzoyl peroxide was added and reacted for 7 hours. Water was added to the reaction product and isopropyl alcohol was removed by distillation under reduced pressure to obtain an emulsion of silicone compound 4. The weight average molecular weight of Compound 4 was measured by GPC and found to be 750.

合成例5:シリコーン化合物5の合成
両末端カルボキシオルガノシロキサン(信越化学工業製 X−22−162C)を30g、塩化チオニルを20g窒素雰囲気下、室温で5時間反応させ、その後減圧留去により未反応の塩化チオニルを除去することで、カルボン酸クロリドに官能基変換した。得られたカルボン酸クロリド体にイセチオン酸ナトリウム3.68gを60℃、5時間反応することによりシリコーン化合物5の乳化液を得た。化合物5の重量平均分子量をGPCによって測定したところ、5600であった。
Synthesis Example 5: Synthesis of Silicone Compound 5 30 g of both-terminal carboxyorganosiloxane (X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd.) and 20 g of thionyl chloride were reacted at room temperature for 5 hours in a nitrogen atmosphere, and then unreacted by distillation under reduced pressure. By removing thionyl chloride, the functional group was converted to a carboxylic acid chloride. An emulsion of silicone compound 5 was obtained by reacting 3.68 g of sodium isethionic acid with the obtained carboxylic acid chloride compound at 60 ° C. for 5 hours. The weight average molecular weight of Compound 5 was measured by GPC and found to be 5600.

合成例6:シリコーン化合物6の合成
両末端チオールオルガノシロキサン(信越化学工業製 X−22−167B)を30gとリン酸2−(メタクリロイルオキシ)エチルを3.70g、イソプロピルアルコールを66g混合し窒素雰囲気下、加熱還流下で30分攪拌した。その後、ベンゾイルペルオキシド4.27gを加え7時間反応させた。反応物に水を加え減圧留去によりイソプロピルアルコールを除去し、さらに炭酸水素ナトリウムを用いて中和することによりシリコーン化合物6の乳化液を得た。化合物6の重量平均分子量をGPCによって測定したところ、4100であった。
Synthesis Example 6: Synthesis of Silicone Compound 6 30 g of both-terminal thiol organosiloxane (X-22-167B manufactured by Shin-Etsu Chemical Co., Ltd.), 3.70 g of 2- (methacryloyloxy) ethyl phosphate, and 66 g of isopropyl alcohol are mixed to create a nitrogen atmosphere. Below, the mixture was stirred under heating and reflux for 30 minutes. Then, 4.27 g of benzoyl peroxide was added and reacted for 7 hours. Water was added to the reaction product, isopropyl alcohol was removed by distillation under reduced pressure, and the mixture was further neutralized with sodium hydrogen carbonate to obtain an emulsion of silicone compound 6. The weight average molecular weight of Compound 6 was measured by GPC and found to be 4100.

合成例7:シリコーン化合物7の合成
アクリル酸トリイソプロピルシリルを15g、3−スルホプロピルメタクリレートカリウムを16.2g、イソプロピルアルコールを66g混合し窒素雰囲気下、加熱還流下で30分攪拌した。その後、ベンゾイルペルオキシド16.2gを加え7時間反応させた。反応物に水を加え減圧留去によりイソプロピルアルコールを除去することでシリコーン化合物7の乳化液を得た。化合物7の重量平均分子量をGPCによって測定したところ、340であった。
Synthesis Example 7: Synthesis of Silicon Compound 7 15 g of triisopropylsilyl acrylate, 16.2 g of 3-sulfopropyl methacrylate potassium, and 66 g of isopropyl alcohol were mixed and stirred under a nitrogen atmosphere and heated reflux for 30 minutes. Then, 16.2 g of benzoyl peroxide was added and reacted for 7 hours. Water was added to the reaction product and isopropyl alcohol was removed by distillation under reduced pressure to obtain an emulsion of silicone compound 7. The weight average molecular weight of Compound 7 was measured by GPC and found to be 340.

上記合成例1〜7で得られたシリコーン化合物1〜7及び比較対象として用いたその他の化合物A〜C並びにそれらの構造(分子量、主鎖の構造、置換基等)を一覧にしたものを表1として以下に示す。 A list of the silicone compounds 1 to 7 obtained in Synthesis Examples 1 to 7, the other compounds A to C used as comparison targets, and their structures (molecular weight, main chain structure, substituents, etc.) is shown in the table. It is shown below as 1.

Figure 0006964089

化合物A:多環フェニルエーテルのポリエチレンオキサイド末端スルホン酸系乳化剤(日本乳化剤製ニューコール723−SF 分子量1100)
化合物B:ドデシルベンゼンスルホン酸ナトリウム(分子量348)
化合物C:両末端カルボキシオルガノシロキサン(信越化学工業製 X−22−162C、分子量4600)
Figure 0006964089

Compound A: Polyethylene oxide-terminated sulfonic acid-based emulsifier of polycyclic phenyl ether (Newcol 723-SF molecular weight 1100 manufactured by Nippon Emulsifier)
Compound B: Sodium dodecylbenzene sulfonate (molecular weight 348)
Compound C: Both-terminal carboxyorganosiloxane (X-22-162C manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 4600)

導電性高分子用ドーパントの重量平均分子量は、GPC(HLC-8120GPC:東ソー製)を用いて、以下の条件により測定を行った。尚、測定の際に、イオン交換を行いテトラヒドロフランに溶解させた上で、下記の条件で、標準ポリエチレンオキサイド換算により求めた。
<測定条件>
GPCカラム構成:以下の5連カラム
(i)TSK−GEL HXL−H(ガードカラム、東ソー製)
(ii)TSK−GEL 7000HXL(東ソー製)
(iii)TSK−GEL GMHXL(東ソー製)
(iv)TSK−GEL GMHXL(東ソー製)
(v)TSK−GEL G2500HXL(東ソー製)
サンプル濃度:1.0mg/cmとなるようにテトラヒドロフランで希釈
移動相溶媒:テトラヒドロフラン
流速:1.0cm/min.
カラム温度:40℃
The weight average molecular weight of the dopant for the conductive polymer was measured using GPC (HLC-8120 GPC: manufactured by Tosoh) under the following conditions. At the time of measurement, after ion exchange and dissolution in tetrahydrofuran, it was determined by standard polyethylene oxide conversion under the following conditions.
<Measurement conditions>
GPC column configuration: The following 5-column column (i) TSK-GEL HXL-H (guard column, manufactured by Tosoh)
(Ii) TSK-GEL 7000HXL (manufactured by Tosoh)
(Iii) TSK-GEL GMHXL (manufactured by Tosoh)
(Iv) TSK-GEL GMHXL (manufactured by Tosoh)
(V) TSK-GEL G2500HXL (manufactured by Tosoh)
Sample concentration: Dilute with tetrahydrofuran so as to be 1.0 mg / cm 3. Mobile phase solvent: Tetrahydrofuran Flow rate: 1.0 cm 3 / min.
Column temperature: 40 ° C

<導電性高分子の合成>
表1に示したシリコーン化合物及びその他の化合物A〜Cをドーパントとして用いて、導電性高分子の合成を行った。
<Synthesis of conductive polymer>
Conductive polymers were synthesized using the silicone compounds shown in Table 1 and other compounds A to C as dopants.

合成例8:導電性高分子の合成
合成例1で得た酸変性シリコーン化合物1の乳化液142.5g、濃塩酸1.6g、π共役系高分子のモノマーとしてエチレンジオキシチオフェン(EDOT)3.2g、硫酸鉄0.09gをそれぞれ混合し、30℃で30分攪拌した。その後、上記混合物に、過硫酸アンモニウム5.9gをイオン交換水50gに溶かした水溶液を1時間かけて滴下した。その後、30℃の状態を保ち5時間反応させた。得られた反応液を固液分離することで導電性高分子1の湿体品を得た。該湿体品を24時間、0℃で凍結乾燥し、導電性高分子1の乾燥粉末を得た。
Synthesis Example 8: Synthesis of conductive polymer 142.5 g of emulsion of acid-modified silicone compound 1 obtained in Synthesis Example 1, 1.6 g of concentrated sulfuric acid, ethylenedioxythiophene (EDOT) 3 as a monomer of π-conjugated polymer .2 g and 0.09 g of iron sulfate were mixed, and the mixture was stirred at 30 ° C. for 30 minutes. Then, an aqueous solution prepared by dissolving 5.9 g of ammonium persulfate in 50 g of ion-exchanged water was added dropwise to the above mixture over 1 hour. Then, the reaction was carried out for 5 hours while maintaining the state of 30 ° C. A wet product of the conductive polymer 1 was obtained by solid-liquid separation of the obtained reaction solution. The wet product was freeze-dried at 0 ° C. for 24 hours to obtain a dry powder of the conductive polymer 1.

合成例9〜19:導電性高分子の合成
表2に示すドーパント及びπ共役系高分子のモノマーを用いて、合成例8と同様の手順によって導電性高分子2〜12を合成し、各導電性高分子の乾燥粉末を得た。(導電性高分子12については重合が進行せず、得ることができなかった)ここで、何れの合成例においても、π共役系高分子のモノマー/ドーパントのモル比率は100/23であり、同じである。それらについて以下表2に示す。
Synthesis Examples 9 to 19: Synthesis of Conductive Polymers Conductive polymers 2 to 12 are synthesized by the same procedure as in Synthesis Example 8 using the dopant shown in Table 2 and the monomer of the π-conjugated polymer, and each conductive polymer is synthesized. A dry powder of a conductive polymer was obtained. (The polymerization of the conductive polymer 12 did not proceed and could not be obtained.) Here, in any of the synthesis examples, the molar ratio of the monomer / dopant of the π-conjugated polymer was 100/23. It is the same. They are shown in Table 2 below.

Figure 0006964089
Figure 0006964089

実施例1〜8、比較例1〜4
上記の手順で合成した各導電性高分子1〜11を用いて、以下の通り溶剤分散性及び導電性について評価した。その結果を表3として以下に示す。
Examples 1-8, Comparative Examples 1-4
Using each of the conductive polymers 1 to 11 synthesized in the above procedure, the solvent dispersibility and conductivity were evaluated as follows. The results are shown below as Table 3.

<溶剤分散性の評価>
各導電性高分子1〜11を、酢酸エチル、メチルエチルケトン、トルエンに対して不揮発分が1.5%になる比率で混合し、プローブ型超音波ホモジナイザーで処理を行い、各導電性高分子1〜11の有機溶剤分散液を調製した。それぞれの有機溶剤分散液において超音波処理から1時間経過後の沈殿物を目視にて確認する方法により評価した。ここで、分散処理から1時間後に定性ろ紙(No.2)でろ過したときに凝集物が確認されないものを○、凝集物が確認されるものを△、超音波処理直後に凝集物が発生して不均質液になるものを×とした。
<Evaluation of solvent dispersibility>
Each conductive polymer 1 to 11 is mixed at a ratio of 1.5% of non-volatile content to ethyl acetate, methyl ethyl ketone, and toluene, treated with a probe-type ultrasonic homogenizer, and each conductive polymer 1 to 11 is treated. Eleven organic solvent dispersions were prepared. Each organic solvent dispersion was evaluated by a method of visually confirming the precipitate 1 hour after the ultrasonic treatment. Here, one hour after the dispersion treatment, those in which no agglutination is confirmed when filtered through a qualitative filter paper (No. 2) are ○, those in which agglutination is confirmed are Δ, and agglutination is generated immediately after the ultrasonic treatment. Those that became inhomogeneous liquids were marked with x.

<導電性の評価>
溶剤分散性の評価において作製した各導電性高分子1〜11の酢酸エチル分散液を洗浄したガラス基板上に乾燥膜厚が2μmとなるように滴下した後、90℃で5分間加熱乾燥し、導電率測定サンプルを作製した。作製したサンプルについて抵抗率計(三菱化学アナリテック製、ロレスタGP)を用いて導電率(S/cm)を測定した。
<Evaluation of conductivity>
The ethyl acetate dispersions of the conductive polymers 1 to 11 prepared in the evaluation of solvent dispersibility were dropped onto a washed glass substrate so that the dry film thickness was 2 μm, and then heated and dried at 90 ° C. for 5 minutes. A conductivity measurement sample was prepared. The conductivity (S / cm) of the prepared sample was measured using a resistivity meter (Roresta GP, manufactured by Mitsubishi Chemical Analytech).

Figure 0006964089
Figure 0006964089

実施例1〜8に示す通り、導電性高分子1〜8は、極性溶媒から非極性溶媒まで幅広い一定以上の有機溶剤への分散性と、導電性を示していることが分かった。中でも、実施例1、2においては、好ましい溶剤種である酢酸エチル、メチルエチルケトンに対して優れた分散性を示すと同時に、高い導電率を示した。また、ドーパントAの重量平均分子量が大きい実施例3は、導電率が低下する一方で、より優れた溶剤分散性を示し、重量平均分子量の小さい実施例4は溶剤分散性が低下する一方でより高い導電率を示した。実施例5,6については、両末端に官能基を有することから、実施例1、2に対して溶剤分散性が劣るものの、比較例に対しては十分高い溶剤分散性と導電率を示した。実施例7、8については、π共役系高分子のモノマーを変更しても、高い溶剤分散性を有することが示された。
一方、比較例1は、ドーパントAの重量平均分子量が500より小さく、比較例2においては、シリコーン骨格を有さないことから、溶剤への分散性が非常に悪く、そのため膜質も悪く、導電率は低いか、あるいは導電率の測定が不可能であった。比較例3については、分子量は500より小さく、シリコーン骨格を有さないことから、溶剤分散性が無く、そのため、製膜して導電率の評価を行うことができなかった。比較例4においては、ドーパントAに水溶性が無いため、導電性高分子の重合が適切に進行しなかったため評価を行うことができなかった。

As shown in Examples 1 to 8, it was found that the conductive polymers 1 to 8 exhibited dispersibility and conductivity in a wide range of organic solvents from polar solvents to non-polar solvents. Above all, in Examples 1 and 2, excellent dispersibility was exhibited with respect to the preferred solvent species such as ethyl acetate and methyl ethyl ketone, and at the same time, high conductivity was exhibited. Further, Example 3 in which the weight average molecular weight of the dopant A is large shows better solvent dispersibility while the conductivity is lowered, and Example 4 in which the weight average molecular weight is small shows more excellent solvent dispersibility while the solvent dispersibility is lowered. It showed high conductivity. Since Examples 5 and 6 have functional groups at both ends, the solvent dispersibility is inferior to that of Examples 1 and 2, but the solvent dispersibility and conductivity are sufficiently high as compared with Comparative Examples. .. In Examples 7 and 8, it was shown that even if the monomer of the π-conjugated polymer was changed, it had high solvent dispersibility.
On the other hand, in Comparative Example 1, the weight average molecular weight of the dopant A is smaller than 500, and in Comparative Example 2, since it does not have a silicone skeleton, the dispersibility in the solvent is very poor, and therefore the film quality is also poor, and the conductivity is poor. Was low or the conductivity could not be measured. In Comparative Example 3, since the molecular weight was smaller than 500 and the silicone skeleton was not provided, the solvent was not dispersible, and therefore the film could not be formed and the conductivity could not be evaluated. In Comparative Example 4, since the dopant A was not water-soluble, the polymerization of the conductive polymer did not proceed appropriately, so that the evaluation could not be performed.

Claims (6)

重量平均分子量500以上であり、シリコーン骨格を有し、かつ、置換基を少なくとも1つ以上有する化合物であり、前記置換基がスルホン酸基又はリン酸基若しくはそれらの塩のいずれかであり、
前記置換基が、シリコーン骨格における片末端又は両末端に結合され、
前記シリコーン骨格が、下記の一般式(1)で表される構造単位を有する化合物である導電性高分子用ドーパント。
Figure 0006964089
[式中、ここで、nは2〜200の整数を示し、各Rは独立に炭素数が3以下のアルキル基又は非置換もしくは置換フェニル基を示す。]
And a weight average molecular weight of 500 or more, has a silicone structure, and a compound having at least one or more substituents, the substituents Ri der one sulfonic acid group or phosphoric acid group or a salt thereof,
The substituent is attached to one end or both ends of the silicone skeleton.
A dopant for a conductive polymer, wherein the silicone skeleton is a compound having a structural unit represented by the following general formula (1).
Figure 0006964089
[In the formula, where n represents an integer of 2 to 200, and each R independently represents an alkyl group having 3 or less carbon atoms or an unsubstituted or substituted phenyl group. ]
前記重量平均分子量が、500〜20000である請求項1に記載の導電性高分子用ドーパント。 The dopant for a conductive polymer according to claim 1 , wherein the weight average molecular weight is 500 to 20000. 請求項1又は請求項2に記載の前記導電性高分子用ドーパントと、π共役系高分子を含む導電性高分子。 A conductive polymer containing the dopant for a conductive polymer according to claim 1 or 2, and a π-conjugated polymer. 前記π共役系高分子が、チオフェン、アニリン、ピロール及びこれらの誘導体からなる群から選択される少なくとも1つのモノマーを重合してなる請求項3に記載の導電性高分子。 The conductive polymer according to claim 3 , wherein the π-conjugated polymer is obtained by polymerizing at least one monomer selected from the group consisting of thiophene, aniline, pyrrole and derivatives thereof. 請求項3又は請求項4に記載の導電性高分子を有機溶剤に分散させた導電性高分子の分散液。 A dispersion liquid of a conductive polymer in which the conductive polymer according to claim 3 or 4 is dispersed in an organic solvent. 請求項1又は請求項2に記載の前記導電性高分子用ドーパントを準備する工程と、前記導電性高分子用ドーパント及びπ共役系高分子のモノマーを含む混合物を準備する工程と、前記混合物において重合を行う工程とを有する導電性高分子の製造方法。 In the step of preparing the dopant for a conductive polymer according to claim 1 or 2 , and the step of preparing a mixture containing the dopant for a conductive polymer and a monomer of a π-conjugated polymer, and the mixture. A method for producing a conductive polymer, which comprises a step of performing polymerization.
JP2018552562A 2016-11-22 2017-11-20 Dopants for conductive polymers, conductive polymers using them, and methods for producing conductive polymers Active JP6964089B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016227063 2016-11-22
JP2016227063 2016-11-22
PCT/JP2017/041608 WO2018097085A1 (en) 2016-11-22 2017-11-20 Dopant for conductive polymer, conductive polymer using dopant, and method for producing conductive polymer

Publications (2)

Publication Number Publication Date
JPWO2018097085A1 JPWO2018097085A1 (en) 2019-10-17
JP6964089B2 true JP6964089B2 (en) 2021-11-10

Family

ID=62195071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018552562A Active JP6964089B2 (en) 2016-11-22 2017-11-20 Dopants for conductive polymers, conductive polymers using them, and methods for producing conductive polymers

Country Status (5)

Country Link
JP (1) JP6964089B2 (en)
KR (1) KR102265188B1 (en)
CN (1) CN109983057A (en)
TW (1) TWI725256B (en)
WO (1) WO2018097085A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033820A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
CN118280737A (en) 2018-08-10 2024-07-02 京瓷Avx元器件公司 Solid electrolytic capacitor comprising polyaniline
CN112889123A (en) 2018-08-10 2021-06-01 阿维科斯公司 Solid electrolytic capacitor comprising intrinsically conductive polymer
CN118213199A (en) 2018-12-11 2024-06-18 京瓷Avx元器件公司 Solid electrolytic capacitor containing intrinsically conductive polymer
DE112020004416T5 (en) 2019-09-18 2022-06-15 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
KR20220113704A (en) 2019-12-10 2022-08-16 교세라 에이브이엑스 컴포넌츠 코포레이션 Tantalum Capacitors with Increased Stability
CN114787952A (en) 2019-12-10 2022-07-22 京瓷Avx元器件公司 Solid electrolytic capacitor comprising a precoat and an intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870043A (en) 1974-03-28 1975-03-11 Allan R Dunn U-shaped intravenous needle structure
DE59010247D1 (en) 1990-02-08 1996-05-02 Bayer Ag New polythiophene dispersions, their preparation and their use
JPH06125519A (en) * 1992-04-28 1994-05-06 Internatl Business Mach Corp <Ibm> Wear-resistant and scratch-resistant conductive polymer composition
JP2001247582A (en) * 2000-03-08 2001-09-11 Nippon Unicar Co Ltd Polyogranosiloxane phosphate, composition comprising the same, and method of producing the same
FR2830535B1 (en) 2001-10-10 2003-12-19 Commissariat Energie Atomique USE OF SULFONIC, PHOSPHONIC ACIDS AS DOPANTS OF POLYANILINE AND CONDUCTIVE COMPOSITE MATERIALS BASED ON POLYANILINE
JP2003171467A (en) * 2001-12-05 2003-06-20 Nippon Unicar Co Ltd Phosphorylated polyorganosiloxane, method for producing the same, flame-retardant and resin composition
DE102004003784B4 (en) 2004-01-23 2011-01-13 Ormecon Gmbh Dispersion of intrinsically conductive polyaniline and their use
JP2006249160A (en) * 2005-03-09 2006-09-21 Konishi Kagaku Ind Co Ltd Sulfonated polyorganosilsesquioxane and its preparation method
KR101187041B1 (en) * 2010-04-20 2012-09-28 한국과학기술연구원 Polyaniline Doped by Sulfonated Polyphenylsilsesquioxane with High Stability of Electrical Conductivity And Menufacturing Method Of The Same
JP5901776B2 (en) * 2011-11-10 2016-04-13 ナンキン ユニバーシティー Conductive polymer materials based on carbonyl functionalized poly-silicones and methods for their preparation
KR101444927B1 (en) 2012-12-11 2014-09-26 주식회사 펨스 Slot coater and gap controlling method of slot die nozzle of the same
JP5788127B1 (en) * 2014-02-27 2015-09-30 テイカ株式会社 Oxidizing agent / dopant for conductive polymer production, solution thereof, conductive polymer produced using any of them, and electrolytic capacitor using the conductive polymer as electrolyte

Also Published As

Publication number Publication date
KR20190080954A (en) 2019-07-08
JPWO2018097085A1 (en) 2019-10-17
CN109983057A (en) 2019-07-05
TW201825504A (en) 2018-07-16
TWI725256B (en) 2021-04-21
WO2018097085A1 (en) 2018-05-31
KR102265188B1 (en) 2021-06-14

Similar Documents

Publication Publication Date Title
JP6964089B2 (en) Dopants for conductive polymers, conductive polymers using them, and methods for producing conductive polymers
JP5316000B2 (en) Conductive polymer / dopant organic solvent dispersion and composition containing the dispersion
TWI470024B (en) Sulfonation of conducting polymers and oled, photovoltaic, and esd devices
JP6454367B2 (en) Conductive composition
US9754697B2 (en) Conductive polymer composition
TWI595038B (en) Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
US10872709B2 (en) Method for producing polyaniline complex composition and polyaniline complex composition
KR101813650B1 (en) Electrically conductive polymer composition and method for producing same
US9595362B2 (en) Conductive polymer composition comprising a sulfo group-containing dopant polymer
US9601229B2 (en) Conductive polymer composite comprising a sulfo group-containing dopant polymer
KR101374846B1 (en) Dispersion of conductive polymer/dopant, conductive composition and conductive coating film
JP5514596B2 (en) Conductive dispersion
KR20180093024A (en) Conductive polymer dispersion, production method thereof, and production method of conductive film
KR100949399B1 (en) Organic solvent dispersible conductive polymers and producing method for the same
JP2015221871A (en) Electroconductive dispersion
JP4385254B2 (en) Conductive fine particles and method for producing the same
EP3564290A1 (en) Method for producing polyisothianaphthene electroconductive polymer
KR101480635B1 (en) Emulsion composition and method for preparing the same, and conductive nanoparticles and method for manufacturing conductive nanoparticles using the same
JP2007314606A (en) Method for producing conductive polymer and conductive polymer obtained by the same
JP2023059178A (en) Conductive polymer composition and conductive polymer membrane
KR20160005250A (en) Antistatic coating composition with various surface resistance according to the dilution
JP2019210356A (en) Novel polythiophene, and composition containing the polythiophene and organic solvent
JP2010202846A (en) Active energy ray-curable composition and coated product
KR20110078235A (en) Conducting polymer composition containing flourine compound having dispersibility in an organic solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6964089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150