JP6962267B2 - パルスパターン生成装置 - Google Patents

パルスパターン生成装置 Download PDF

Info

Publication number
JP6962267B2
JP6962267B2 JP2018087749A JP2018087749A JP6962267B2 JP 6962267 B2 JP6962267 B2 JP 6962267B2 JP 2018087749 A JP2018087749 A JP 2018087749A JP 2018087749 A JP2018087749 A JP 2018087749A JP 6962267 B2 JP6962267 B2 JP 6962267B2
Authority
JP
Japan
Prior art keywords
current
pulse pattern
motor
voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018087749A
Other languages
English (en)
Other versions
JP2019193543A (ja
Inventor
和貴 山根
政道 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018087749A priority Critical patent/JP6962267B2/ja
Priority to PCT/JP2019/016738 priority patent/WO2019208408A1/ja
Publication of JP2019193543A publication Critical patent/JP2019193543A/ja
Application granted granted Critical
Publication of JP6962267B2 publication Critical patent/JP6962267B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

本発明は、パルスパターン生成装置に関する。
モータを駆動するためのインバータは、複数のスイッチング素子を備える。このスイッチング素子が、スイッチング動作されることで、直流電力が交流電力に変換される。
特許文献1には、予め定められたパルスパターンでスイッチング素子をスイッチング動作されるインバータが開示されている。非特許文献1には、簡易回路を用いて、高調波損失を低減させるパルスパターンを生成するパルスパターン生成方法が開示されている。簡易回路は、線間電圧を印加する電圧源と、線間電圧が加わる2つのコイルとを接続したものである。非特許文献1では、簡易回路に流れる電流から電流実効値を算出し、電流実効値が最小となるようにパルスパターンを生成している。電流実効値を小さくすると、高調波損失が低減されるため、電流実効値が最小となるようにパルスパターンを生成することで、高調波損失を低減させることができる。
特公平6−36676号公報
「New Control of PWM Inverter Waveform for Minimum Loss Operation of an Induction Motor Drive」ISAO TAKAHASHI AND HIROSHI MOCHIKAWA
ところで、非特許文献1に開示のパルスパターン生成方法は、実際にモータのコイルに流れる電流を十分に模擬できているとはいえない。
本発明の目的は、モータのコイルに実際に流れる電流と、算出される電流との差を小さくすることができるパルスパターン生成装置を提供することにある。
上記課題を解決するパルスパターン生成装置は、モータを駆動するインバータが備える複数のスイッチング素子を制御するためのパルスパターンを生成するパルスパターン生成装置であって、前記モータの駆動時に前記モータのコイルに流れると想定される電流を算出する電流算出部と、前記電流算出部によって算出された前記電流から電流実効値を算出する電流実効値算出部と、前記電流実効値算出部によって算出された前記電流実効値に基づき、前記パルスパターンを生成するパターン生成部と、を備え、前記電流算出部は、前記モータの駆動時に前記コイルに加えられる電圧、及び、前記モータの駆動時に生じる誘起電圧により前記コイルに流れる電流を算出する。
モータの駆動時には、誘起電圧が発生する。この誘起電圧により生じる電流は、モータの駆動時にコイルに加えられる電圧により流れる電流とは逆向きの電流となる。電流算出部は、モータの駆動時にコイルに加えられる電圧だけではなく、誘起電圧も考慮して電流を算出している。誘起電圧を考慮せずに電流を算出する場合に比べて、実際のモータの駆動時にコイルに流れる電流を模擬しているといえる。これにより、モータのコイルに実際に流れる電流と、算出される電流との差を小さくすることができる。
上記パルスパターン生成装置について、前記パターン生成部は、前記電流実効値が最小となるように前記パルスパターンを生成してもよい。
電流実効値を小さくすることで、高調波損失は低減される。電流実効値が最小となるようにパルスパターンを生成し、このパルスパターンでスイッチング素子をスイッチング制御させることで、高調波損失を低減できる。
本発明によれば、モータのコイルに実際に流れる電流と、算出される電流との差を小さくすることができる。
モータ、及び、モータを駆動するインバータを示すブロック図。 d,q/u,v,w変換回路の構成を示すブロック図。 パルスパターンのマップの一例を示す図。 パルスパターン生成装置のブロック図。 線間電圧印加部、及び、誘起電圧印加部による簡易回路を示す図。 線間電圧と電流波形との関係を示す図。 誘起電圧を考慮せずに生成されたパルスパターンのマップを示す図。 相電圧印加部、及び、誘起電圧印加部による簡易回路を示す図。 空間ベクトルとu相電流の対応関係を示す表。 解析による電流波形と、空間ベクトルから算出された電流波形との関係を示す図。 相電圧印加部、及び、誘起電圧印加部による簡易回路を示す図。 変形例における空間ベクトルとu相電流の対応関係を示す表。
(第1実施形態)
以下、パルスパターン生成装置の第1実施形態について説明する。
図1に示すように、インバータ10は、インバータ回路20と、インバータ制御装置30と、を備える。インバータ制御装置30は、ドライブ回路31と、制御部32と、を備える。本実施形態のインバータ10は、モータ60を駆動するためのものである。
インバータ回路20は、6つのスイッチング素子Q1〜Q6と、6つのダイオードD1〜D6と、を備える。スイッチング素子Q1〜Q6としては、IGBTを用いている。正極母線Lpと負極母線Lnとの間に、u相上アームを構成するスイッチング素子Q1と、u相下アームを構成するスイッチング素子Q2が直列接続されている。正極母線Lpと負極母線Lnとの間に、v相上アームを構成するスイッチング素子Q3と、v相下アームを構成するスイッチング素子Q4が直列接続されている。正極母線Lpと負極母線Lnとの間に、w相上アームを構成するスイッチング素子Q5と、w相下アームを構成するスイッチング素子Q6が直列接続されている。スイッチング素子Q1〜Q6にはダイオードD1〜D6が逆並列接続されている。正極母線Lp、負極母線Lnには平滑コンデンサCを介してバッテリBが接続されている。
スイッチング素子Q1とスイッチング素子Q2の間は、モータ60のu相端子に接続されている。スイッチング素子Q3とスイッチング素子Q4の間は、モータ60のv相端子に接続されている。スイッチング素子Q5とスイッチング素子Q6の間は、モータ60のw相端子に接続されている。上下のアームを構成するスイッチング素子Q1〜Q6を有するインバータ回路20は、スイッチング素子Q1〜Q6のスイッチング動作に伴いバッテリBの電圧である直流電圧を交流電圧に変換してモータ60に供給することができるようになっている。モータ60は、3つのコイルU,V,Wをスター結線した三相交流モータである。モータ60としては、誘導モータ、IPMモータ、SPMモータなど、どのような種類のモータを用いてもよい。
各スイッチング素子Q1〜Q6のゲート端子にはドライブ回路31が接続されている。ドライブ回路31は、制御信号に基づいてインバータ回路20のスイッチング素子Q1〜Q6をスイッチング動作させる。
インバータ10は、モータ60の電気角θを検出する位置検出部61と、モータ60のu相電流Iuを検出する電流センサ62と、モータ60のv相電流Ivを検出する電流センサ63と、電源電圧Vdcを検出する電圧センサ64と、を備える。
制御部32はマイクロコンピュータにより構成されている。制御部32は、減算部33と、トルク制御部34と、トルク/電流指令値変換部35と、減算部36,37と、電流制御部38と、d,q/u,v,w変換回路39と、座標変換部40と、速度演算部41と、を備える。
速度演算部41は、位置検出部61により検出される電気角θから速度ωを演算する。減算部33は、指令速度ω*と速度演算部41により演算された速度ωとの差分Δωを算出する。トルク制御部34は、速度ωの差分Δωからトルク指令値T*を演算する。
トルク/電流指令値変換部35は、トルク指令値T*を、d軸電流指令値Id*およびq軸電流指令値Iq*に変換する。例えば、トルク/電流指令値変換部35は、記憶部(図示略)に予め記憶される目標トルクとd軸電流指令値Id*およびq軸電流指令値Iq*とが対応付けられたテーブルを用いてトルク/電流指令値変換を行う。
座標変換部40は、電流センサ62,63によるu相電流Iuおよびv相電流Ivからモータ60のw相電流Iwを求め、位置検出部61により検出される電気角θに基づいて、u相電流Iu、v相電流Ivおよびw相電流Iwをd軸電流Idおよびq軸電流Iqに変換する。なお、d軸電流Idはモータ60に流れる電流において、界磁を発生させるための電流ベクトル成分であり、q軸電流Iqはモータ60に流れる電流において、トルクを発生させるための電流ベクトル成分である。
減算部36は、d軸電流指令値Id*とd軸電流Idとの差分ΔIdを算出する。減算部37は、q軸電流指令値Iq*とq軸電流Iqとの差分ΔIqを算出する。電流制御部38は、差分ΔIdおよび差分ΔIqに基づいてd軸電圧指令値Vd*およびq軸電圧指令値Vq*を算出する。
d,q/u,v,w変換回路39は、電気角θと、d軸電圧指令値Vd*と、q軸電圧指令値Vq*と、電源電圧Vdcを入力して各スイッチング素子Q1〜Q6の制御信号をドライブ回路31に出力する。
図2に示すように、d,q/u,v,w変換回路39は、d,q/u,v,w変換部50と、変調率算出部51と、パルスパターン決定部52と、信号生成部53と、を備える。
d,q/u,v,w変換部50は、角度情報(ロータの位置)である電気角θに基づいてd軸電圧指令値Vd*、及び、q軸電圧指令値Vq*を、u,v,w相の電圧指令値Vu*,Vv*,Vw*に座標変換する。
変調率算出部51は、電圧指令値Vu*,Vv*,Vw*と、電源電圧Vdcに基づき、変調率Keu,Kev,Kewを算出する。変調率算出部51は、電圧指令値Vu*,Vv*,Vw*を電源電圧Vdcで除算した値であり、電圧指令値(電圧振幅)Vu*,Vv*,Vw*と電源電圧Vdcの比率である。
パルスパターン決定部52は、電気角θと変調率Keu,Kev,Kewに基づいて、スイッチング素子Q1〜Q6のスイッチングパターンであるパルスパターンを決定する。パルスパターンは、マップM1としてメモリなどの記憶部に記憶されている。パルスパターンは、電気角θと変調率Keu,Kev,Kewに対応付けて設定されている。
図3に示すように、マップM1は、オン指示信号とオフ指示信号とのそれぞれが、電気角θ及び変調率Keu,Kev,Kewに対応付けられた情報である。図3には、u相の変調率Keuと電気角θに対応付けられたマップM1の一例を示す。オン指示信号は、上アームスイッチング素子Q1,Q3,Q5をオンし、下アームスイッチング素子Q2,Q4,Q6をオフすることを指示する信号である。オフ指示信号は、上アームスイッチング素子Q1,Q3,Q5をオフし、下アームスイッチング素子Q2,Q4,Q6をオンすることを指示する信号である。
マップM1は、オン指示信号からオフ指示信号への切り替え、及び、オフ指示信号からオン指示信号への切り替えを指示する電気角θであるパルス角を示すものである。図3には、オン指示信号とオフ指示信号との切り替えを行うパルス角として、θ1,θ2,θ3,θ4,θ5,θ6を図示する。
なお、図3では、u相のマップM1のうち電気角θが0°〜90°までのマップM1を図示している。マップM1を電気角θが0°の位置で線対称にすると0°〜−90°までのマップとなり、電気角θが−90°〜90°までのマップを点対称に反転させると90°〜270°のマップとなる。v相、w相のマップM1は、u相のマップM1に対して、電気角θが120°,240°ずれたものである。
信号生成部53は、パルスパターン決定部52で決定されたパルスパターンに基づき、制御信号を生成する。信号生成部53は、パルスパターンに基づき、上アームスイッチング素子Q1,Q3,Q5と下アームスイッチング素子Q2,Q4,Q6のオン/オフを切り替える際のデッドタイムを設定するとともに、制御信号を生成する。これにより、インバータ10のスイッチング素子Q1〜Q6は、予め定められたパルスパターンでスイッチング制御されることになる。
次に、上記したパルスパターンを生成するパルスパターン生成装置について説明する。
図4に示すように、パルスパターン生成装置70は、モータ60のコイルに線間電圧を加える線間電圧印加部71と、モータ60のコイルに誘起電圧を加える誘起電圧印加部72と、を備える。コイルは、線間電圧が加えられる2つのコイルであり、本実施形態では、u相のコイルUとv相のコイルVの2つのコイルとする。パルスパターン生成装置70は、モータ60の駆動状況を模擬することで、パルスパターンを生成する装置である。
線間電圧印加部71は、コイルU,Wに、モータ60の駆動時にコイルU,Wに加わる電圧である線間電圧を仮想的に印加する。誘起電圧印加部72は、モータ60の駆動時に生じる誘起電圧をコイルU,Wに仮想的に印加する。線間電圧は、バッテリBの電圧から定まる。誘起電圧は、解析や、実測などにより導出されている。例えば、磁界解析を用いて、モータ60を回転させたときに発生する電圧を算出したり、モータ60の端子をオシロスコープなどの測定器で測定することで誘起電圧を導出することができる。線間電圧をコイルU,Vに加えたときに流れる電流と、誘起電圧をコイルU,Vに加えたときに流れる電流とは、逆向きの電流となる。図5に示すように、線間電圧印加部71と、誘起電圧印加部72とは、コイルU,Vの直列接続体75と、線間電圧を発生させる電圧源と、誘起電圧を加える電圧源とを接続した簡易回路C1として表現することができる。
パルスパターン生成装置70は、線間電圧と、誘起電圧とをコイルU,Vに加えたときにコイルU,V(簡易回路C1)に流れる電流iを算出する電流算出部73と、電流iから電流実効値Irmsを算出する電流実効値算出部74と、を備える。電流算出部73は、以下の(1)式から電流iを算出する。
Figure 0006962267
ただし、LはコイルUとコイルVとの合成インダクタンス、iは、時刻t=0のときにコイルUに流れる電流である。
(1)式から把握できるように、電流iは、線間電圧に加えて、誘起電圧を考慮したものとなっている。電流iは、モータ60の駆動時にモータ60のコイルU,Vに流れると想定される電流である。電流iにより得られる電流波形は、線間電圧と誘起電圧との大小関係により傾きが変化することになる。
電流実効値算出部74は、電流算出部73が算出した電流iにより得られる電流波形から電流実効値Irmsを算出する。電流iは、誘起電圧を考慮したものとなっているため、誘起電圧を考慮していない電流波形に比べて、実際のモータ60の駆動状況に近い電流波形を得ることができる。
図6には、線間電圧による波形L1と、電流iにより得られる電流波形L2との対応関係を示している。電流波形L2から把握できるように、誘起電圧を考慮した場合、線間電圧が0[V]となるときは線間電圧<誘起電圧となり、電流波形L2の傾きが負となる。これに対し、誘起電圧を考慮しない場合、誘起電圧に起因する電流が考慮されず、線間電圧が0[V]となるときに電流の値が維持される。即ち、電流波形の傾きが0になる。このように、誘起電圧を考慮する場合と、考慮しない場合で、電流波形が異なるものになる。
図4に示すように、パルスパターン生成装置70は、パターン生成部76を備える。パターン生成部76は、電流実効値Irmsに基づきパルスパターンを生成する。パルスパターンは、電流実効値Irmsを評価項目とした評価関数から生成されているといえる。パターン生成部76は、電流実効値Irmsが最小となるようにパルスパターンを生成する。これにより、図3に示すマップM1、即ち、パルスパターンが生成される。
図7に示すマップM2は、誘起電圧を考慮せずに線間電圧のみを用いて生成したパルスパターンのマップである。図7から把握できるように、誘起電圧を考慮せずに生成されたパルスパターンでは、誘起電圧を考慮して生成されたパルスパターンとパルス角θ11,θ12,θ13,θ14,θ15,θ16が異なることがわかる。
本実施形態の作用について説明する。
インバータ10の各スイッチング素子Q1〜Q6は、パルスパターン生成装置70で生成されたパルスパターンでスイッチング制御される。このパルスパターンは、電流実効値Irmsが最小になるように定められたパルスパターンである。このパルスパターンでスイッチング素子Q1〜Q6をスイッチング制御することで、電流実効値Irmsが小さくなるようにスイッチング動作が行われることになる。
第1実施形態の効果について説明する。
(1−1)電流算出部73は、線間電圧と誘起電圧をコイルU,Vに加えたときに流れる電流iを算出している。モータ60の駆動時には、誘起電圧が発生する。電流算出部73は、モータ60の駆動時にコイルU,Vに加えられる電圧だけではなく、誘起電圧も考慮して電流iを算出している。このため、誘起電圧を考慮せずに電流iを算出する場合に比べて、実際のモータ60の駆動時にコイルU,Vに流れる電流を模擬しているといえる。これにより、モータ60のコイルU,Vに実際に流れる電流と、算出される電流iとの差を小さくすることができる。電流iと、モータ60のコイルU,Vに実際に流れる電流との差が大きいと、パルスパターン生成装置70でパルスパターンを生成しても、所望の電流波形を得ることができない。電流iと、モータ60のコイルU,Vに実際に流れる電流との差を小さくすることで、所望の電流波形を得られるパルスパターンを生成することができる。特に、誘起電圧の大きいIPMモータやSPMモータなどをモータ60として用いる場合、誘導モータよりも大きな効果を得ることができる。
(1−2)パターン生成部76は、電流実効値Irmsが最小となるようにパルスパターンを生成する。高調波損失は、電流実効値Irmsに比例するため、電流実効値Irmsが最小となるようなパルスパターンでスイッチング素子Q1〜Q6をスイッチング制御することで、高調波損失を低減させることができる。
(第2実施形態)
以下、パルスパターン生成装置の第2実施形態について説明する。第2実施形態のパルスパターン生成装置は、電流の算出方法が第1実施形態とは異なる。他の構成は、第1実施形態と同様である。
図8に示すように、第1実施形態では、2相分のコイルを想定してパルスパターンを生成していたのに対し、第2実施形態では、3相分のコイルを想定してパルスパターンを生成する。詳細にいえば、3相分のコイルU,V,Wと、3相分の誘起電圧印加部91,92,93と、3相分の相電圧印加部81,82,83と、を備える簡易回路C2を想定してパルスパターンを生成する。相電圧印加部81,82,83は、モータ60の駆動時に各コイルU,V,Wに印加される電圧である相電圧を仮想的にコイルU,V,Wに加える。相電圧は、バッテリBの電圧から算出することができる。
図9に示すように、空間ベクトルによって相電流は異なる。図9には、一例として、空間ベクトルとu相電流との対応関係を示している。なお、空間ベクトルは、3相のスイッチング素子Q1〜Q6のスイッチングパターンともいえる。図9に示すV0〜V7の0,1は、それぞれ、各相のスイッチング素子Q1〜Q6のオン/オフを示す。0は上アームスイッチング素子Q1,Q3,Q5がオフであり、下アームスイッチング素子Q2,Q4,Q6がオンの状態を示す。1は上アームスイッチング素子Q1,Q3,Q5がオンであり、下アームスイッチング素子Q2,Q4,Q6がオフの状態を示す。V0〜V7の3つの0,1は左から順にu相、v相、w相に対応している。図9に示すLはコイルUのインダクタンスであり、EはバッテリBの電圧であり、Vemfは誘起電圧である。図9に示すように、電流算出部73は、空間ベクトルに応じて、u相電流を算出することができる。
図10には、空間ベクトルの遷移により得られた電流波形L21と、解析により得られた電流波形L22とを示す。電流波形L21は、解析により得られた電流波形L22と近似していることがわかる。即ち、空間ベクトル及び誘起電圧を考慮することで得られたu相電流(電流i)は、モータ60の駆動時に実際にコイルUに流れる電流との差が少ないといえる。
第2実施形態の効果について説明する。
(2−1)電流算出部73は、空間ベクトル及び誘起電圧を考慮して電流iを算出する。このため、実際のモータ60の駆動時にコイルUに流れる電流をより模擬できる。
各実施形態は、以下のように変更して実施することができる。各実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○各実施形態において、パルスパターンを生成するときのコイルU,V,Wのインダクタンスを可変としてもよい。コイルU,V,Wのインダクタンスは、各コイルU,V,Wを流れる電流の値や、モータ60の回転位置によって変化する。電流iを算出するときに、電流の値や、モータ60の回転位置を加味したインダクタンスを用いることで、電流iと、モータ60の駆動時にコイルU,V,Wに実際に流れる電流との差を更に低減させることができる。
○各実施形態において、パルスパターン生成装置70は、インバータ10に搭載されていてもよい。この場合、コイルUの劣化具合を検出できる検出部や、コイルUの劣化具合を推定できる推定部を設けることで、パルスパターンの生成に用いられるコイルUのインダクタンスを補正する。これにより、コイルUの劣化具合を考慮したパルスパターンを生成することができる。パルスパターンをコイルUの劣化具合に応じて更新していくことで、インバータ10に適したパルスパターンによりスイッチング素子Q1〜Q6のスイッチング制御を行うことができる。
○各実施形態において、パターン生成部76は、電流実効値Irmsが最小となるパルスパターンに限られず、任意の電流波形を出力できるパルスパターンなどを生成するようにしてもよい。
○各実施形態において、変調率は、1相分のみ算出されていてもよい。この場合、1相分の変調率を3相共通の変調率として制御が行われる。
○第1実施形態において、パルスパターン生成装置70は、3つのコイルU,V,Wをデルタ結線した三相交流モータを駆動する際のパルスパターンを生成してもよい。この場合、電流算出部73は、1相分のコイルに相電圧及び誘起電圧を加えたときに流れる電流(相電流)を算出する。即ち、簡易回路C1の線間電圧印加部71が相電圧印加部となり、直列接続体75が1相分のコイルとなる。
○第2実施形態において、パルスパターン生成装置70は、3つのコイルU,V,Wをデルタ結線した三相交流モータを駆動する際のパルスパターンを生成してもよい。この場合、図11に示すように、簡易回路C3は、デルタ結線された3相分のコイルU,V,Wと、3相分の誘起電圧印加部91,92,93と、3相分の相電圧印加部(線間電圧印加部)81,82,83と、を備えたものとなる。この場合、空間ベクトルに対応するu相電流の傾きとしては、図12の表に示すようになる。なお、図12に示すV0〜V6の1は、上アームスイッチング素子Q1,Q3,Q5がオン、下アームスイッチング素子Q2,Q4,Q6がオフの状態を示す。0は、上アームスイッチング素子Q1,Q3,Q5、及び、下アームスイッチング素子Q2,Q4,Q6の両方がオフの状態を示す。−1は、上アームスイッチング素子Q1,Q3,Q5がオフ、下アームスイッチング素子Q2,Q4,Q6がオンの状態を示す。
Q1〜Q6…スイッチング素子、U,V,W…コイル、10…インバータ、60…モータ、70…パルスパターン生成装置、71…線間電圧印加部、73…電流算出部、74…電流実効値算出部、76…パターン生成部。

Claims (2)

  1. モータを駆動するインバータが備える複数のスイッチング素子を制御するためのパルスパターンを生成するパルスパターン生成装置であって、
    前記モータの駆動時に前記モータのコイルに流れると想定される電流を算出する電流算出部と、
    前記電流算出部によって算出された前記電流から電流実効値を算出する電流実効値算出部と、
    前記電流実効値算出部によって算出された前記電流実効値に基づき、前記パルスパターンを生成するパターン生成部と、を備え、
    前記電流算出部は、前記モータの駆動時に前記コイルに加えられる電圧、及び、前記モータの駆動時に生じる誘起電圧により前記コイルに流れる電流を算出するパルスパターン生成装置。
  2. 前記パターン生成部は、前記電流実効値が最小となるように前記パルスパターンを生成する請求項1に記載のパルスパターン生成装置。
JP2018087749A 2018-04-27 2018-04-27 パルスパターン生成装置 Active JP6962267B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018087749A JP6962267B2 (ja) 2018-04-27 2018-04-27 パルスパターン生成装置
PCT/JP2019/016738 WO2019208408A1 (ja) 2018-04-27 2019-04-19 パルスパターン生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087749A JP6962267B2 (ja) 2018-04-27 2018-04-27 パルスパターン生成装置

Publications (2)

Publication Number Publication Date
JP2019193543A JP2019193543A (ja) 2019-10-31
JP6962267B2 true JP6962267B2 (ja) 2021-11-05

Family

ID=68293683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087749A Active JP6962267B2 (ja) 2018-04-27 2018-04-27 パルスパターン生成装置

Country Status (2)

Country Link
JP (1) JP6962267B2 (ja)
WO (1) WO2019208408A1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578700B2 (ja) * 2001-02-23 2010-11-10 本田技研工業株式会社 ブラシレスdcモータの制御装置
JP5737309B2 (ja) * 2013-02-18 2015-06-17 トヨタ自動車株式会社 電力変換装置
US10715074B2 (en) * 2015-12-21 2020-07-14 Nissan Motor Co., Ltd. Motor diagnosis method and power conversion device using same

Also Published As

Publication number Publication date
JP2019193543A (ja) 2019-10-31
WO2019208408A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
EP2333948A2 (en) Inverter control device and motor drive system
JP7052373B2 (ja) 交流電動機の制御装置
US10498283B2 (en) Motor drive device
JP6981272B2 (ja) 交流電動機の制御装置
JP2004343963A (ja) ブラシレスdcモータの制御装置
JP4131421B2 (ja) インバータ試験装置
JP2013162660A (ja) 電動機駆動システム
JP2008167655A (ja) インバータ試験装置
JP5561550B2 (ja) 回転電機制御装置
JP2008048505A (ja) 3相回転機の制御装置
JP2011004538A (ja) インバータ装置
JP4670044B2 (ja) 電動機の磁極位置推定方法及び装置
WO2017030055A1 (ja) 回転機の制御装置および制御方法
JP6962267B2 (ja) パルスパターン生成装置
JP6939693B2 (ja) パルスパターン生成装置
JP7004980B2 (ja) パルスパターン生成装置
JP7070358B2 (ja) インバータ装置
JP4670045B2 (ja) 電動機の磁極位置推定方法及び装置
JP4686868B2 (ja) 電圧形インバータの制御方法
JP6544204B2 (ja) モータの制御装置
JP7001043B2 (ja) インバータ装置
JP4079201B2 (ja) インバータ試験装置
JP7067522B2 (ja) インバータ装置
JP7067380B2 (ja) インバータ装置
JP2004023804A (ja) モータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R151 Written notification of patent or utility model registration

Ref document number: 6962267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151