JP6962844B2 - Particulate matter concentration estimation device and particulate matter concentration estimation method - Google Patents

Particulate matter concentration estimation device and particulate matter concentration estimation method Download PDF

Info

Publication number
JP6962844B2
JP6962844B2 JP2018062298A JP2018062298A JP6962844B2 JP 6962844 B2 JP6962844 B2 JP 6962844B2 JP 2018062298 A JP2018062298 A JP 2018062298A JP 2018062298 A JP2018062298 A JP 2018062298A JP 6962844 B2 JP6962844 B2 JP 6962844B2
Authority
JP
Japan
Prior art keywords
particulate matter
concentration
height position
air flow
flow information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062298A
Other languages
Japanese (ja)
Other versions
JP2019174266A (en
Inventor
俊平 多久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2018062298A priority Critical patent/JP6962844B2/en
Publication of JP2019174266A publication Critical patent/JP2019174266A/en
Application granted granted Critical
Publication of JP6962844B2 publication Critical patent/JP6962844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、室内の空気中に含まれる粒子状物質の濃度を推定する粒子状物質濃度推定装置および粒子状物質濃度推定方法に関する。 The present invention relates to a particulate matter concentration estimation device for estimating the concentration of particulate matter contained in indoor air and a method for estimating the particulate matter concentration.

近年、空気中に含まれる粒子状物質によるアレルギー等の健康被害が問題となっている。粒子状物質は、例えば、花粉や埃(ハウスダスト等)、PM2.5、PM10である。そこで、空気中に含まれる粒子状物質を測定するセンサが開発されている(例えば、特許文献1)。 In recent years, health hazards such as allergies due to particulate matter contained in the air have become a problem. The particulate matter is, for example, pollen or dust (house dust or the like), PM2.5, PM10. Therefore, a sensor for measuring particulate matter contained in air has been developed (for example, Patent Document 1).

特開2015−121515号公報Japanese Unexamined Patent Publication No. 2015-121515

空気中を浮遊する粒子状物質は、大きさに応じた速度で地面に向かって沈降する。一方、人の活動等により空気の流れが発生すると、粒子状物質の沈降速度が低下したり、粒子状物質が舞い上がったりする。このため、空間内の位置によって粒子状物質の濃度が異なる場合がある。そうすると、粒子状物質の濃度を知りたい位置(以下、「目的高さ位置」という)と、センサによる測定高さ位置とが離れている場合、目的高さ位置の濃度と測定高さ位置の濃度とに差が生じてしまう。 Particulate matter floating in the air settles toward the ground at a rate corresponding to its size. On the other hand, when an air flow is generated due to human activity or the like, the sedimentation rate of the particulate matter decreases or the particulate matter soars up. Therefore, the concentration of the particulate matter may differ depending on the position in the space. Then, when the position where you want to know the concentration of particulate matter (hereinafter referred to as "target height position") and the measurement height position by the sensor are far apart, the concentration at the target height position and the concentration at the measurement height position Will make a difference.

本発明は、このような課題に鑑み、センサによる測定高さ位置と目的高さ位置とが離れている場合であっても、目的高さ位置の粒子状物質の濃度を精度よく推定することが可能な粒子状物質濃度推定装置および粒子状物質濃度推定方法を提供することを目的としている。 In view of such a problem, the present invention can accurately estimate the concentration of the particulate matter at the target height position even when the measurement height position by the sensor and the target height position are separated from each other. It is an object of the present invention to provide a possible particulate matter concentration estimation device and a particulate matter concentration estimation method.

上記課題を解決するために、本発明の粒子状物質濃度推定装置は、室内の所定の測定高さ位置における粒子状物質の濃度を測定する濃度測定部と、室内の空気の流れに関する空気流情報を取得する空気流情報取得部と、測定高さ位置と測定高さ位置より下方の所定の目的高さ位置との距離、および、取得された空気流情報に基づき、測定された粒子状物質の濃度を補正して、目的高さ位置における粒子状物質の濃度を推定する濃度推定部と、を備える。 In order to solve the above problems, the particulate matter concentration estimation device of the present invention has a concentration measuring unit that measures the concentration of particulate matter at a predetermined measurement height position in the room, and air flow information regarding the flow of air in the room. The distance between the measurement height position and the predetermined target height position below the measurement height position, and the measured particulate matter based on the acquired air flow information. It is provided with a concentration estimation unit that corrects the concentration and estimates the concentration of the particulate matter at a target height position.

また、空気流情報取得部は、空気流情報として、所定の期間において、室内で人が動いていた時間を取得してもよい。 Further, the air flow information acquisition unit may acquire the time during which a person is moving in the room as the air flow information in a predetermined period.

また、空気流情報取得部は、空気流情報として、所定の期間において、室内で人を感知したことを示す情報を取得してもよい。 Further, the air flow information acquisition unit may acquire information indicating that a person has been detected indoors in a predetermined period as air flow information.

また、空気流情報取得部は、空気流情報として、室内における上昇流の風速を取得してもよい。 Further, the air flow information acquisition unit may acquire the wind speed of the ascending current in the room as the air flow information.

また、濃度推定部は、室内における床の材質の種類に基づいて決定される補正係数で、測定された粒子状物質の濃度を補正してもよい。 Further, the concentration estimation unit may correct the measured concentration of the particulate matter with a correction coefficient determined based on the type of floor material in the room.

また、濃度推定部は、室内の湿度に基づいて、目的高さ位置における粒子状物質の濃度を推定してもよい。 Further, the concentration estimation unit may estimate the concentration of the particulate matter at the target height position based on the humidity in the room.

上記課題を解決するために、本発明の粒子状物質濃度推定方法は、室内の所定の測定高さ位置における粒子状物質の濃度を測定する工程と、室内の空気の流れに関する空気流情報を取得する工程と、測定高さ位置と測定高さ位置より下方の所定の目的高さ位置との距離、および、取得された空気流情報に基づき、測定された粒子状物質の濃度を補正して、目的高さ位置における粒子状物質の濃度を推定する工程と、を含む。 In order to solve the above problems, the method for estimating the concentration of particulate matter in the present invention acquires the step of measuring the concentration of the particulate matter at a predetermined measurement height position in the room and the air flow information regarding the air flow in the room. Based on the step to be performed, the distance between the measurement height position and the predetermined target height position below the measurement height position, and the acquired airflow information, the measured concentration of the particulate matter is corrected. It includes a step of estimating the concentration of particulate matter at a target height position.

本発明によれば、目的高さ位置の粒子状物質の濃度を精度よく推定することが可能となる。 According to the present invention, it is possible to accurately estimate the concentration of the particulate matter at the target height position.

実施形態にかかる粒子状物質濃度推定装置の使用形態を説明する図である。It is a figure explaining the use mode of the particulate matter concentration estimation apparatus which concerns on embodiment. 粒子状物質濃度推定装置の構成を説明する図である。It is a figure explaining the structure of the particulate matter concentration estimation apparatus. 直近T分間における感知時間xtと、f(xt)との関係を説明する図である。It is a figure explaining the relationship between the sensing time xt and f (xt) in the last T minute. 測定高さ位置と目的高さ位置との距離hと、f(h)との関係を説明する図である。It is a figure explaining the relationship between the distance h between the measurement height position and the target height position, and f (h). 実施形態の粒子状物質濃度推定方法の処理の流れを説明するフローチャートである。It is a flowchart explaining the process flow of the particulate matter concentration estimation method of embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The dimensions, materials, other specific numerical values, etc. shown in the embodiment are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate description, and elements not directly related to the present invention are not shown. do.

(粒子状物質濃度推定装置100)
図1は、本実施形態にかかる粒子状物質濃度推定装置100の使用形態を説明する図である。図1に示すように、粒子状物質濃度推定装置100は、室内(屋内)10における天井12に設置される。粒子状物質濃度推定装置100は、例えば、ガス警報器または火災報知器に組み込まれる。
(Particulate matter concentration estimation device 100)
FIG. 1 is a diagram illustrating a usage embodiment of the particulate matter concentration estimation device 100 according to the present embodiment. As shown in FIG. 1, the particulate matter concentration estimation device 100 is installed on the ceiling 12 in the indoor (indoor) 10. The particulate matter concentration estimation device 100 is incorporated in, for example, a gas alarm or a fire alarm.

図2は、粒子状物質濃度推定装置100の構成を説明する図である。なお、図2中、信号の流れを実線の矢印で示す。図2に示すように、粒子状物質濃度推定装置100は、濃度測定部110と、空気流情報取得部120と、中央制御部130と、情報出力部140とを含む。 FIG. 2 is a diagram illustrating the configuration of the particulate matter concentration estimation device 100. In FIG. 2, the signal flow is indicated by a solid arrow. As shown in FIG. 2, the particulate matter concentration estimation device 100 includes a concentration measuring unit 110, an air flow information acquisition unit 120, a central control unit 130, and an information output unit 140.

濃度測定部110は、室内10の所定の測定高さ位置における粒子状物質の濃度を測定する。本実施形態において、測定高さ位置は、天井12の位置とする。濃度測定部110は、例えば、光散乱方式の装置である。 The concentration measuring unit 110 measures the concentration of the particulate matter at a predetermined measurement height position in the room 10. In the present embodiment, the measurement height position is the position of the ceiling 12. The concentration measuring unit 110 is, for example, a light scattering type device.

空気流情報取得部120は、例えば、人感センサを含む。空気流情報取得部120は、室内10において人が動いたことを検知し、その時間を積分(蓄積)する。したがって、空気流情報取得部120は、室内10において人が動いていれば、その人数に限らず、動いている時間がすべて積分される。本実施形態において、空気流情報取得部120は、直近T分間において、室内10で人が動いていた時間(感知時間)xtを取得する。 The air flow information acquisition unit 120 includes, for example, a motion sensor. The air flow information acquisition unit 120 detects that a person has moved in the room 10 and integrates (accumulates) the time. Therefore, if a person is moving in the room 10, the air flow information acquisition unit 120 integrates all the moving time regardless of the number of people. In the present embodiment, the air flow information acquisition unit 120 acquires the time (sensing time) xt during which a person was moving in the room 10 in the latest T minutes.

中央制御部130は、CPU(中央処理装置)を含む半導体集積回路で構成される。中央制御部130は、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出し、ワークエリアとしてのRAMや他の電子回路と協働して粒子状物質濃度推定装置100全体を管理および制御する。本実施形態において、中央制御部130は、濃度推定部132として機能する。 The central control unit 130 is composed of a semiconductor integrated circuit including a CPU (Central Processing Unit). The central control unit 130 reads a program, parameters, etc. for operating the CPU itself from the ROM, and manages and controls the entire particulate matter concentration estimation device 100 in cooperation with the RAM as a work area and other electronic circuits. .. In the present embodiment, the central control unit 130 functions as the concentration estimation unit 132.

濃度推定部132は、測定高さ位置の下方に位置する目的高さ位置における粒子状物質の濃度を推定する。目的高さ位置は、例えば、人の顔(顔の中心)の位置(例えば、床14から150cm)、または、床14の位置とする。濃度推定部132は、測定高さ位置と目的高さ位置との距離h、および、直近T分間(例えば、5分間)における感知時間xtに基づき、濃度測定部110によって測定された粒子状物質の濃度csを補正して、目的高さ位置の粒子状物質の濃度cmを推定する。なお、測定高さ位置と目的高さ位置との距離hは、測定高さ位置と目的高さ位置との鉛直方向の距離である。 The concentration estimation unit 132 estimates the concentration of the particulate matter at the target height position located below the measurement height position. The target height position is, for example, the position of the human face (center of the face) (for example, floor 14 to 150 cm) or the position of the floor 14. The concentration estimation unit 132 of the particulate matter measured by the concentration measurement unit 110 based on the distance h between the measurement height position and the target height position and the sensing time xt in the latest T minutes (for example, 5 minutes). The concentration cs is corrected to estimate the concentration cm of the particulate matter at the target height position. The distance h between the measurement height position and the target height position is the vertical distance between the measurement height position and the target height position.

具体的に説明すると、濃度推定部132は、下記式(1)に基づいて、目的高さ位置の粒子状物質の濃度cmを導出する。
cm = cs × f(xt) × f(h) …式(1)
ここで、f(xt)は、粒子状物質の舞い上がり程度を示す関数であり、f(h)は、粒子状物質の沈降(自由落下)程度を示す関数である。f(xt)とf(h)とは独立した関数である。
Specifically, the concentration estimation unit 132 derives the concentration cm of the particulate matter at the target height position based on the following formula (1).
cm = cs x f (xt) x f (h) ... Equation (1)
Here, f (xt) is a function indicating the degree of soaring of the particulate matter, and f (h) is a function indicating the degree of sedimentation (free fall) of the particulate matter. f (xt) and f (h) are independent functions.

図3は、直近T分間における感知時間xtと、f(xt)との関係を説明する図である。図3中、縦軸にf(xt)を示し、横軸にxtを示す。図3に示すように、f(xt)は、感知時間xtが0に近いほど値が大きくなり、感知時間xtがTに近づくほど1に近づく。つまり、感知時間(人が動いている時間)xtが長いほど、空気が攪拌される頻度が大きくなり、粒子状物質が舞い上げられる確率が高くなる。このため、感知時間xtが長いほど、目的高さ位置と測定高さ位置との粒子状物質の濃度が近くなり、f(xt)は、1に近づく。 FIG. 3 is a diagram for explaining the relationship between the sensing time xt and f (xt) in the latest T minutes. In FIG. 3, the vertical axis represents f (xt) and the horizontal axis represents xt. As shown in FIG. 3, the value of f (xt) increases as the sensing time xt approaches 0, and approaches 1 as the sensing time xt approaches T. That is, the longer the sensing time (time when a person is moving) xt, the more frequently the air is agitated, and the higher the probability that the particulate matter will be blown up. Therefore, the longer the sensing time xt, the closer the concentration of the particulate matter between the target height position and the measured height position, and the closer f (xt) is to 1.

図4は、測定高さ位置と目的高さ位置との距離hと、f(h)との関係を説明する図である。図4中、縦軸にf(h)を示し、横軸にhを示す。図4に示すように、距離hが0である場合、すなわち、測定高さ位置と目的高さ位置とが等しい場合、f(h)は1となる。また、距離hが大きくなるほど、目的高さ位置と測定高さ位置との濃度が乖離し、f(h)は大きくなる。 FIG. 4 is a diagram for explaining the relationship between the distance h between the measurement height position and the target height position and f (h). In FIG. 4, the vertical axis represents f (h) and the horizontal axis represents h. As shown in FIG. 4, when the distance h is 0, that is, when the measured height position and the target height position are equal, f (h) is 1. Further, as the distance h becomes larger, the concentration between the target height position and the measured height position deviates, and f (h) becomes larger.

このように、濃度推定部132が、感知時間xt、および、距離hに基づいて、濃度測定部110によって測定された粒子状物質の濃度csを補正することにより、目的高さ位置の粒子状物質の濃度cmを精度よく推定することが可能となる。 In this way, the concentration estimation unit 132 corrects the concentration cs of the particulate matter measured by the concentration measuring unit 110 based on the sensing time xt and the distance h, whereby the particulate matter at the target height position is corrected. It is possible to accurately estimate the concentration cm of.

情報出力部140は、例えば、表示器や音声出力器で構成され、濃度推定部132によって推定された目的高さ位置の粒子状物質の濃度cmを出力する。 The information output unit 140 is composed of, for example, a display and an audio output device, and outputs the concentration cm of the particulate matter at the target height position estimated by the concentration estimation unit 132.

(粒子状物質濃度推定方法)
続いて、上記粒子状物質濃度推定装置100を用いた粒子状物質濃度推定方法について説明する。図5は、本実施形態の粒子状物質濃度推定方法の処理の流れを説明するフローチャートである。図5に示すように、粒子状物質濃度推定方法は、測定工程S110と、取得工程S120と、推定工程S130と、出力工程S140とを含む。以下、各工程について説明する。
(Particulate matter concentration estimation method)
Subsequently, a method for estimating the concentration of particulate matter using the above-mentioned device 100 for estimating the concentration of particulate matter will be described. FIG. 5 is a flowchart illustrating a processing flow of the particulate matter concentration estimation method of the present embodiment. As shown in FIG. 5, the particulate matter concentration estimation method includes a measurement step S110, an acquisition step S120, an estimation step S130, and an output step S140. Hereinafter, each step will be described.

(測定工程S110)
測定工程S110は、濃度測定部110が、測定高さ位置における粒子状物質の濃度csを測定する工程である。
(Measurement step S110)
The measurement step S110 is a step in which the concentration measuring unit 110 measures the concentration cs of the particulate matter at the measurement height position.

(取得工程S120)
取得工程S120は、空気流情報取得部120が、直近T分間における感知時間xtを取得する工程である。
(Acquisition step S120)
The acquisition step S120 is a step in which the air flow information acquisition unit 120 acquires the sensing time xt in the latest T minutes.

(推定工程S130)
推定工程S130は、濃度推定部132が、測定高さ位置と目的高さ位置との距離h、測定工程S110において測定された濃度cs、および、取得工程S120において取得された感知時間xtに基づき、上記式(1)を用いて、目的高さ位置の粒子状物質の濃度cmを推定する工程である。
(Estimation step S130)
In the estimation step S130, the concentration estimation unit 132 is based on the distance h between the measurement height position and the target height position, the concentration cs measured in the measurement step S110, and the sensing time xt acquired in the acquisition step S120. This is a step of estimating the concentration cm of the particulate matter at the target height position using the above formula (1).

(出力工程S140)
出力工程S140は、情報出力部140が、推定工程S130において推定された濃度cmを出力する工程である。
(Output step S140)
The output step S140 is a step in which the information output unit 140 outputs the density cm estimated in the estimation step S130.

以上説明したように、本実施形態にかかる粒子状物質濃度推定装置100およびこれを用いた粒子状物質濃度推定方法によれば、室内10における空気の流れの状況(感知時間xt)、距離hに基づいて、濃度測定部110によって測定された粒子状物質の濃度csを補正することにより、目的高さ位置の粒子状物質の濃度cmを精度よく推定することが可能となる。 As described above, according to the particulate matter concentration estimation device 100 according to the present embodiment and the particulate matter concentration estimation method using the same, the air flow condition (sensing time xt) and the distance h in the room 10 are set. Based on this, by correcting the concentration cs of the particulate matter measured by the concentration measuring unit 110, it is possible to accurately estimate the concentration cm of the particulate matter at the target height position.

(第1の変形例)
上記実施形態において、空気流情報取得部120は、空気流情報として、直近T分間における感知時間xtを取得した。しかし、空気流情報取得部120は、直近T分間のみならず、現在よりT分前時点から遡った所定の期間における感知時間を取得してもよい。
(First modification)
In the above embodiment, the air flow information acquisition unit 120 has acquired the sensing time xt in the latest T minutes as the air flow information. However, the air flow information acquisition unit 120 may acquire the sensing time not only in the latest T minutes but also in a predetermined period retroactive from the time point T minutes before the present.

例えば、直近T分間における感知時間xt、T分前時点から遡ったT分間における感知時間をx2t、2T分前時点から遡ったT分間における感知時間をx3t等とする。つまり、(n−1)T分前時点から遡ったT分間における感知時間をxntとする(nは2以上の整数)。 For example, the sensing time in the latest T minutes is xt, the sensing time in the T minutes retroactive from the time point T minutes before is x2t, the sensing time in the T minutes retroactive from the time point 2T minutes ago is x3t, and the like. That is, (n-1) the sensing time in T minutes retroactive from the time before T minutes is xnt (n is an integer of 2 or more).

そして、空気流情報取得部120が、感知時間xtおよび感知時間xntを取得し、濃度推定部132は、感知時間xt、感知時間xnt、および、距離hに基づいて、濃度測定部110によって測定された粒子状物質の濃度csを補正する。 Then, the air flow information acquisition unit 120 acquires the sensing time xt and the sensing time xnt, and the concentration estimation unit 132 is measured by the concentration measuring unit 110 based on the sensing time xt, the sensing time xnt, and the distance h. The concentration cs of the particulate matter is corrected.

具体的に説明すると、濃度推定部132は、下記式(2)に基づいて、目的高さ位置の粒子状物質の濃度cmを導出する。
cm = cs × f(h)× f(xt) × f(xnt) …式(2)
ここで、f(xnt)は、f(xt)と同様に、粒子状物質の舞い上がり程度を示す関数であり、感知時間xntが0に近いほど値が大きくなり、感知時間xntがTに近づくほど1に近づく。ただし、感知時間xntが感知時間xtと等しい場合、f(xt)>f(xnt)となる。また、この場合、nが大きいほど、f(xnt)は小さくなる。
Specifically, the concentration estimation unit 132 derives the concentration cm of the particulate matter at the target height position based on the following formula (2).
cm = cs x f (h) x f (xt) x f (xnt) ... Equation (2)
Here, f (xnt) is a function indicating the degree of soaring of the particulate matter, like f (xt). The closer the sensing time xnt is to 0, the larger the value, and the closer the sensing time xnt is to T. Approach 1 However, when the sensing time xnt is equal to the sensing time xt, f (xt)> f (xnt). In this case, the larger n is, the smaller f (xnt) is.

(第2の変形例)
空気流情報取得部120は、空気流情報として、所定の期間において、室内10で人を感知した回数(感知回数)xcを示す情報を取得してもよい。この場合、濃度推定部132は、直近T分間における人の感知回数xcに基づく係数、および、距離hに基づいて、濃度測定部110によって測定された粒子状物質の濃度csを補正する。例えば、濃度推定部132は、上記式(1)のf(xt)に代えて、f(xc)を乗算して、粒子状物質の濃度csを補正する。ここで、f(xc)は、f(xt)と同様に、感知回数xcが0に近いほど値が大きくなり、感知回数xcが多いほど1に近づく。つまり、感知回数xcが多いほど、空気が攪拌される頻度が大きくなり、粒子状物質が舞い上げられる確率が高くなる。このため、感知回数xcが多いほど、f(xc)は1に近づく。
(Second modification)
The air flow information acquisition unit 120 may acquire information indicating the number of times (sensing number of times) xc of detecting a person in the room 10 in a predetermined period as air flow information. In this case, the concentration estimation unit 132 corrects the concentration cs of the particulate matter measured by the concentration measurement unit 110 based on the coefficient based on the number of times a person senses xc in the last T minutes and the distance h. For example, the concentration estimation unit 132 corrects the concentration cs of the particulate matter by multiplying it by f (xc) instead of f (xt) in the above formula (1). Here, as with f (xt), the value of f (xc) increases as the number of detections xc approaches 0, and approaches 1 as the number of detections xc increases. That is, as the number of times of detection xc increases, the frequency with which the air is agitated increases, and the probability that the particulate matter is blown up increases. Therefore, as the number of detections xc increases, f (xc) approaches 1.

同様に、例えば、濃度推定部132は、上記式(2)のf(xt)に代えて、f(xc)を乗算し、f(xnt)に代えて、f(xnc)を乗算して、粒子状物質の濃度csを補正する。なお、直近T分間における感知回数xc、T分前時点から遡ったT分間における感知回数をx2c、2T分前時点から遡ったT分間における感知回数をx3c等とする。つまり、(n−1)T分前時点から遡ったT分間における感知回数をxncとする(nは2以上の整数)。f(xnc)は、f(xc)と同様に、粒子状物質の舞い上がり程度を示す関数であり、感知回数xncが0に近いほど値が大きくなり、感知回数xncがTに近づくほど1に近づく。ただし、感知回数xncが感知回数xcと等しい場合、f(xc)>f(xnc)となる。また、この場合、nが大きいほど、f(xnc)は、小さくなる。 Similarly, for example, the concentration estimation unit 132 multiplies f (xc) instead of f (xt) in the above equation (2), and multiplies f (xnc) instead of f (xnt). The concentration cs of the particulate matter is corrected. The number of detections in the latest T minutes is xc, the number of detections in the T minutes retroactive from the time before T minutes is x2c, the number of detections in the T minutes retroactive from the time before 2T minutes is x3c, and the like. That is, (n-1) the number of senses in T minutes retroactive from the time before T minutes is defined as xnc (n is an integer of 2 or more). Similar to f (xc), f (xnc) is a function indicating the degree of soaring of particulate matter, and the value increases as the number of senses xnc approaches 0, and approaches 1 as the number of senses xnc approaches T. .. However, when the number of senses xnc is equal to the number of senses xc, f (xc)> f (xnc). Further, in this case, the larger n is, the smaller f (xnc) becomes.

(第3の変形例)
空気流情報取得部120は、空気流情報として、所定の期間において、室内10で人を感知したことを示す情報を取得してもよい。この場合、濃度推定部132は、人を感知したことに基づく係数、および、距離hに基づいて、濃度測定部110によって測定された粒子状物質の濃度csを補正する。例えば、濃度推定部132は、上記式(1)のf(xt)に代えて、所定の係数(例えば、人を感知した場合、係数を0.8とし、人を感知しない場合係数を0.2とする)を乗算して、粒子状物質の濃度csを補正する。
(Third variant)
The air flow information acquisition unit 120 may acquire information indicating that a person has been detected in the room 10 in a predetermined period as air flow information. In this case, the concentration estimation unit 132 corrects the concentration cs of the particulate matter measured by the concentration measurement unit 110 based on the coefficient based on the detection of a person and the distance h. For example, the concentration estimation unit 132 replaces f (xt) in the above equation (1) with a predetermined coefficient (for example, when a person is detected, the coefficient is set to 0.8, and when a person is not detected, the coefficient is set to 0. 2) is multiplied to correct the concentration cs of the particulate matter.

(第4の変形例)
空気流情報取得部120は、空気流情報として、室内10の風速vを取得してもよい。この場合、空気流情報取得部120は、風速計で構成される。また、空気流情報取得部120は、下から上へ向かう空気の風速v(上昇流の風速v)を取得する。この場合、濃度推定部132は、風速vに基づく係数、および、距離hに基づいて、濃度測定部110によって測定された粒子状物質の濃度csを補正する。例えば、濃度推定部132は、上記式(1)のf(xt)に代えて、f(v)を乗算して、粒子状物質の濃度csを補正する。ここで、f(v)は、f(xt)と同様に、風速vが0に近いほど値が大きくなり、風速vが大きいほど1に近づく。つまり、風速vが大きいほど、粒子状物質が舞い上げられる確率が高くなる。このため、風速vが大きいほど、f(v)は1に近づく。
(Fourth modification)
The air flow information acquisition unit 120 may acquire the wind speed v in the room 10 as the air flow information. In this case, the air flow information acquisition unit 120 is composed of an anemometer. Further, the air flow information acquisition unit 120 acquires the wind speed v of the air going from the bottom to the top (the wind speed v of the ascending flow). In this case, the concentration estimation unit 132 corrects the concentration cs of the particulate matter measured by the concentration measuring unit 110 based on the coefficient based on the wind speed v and the distance h. For example, the concentration estimation unit 132 corrects the concentration cs of the particulate matter by multiplying it by f (v) instead of f (xt) in the above formula (1). Here, as with f (xt), the value of f (v) increases as the wind speed v approaches 0, and approaches 1 as the wind speed v increases. That is, the larger the wind speed v, the higher the probability that the particulate matter will be blown up. Therefore, the larger the wind speed v, the closer f (v) is to 1.

(第5の変形例)
濃度推定部132は、空気流情報、および、距離hに加えて、室内10における床14の材質の種類に基づいて決定される補正係数で、粒子状物質の濃度csを補正してもよい。例えば、床14がフローリング(床14の材質が木、プラスチック、石)の場合、粒子状物質が舞い上げられる確率が高い。一方、床14が絨毯(床14の材質が、毛、布)の場合、粒子状物質が舞い上げられる確率が低い。したがって、床14がフローリングの場合、式(1)または式(2)に乗算する補正係数を1または1に近い第1値とする。また、床14が絨毯の場合、式(1)または式(2)に乗算する補正係数を、第1値を上回る第2値とする。
(Fifth variant)
The concentration estimation unit 132 may correct the concentration cs of the particulate matter with a correction coefficient determined based on the type of material of the floor 14 in the room 10 in addition to the air flow information and the distance h. For example, when the floor 14 is flooring (the material of the floor 14 is wood, plastic, stone), there is a high probability that particulate matter will be blown up. On the other hand, when the floor 14 is a carpet (the material of the floor 14 is hair or cloth), the probability that the particulate matter is blown up is low. Therefore, when the floor 14 is flooring, the correction coefficient to be multiplied by the equation (1) or the equation (2) is set to 1 or a first value close to 1. When the floor 14 is a carpet, the correction coefficient to be multiplied by the equation (1) or the equation (2) is set to a second value exceeding the first value.

(第6の変形例)
濃度推定部132は、空気流情報、および、距離hに加えて、室内10の湿度に基づいて、濃度測定部110によって測定された粒子状物質の濃度csを補正して、目的高さ位置の粒子状物質の濃度cmを推定してもよい。室内10の湿度が高いほど、粒子状物質の質量が大きくなり、沈降しやすくなる。したがって、室内10の湿度が高いほど、式(1)または式(2)に乗算する補正係数を大きくする(1を上回る値とする)。
(Sixth variant)
The concentration estimation unit 132 corrects the concentration cs of the particulate matter measured by the concentration measurement unit 110 based on the air flow information and the distance h and the humidity of the room 10, and the concentration estimation unit 132 corrects the concentration cs of the particulate matter at the target height position. The concentration cm of the particulate matter may be estimated. The higher the humidity in the room 10, the larger the mass of the particulate matter, and the easier it is to settle. Therefore, the higher the humidity in the room 10, the larger the correction coefficient to be multiplied by the equation (1) or the equation (2) (the value exceeds 1).

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such an embodiment. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood.

例えば、上記実施形態において、粒子状物質濃度推定装置100が天井12に設置される構成を例に挙げて説明した。しかし、粒子状物質濃度推定装置100の設置箇所に限定はない。例えば、粒子状物質濃度推定装置100は、天井付近に設置されてもよい。 For example, in the above embodiment, the configuration in which the particulate matter concentration estimation device 100 is installed on the ceiling 12 has been described as an example. However, there is no limitation on the installation location of the particulate matter concentration estimation device 100. For example, the particulate matter concentration estimation device 100 may be installed near the ceiling.

また、上記実施形態において、情報出力部140が、濃度推定部132が推定した、目的高さ位置の粒子状物質の濃度cmを出力する構成を例に挙げて説明した。しかし、情報出力部140は、推定した濃度cmが所定の閾値を上回った場合にのみ、推定した濃度cmを出力してもよい。また、情報出力部140は、推定した濃度cmが所定の閾値を上回った場合に、推定した濃度cm、および、所定の情報のいずれか一方または両方を出力してもよい。例えば、情報出力部140は、目的高さ位置が人の顔の位置である場合、所定の情報として、空気清浄機の運転を推奨する旨の情報を出力してもよい。また、情報出力部140は、目的高さ位置が床14の位置である場合、所定の情報として、掃除機の運転を推奨する旨の情報を出力してもよい。 Further, in the above embodiment, the configuration in which the information output unit 140 outputs the concentration cm of the particulate matter at the target height position estimated by the concentration estimation unit 132 has been described as an example. However, the information output unit 140 may output the estimated density cm only when the estimated density cm exceeds a predetermined threshold value. Further, the information output unit 140 may output one or both of the estimated density cm and the predetermined information when the estimated density cm exceeds a predetermined threshold value. For example, when the target height position is the position of the human face, the information output unit 140 may output information to the effect that the operation of the air purifier is recommended as predetermined information. Further, when the target height position is the position of the floor 14, the information output unit 140 may output information to the effect that the operation of the vacuum cleaner is recommended as predetermined information.

また、目的高さ位置は、予め設定されていてもよいし、ユーザによる操作入力に応じて変更されてもよい。この場合、f(h)は定数となる。 Further, the target height position may be set in advance or may be changed according to an operation input by the user. In this case, f (h) is a constant.

また、濃度推定部132は、濃度測定部110によって測定された粒子状物質の濃度csと、測定高さ位置と目的高さ位置との距離hと、人の感知時間xt、人を感知したか否か、人の感知回数xc、および、風速vのうちのいずれか1または複数の空気流情報に基づいて、目的高さ位置における粒子状物質の濃度cmを推定してもよい。また、濃度推定部132は、濃度測定部110によって測定された粒子状物質の濃度csと、測定高さ位置と目的高さ位置との距離hと、人の感知時間xt、人を感知したか否か、人の感知回数xc、および、風速vのうちのいずれか1または複数の空気流情報に加えて、室内10における床14の材質の種類、および、室内10の湿度のいずれか一方また両方に基づいて、目的高さ位置における粒子状物質の濃度cmを推定してもよい。 Further, the concentration estimation unit 132 has detected the concentration cs of the particulate matter measured by the concentration measurement unit 110, the distance h between the measurement height position and the target height position, the human sensing time xt, and the human detection. Whether or not, the concentration cm of the particulate matter at the target height position may be estimated based on the number of times the person senses xc and the air flow information of any one or more of the wind speed v. Further, the concentration estimation unit 132 has detected the concentration cs of the particulate matter measured by the concentration measurement unit 110, the distance h between the measurement height position and the target height position, the human sensing time xt, and whether the person has been detected. Whether or not, in addition to the number of times a person senses xc and the air flow information of any one or more of the wind speed v, the type of material of the floor 14 in the room 10 and one or more of the humidity in the room 10. Based on both, the concentration cm of the particulate matter at the target height position may be estimated.

本発明は、室内の空気中に含まれる粒子状物質の濃度を推定する粒子状物質濃度推定装置および粒子状物質濃度推定方法に利用することができる。 The present invention can be used in a particulate matter concentration estimation device and a particulate matter concentration estimation method for estimating the concentration of particulate matter contained in indoor air.

S110 測定工程
S120 取得工程
S130 推定工程
100 粒子状物質濃度推定装置
110 濃度測定部
120 空気流情報取得部
132 濃度推定部
S110 Measurement step S120 Acquisition step S130 Estimate step 100 Particulate matter concentration estimation device 110 Concentration measurement unit 120 Air flow information acquisition unit 132 Concentration estimation unit

Claims (7)

室内の所定の測定高さ位置における粒子状物質の濃度を測定する濃度測定部と、
前記室内の空気の流れに関する空気流情報を取得する空気流情報取得部と、
前記測定高さ位置と前記測定高さ位置より下方の所定の目的高さ位置との距離、および、取得された前記空気流情報に基づき、測定された前記粒子状物質の濃度を補正して、前記目的高さ位置における粒子状物質の濃度を推定する濃度推定部と、
を備える粒子状物質濃度推定装置。
A concentration measuring unit that measures the concentration of particulate matter at a predetermined measurement height position in the room,
An air flow information acquisition unit that acquires air flow information related to the air flow in the room,
Based on the distance between the measurement height position and the predetermined target height position below the measurement height position and the acquired air flow information, the measured concentration of the particulate matter is corrected. A concentration estimation unit that estimates the concentration of particulate matter at the target height position,
A particulate matter concentration estimator comprising.
前記空気流情報取得部は、前記空気流情報として、所定の期間において、前記室内で人が動いていた時間を取得する請求項1に記載の粒子状物質濃度推定装置。 The particulate matter concentration estimation device according to claim 1, wherein the air flow information acquisition unit acquires, as the air flow information, the time during which a person has been moving in the room for a predetermined period. 前記空気流情報取得部は、前記空気流情報として、所定の期間において、前記室内で人を感知したことを示す情報を取得する請求項1に記載の粒子状物質濃度推定装置。 The particulate matter concentration estimation device according to claim 1, wherein the air flow information acquisition unit acquires information indicating that a person has been detected in the room for a predetermined period as the air flow information. 前記空気流情報取得部は、前記空気流情報として、前記室内における上昇流の風速を取得する請求項1に記載の粒子状物質濃度推定装置。 The particulate matter concentration estimation device according to claim 1, wherein the air flow information acquisition unit acquires the wind speed of the ascending current in the room as the air flow information. 前記濃度推定部は、前記室内における床の材質の種類に基づいて決定される補正係数で、前記測定された粒子状物質の濃度を補正する請求項1から4のいずれか1項に記載の粒子状物質濃度推定装置。 The particle according to any one of claims 1 to 4, wherein the concentration estimation unit is a correction coefficient determined based on the type of floor material in the room, and corrects the measured concentration of the particulate matter. Particulate matter concentration estimation device. 前記濃度推定部は、前記室内の湿度に基づいて、前記目的高さ位置における粒子状物質の濃度を推定する請求項1から5のいずれか1項に記載の粒子状物質濃度推定装置。 The particulate matter concentration estimation device according to any one of claims 1 to 5, wherein the concentration estimation unit estimates the concentration of the particulate matter at the target height position based on the humidity in the room. 室内の所定の測定高さ位置における粒子状物質の濃度を測定する工程と、
前記室内の空気の流れに関する空気流情報を取得する工程と、
前記測定高さ位置と前記測定高さ位置より下方の所定の目的高さ位置との距離、および、取得された前記空気流情報に基づき、測定された前記粒子状物質の濃度を補正して、前記目的高さ位置における粒子状物質の濃度を推定する工程と、
を含む粒子状物質濃度推定方法。
The process of measuring the concentration of particulate matter at a predetermined measurement height position in the room, and
The process of acquiring air flow information regarding the air flow in the room and
Based on the distance between the measurement height position and the predetermined target height position below the measurement height position and the acquired air flow information, the measured concentration of the particulate matter is corrected. The step of estimating the concentration of the particulate matter at the target height position and
Particulate matter concentration estimation method including.
JP2018062298A 2018-03-28 2018-03-28 Particulate matter concentration estimation device and particulate matter concentration estimation method Active JP6962844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062298A JP6962844B2 (en) 2018-03-28 2018-03-28 Particulate matter concentration estimation device and particulate matter concentration estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062298A JP6962844B2 (en) 2018-03-28 2018-03-28 Particulate matter concentration estimation device and particulate matter concentration estimation method

Publications (2)

Publication Number Publication Date
JP2019174266A JP2019174266A (en) 2019-10-10
JP6962844B2 true JP6962844B2 (en) 2021-11-05

Family

ID=68166821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062298A Active JP6962844B2 (en) 2018-03-28 2018-03-28 Particulate matter concentration estimation device and particulate matter concentration estimation method

Country Status (1)

Country Link
JP (1) JP6962844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102614345B1 (en) * 2020-02-14 2023-12-18 에코스솔루션(주) Operation Method of Fine Dust Notification System for Large Buildings

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182149U (en) * 1981-05-12 1982-11-18
JPH0264437A (en) * 1988-08-31 1990-03-05 Kansai Electric Power Co Inc:The Measuring method of amount of scattered powder dust from powder particle substance storing place, apparatus therefor and monitoring apparatus of scattering of dust utilizing the same
JP2004203966A (en) * 2002-12-24 2004-07-22 Kansai Coke & Chem Co Ltd Method for estimating circumstance of furnace wall of coke oven
JP2006177685A (en) * 2004-12-21 2006-07-06 Hitachi Ltd Pollution source inspection method and pollutant removing system using the same
CN103328899B (en) * 2011-01-25 2016-05-04 三菱电机株式会社 Control device, control method and air-conditioning system
JP2012251889A (en) * 2011-06-03 2012-12-20 Sharp Corp Control device and presentation method
JP6170833B2 (en) * 2013-12-25 2017-07-26 アズビル株式会社 Air cleanliness management system and air cleanliness management method
EP2995875B1 (en) * 2014-09-11 2018-06-20 Weiss Klimatechnik GmbH Method for operating a clean-room and control device
JP6653021B2 (en) * 2016-09-09 2020-02-26 株式会社日立産機システム Particle Counter Built-in Isolator

Also Published As

Publication number Publication date
JP2019174266A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP6653486B2 (en) Dust removal device and notification method
KR102528805B1 (en) Detect air filter condition
KR102451132B1 (en) Air filter condition detection
US20200393159A1 (en) Information processing method, recording medium, and information processing system
TWI645139B (en) Air conditioner, control method thereof, and recording medium
US9901233B2 (en) Air filter monitoring
US20210379524A1 (en) Air purifier
KR101982566B1 (en) Air Cleaner And Method Of Predicting Filter Remaining Life Time Of Air Cleaner
JP6962844B2 (en) Particulate matter concentration estimation device and particulate matter concentration estimation method
WO2019110155A1 (en) Method to distinguish indoor voc sources and to estimate human generated co2 concentration
JP2009030837A (en) Clean room air distribution amount control system using image processing
WO2019091987A1 (en) Smart air purification
US10827893B2 (en) Dust processing
JP2017026270A (en) Dust collection system and dust collection method
KR20170038388A (en) Ventilation notification device and air purifier having the same
JP6318364B2 (en) Air conditioner and its operation method
EP3567323A1 (en) Smart air purification
KR100979820B1 (en) The air pure cis which uses a sensor network system
KR101896157B1 (en) Method for controlling sensor based on statistical process control
CN109059221B (en) Method and device for preventing oil smoke
KR102409696B1 (en) Apparatus of estimating performance of air cleaner
KR20160074731A (en) Air purifier, system for controling air purifier and method for controling air purifier
JP7142645B2 (en) Electronics
JP2001120934A (en) Device for detecting clogging of air filter
WO2022249745A1 (en) Indoor environment control system, indoor environment control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6962844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150