JP6959633B2 - Charge measuring device, fluid manufacturing equipment, method for measuring the amount of electric charge in a fluid, and method for manufacturing a fluid - Google Patents

Charge measuring device, fluid manufacturing equipment, method for measuring the amount of electric charge in a fluid, and method for manufacturing a fluid Download PDF

Info

Publication number
JP6959633B2
JP6959633B2 JP2017099474A JP2017099474A JP6959633B2 JP 6959633 B2 JP6959633 B2 JP 6959633B2 JP 2017099474 A JP2017099474 A JP 2017099474A JP 2017099474 A JP2017099474 A JP 2017099474A JP 6959633 B2 JP6959633 B2 JP 6959633B2
Authority
JP
Japan
Prior art keywords
charge
pipe
silicone oil
conductive portion
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017099474A
Other languages
Japanese (ja)
Other versions
JP2018194482A (en
Inventor
利典 長岡
有策 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAOKA SANGYOU CO., LTD.
Original Assignee
NAGAOKA SANGYOU CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAOKA SANGYOU CO., LTD. filed Critical NAGAOKA SANGYOU CO., LTD.
Priority to JP2017099474A priority Critical patent/JP6959633B2/en
Publication of JP2018194482A publication Critical patent/JP2018194482A/en
Application granted granted Critical
Publication of JP6959633B2 publication Critical patent/JP6959633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

この発明は、例えば配管を流れる流体の電荷量を評価する静電センサ、電荷測定器、流体製造装置、流体の電荷量の測定方法、及び流体の製造方法に関する。 The present invention relates to, for example, an electrostatic sensor for evaluating the amount of electric charge of a fluid flowing through a pipe, a charge measuring device, a fluid manufacturing apparatus, a method for measuring the amount of electric charge of a fluid, and a method for manufacturing a fluid.

例えば、流体を使用する又は製造する機器や工場などでは、流体が配管との摩擦により帯電する(『流動帯電現象』という)。そして、流体がフルオロカーボンを基にしたフッ素系液体や絶縁油などの絶縁性の場合には、帯電した流体を接地しても電荷は漏洩しないため、配管などの絶縁破壊の原因となる。このようなことから、絶縁性流体に帯電する電荷量を評価することは重要な課題である。 For example, in equipment and factories that use or manufacture fluids, the fluids are charged by friction with piping (referred to as "flow charging phenomenon"). When the fluid has an insulating property such as a fluorocarbon-based fluorocarbon liquid or insulating oil, the electric charge does not leak even if the charged fluid is grounded, which causes dielectric breakdown of the piping or the like. Therefore, it is an important task to evaluate the amount of electric charge charged in the insulating fluid.

このような絶縁性流体に帯電する電荷量を評価する方法として、例えば、試料貯留槽に収容された絶縁性流体を複数の孔を有する金属多孔体を介して他の受容器に流し、金属多孔体と接地点との電流値を測定することで絶縁性流体の帯電を評価する方法が特許文献1に開示されている。 As a method for evaluating the amount of electric charge charged in such an insulating fluid, for example, the insulating fluid contained in the sample storage tank is flowed through a metal porous body having a plurality of pores to another receptor, and the metal porous material is porous. Patent Document 1 discloses a method of evaluating the charge of an insulating fluid by measuring the current value between the body and the grounding point.

この方法では、絶縁性流体が複数設けられた金属多孔体を通って受容体に流れるため、絶縁性流体が接触する接触面積を増加させることができる。すなわち、評価する電荷量を増加させることができるため、帯電している電荷の評価感度を高めることができ、測定感度を高めることができるとされている。 In this method, since the insulating fluid flows to the receptor through the metal porous body provided with a plurality of insulating fluids, the contact area with which the insulating fluids come into contact can be increased. That is, since the amount of electric charge to be evaluated can be increased, the evaluation sensitivity of the charged electric charge can be increased, and the measurement sensitivity can be increased.

しかしながら、この特許文献1に開示された方法では、絶縁性流体の電荷を評価するために絶縁性流体を試料貯留槽から受容体に移す必要があり、配管を流れる絶縁性流体の電荷を評価することができなかった。 However, in the method disclosed in Patent Document 1, it is necessary to transfer the insulating fluid from the sample storage tank to the receptor in order to evaluate the charge of the insulating fluid, and the charge of the insulating fluid flowing through the pipe is evaluated. I couldn't.

特開2002−5976号公報JP-A-2002-5796

この発明は、上記問題点に鑑み、配管を流れている流体に帯電している電荷量を容易に評価できる静電センサ、電荷測定器、流体製造装置、流体の電荷量の測定方法、及び流体の製造方法を提供することを目的とする。 In view of the above problems, the present invention provides an electrostatic sensor, a charge measuring device, a fluid manufacturing apparatus, a method for measuring the amount of electric charge of a fluid, and a fluid, which can easily evaluate the amount of electric charge charged in the fluid flowing through the pipe. It is an object of the present invention to provide the manufacturing method of.

この発明は、内部に流体が流れる、非導電性の配管における周方向の少なくとも一部の外周に配置され、電荷検知部として機能する外側導電部で構成された静電センサと、前記外側導電部と接地点との電位差を測定する電位計とが備えられ、前記外側導電部と接地点との電位差を前記電位計で測定して、前記内部に前記流体が流れることで前記配管の内表面に生じた内部電荷によって前記外側導電部に誘導される外部電荷を測定する電荷測定器であることを特徴とする。 The present invention comprises an electrostatic sensor composed of an outer conductive portion that is arranged on the outer periphery of at least a part of a non-conductive pipe in which fluid flows inside and functions as a charge detection portion, and the outer conductive portion. An electrometer for measuring the potential difference between the outside conductive portion and the grounding point is provided, and the potential difference between the outer conductive portion and the grounding point is measured by the electrometer, and the fluid flows inside the inside surface of the pipe. It is a charge measuring device that measures an external charge induced to the outer conductive portion by the generated internal charge.

前記流体とは、液体のみならず、紛体やエアロゾル、ゲル状体を含む。具体的には、絶縁油や、液体燃料、潤滑油などの他、有機溶剤や高分子物質のモノマー体やポリマー体などを含む。The fluid includes not only liquids but also powders, aerosols and gels. Specifically, it includes insulating oil, liquid fuel, lubricating oil, etc., as well as monomeric bodies and polymer bodies of organic solvents and polymer substances.

この発明によると、前記導電性の配管に対して前記絶縁部と前記外側導電部を、あるいは前記非導電性の配管に対して前記外側導電部を配置するだけで、前記配管を流れる前記流体に帯電した電荷量を評価することができる。このように、非常に簡易な構成で、前記流体に帯電した電荷量を評価できる。According to the present invention, simply by arranging the insulating portion and the outer conductive portion with respect to the conductive pipe, or the outer conductive portion with respect to the non-conductive pipe, the fluid flowing through the pipe is provided. The amount of charged charge can be evaluated. As described above, the amount of electric charge charged in the fluid can be evaluated with a very simple configuration.

また、上記静電センサと、前記外側導電部と接地点との電位差を測定する電位計とが備えられた電荷測定器は、前記流体に基づいて生じる電位差を測定できるため、前記流体に帯電した電荷量を相対的に計測できる。なお、前記電位計は直接前記外側導電部と連結させて測定する電位計の他、前記外側導電体の表面電位を測定する表面電位測定器であってもよい。Further, since the charge measuring device provided with the electrostatic sensor and the electrometer for measuring the potential difference between the outer conductive portion and the grounding point can measure the potential difference generated based on the fluid, the fluid is charged. The amount of charge can be measured relatively. The electrometer may be a surface potential measuring device that measures the surface potential of the outer conductor, in addition to the electrometer that is directly connected to the outer conductive portion for measurement.

またこの発明の態様として、前記配管と接続される計測用配管が最径内側に備えられてもよい。 Further, as an aspect of the present invention, a measurement pipe connected to the pipe may be provided on the innermost diameter.
この発明により、例えば前記配管に対して接続できることから、既存の設備などに対して静電センサを組み付けて、前記流体に帯電する電荷量を評価できる。なお、前記計測用配管は、前記流体が流れる配管と接続して前記流体を流すことができるとともに、前記流体の電荷を計測するための配管をさす。 According to the present invention, for example, since it can be connected to the pipe, an electrostatic sensor can be assembled to an existing facility or the like to evaluate the amount of electric charge charged in the fluid. The measurement pipe is connected to a pipe through which the fluid flows so that the fluid can flow, and also refers to a pipe for measuring the electric charge of the fluid.

またこの発明は、内部に流体が流れる、非導電性の配管と、前記配管における周方向の少なくとも一部の外周に配置され、電荷検知部として機能する外側導電部で構成された静電センサと、前記外側導電部と接地点との電位差を測定する電位計とが備えられ、前記外側導電部と接地点との電位差を前記電位計で測定して、前記内部に前記流体が流れることで前記配管の内表面に生じた内部電荷によって前記外側導電部に誘導される外部電荷を測定する流体製造装置であることを特徴とする。Further, the present invention includes a non-conductive pipe through which fluid flows inside, and an electrostatic sensor composed of an outer conductive part which is arranged on the outer periphery of at least a part of the pipe in the circumferential direction and functions as a charge detection part. An electrometer for measuring the potential difference between the outer conductive portion and the grounding point is provided, and the potential difference between the outer conductive portion and the grounding point is measured by the electrometer, and the fluid flows inside the outer conductive portion. It is a fluid manufacturing apparatus that measures an external charge induced in the outer conductive portion by an internal charge generated on the inner surface of a pipe.

これらの発明により、前記配管を流れる前記流体に帯電した電荷量を測定しながら前記流体を製造できるため、例えば前記流体に帯電した電荷量が所定の値を超えた場合などを早期に発見することができる。According to these inventions, the fluid can be manufactured while measuring the amount of electric charge charged in the fluid flowing through the pipe. Therefore, for example, when the amount of electric charge charged in the fluid exceeds a predetermined value, it can be detected at an early stage. Can be done.

またこの発明は、内部に流体が流れる、非導電性の配管における周方向の少なくとも一部の外周に配置され、電荷検知部として機能する外側導電部で構成された静電センサを用い、前記外側導電部と接地点との電位差を測定して、前記内部に前記流体が流れることで前記配管の内表面に生じた内部電荷によって前記外側導電部に誘導される外部電荷を測定する流体の電荷量の測定方法であることを特徴とする。Further, the present invention uses an electrostatic sensor which is arranged on the outer periphery of at least a part in the circumferential direction of a non-conductive pipe through which fluid flows inside and is composed of an outer conductive portion which functions as a charge detection portion. The amount of charge of the fluid that measures the potential difference between the conductive portion and the grounding point and measures the external charge induced to the outer conductive portion by the internal charge generated on the inner surface of the pipe due to the flow of the fluid inside. It is characterized in that it is a measuring method of.

これらの発明により、前記流体の帯電により生じた前記外側導電体及び前記内側導電体の間の電位差を測定することができるため、前記外側導電体に誘導された外部電荷を算定して、前記流体に帯電する電荷量を計測できる。According to these inventions, the potential difference between the outer conductor and the inner conductor caused by the charging of the fluid can be measured. Therefore, the external charge induced in the outer conductor is calculated and the fluid is calculated. The amount of charge charged in the can be measured.

この発明は、内部に流体が流れる断面環状の環状体における周方向の少なくとも一部に、導電体で構成され、前記流体が接触する内側導電部、絶縁体で構成された絶縁部及び、該絶縁部によって前記内側導電部と絶縁された導電体で構成され、電荷検知部として機能する外側導電部が、断面内側から断面外側に向かってこの順で配置された静電センサであることを特徴とする。 In the present invention, at least a part of an annular body having an annular cross section through which a fluid flows inside is composed of a conductor, and an inner conductive portion with which the fluid comes into contact, an insulating portion composed of an insulator, and the insulation thereof. The outer conductive part, which is composed of a conductor insulated from the inner conductive part by the part and functions as a charge detection part, is an electrostatic sensor arranged in this order from the inside of the cross section to the outside of the cross section. do.

前記断面環状とは、流体の上流側から下流側に向けて流れる流れ方向に対して直交する直交断面の形状が円環状である場合や、三角形状、四角形状、六角形などの多角形状に構成された環状である場合を含む。 The cross-sectional ring is formed when the shape of the orthogonal cross section orthogonal to the flow direction of the fluid flowing from the upstream side to the downstream side is an annular shape, or a polygonal shape such as a triangle shape, a quadrangular shape, or a hexagonal shape. Including the case where the ring is formed.

内側導電部は、前記環状体の一部分である場合のみならず、前記環状体全体である場合を含む。
前記導電体は、例えば鉄などの導電性の金属や、カーボンやチオフェン系などの導電性樹脂、当該導電性樹脂を練り込んだ樹脂、導電性樹脂などでコーティングしたもの、導電性樹脂をライニング又は焼嵌めしたものなどを含む。
The inner conductive portion includes not only the case where it is a part of the annular body but also the case where it is the entire annular body.
The conductor is, for example, a conductive metal such as iron, a conductive resin such as carbon or thiophene, a resin kneaded with the conductive resin, a material coated with the conductive resin, or a conductive resin lining or lining. Including those that have been hard-fitted.

前記絶縁部は、絶縁性物質であればどのような物質であってもよく、例えばポリテトラフルオロエチレンなどで構成されたフッ素樹脂やポリ塩化ビニル、ポリサルフォン、シリコーン、合成ゴムなどで構成された絶縁性樹脂、セラミックやガラスなどの絶縁性の無機物などを含む。
前記外側導電部は、前記内側導電部と同じ又は異なる材料で構成されるものを含む。
The insulating portion may be any material as long as it is an insulating substance. For example, an insulating material made of a fluororesin made of polytetrafluoroethylene or the like, polyvinyl chloride, polysulfone, silicone, synthetic rubber or the like. Includes resin, insulating inorganic substances such as ceramics and glass.
The outer conductive portion includes a material made of the same material as or different from that of the inner conductive portion.

この発明によると、配管を流れている流体に帯電している電荷量を容易に評価できる。
詳述すると、例えば、配管との摩擦により帯電した前記流体(例えば絶縁性流体)が、前記内側導電部と接触した場合、前記内側導電部の径内側は前記流体の電量に応じて帯電することになる。これにより、前記絶縁部を介して前記内側導電部の外側に配置された前記外側導電部に、前記内側導電部の径内側に帯電した電荷(内部電荷)によって、誘導電荷(外部電荷)が誘導されることとなる。
According to the present invention, the amount of electric charge charged in the fluid flowing through the pipe can be easily evaluated.
More specifically, for example, when the fluid (for example, an insulating fluid) charged by friction with a pipe comes into contact with the inner conductive portion, the inner diameter of the inner conductive portion is charged according to the electric charge of the fluid. become. As a result, an induced charge (external charge) is induced in the outer conductive portion arranged outside the inner conductive portion via the insulating portion by the charge (internal charge) charged inside the diameter of the inner conductive portion. Will be done.

この外部電荷は内部電荷に対応する電荷量であるため、外部電荷を計測することで、前記絶縁性流体に帯電する電荷量の増減を検知することができ、前記絶縁性流体における電荷量を評価できる。このように本発明は、流体を他の受容器などに移すことなく、環状体を流れる前記絶縁性流体に帯電する電荷量を評価できる。 Since this external charge is the amount of charge corresponding to the internal charge, it is possible to detect an increase or decrease in the amount of charge charged in the insulating fluid by measuring the external charge, and evaluate the amount of charge in the insulating fluid. can. As described above, the present invention can evaluate the amount of electric charge charged on the insulating fluid flowing through the annular body without transferring the fluid to another receptor or the like.

この発明の態様として、前記内側導電部を、前記環状体の周方向全周に亘って環状に配置してもよい。
この発明によると、前記流体に帯電する電荷量をより正確に評価できる。
As an aspect of the present invention, the inner conductive portion may be arranged in an annular shape over the entire circumference of the annular body in the circumferential direction.
According to the present invention, the amount of electric charge charged on the fluid can be evaluated more accurately.

詳述すると、例えば前記流体の量が少ない場合には、前記環状体の底面側と、上面側とでは、前記流体と接触する接触面積が異なるため、前記内側導電部の配置される場所によって誘導される外部電荷の電荷量が異なることとなる。このため、前記内側導電部を前記環状体の周方向の一部分に設けた場合、前記外側導電部に誘導される外部電荷を測定しても、前記流体に帯電する電荷量を正確に評価できないおそれがある。 More specifically, for example, when the amount of the fluid is small, the contact area in contact with the fluid differs between the bottom surface side and the top surface side of the annular body. The amount of external charge generated will be different. Therefore, when the inner conductive portion is provided in a part of the annular body in the circumferential direction, the amount of electric charge charged in the fluid may not be accurately evaluated even if the external charge induced in the outer conductive portion is measured. There is.

これに対して、前記内側導電部を前記環状体の周方向全周に亘って環状に配置した場合、前記流体と前記内側導電部とが接触しない箇所があっても、前記内側導電部に前記流体の電荷量に応じた電荷が誘導されるため、前記内側導電部に対応して周方向全周に配置された前記外側導電部には、前記流体に生じた内部電荷に対応して外部電荷が誘導される。したがって、前記外部電荷の電荷量を評価することで、流体に帯電した電荷量を正確に評価できる。 On the other hand, when the inner conductive portion is arranged in an annular shape over the entire circumference in the circumferential direction of the annular body, even if there is a portion where the fluid and the inner conductive portion do not contact, the inner conductive portion has the said. Since an electric charge is induced according to the amount of electric charge of the fluid, the outer conductive portion arranged on the entire circumference in the circumferential direction corresponding to the inner conductive portion has an external charge corresponding to the internal charge generated in the fluid. Is induced. Therefore, by evaluating the amount of electric charge of the external charge, the amount of electric charge charged in the fluid can be accurately evaluated.

またこの発明の態様として、前記内側導電部における上下流側の端部を絶縁する端部絶縁体を備えてもよい。
この発明により、前記内側導電部の上下流側が前記端部絶縁体で区切られることとなるため、所定の範囲内において生じた内部電荷に基づいて前記流体に帯電する電荷量を評価できる。すなわち、前記外側導電部に誘導される外部電荷は、所定の範囲内あたりにおいて前記流体によって生じた内部電荷に基づく電荷であるため、前記流体に帯電する電荷量をより正確に評価することができる。
Further, as an aspect of the present invention, an end insulator that insulates the upstream and downstream ends of the inner conductive portion may be provided.
According to the present invention, the upstream and downstream sides of the inner conductive portion are separated by the end insulator, so that the amount of electric charge charged in the fluid can be evaluated based on the internal charge generated within a predetermined range. That is, since the external charge induced in the outer conductive portion is a charge based on the internal charge generated by the fluid within a predetermined range, the amount of charge charged in the fluid can be evaluated more accurately. ..

またこの発明の態様として、配管の内部に流れる前記流体の少なくとも一部を前記環状体の内部に流すよう前記配管と前記環状体とを接続する接続部を備えてもよい。
この発明により、他の配管と接続して、前記配管に流れる前記流体の電荷を評価することができる。すなわち、前記静電センサを取り付けることで他の配管に流れる前記流体に帯電する電荷量を評価できる。
Further, as an aspect of the present invention, a connecting portion connecting the pipe and the annular body may be provided so that at least a part of the fluid flowing inside the pipe flows inside the annular body.
According to the present invention, it is possible to evaluate the electric charge of the fluid flowing through the pipe by connecting with another pipe. That is, by attaching the electrostatic sensor, it is possible to evaluate the amount of electric charge charged in the fluid flowing through other pipes.

またこの発明の態様として、上述の静電センサと、前記内側導電部と前記外側導電部との電位差を測定する電位計とが備えられた電荷測定器であることを特徴とする。 Further, as an aspect of the present invention, the electric charge measuring device is provided with the above-mentioned electrostatic sensor and an electrometer for measuring the potential difference between the inner conductive portion and the outer conductive portion.

またこの発明は、内部に流体が流れる導電性の配管における周方向の少なくとも一部の外周に配置される絶縁体で構成された絶縁部と、該絶縁部によって前記配管と絶縁され、電荷検知部として機能する外側導電部とで構成された静電センサであることを特徴とする。 Further, in the present invention, an insulating portion composed of an insulator arranged on the outer periphery of at least a part in the circumferential direction of a conductive pipe through which a fluid flows, and a charge detection unit which is insulated from the pipe by the insulating portion. It is characterized in that it is an electrostatic sensor composed of an outer conductive portion that functions as a function.

またこの発明の態様として、前記電荷測定器で測定した前記流体の電荷量の増減を判定する判定部と、該判定部での判定結果に基づいて、前記流体の電荷量を調整する電荷調整手段とを備えてもよい。 Further, as an aspect of the present invention, a determination unit for determining an increase or decrease in the charge amount of the fluid measured by the charge measuring device, and a charge adjusting means for adjusting the charge amount of the fluid based on the determination result of the determination unit. And may be provided.

前記電荷調整手段は、例えば前記流体の電荷量を調整できればどのようなものであってもよく、例えば前記流体の流量を調整する流量調整手段や、前記流体の流路を他の配管に流す流路切替手段、前記流体に帯電する電荷を除電する除電手段などを含む。
この発明により、前記流体の電荷量が所定の値を超えないように調整しながら、前記流体を製造でき、より安全に前記流体を製造できる。
The charge adjusting means may be any as long as the charge amount of the fluid can be adjusted, for example, a flow rate adjusting means for adjusting the flow rate of the fluid or a flow of flowing the flow path of the fluid to another pipe. It includes a path switching means, a static elimination means for removing the electric charge charged in the fluid, and the like.
According to the present invention, the fluid can be produced while adjusting the charge amount of the fluid so as not to exceed a predetermined value, and the fluid can be produced more safely.

またこの発明の態様として、前記電荷調整手段が、前記電荷測定器で測定した前記流体の電荷量に応じて前記流体の流量を調整する流量調整手段で構成されてもよい。
この発明によると、例えば前記流体の電荷量が所定の値を超えた場合、前記流体の流量を低減させて前記流体の電荷量が所定の値を超えないように調整できる。
Further, as an aspect of the present invention, the charge adjusting means may be configured by a flow rate adjusting means that adjusts the flow rate of the fluid according to the amount of charge of the fluid measured by the charge measuring device.
According to the present invention, for example, when the electric charge amount of the fluid exceeds a predetermined value, the flow rate of the fluid can be reduced so that the electric charge amount of the fluid does not exceed the predetermined value.

この発明により、配管を流れている絶縁性流体の帯電を容易に評価することができる静電センサ、電荷測定器、流体製造装置、流体の電荷量の測定方法、及び流体の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention provides an electrostatic sensor, a charge measuring device, a fluid manufacturing apparatus, a method for measuring a charge amount of a fluid, and a method for manufacturing a fluid, which can easily evaluate the charge of an insulating fluid flowing through a pipe. be able to.

絶縁油製造装置の概略構成図。Schematic block diagram of an insulating oil manufacturing apparatus. 電荷測定器の概略斜視図。Schematic perspective view of the charge measuring instrument. 静電センサの概略斜視図。Schematic perspective view of the electrostatic sensor. 電荷測定器の説明図。Explanatory drawing of charge measuring instrument. 電荷状態の説明図。Explanatory drawing of charge state. 他の実施形態の電荷測定器の説明図。Explanatory drawing of the charge measuring instrument of another embodiment. 他の実施形態の電荷測定器の説明図。Explanatory drawing of the charge measuring instrument of another embodiment. 他の実施形態の電荷測定器の説明図。Explanatory drawing of the charge measuring instrument of another embodiment. 他の実施形態の電荷測定器の説明図。Explanatory drawing of the charge measuring instrument of another embodiment.

この発明の一実施形態を以下図面と共に説明する。
(第1実施形態)
まず、第1実施形態におけるシリコーン油製造装置100及び、シリコーン油製造装置100を構成する電荷測定器2について、図1乃至図4に基づいて説明する。
An embodiment of the present invention will be described below with reference to the drawings.
(First Embodiment)
First, the silicone oil manufacturing apparatus 100 and the charge measuring device 2 constituting the silicone oil producing apparatus 100 in the first embodiment will be described with reference to FIGS. 1 to 4.

図1は、シリコーン油製造装置100の後半部分の大まかな構成を表す概略構成図を示し、図2は電荷測定器2の概略斜視図を示し、図3は静電センサ20の概略斜視図を示し、図4は電荷測定器2の構造を簡易的に示す説明図を示す。 FIG. 1 shows a schematic configuration diagram showing a rough configuration of the latter half of the silicone oil manufacturing apparatus 100, FIG. 2 shows a schematic perspective view of the charge measuring instrument 2, and FIG. 3 shows a schematic perspective view of the electrostatic sensor 20. Shown, FIG. 4 shows an explanatory diagram that simply shows the structure of the charge measuring device 2.

詳しくは、図3(a)は流体用配管1と接続した静電センサ20と流体用配管1の上流側の一部分を断面で示した部分断面斜視図を示し、図3(b)はシリコーン油Rの流れ方向から視た静電センサ20の断面図を示し、図4は図2中における静電センサ20のA−A断面図と電位計30の簡易図で電荷測定器2を表した電荷測定器2の構造を説明する説明図を示す。 Specifically, FIG. 3A shows a partial cross-sectional perspective view showing a part of the upstream side of the electrostatic sensor 20 connected to the fluid pipe 1 and the fluid pipe 1 in cross section, and FIG. 3B shows silicone oil. A cross-sectional view of the electrostatic sensor 20 as viewed from the flow direction of R is shown, and FIG. 4 is a cross-sectional view taken along the line AA of the electrostatic sensor 20 and a simplified view of the potential meter 30 in FIG. An explanatory diagram for explaining the structure of the measuring instrument 2 is shown.

例えば絶縁油の一種であるシリコーン油Rを製造するシリコーン油製造装置100について、図1に基づいて、簡単に説明する。
シリコーン油製造装置100は、シリコーン油Rの流路である流体用配管1と、流体用配管1に流れるシリコーン油Rの電荷量を測定する電荷測定器2と、モノマー体であるシラン類が加水分解により重合されたシリコーン油Rを貯留するシリコーン油貯留部3と、流体用配管1を流れてきたシリコーン油Rを脱水処理するための脱水部4と、シリコーン油貯留部3から脱水部4へとシリコーン油Rを送るためのポンプ5と、流体用配管1に流れるシリコーン油Rの流量を調整する流量調整部6とで構成され、脱水部4で脱水されたシリコーン油Rは例えば変圧器などの機器に移したり、貯蔵されたりする。
For example, a silicone oil manufacturing apparatus 100 for manufacturing silicone oil R, which is a kind of insulating oil, will be briefly described with reference to FIG.
In the silicone oil manufacturing apparatus 100, the fluid pipe 1 which is the flow path of the silicone oil R, the charge measuring device 2 which measures the amount of charge of the silicone oil R flowing through the fluid pipe 1, and the silanes which are monomer bodies are added. A silicone oil storage unit 3 for storing the silicone oil R polymerized by decomposition, a dehydration unit 4 for dehydrating the silicone oil R flowing through the fluid pipe 1, and a silicone oil storage unit 3 to the dehydration unit 4. The silicone oil R is composed of a pump 5 for sending the silicone oil R and a flow rate adjusting unit 6 for adjusting the flow rate of the silicone oil R flowing through the fluid pipe 1, and the silicone oil R dehydrated by the dehydration section 4 is, for example, a transformer or the like. Transferred to or stored in the equipment of.

ここで、本実施形態において、シリコーン油貯留部3に貯留されているシリコーン油Rはモノマー体であるシラン類が加水分解により重合されたものとしているが、特にこの構成に限定するわけでなく、絶縁油であればどのようなものでもよく、またシリコーン油に限定されない。 Here, in the present embodiment, the silicone oil R stored in the silicone oil storage unit 3 is assumed to be obtained by polymerizing silanes as monomer bodies by hydrolysis, but the configuration is not particularly limited to this. Any insulating oil may be used, and the oil is not limited to silicone oil.

流体用配管1は、図2及び図3に示すように、シリコーン油用配管11と、流体用配管1と電荷測定器2と連結するための配管側フランジ12とで構成されている。
シリコーン油用配管11は、断面が円環状に形成された中空状の筒状体であり、導電体であるステンレスで構成されている。
As shown in FIGS. 2 and 3, the fluid pipe 1 is composed of a silicone oil pipe 11 and a pipe side flange 12 for connecting the fluid pipe 1 and the charge measuring device 2.
The silicone oil pipe 11 is a hollow tubular body having an annular cross section, and is made of stainless steel, which is a conductor.

配管側フランジ12は、シリコーン油用配管11の上流側又は下流側の端部において、シリコーン油用配管11の径外側に張り出すように設けられた円盤体である。また、シリコーン油用配管11の端面と配管側フランジ12の端面とは面一に形成されており、配管側フランジ12のシリコーン油Rの流れる方向(以下、流れ方向Dとする。)に沿って貫通した複数のボルト用貫通孔が設けられている(図示省略)。 The pipe-side flange 12 is a disk body provided so as to project outside the diameter of the silicone oil pipe 11 at the upstream or downstream end of the silicone oil pipe 11. Further, the end face of the silicone oil pipe 11 and the end face of the pipe side flange 12 are formed flush with each other, and follow the flow direction of the silicone oil R of the pipe side flange 12 (hereinafter referred to as the flow direction D). A plurality of through holes for bolts are provided (not shown).

電荷測定器2は、シリコーン油Rの帯電を評価する静電センサ20と、静電センサ20で評価した電荷の電圧を計測する電位計30とで構成されている。
静電センサ20は、図2乃至図4に示すように、シリコーン油用配管11から流れきたシリコーン油Rを下流側に流すためのセンサ用配管21と、センサ用配管21の上流側及び下流側に設けられたセンサ側フランジ22と、センサ用配管21の長手方向中央部分に設けられたセンサ本体23とで構成されている。
The charge measuring device 2 includes an electrostatic sensor 20 that evaluates the charge of the silicone oil R, and an electrometer 30 that measures the voltage of the charge evaluated by the electrostatic sensor 20.
As shown in FIGS. 2 to 4, the electrostatic sensor 20 includes a sensor pipe 21 for flowing the silicone oil R flowing from the silicone oil pipe 11 to the downstream side, and the upstream side and the downstream side of the sensor pipe 21. It is composed of a sensor-side flange 22 provided in the sensor body and a sensor main body 23 provided in the central portion of the sensor pipe 21 in the longitudinal direction.

センサ用配管21は、図2及び図3に示すように、シリコーン油用配管11と同じ素材であるステンレスで構成された中空状の筒状体であり、その内径及び外径は、シリコーン油用配管11と等しくなるように形成されている。 As shown in FIGS. 2 and 3, the sensor pipe 21 is a hollow tubular body made of stainless steel, which is the same material as the silicone oil pipe 11, and its inner and outer diameters are for silicone oil. It is formed so as to be equal to the pipe 11.

なお、本実施形態において、センサ用配管21はシリコーン油用配管11と同素材で構成されているが、必ずしも同素材である必要はなく、センサ用配管21はシリコーン油用配管11と異なる導電性の別素材(例えば他の金属や、チオフェン系ポリマーなど)で構成されてもよい。 In the present embodiment, the sensor pipe 21 is made of the same material as the silicone oil pipe 11, but it does not necessarily have to be made of the same material, and the sensor pipe 21 has a different conductivity from the silicone oil pipe 11. It may be composed of another material (for example, another metal or a thiophene-based polymer).

センサ側フランジ22は、センサ用配管21の上流側及び下流側端部に設けられた、配管側フランジ12と同径の円盤体で構成され、シリコーン油Rの流れる方向に沿って貫通したナット用貫通孔が、シリコーン油用配管11に設けられたボルト用貫通孔と対応するように設けられている(図示省略)。また、センサ側フランジ22の端部側面は、センサ用配管21の端部と面一となるように構成されている。 The sensor side flange 22 is formed of a disk body having the same diameter as the pipe side flange 12 provided at the upstream side and downstream side ends of the sensor pipe 21, and is for a nut penetrating along the flow direction of the silicone oil R. The through hole is provided so as to correspond to the through hole for the bolt provided in the silicone oil pipe 11 (not shown). Further, the side surface of the end portion of the sensor side flange 22 is configured to be flush with the end portion of the sensor pipe 21.

このように構成された配管側フランジ12とセンサ側フランジ22とは、互いにボルト用貫通孔とナット用貫通孔とを互いに対向配置させ、ボルトとナットを用いることで、流体用配管1と電荷測定器2とを着脱可能に構成している。
これによりシリコーン油用配管11を流れるシリコーン油Rが連続してセンサ用配管21に流れることができる。
The piping side flange 12 and the sensor side flange 22 configured in this way have the bolt through hole and the nut through hole arranged so as to face each other, and by using the bolt and the nut, the fluid pipe 1 and the charge measurement are performed. It is configured so that it can be attached to and detached from the vessel 2.
As a result, the silicone oil R flowing through the silicone oil pipe 11 can continuously flow to the sensor pipe 21.

センサ用配管21の中央部分に設けられたセンサ本体23は、図3及び図4に示すように、内側導電部24、絶縁部25及び外側導電部26を、センサ用配管21の周方向の全周に亘って径内側から径外側に向けてこの順で配置した構成である(図3(b)参照)。
内側導電部24は、導電性を有するステンレスで構成された導電体で、長手方向に所定の長さを有するとともに、内径及び外径がセンサ用配管21と同径の円筒状体で構成されている。
As shown in FIGS. 3 and 4, the sensor main body 23 provided in the central portion of the sensor pipe 21 includes the inner conductive portion 24, the insulating portion 25, and the outer conductive portion 26 in the entire circumferential direction of the sensor pipe 21. The configuration is arranged in this order from the inner diameter to the outer diameter over the circumference (see FIG. 3 (b)).
The inner conductive portion 24 is a conductor made of conductive stainless steel, has a predetermined length in the longitudinal direction, and is made of a cylindrical body having an inner diameter and an outer diameter of the same diameter as the sensor pipe 21. There is.

絶縁部25は、内側導電部24の径内側を除く部分を覆うように設けられた、ポリテトラフルオロエチレン製の絶縁体である。
具体的には絶縁部25は、図4に示すように、内側導電部24の外周面を覆う外周被覆部251と、内側導電部24の上流側端部を周方向に沿って覆う上流側被覆部252と、内側導電部24の下流側端部を周方向に沿って覆う下流側被覆部253とで構成されている。換言すると、内側導電部24は、径外側面が外周被覆部251で覆われるとともに、センサ用配管21と間に上流側被覆部252及び下流側被覆部253とが介在することにより、導電性のセンサ用配管21から内側導電部24が電気的に分離された構成としている。
The insulating portion 25 is an insulator made of polytetrafluoroethylene, which is provided so as to cover a portion of the inner conductive portion 24 other than the inner diameter.
Specifically, as shown in FIG. 4, the insulating portion 25 includes an outer peripheral covering portion 251 that covers the outer peripheral surface of the inner conductive portion 24 and an upstream side coating that covers the upstream end portion of the inner conductive portion 24 along the circumferential direction. It is composed of a portion 252 and a downstream side covering portion 253 that covers the downstream end portion of the inner conductive portion 24 along the circumferential direction. In other words, the inner conductive portion 24 is conductive because the outer diameter outer surface is covered with the outer peripheral covering portion 251 and the upstream side covering portion 252 and the downstream side covering portion 253 are interposed between the sensor pipe 21 and the sensor pipe 21. The inner conductive portion 24 is electrically separated from the sensor pipe 21.

外側導電部26は、図4に示すように、長手方向に対して内側導電部24と同じ長さを有する。内側導電部24と同素材の導電体で構成され、絶縁部25を介して内側導電部24と対向して配置されている。すなわち、外側導電部26は、絶縁部25によって内側導電部24と絶縁されている。 As shown in FIG. 4, the outer conductive portion 26 has the same length as the inner conductive portion 24 in the longitudinal direction. It is composed of a conductor made of the same material as the inner conductive portion 24, and is arranged so as to face the inner conductive portion 24 via an insulating portion 25. That is, the outer conductive portion 26 is insulated from the inner conductive portion 24 by the insulating portion 25.

電位計30は、内側導電部と外側導電部間に生じる電位差を計測する振動容量型の電位計であり、図2及び図4に示すように、振動容量型のデジタル電位計である電位計本体31と、内側導電部24や外側導電部26などと電位計30とを接続する導線32とで構成されており、内側導電部24と外側導電部26との電位差(電圧の値)を測定できる。 The electrometer 30 is a vibration capacitance type electrometer that measures the potential difference between the inner conductive portion and the outer conductive portion, and as shown in FIGS. 2 and 4, the electrometer main body is a vibration capacitance type digital electrometer. It is composed of 31 and a conducting wire 32 connecting the inner conductive portion 24, the outer conductive portion 26, and the electrometer 30, and can measure the potential difference (voltage value) between the inner conductive portion 24 and the outer conductive portion 26. ..

電位計本体31は、内側導電部24や外側導電部26との電位測定する測定ヘッドを内蔵しており、繋がれた内側導電部24と外側導電部26の電位差を表示する表示部を有する。
導線32は、電位計本体31と内側導電部24とを繋ぐ第一配線321と、電位計本体31と外側導電部26とを繋ぐ第二配線322と、電位計本体31を接地させるアース線323とで構成されている。
The electrometer main body 31 has a built-in measuring head for measuring the potential between the inner conductive portion 24 and the outer conductive portion 26, and has a display unit for displaying the potential difference between the connected inner conductive portion 24 and the outer conductive portion 26.
The conducting wire 32 includes a first wiring 321 connecting the potential meter main body 31 and the inner conductive portion 24, a second wiring 322 connecting the potential meter main body 31 and the outer conductive portion 26, and a ground wire 323 for grounding the potential meter main body 31. It is composed of and.

流量調整部6は、図1に示すように、シリコーン油Rの電荷量に対するシリコーン油Rの流量を制御する制御システムであり、シリコーン油Rに帯電する電荷量を算出する電荷量計測処理部61と、シリコーン油Rの電荷量が所定の値を超えたかを判定する電荷量判定部62と、流体用配管1を流れるシリコーン油Rの流量を制御する流量制御部63とで構成されており、電位計30と接続する電圧受信電線64及びポンプ5と接続する制御信号送信電線65とを備えている。 As shown in FIG. 1, the flow rate adjusting unit 6 is a control system that controls the flow rate of the silicone oil R with respect to the electric charge amount of the silicone oil R, and is a charge amount measuring processing unit 61 that calculates the electric charge amount charged in the silicone oil R. It is composed of a charge amount determination unit 62 for determining whether the charge amount of the silicone oil R exceeds a predetermined value, and a flow rate control unit 63 for controlling the flow rate of the silicone oil R flowing through the fluid pipe 1. It includes a voltage receiving wire 64 connected to the electrometer 30 and a control signal transmitting wire 65 connected to the pump 5.

電荷量計測処理部61は電位計30で計測した電位差から、シリコーン油用配管11を流れるシリコーン油Rの電荷量の算出処理を行う処理部である。
電荷調整手段として機能する流量制御部63は、電荷量判定部62での判定結果に基づいて、ポンプ5を制御してシリコーン油Rの流量を調整する流量制御部である。なお、電荷量判定部62での判定は、シリコーン油Rが帯電する電荷量に応じて段階的に行われる構成であり、流量制御部63は段階的な電荷量判定部62での判定結果に応じてシリコーン油Rの流量を調整できる。
The charge amount measurement processing unit 61 is a processing unit that calculates the charge amount of the silicone oil R flowing through the silicone oil pipe 11 from the potential difference measured by the electrometer 30.
The flow rate control unit 63 that functions as the charge adjusting means is a flow rate control unit that controls the pump 5 to adjust the flow rate of the silicone oil R based on the determination result of the charge amount determination unit 62. The determination by the charge amount determination unit 62 is performed stepwise according to the amount of charge charged by the silicone oil R, and the flow rate control unit 63 is based on the determination result by the stepwise charge amount determination unit 62. The flow rate of the silicone oil R can be adjusted accordingly.

電圧受信電線64は、電位計30で計測した電圧の値を電荷量計測処理部61に受信するための受信電線である。
制御信号送信電線65は、流量制御部63の制御による制御信号をポンプ5に送信するための送信電線である。これにより、シリコーン油用配管11を流れるシリコーン油Rの流量を調整できる。
The voltage receiving electric wire 64 is a receiving electric wire for receiving the value of the voltage measured by the electrometer 30 to the charge amount measurement processing unit 61.
The control signal transmission wire 65 is a transmission wire for transmitting a control signal controlled by the flow rate control unit 63 to the pump 5. Thereby, the flow rate of the silicone oil R flowing through the silicone oil pipe 11 can be adjusted.

このように構成された静電センサ20を用いることにより、シリコーン油Rに帯電している電荷量を評価できる。 By using the electrostatic sensor 20 configured in this way, the amount of electric charge charged in the silicone oil R can be evaluated.

具体的には静電センサ20は、内部にシリコーン油Rが流れる断面環状のセンサ用配管21における周方向に導電体で構成され、シリコーン油Rが接触する内側導電部24と、絶縁体であるポリテトラフルオロエチレン製の絶縁部25と、絶縁部25によって内側導電部24と絶縁された導電体であるステンレス製の、電荷検知部として機能する外側導電部26が、径内側から径外側に向かってこの順で配置されることで、シリコーン油用配管11を流れているシリコーン油Rに帯電している電荷量を評価することができる。 Specifically, the electrostatic sensor 20 is composed of a conductor in the circumferential direction in the sensor pipe 21 having an annular cross section through which the silicone oil R flows, and is an insulator and an inner conductive portion 24 with which the silicone oil R comes into contact. The insulating portion 25 made of polytetrafluoroethylene and the outer conductive portion 26, which is a conductor insulated from the inner conductive portion 24 by the insulating portion 25 and functions as a charge detection unit, are directed from the inner diameter to the outer diameter. By arranging the conductors in this order, it is possible to evaluate the amount of electric charge charged in the silicone oil R flowing through the silicone oil pipe 11.

詳述すると、図5に示すように、シリコーン油用配管11を流れたシリコーン油Rは、シリコーン油用配管11との摩擦により帯電している(図5(a)参照)。この帯電しているシリコーン油Rの流体帯電電荷Qrにより内側導電部24の径内側に内部電荷Qiが生じる(図5(b)参照)。この内部電荷Qiにより、絶縁部25を介して内側導電部24の外側に配置された外側導電部26には、内部電荷Qiに対応する外部電荷Qoが生じることとなる(図5(c)参照)。 More specifically, as shown in FIG. 5, the silicone oil R flowing through the silicone oil pipe 11 is charged by friction with the silicone oil pipe 11 (see FIG. 5A). The fluid charge Qr of the charged silicone oil R generates an internal charge Qi inside the diameter of the inner conductive portion 24 (see FIG. 5B). Due to this internal charge Qi, an external charge Qo corresponding to the internal charge Qi is generated in the outer conductive portion 26 arranged outside the inner conductive portion 24 via the insulating portion 25 (see FIG. 5C). ).

この外部電荷Qoは内部電荷Qiに対応する電荷量であるため、例えば表面電荷測定器などで外側導電部26に帯電している外部電荷Qoを測定することで、センサ用配管21を流れるシリコーン油Rに帯電する電荷量を評価できる。このように静電センサ20により、センサ用配管21を流れるシリコーン油Rに帯電する電荷量を評価できる。 Since this external charge Qo is an amount of electric charge corresponding to the internal charge Qi, for example, by measuring the external charge Qo charged in the outer conductive portion 26 with a surface charge measuring device or the like, the silicone oil flowing through the sensor pipe 21 The amount of charge charged on R can be evaluated. In this way, the electrostatic sensor 20 can evaluate the amount of electric charge charged in the silicone oil R flowing through the sensor pipe 21.

また、静電センサ20に加えて内側導電部24と外側導電部26との電位差を測定する電位計30を備えることにより、シリコーン油Rによる帯電に基づいた外側導電部26と内側導電部24との間の電位差を測定することができる。この電位差を利用することで、内側導電部24に帯電された内部電荷Qiを算出することができ、内部電荷Qiからセンサ用配管21に流れるシリコーン油Rの電荷量を算出できる。 Further, by providing an electrometer 30 for measuring the potential difference between the inner conductive portion 24 and the outer conductive portion 26 in addition to the electrostatic sensor 20, the outer conductive portion 26 and the inner conductive portion 24 based on the charge by the silicone oil R can be provided. The potential difference between them can be measured. By utilizing this potential difference, the internal charge Qi charged in the inner conductive portion 24 can be calculated, and the charge amount of the silicone oil R flowing through the sensor pipe 21 can be calculated from the internal charge Qi.

また、内側導電部24を、センサ用配管21の周方向全周に亘って環状に配置することにより、シリコーン油Rに帯電する電荷量をより正確に評価できる。
詳述すると、例えばセンサ用配管21の底面側と接するシリコーン油Rと、上面側と接するシリコーン油Rとはシリコーン油Rの流量によって接触面積が異なる。
Further, by arranging the inner conductive portion 24 in an annular shape over the entire circumference of the sensor pipe 21 in the circumferential direction, the amount of electric charge charged in the silicone oil R can be evaluated more accurately.
More specifically, for example, the contact area of the silicone oil R in contact with the bottom surface side of the sensor pipe 21 and the silicone oil R in contact with the top surface side differ depending on the flow rate of the silicone oil R.

このため、内側導電部24の配置される場所によって内部電荷の電荷量にバラツキが生じる。このように内側導電部24をセンサ用配管21の部分的に設けた場合、設けた位置によって外側導電部26に誘導される外部電荷Qoを測定しても、シリコーン油Rに帯電する電荷量を正確に評価できない。 Therefore, the amount of internal charge varies depending on the location where the inner conductive portion 24 is arranged. When the inner conductive portion 24 is partially provided in the sensor pipe 21 in this way, even if the external charge Qo induced in the outer conductive portion 26 is measured by the provided position, the amount of electric charge charged in the silicone oil R can be measured. Cannot be evaluated accurately.

一方で、内側導電部24を周方向全周に亘って環状に配置した場合、シリコーン油Rと内側導電部24が部分的に接触していない箇所があっても、シリコーン油Rが帯びた電荷に対応した内部電荷Qiが導電体である内側導電部24に誘導される。このため、内側導電部24に対応して配置された外側導電部26にはシリコーン油Rに生じた誘導電荷に対応した外部電荷Qoが誘導される。したがって、外部電荷Qoを評価することで、シリコーン油Rに帯電した電荷量を正確に評価できる。 On the other hand, when the inner conductive portion 24 is arranged in an annular shape over the entire circumference in the circumferential direction, the electric charge carried by the silicone oil R even if the silicone oil R and the inner conductive portion 24 are not partially in contact with each other. The internal charge Qi corresponding to is induced in the inner conductive portion 24 which is a conductor. Therefore, the external charge Qo corresponding to the induced charge generated in the silicone oil R is induced in the outer conductive portion 26 arranged corresponding to the inner conductive portion 24. Therefore, by evaluating the external charge Qo, the amount of charge charged in the silicone oil R can be accurately evaluated.

さらにまた、内側導電部24における上流側の端部及び下流側端部に、センサ用配管21と絶縁する上流側被覆部252及び下流側被覆部253を備えることにより、内側導電部24の上流側及び下流側が上流側被覆部252及び下流側被覆部253で区切られることとなる。 Furthermore, by providing the upstream side covering portion 252 and the downstream side covering portion 253 that insulate the sensor piping 21 from the upstream side end portion and the downstream side end portion of the inner conductive portion 24, the upstream side of the inner conductive portion 24 is provided. And the downstream side are separated by the upstream side covering portion 252 and the downstream side covering portion 253.

すなわち、内側導電部24は所定の範囲内において生じた内部電荷Qiに対応する外側導電部26に外部電荷Qoが誘導される。したがって、外側導電部26に帯電した外部電荷Qoの電荷量を計測することで、シリコーン油Rに帯電する電荷量をより正確に評価できる。 That is, in the inner conductive portion 24, the external charge Qo is induced in the outer conductive portion 26 corresponding to the internal charge Qi generated within a predetermined range. Therefore, by measuring the amount of external charge Qo charged in the outer conductive portion 26, the amount of charge charged in the silicone oil R can be evaluated more accurately.

さらにまた、シリコーン油用配管11の内部に流れるシリコーン油Rの少なくとも一部をセンサ用配管21の内部に流すようシリコーン油用配管11とセンサ用配管21とを接続するセンサ側フランジ22を備えることにより、シリコーン油用配管11と接続することができ、シリコーン油用配管11に流れるシリコーン油Rに帯電する電荷量を評価できる。 Furthermore, a sensor-side flange 22 for connecting the silicone oil pipe 11 and the sensor pipe 21 is provided so that at least a part of the silicone oil R flowing inside the silicone oil pipe 11 flows inside the sensor pipe 21. Therefore, it can be connected to the silicone oil pipe 11, and the amount of charge charged in the silicone oil R flowing through the silicone oil pipe 11 can be evaluated.

またシリコーン油製造装置100は、流体用配管1に電荷測定器2を組み付けた構成とすることで、シリコーン油用配管11を流れるシリコーン油Rに帯電した電荷量を測定しながらシリコーン油Rを製造でき、シリコーン油Rに帯電した電荷量が所定の値を超えた場合などを早期に発見することができる。 Further, the silicone oil manufacturing apparatus 100 is configured by assembling the charge measuring device 2 to the fluid pipe 1 to manufacture the silicone oil R while measuring the amount of electric charge charged on the silicone oil R flowing through the silicone oil pipe 11. Therefore, it is possible to detect at an early stage the case where the amount of electric charge charged in the silicone oil R exceeds a predetermined value.

また、電荷測定器2で測定したシリコーン油Rに帯電した電荷量の増減を判定する電荷量判定部62と、電荷量判定部62での判定結果に基づいて、シリコーン油Rの電荷量を調整する流量制御部63とを備えることにより、シリコーン油Rに帯電した電荷量が所定の値を超えないように調整しながら、シリコーン油Rを製造でき、より安全にシリコーン油Rを製造できる。 Further, the charge amount of the silicone oil R is adjusted based on the determination result of the charge amount determination unit 62 for determining the increase / decrease of the charge amount charged in the silicone oil R measured by the charge measuring device 2 and the charge amount determination unit 62. By providing the flow control unit 63, the silicone oil R can be produced while adjusting the amount of electric charge charged in the silicone oil R so as not to exceed a predetermined value, and the silicone oil R can be produced more safely.

また、内部にシリコーン油Rが流れる断面環状のセンサ用配管21における周方向に、導電体であるステンレスで構成され、シリコーン油Rと接触する内側導電部24と、絶縁体であるポリテトラフルオロエチレン製で構成された絶縁部25と、絶縁部25によって内側導電部24と絶縁された導電体で構成され、電荷検知部として機能する外側導電部26とが、断面内側から断面外側に向かってこの順で配置され、シリコーン油Rがセンサ用配管21の内部に流れた状態で、内側導電部24と外側導電部26との電位差を測定するシリコーン油Rに帯電する電荷量の測定方法により、シリコーン油Rに帯電する電荷量を容易且つ正確に評価し、計測できる。 Further, in the circumferential direction of the sensor pipe 21 having an annular cross section through which the silicone oil R flows, the inner conductive portion 24, which is made of stainless steel and is in contact with the silicone oil R, and the insulator, polytetrafluoroethylene. An insulating portion 25 made of a material and an outer conductive portion 26 composed of a conductor insulated from the inner conductive portion 24 by the insulating portion 25 and functioning as a charge detection unit are formed from the inner side of the cross section to the outer side of the cross section. Silicone is arranged in order, and the amount of electric charge charged in the silicone oil R is measured by measuring the potential difference between the inner conductive portion 24 and the outer conductive portion 26 in a state where the silicone oil R flows inside the sensor pipe 21. The amount of electric charge charged on the oil R can be easily and accurately evaluated and measured.

また、シリコーン油用配管11を流れるシリコーン油Rの少なくとも一部分が、内部を流れる断面環状の環状体における周方向の少なくとも一部に、導電体で構成された、前記流体と接触する内側導電部24と、絶縁体であるポリテトラフルオロエチレン製で構成された絶縁部25と、前記絶縁部25を介して前記内側導電部24と絶縁された導電体で構成され、電荷検知部として機能する外側導電部26とが、断面内側から断面外側に向かってこの順で配置され、シリコーン油Rがセンサ用配管21の内部に流れた状態で、前記内側導電部24と前記外側導電部26との電位差を測定することにより、センサ用配管21を流れるシリコーン油Rに帯電する電荷量を測定する電荷量測定工程を有することで、シリコーン油Rに帯電する電荷量を容易且つ正確に評価し、計測できる。 Further, at least a part of the silicone oil R flowing through the silicone oil pipe 11 is formed of a conductor in at least a part in the circumferential direction of the annular body having an annular cross section flowing inside, and the inner conductive portion 24 is in contact with the fluid. The outer conductor, which is composed of an insulating portion 25 made of polytetrafluoroethylene, which is an insulator, and a conductor insulated from the inner conductive portion 24 via the insulating portion 25, and functions as a charge detection unit. The portions 26 are arranged in this order from the inside of the cross section to the outside of the cross section, and the potential difference between the inner conductive portion 24 and the outer conductive portion 26 is measured in a state where the silicone oil R flows inside the sensor pipe 21. By having a charge amount measuring step of measuring the amount of electric charge charged on the silicone oil R flowing through the sensor pipe 21, the amount of electric charge charged on the silicone oil R can be easily and accurately evaluated and measured.

また、電荷測定器2で測定したシリコーン油Rの電荷量に応じてシリコーン油Rの流量を調整する流量制御部63を備えることにより、シリコーン油Rに帯電する電荷量が一定の値を超えた場合、シリコーン油Rの流量を低減できるため、シリコーン油Rに帯電する電荷量が所定の値を超えないように調整して、絶縁破壊を未然に防止できる。 Further, by providing the flow control unit 63 that adjusts the flow rate of the silicone oil R according to the amount of charge of the silicone oil R measured by the charge measuring device 2, the amount of charge charged on the silicone oil R exceeds a certain value. In this case, since the flow rate of the silicone oil R can be reduced, the amount of electric charge charged in the silicone oil R can be adjusted so as not to exceed a predetermined value, and insulation destruction can be prevented.

なお、本実施形態において、流量調整部として、シリコーン油Rの流量を制御する流量制御部63としているが、このような流量を調整する構成に限らず、シリコーン油Rの流路を切り替える流路切替手段や、シリコーン油Rに帯電する電荷を除電する除電手段などとしてもよい。すなわち、シリコーン油Rの電荷量を調整できればどのようなものであってもよい。 In the present embodiment, the flow rate adjusting unit is a flow rate control unit 63 that controls the flow rate of the silicone oil R, but the flow rate is not limited to such a configuration for adjusting the flow rate, and a flow path for switching the flow rate of the silicone oil R. It may be used as a switching means, a static elimination means for removing the electric charge charged in the silicone oil R, or the like. That is, any charge may be used as long as the charge amount of the silicone oil R can be adjusted.

また、電荷量の測定結果に基づいて、シリコーン油Rに帯電する電荷量を調整する電荷量調整工程を有することにより、シリコーン油Rに帯電した電荷量が所定の値を超えないように調整しながら、シリコーン油Rを製造でき、より安全にシリコーン油Rを製造できる。 Further, by having a charge amount adjusting step for adjusting the charge amount charged in the silicone oil R based on the measurement result of the charge amount, the charge amount charged in the silicone oil R is adjusted so as not to exceed a predetermined value. However, the silicone oil R can be produced, and the silicone oil R can be produced more safely.

さらにまた、静電センサ20及び電位計30を用いてシリコーン油Rに帯電する電荷量を測定しながらシリコーン油Rを製造することができるとともに、電荷量判定部62及び流量制御部63を備えることで、シリコーン油Rに帯電する電荷量を判定する工程と、シリコーン油Rに帯電する電荷量に基づいてシリコーン油Rの流量を調整する工程とで構成されたシリコーン油Rの製造方法とすることができる。 Furthermore, the silicone oil R can be manufactured while measuring the amount of charge charged on the silicone oil R using the electrostatic sensor 20 and the electric potential meter 30, and the silicone oil R is provided with a charge amount determination unit 62 and a flow rate control unit 63. The method for producing silicone oil R is composed of a step of determining the amount of electric charge charged in the silicone oil R and a step of adjusting the flow rate of the silicone oil R based on the amount of electric charge charged in the silicone oil R. Can be done.

また、本実施形態においてシリコーン油製造装置100では、シリコーン油用配管11及びセンサ用配管21は導電性を有する中空状の筒状体で構成されているが、必ずしも導電性を有する筒状体である必要はなく、シリコーン油用配管11及びセンサ用配管21の一方又は双方を絶縁体で構成された中空状の筒状体であっても構わない。 Further, in the silicone oil manufacturing apparatus 100 in the present embodiment, the silicone oil pipe 11 and the sensor pipe 21 are formed of a conductive hollow tubular body, but the silicone oil pipe 11 is not necessarily a conductive tubular body. It does not have to be, and one or both of the silicone oil pipe 11 and the sensor pipe 21 may be a hollow tubular body made of an insulator.

(第2実施形態)
以下、電荷測定器2の他の実施形態である、絶縁体で構成された中空状の筒状体であるセンサ用配管21aで構成された電荷測定器2aについて、図6に基づいて説明する。
(Second Embodiment)
Hereinafter, another embodiment of the charge measuring instrument 2, the charge measuring instrument 2a composed of the sensor pipe 21a which is a hollow tubular body composed of an insulator, will be described with reference to FIG.

ここで図6は、図4と同様に、図2における静電センサ20のA−A断面に対応する静電センサ20aのA−A断面図と電位計30の簡易図で電荷測定器2を表した電荷測定器2の構造を説明する説明図を示す。なお、上述した第1実施形態と同じ構成は、同じ符号を付して、その詳しい説明を省略する。 Here, as in FIG. 4, FIG. 6 shows the charge measuring instrument 2 with a cross-sectional view taken along the line AA of the electrostatic sensor 20a corresponding to the cross section taken along the line AA of the electrostatic sensor 20 in FIG. 2 and a simplified view of the electrometer 30. An explanatory diagram for explaining the structure of the represented charge measuring instrument 2 is shown. The same configurations as those of the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.

電荷測定器2aは、図6に示すように、シリコーン油Rに帯電する電荷量を評価する静電センサ20aと、静電センサ20aを構成する内側導電部24と外側導電部26との電位差を計測する電位計30とで構成されている。 As shown in FIG. 6, the charge measuring device 2a measures the potential difference between the electrostatic sensor 20a for evaluating the amount of electric charge charged in the silicone oil R and the inner conductive portion 24 and the outer conductive portion 26 constituting the electrostatic sensor 20a. It is composed of a potential meter 30 for measurement.

非導電性であるシリコーン油用配管11aと配管側フランジ12を介して接続する静電センサ20aは、非導電性であるポリテトラフルオロエチレン製の筒状体で構成されたセンサ用配管21aと、センサ用配管21aの上流側及び下流側に設けられたセンサ側フランジ22と、センサ用配管21の長手方向中央部分に設けられたセンサ本体23aとで構成されている。 The electrostatic sensor 20a connected to the non-conductive silicone oil pipe 11a via the pipe side flange 12 includes a sensor pipe 21a made of a non-conductive polytetrafluoroethylene tubular body. It is composed of a sensor-side flange 22 provided on the upstream side and the downstream side of the sensor pipe 21a, and a sensor main body 23a provided in the central portion of the sensor pipe 21 in the longitudinal direction.

センサ用配管21の中央部分に設けられたセンサ本体23aは、内側導電部24、絶縁部25a及び外側導電部26を、センサ用配管21の周方向の全周に亘って径内側から径外側に向けてこの順で配置した構成である(図3(b)参照)。 The sensor body 23a provided in the central portion of the sensor pipe 21 has the inner conductive portion 24, the insulating portion 25a, and the outer conductive portion 26 extending from the inner diameter to the outer diameter over the entire circumference of the sensor pipe 21 in the circumferential direction. It is a configuration in which they are arranged in this order (see FIG. 3B).

内側導電部24は、導電性を有するステンレス製で構成された導電体で、長手方向に所定の長さを有するとともに、内径及び外径がセンサ用配管21と同径の円筒状体で構成されている。
絶縁部25aは、内側導電部24の径内側を除く部分を覆うように設けられた、ポリテトラフルオロエチレン製の絶縁体で内側導電部24の外周面を覆うよう構成されている。すなわち、絶縁部25aは絶縁部25と比べて、内側導電部24の上流側端部及び下流側端部を周方向に沿って覆う上流側被覆部252及び下流側被覆部253を有さない。
The inner conductive portion 24 is a conductive conductor made of stainless steel, has a predetermined length in the longitudinal direction, and is formed of a cylindrical body having an inner diameter and an outer diameter of the same diameter as the sensor pipe 21. ing.
The insulating portion 25a is configured to cover the outer peripheral surface of the inner conductive portion 24 with an insulator made of polytetrafluoroethylene provided so as to cover the portion of the inner conductive portion 24 excluding the inner diameter. That is, the insulating portion 25a does not have the upstream side covering portion 252 and the downstream side covering portion 253 that cover the upstream side end portion and the downstream side end portion of the inner conductive portion 24 along the circumferential direction as compared with the insulating portion 25.

これは、センサ用配管21aが、導電性を有するステンレス製の内側導電部24と異なり、非導電性のポリテトラフルオロエチレン製で構成されているため、内側導電部24とセンサ用配管21aと界面に、改めて絶縁部を設ける必要がないためである。 This is because the sensor pipe 21a is made of non-conductive polytetrafluoroethylene, unlike the conductive inner conductive portion 24 made of stainless steel, and therefore the interface between the inner conductive portion 24 and the sensor pipe 21a. This is because it is not necessary to provide an insulating portion again.

このように構成されている静電センサ20aは、シリコーン油用配管11又は11aに組み合わせて静電センサ20の代わりとして使用でき、静電センサ20と同様に、シリコーン油Rに帯電される流体帯電電荷Qrの電荷量を評価できる。また、第一配線321及び第二配線322を介して内側導電部24と電位計本体31、外側導電部26と電位計本体31とがそれぞれ接続されているため、内側導電部24と外側導電部26との電位差を測定できる。これにより、シリコーン油Rに帯電する電荷量を計測できる。
このように、静電センサ20aは、静電センサ20と同様の効果を奏することができるとともに、静電センサ20aと電位計30とで構成された電荷測定器2aも、電荷測定器2と同様の効果を奏する。
The electrostatic sensor 20a configured in this way can be used as a substitute for the electrostatic sensor 20 in combination with the silicone oil pipe 11 or 11a, and like the electrostatic sensor 20, fluid charging charged in the silicone oil R. The amount of charge of the charge Qr can be evaluated. Further, since the inner conductive portion 24 and the electrometer main body 31 and the outer conductive portion 26 and the electrometer main body 31 are connected via the first wiring 321 and the second wiring 322, the inner conductive portion 24 and the outer conductive portion 24 are connected. The potential difference from 26 can be measured. Thereby, the amount of electric charge charged in the silicone oil R can be measured.
As described above, the electrostatic sensor 20a can exert the same effect as the electrostatic sensor 20, and the charge measuring device 2a composed of the electrostatic sensor 20a and the potential meter 30 is also the same as the charge measuring device 2. Play the effect of.

(第3実施形態)
次に、上述の電荷測定器2aと同様に非導電性のセンサ用配管21aの内部を流れるシリコーン油Rの電荷を評価する電荷測定器2bについて、図7に基づいて説明する。
(Third Embodiment)
Next, a charge measuring device 2b for evaluating the charge of the silicone oil R flowing inside the non-conductive sensor pipe 21a like the above-mentioned charge measuring device 2a will be described with reference to FIG. 7.

ここで図7は、図4と同様に、図2における静電センサ20のA−A断面に対応する静電センサ20bのA−A断面図と電位計30の簡易図で電荷測定器2を表した電荷測定器2の構造を説明する説明図を示す。 Here, as in FIG. 4, FIG. 7 shows the charge measuring instrument 2 with a cross-sectional view taken along the line AA of the electrostatic sensor 20b corresponding to the cross section taken along the line AA of the electrostatic sensor 20 in FIG. 2 and a simplified view of the electrometer 30. An explanatory diagram for explaining the structure of the represented charge measuring instrument 2 is shown.

詳しくは、図7(a)は静電センサ20bをシリコーン油用配管11aの一部分に組み付ける構成である場合の説明図を示し、図7(b)はセンサ本体23bをシリコーン油用配管11aに囲繞する構成について説明した場合を示す。
なお、この電荷測定器2bにおいて、上述の第1実施形態及び第2実施形態と同じ構成は、同じ符号を付して、その詳しい説明を省略する。
Specifically, FIG. 7A shows an explanatory diagram in the case where the electrostatic sensor 20b is assembled to a part of the silicone oil pipe 11a, and FIG. 7B shows the sensor body 23b surrounded by the silicone oil pipe 11a. The case where the configuration to be performed is described is shown.
In the charge measuring device 2b, the same configurations as those in the first embodiment and the second embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.

電荷測定器2bは、図7(a)に示すように、シリコーン油Rに帯電する電荷量を評価する静電センサ20bと、外側導電部26bと接地点との電位差(電圧)を測定する電位計30bとで構成されている。 As shown in FIG. 7A, the charge measuring device 2b includes an electrostatic sensor 20b that evaluates the amount of charge charged in the silicone oil R, and a potential that measures the potential difference (voltage) between the outer conductive portion 26b and the grounding point. It is composed of a total of 30b.

静電センサ20bは、シリコーン油用配管11aを流れるシリコーン油Rを内部に流す配管であるセンサ用配管21bと、センサ用配管21bの上流側及び下流側に設けられたセンサ側フランジ22と、センサ用配管21bの長手方向中央部分に設けられたセンサ本体23bとで構成されている。 The electrostatic sensor 20b includes a sensor pipe 21b which is a pipe for flowing the silicone oil R flowing through the silicone oil pipe 11a into the inside, a sensor side flange 22 provided on the upstream side and the downstream side of the sensor pipe 21b, and a sensor. It is composed of a sensor main body 23b provided in the central portion of the pipe 21b in the longitudinal direction.

計測用配管に対応するセンサ用配管21bは、非導電性のポリテトラフルオロエチレン製の配管であり、流れ方向Dに沿って上流側から下流側まで伸びる中空状の円筒体である。
センサ本体23bは、外側導電部26bで構成されており、センサ用配管21bの中央部分において、センサ用配管21bの外周面を周方向に沿って囲繞する、導電性のチオフェン系ポリマーでコーティングしたフィルムで構成されている。
The sensor pipe 21b corresponding to the measurement pipe is a non-conductive polytetrafluoroethylene pipe, and is a hollow cylindrical body extending from the upstream side to the downstream side along the flow direction D.
The sensor body 23b is composed of an outer conductive portion 26b, and is a film coated with a conductive thiophene-based polymer that surrounds the outer peripheral surface of the sensor pipe 21b along the circumferential direction in the central portion of the sensor pipe 21b. It is composed of.

電位計30bは、誘導された表面電位を計測する振動容量型の電位計であり、電位計本体31と、外側導電部26bと電位計30bとを接続する導線32bとで構成されており、外側導電部26の電位(電圧の値)を測定できる。
詳述すると、導線32bは、電位計本体31と外側導電部26bとを繋ぐ第二配線322bと、電位計本体31を接地させるアース線323とで構成されている。
The electrometer 30b is a vibration capacitance type electrometer that measures the induced surface potential, and is composed of an electrometer main body 31 and a lead wire 32b that connects the outer conductive portion 26b and the electrometer 30b, and is composed of an outer side. The potential (voltage value) of the conductive portion 26 can be measured.
More specifically, the conducting wire 32b is composed of a second wiring 322b that connects the electrometer main body 31 and the outer conductive portion 26b, and a ground wire 323 that grounds the electrometer main body 31.

このように構成する電荷測定器2bは、シリコーン油用配管11aを流れるシリコーン油Rの流体帯電電荷Qrの電荷量を相対的に調べることができる。
詳述すると、センサ用配管21bとシリコーン油Rとが摩擦することにより、シリコーン油Rが帯電するとともに、センサ用配管21bの内表面に内部電荷Qiが生じるとともに、センサ用配管21bの外周面を囲繞する外側導電部26bに外部電荷Qoが誘導される。この外部電荷Qoを例えば表面電荷測定器などで測定することにより、シリコーン油Rに帯電した電荷量を評価できる。
The charge measuring device 2b configured in this way can relatively check the amount of charge of the fluid charge charge Qr of the silicone oil R flowing through the silicone oil pipe 11a.
More specifically, the friction between the sensor pipe 21b and the silicone oil R charges the silicone oil R, generates an internal charge Qi on the inner surface of the sensor pipe 21b, and causes the outer peripheral surface of the sensor pipe 21b to be charged. The external charge Qo is induced in the surrounding outer conductive portion 26b. By measuring this external charge Qo with, for example, a surface charge measuring device, the amount of charge charged in the silicone oil R can be evaluated.

また、電位計30bにより、センサ本体23bと接地点との電位差を測定することにより、シリコーン油Rに帯電する電荷量を相対的に数値化することができ、さらにまた測定した電圧を、あらかじめ測定した検量線と比較することにより、シリコーン油Rに帯電する電荷量を算出できる。
なお、センサ本体23bはセンサ用配管21bの中央部分に配置されているが、センサ用配管21bの全体を囲繞する構成であってもよい。
Further, by measuring the potential difference between the sensor body 23b and the grounding point with the electrometer 30b, the amount of electric charge charged in the silicone oil R can be relatively quantified, and the measured voltage is measured in advance. The amount of electric charge charged in the silicone oil R can be calculated by comparing with the calibration curve.
Although the sensor main body 23b is arranged in the central portion of the sensor pipe 21b, it may be configured to surround the entire sensor pipe 21b.

また、センサ本体23bは、センサ用配管21bに対して囲繞する構成としているが、例えば図7(b)に示すように、非導電性のシリコーン油用配管11aに対して囲繞する構成としてもよい。
この構成では、シリコーン油用配管11aに対してセンサ本体23b(外側導電部26b)を巻きつけて固定する工程のみでセンサ本体23bをシリコーン油用配管11aに組み付けることができるため、容易に組付け可能であるとともに、シリコーン油用配管11aに流れるシリコーン油Rの電荷量を評価できる。
Further, although the sensor main body 23b is configured to surround the sensor pipe 21b, for example, as shown in FIG. 7B, it may be configured to surround the non-conductive silicone oil pipe 11a. ..
In this configuration, the sensor body 23b can be assembled to the silicone oil pipe 11a only by winding the sensor body 23b (outer conductive portion 26b) around the silicone oil pipe 11a and fixing the sensor body 23b, so that the sensor body 23b can be easily assembled. It is possible, and the amount of charge of the silicone oil R flowing through the silicone oil pipe 11a can be evaluated.

このように構成された静電センサ20bは、内部にシリコーン油Rが流れる、非導電性のシリコーン油用配管11a又はセンサ用配管21bにおける周方向の少なくとも一部の外周に配置され、電荷検知部として機能する外側導電部26bで構成されており、非導電性のシリコーン油用配管11a又はセンサ用配管21bを流れるシリコーン油Rに帯電した電荷量を、シリコーン油用配管11a又はセンサ用配管21bに外側導電部26bを配置するだけで評価できる。このように、非常に簡易な構成で、シリコーン油用配管11a又はセンサ用配管21bを流れるシリコーン油Rに帯電した電荷量を評価できる。 The electrostatic sensor 20b configured in this way is arranged on the outer periphery of at least a part of the non-conductive silicone oil pipe 11a or the sensor pipe 21b in which the silicone oil R flows inside, and is a charge detection unit. The amount of electric charge charged in the silicone oil R flowing through the non-conductive silicone oil pipe 11a or the sensor pipe 21b is transferred to the silicone oil pipe 11a or the sensor pipe 21b. It can be evaluated only by arranging the outer conductive portion 26b. As described above, the amount of electric charge charged in the silicone oil R flowing through the silicone oil pipe 11a or the sensor pipe 21b can be evaluated with a very simple configuration.

また、電荷測定器2bは、静電センサ20bと、外側導電部26bと接地点との電位差を測定する電位計30bとを備えることにより、外側導電部26bと接地点との電位差が測定できる。これにより、電位差に基づいてシリコーン油用配管11aに流れる電荷の電荷量を相対的に算定しながらシリコーン油Rを製造する、又は算定結果に基づいてシリコーン油Rの流速の変更などを行うシリコーン油Rの製造方法や製造装置などとすることができる。 Further, the charge measuring device 2b includes an electrostatic sensor 20b and an electrometer 30b for measuring the potential difference between the outer conductive portion 26b and the grounding point, so that the potential difference between the outer conductive portion 26b and the grounding point can be measured. As a result, the silicone oil R is produced while relatively calculating the amount of electric charge flowing through the silicone oil pipe 11a based on the potential difference, or the flow velocity of the silicone oil R is changed based on the calculation result. It can be a manufacturing method or a manufacturing apparatus of R.

(第4実施形態)
上述の第3実施形態では、非導電性の筒状体で構成されたセンサ用配管21bの内部を流れるシリコーン油Rに帯電する電荷量を評価できる静電センサ20bについて説明したが、以下においては、導電性を有するセンサ用配管21cの内部を流れるシリコーン油Rに帯電する電荷量を評価できる静電センサ20cについて、図8に基づいて説明する。
(Fourth Embodiment)
In the third embodiment described above, the electrostatic sensor 20b capable of evaluating the amount of electric charge charged in the silicone oil R flowing inside the sensor pipe 21b made of a non-conductive tubular body has been described. An electrostatic sensor 20c capable of evaluating the amount of electric charge charged in the silicone oil R flowing inside the conductive sensor pipe 21c will be described with reference to FIG.

ここで図8は、図4と同様に、図2における静電センサ20のA−A断面に対応する静電センサ20cのA−A断面図と電位計30の簡易図で電荷測定器2を表した電荷測定器2cの構造を説明する説明図を示す。 Here, as in FIG. 4, FIG. 8 shows the charge measuring instrument 2 with a cross-sectional view taken along the line AA of the electrostatic sensor 20c corresponding to the cross section taken along the line AA of the electrostatic sensor 20 in FIG. 2 and a simplified view of the electrometer 30. An explanatory diagram for explaining the structure of the represented charge measuring instrument 2c is shown.

詳しくは、図8(a)は静電センサ20cをシリコーン油用配管11bの一部分に組み付ける構成である場合の説明図を示し、図8(b)はセンサ本体23cをシリコーン油用配管11bに囲繞する構成について説明した場合を示す。
なお、この電荷測定器2cにおいて、上述の第1実施形態及び第2実施形態と同じ構成は、同じ符号を付して、その詳しい説明を省略する。
Specifically, FIG. 8A shows an explanatory diagram in the case where the electrostatic sensor 20c is assembled to a part of the silicone oil pipe 11b, and FIG. 8B shows the sensor body 23c surrounded by the silicone oil pipe 11b. The case where the configuration to be performed is described is shown.
In the charge measuring device 2c, the same configurations as those of the first embodiment and the second embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.

電荷測定器2cは、図8(a)に示すように、シリコーン油Rに帯電する電荷量を評価する静電センサ20cと、センサ用配管21cと外側導電部26cとの電位差(電圧)を計測する電位計30cとで構成されている。 As shown in FIG. 8A, the charge measuring device 2c measures the potential difference (voltage) between the electrostatic sensor 20c for evaluating the amount of charge charged in the silicone oil R, the sensor pipe 21c, and the outer conductive portion 26c. It is composed of an electrometer 30c and the like.

静電センサ20cは、シリコーン油用配管11bを流れるシリコーン油Rを内部に流す配管であるセンサ用配管21cと、センサ用配管21cの上流側及び下流側に設けられたセンサ側フランジ22と、センサ用配管21cの長手方向中央部分に設けられたセンサ本体23cとで構成されている。 The electrostatic sensor 20c includes a sensor pipe 21c which is a pipe for flowing the silicone oil R flowing through the silicone oil pipe 11b to the inside, a sensor side flange 22 provided on the upstream side and the downstream side of the sensor pipe 21c, and a sensor. It is composed of a sensor main body 23c provided in the central portion of the pipe 21c in the longitudinal direction.

計測用配管に対応するセンサ用配管21cは、導電性のステンレス製の配管であり、流れ方向Dに沿って上流側から下流側まで伸びる中空状の円筒体である。
センサ本体23cは、センサ用配管21cの中央部分を周方向に沿って囲繞する絶縁性のポリテトラフルオロエチレン製の絶縁部25cと、絶縁部25cの外周面を周方向に沿って囲繞する導電性のチオフェン系ポリマーでコーティングしたフィルムである外側導電部26cで構成されている。
The sensor pipe 21c corresponding to the measurement pipe is a conductive stainless steel pipe, and is a hollow cylindrical body extending from the upstream side to the downstream side along the flow direction D.
The sensor body 23c has an insulating polytetrafluoroethylene insulating portion 25c that surrounds the central portion of the sensor pipe 21c along the circumferential direction, and a conductive portion that surrounds the outer peripheral surface of the insulating portion 25c along the circumferential direction. It is composed of an outer conductive portion 26c, which is a film coated with the thiophene-based polymer of.

電位計30cは、センサ用配管21cと外側導電部26cとの電位差を計測する振動容量型の電位計であり、図8(a)に示すように、電位計本体31と、センサ用配管21cや外側導電部26cなどと電位計30cとを接続する導線32cとで構成されており、センサ用配管21cと外側導電部26cとの電位差(電圧の値)を測定できる。 The electrometer 30c is a vibration capacitance type electrometer that measures the potential difference between the sensor pipe 21c and the outer conductive portion 26c, and as shown in FIG. 8A, the electrometer main body 31 and the sensor pipe 21c and the like. It is composed of a conducting wire 32c that connects the outer conductive portion 26c and the like and the electrometer 30c, and can measure the potential difference (voltage value) between the sensor pipe 21c and the outer conductive portion 26c.

導線32cは、電位計本体31とセンサ用配管21cとを繋ぐ第一配線321cと、電位計本体31と外側導電部26cとを繋ぐ第二配線322cと、電位計本体31を接地させるアース線323とで構成されている。 The conducting wire 32c includes a first wiring 321c that connects the electrometer main body 31 and the sensor pipe 21c, a second wiring 322c that connects the electrometer main body 31 and the outer conductive portion 26c, and a ground wire 323 that grounds the electrometer main body 31. It is composed of and.

このように構成されるセンサ本体23bは、センサ用配管21cを最径内側に配置し、径外側に向かってセンサ用配管21cと絶縁部25cと外側導電部26cがこの順で配置されることにより、静電センサ20bと同様に、センサ用配管21cに流れるシリコーン油Rに帯電する電荷量を評価できるとともに、電位計30によりセンサ用配管21cと外側導電部26cとの電位差を測定することで、シリコーン油Rに帯電する電荷量を計測できる。 In the sensor main body 23b configured in this way, the sensor pipe 21c is arranged on the innermost diameter, and the sensor pipe 21c, the insulating portion 25c, and the outer conductive portion 26c are arranged in this order toward the outer diameter. Similar to the electrostatic sensor 20b, the amount of electric charge charged in the silicone oil R flowing through the sensor pipe 21c can be evaluated, and the potential difference between the sensor pipe 21c and the outer conductive portion 26c can be measured by the potential meter 30. The amount of electric charge charged on the silicone oil R can be measured.

なお、絶縁部25c及び外側導電部26cで構成されるセンサ本体23cは、センサ用配管21cに取り付ける場合の他、導電性を有する配管であるシリコーン油用配管11bに取り付けることもできる(図8(b)参照)。
この構成では、シリコーン油用配管11bに対して絶縁部25cを巻きつける絶縁部巻きつけ工程と、巻きつけられた絶縁部25cに外側導電部26cを巻きつけて固定する外側導電部巻きつけ工程とを行うだけで、容易にセンサ本体23cをシリコーン油用配管11aに組み付けることができる。
The sensor main body 23c composed of the insulating portion 25c and the outer conductive portion 26c can be attached to the silicone oil pipe 11b, which is a conductive pipe, as well as to the sensor pipe 21c (FIG. 8 (FIG. 8). b) See).
In this configuration, an insulating portion winding step of winding the insulating portion 25c around the silicone oil pipe 11b, and an outer conductive portion winding step of winding the outer conductive portion 26c around the wound insulating portion 25c and fixing the insulating portion 26c. The sensor body 23c can be easily assembled to the silicone oil pipe 11a simply by performing the above.

このように構成されたセンサ本体23cは、内部にシリコーン油Rが流れる導電性のシリコーン油用配管11b又はセンサ用配管21cにおける周方向の少なくとも一部の外周に配置される絶縁体で構成された絶縁部25cと、絶縁部25cによってシリコーン油用配管11b又はセンサ用配管21cと絶縁され、電荷検知部として機能する外側導電部26cとで構成されることにより、導電性のシリコーン油用配管11b又はセンサ用配管21cに対して絶縁部25cと外側導電部26cを配置するだけで、シリコーン油用配管11を流れるシリコーン油Rに帯電した電荷量を評価することができる。このように、非常に簡易な構成で、シリコーン油Rに帯電した電荷量を評価できる。これにより、導電性を有するシリコーン油用配管11bに流れるシリコーン油Rの電荷量を評価でき、また評価に基づいてシリコーン油Rの流速の変更するシリコーン油Rの製造方法や製造装置などとすることができる。 The sensor body 23c configured in this way is composed of a conductive silicone oil pipe 11b through which the silicone oil R flows, or an insulator arranged on at least a part of the outer periphery of the sensor pipe 21c in the circumferential direction. The insulating portion 25c is insulated from the silicone oil pipe 11b or the sensor pipe 21c by the insulating portion 25c, and is composed of an outer conductive portion 26c that functions as a charge detection unit, whereby the conductive silicone oil pipe 11b or The amount of charge charged in the silicone oil R flowing through the silicone oil pipe 11 can be evaluated only by arranging the insulating portion 25c and the outer conductive portion 26c with respect to the sensor pipe 21c. As described above, the amount of electric charge charged in the silicone oil R can be evaluated with a very simple configuration. Thereby, the amount of electric charge of the silicone oil R flowing through the conductive silicone oil pipe 11b can be evaluated, and the silicone oil R manufacturing method and the manufacturing apparatus for changing the flow velocity of the silicone oil R based on the evaluation can be used. Can be done.

なお、電位計30は直接外側伝導部と連結させて測定する電位計30の他、外部導電体の表面電位を測定する表面電位測定器であってもよい。 The electrometer 30 may be a surface potential measuring device for measuring the surface potential of the external conductor, in addition to the electrometer 30 for measuring by directly connecting to the outer conducting portion.

また、電荷測定器2cは、静電センサ20cと、絶縁部25cと外側導電部26cとの電位差を測定する電位計30cとを備えることでシリコーン油用配管11に流れる電荷の電荷量を相対的に測定することができる。 Further, the charge measuring device 2c includes an electrostatic sensor 20c and an electrometer 30c for measuring the potential difference between the insulating portion 25c and the outer conductive portion 26c, so that the amount of electric charge flowing through the silicone oil pipe 11 can be relatively measured. Can be measured.

この発明の構成と、上述の実施形態との対応において、この発明の、
端部絶縁体は、上流側被覆部252及び下流側被覆部253に対応し、
以下同様に、
配管は、シリコーン油用配管11、11a、11bに対応し、
接続部は、センサ側フランジ22に対応し、
計測用配管は、センサ用配管21b及びセンサ用配管21cに対応し、
流体製造装置は、シリコーン油製造装置100に対応し、
判定部は、電荷量判定部62に対応し、
電荷調整手段及び流量調整手段は、流量制御部63に対応するが、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the above-described embodiment, the invention of the present invention
The end insulator corresponds to the upstream covering 252 and the downstream covering 253.
Similarly below
The piping corresponds to the silicone oil piping 11, 11a, 11b.
The connection part corresponds to the sensor side flange 22 and
The measurement piping corresponds to the sensor piping 21b and the sensor piping 21c.
The fluid production equipment corresponds to the silicone oil production equipment 100,
The determination unit corresponds to the charge amount determination unit 62, and corresponds to the charge amount determination unit 62.
The charge adjusting means and the flow rate adjusting means correspond to the flow rate control unit 63,
The present invention is not limited to the configuration of the above-described embodiment, and many embodiments can be obtained.

例えば、センサ用配管21は、流れ方向Dと直交する断面が円環状に形成された中空の円筒体であるが、必ずしも円筒体である必要はなく、例えば三角形状や四角形状や六角形などの多角形状に構成された環状の筒体であってもよい。 For example, the sensor pipe 21 is a hollow cylindrical body having an annular cross section orthogonal to the flow direction D, but it does not necessarily have to be a cylindrical body, for example, a triangular shape, a quadrangular shape, a hexagonal shape, or the like. It may be an annular cylinder formed in a polygonal shape.

また、シリコーン油Rとは、絶縁油に限らず、液体燃料や、潤滑油などの他、有機溶剤や高分子物質のモノマー体やポリマー体などであってもよく、さらには、液体のみならず、紛体やエアロゾル、ゲル状体であってもよい。 Further, the silicone oil R is not limited to the insulating oil, but may be a liquid fuel, a lubricating oil, a monomer body of an organic solvent or a polymer substance, a polymer body, or the like, and further, not only a liquid but also a liquid. , It may be a powder, an aerosol, or a gel.

また、内側導電部24は、周方向に沿って円環状に形成された筒状態であるが、この形状である必要はなく、例えば、周方向に一部分に設けても構わない。
また、内側導電部24や外側導電部26、さらには導電性を有するシリコーン油用配管11、11bなどは、例えば銅や銀、鉄などの導電性の金属や、導電体であるカーボン樹脂製、チオフェン系の導電性ポリマー、当該導電性樹脂を練り込んだ樹脂、導電性樹脂をライニング又は焼嵌めした材質などであってもよい。なお、これらは同じ材質である必要もなく、異なる材質を用いてもよい。
Further, the inner conductive portion 24 is in a tubular state formed in an annular shape along the circumferential direction, but it does not have to have this shape, and may be provided in a part in the circumferential direction, for example.
Further, the inner conductive portion 24, the outer conductive portion 26, and the conductive silicone oil pipes 11 and 11b are made of a conductive metal such as copper, silver, or iron, or a carbon resin which is a conductor. It may be a thiophene-based conductive polymer, a resin kneaded with the conductive resin, a material obtained by lining or shrink-fitting the conductive resin, or the like. It should be noted that these do not have to be the same material, and different materials may be used.

同様に、絶縁部25やセンサ用配管21aやセンサ用配管21bを構成する絶縁体は、ポリテトラフルオロエチレンに限定されず、フッ素樹脂やシリコーン、合成ゴムなどで構成された絶縁性樹脂、セラミックやガラスなどの絶縁性無機物などでもよい。
さらにまた、外側導電部26は、内側導電部24と異なる材料で構成してもよい。
Similarly, the insulator constituting the insulating portion 25, the sensor pipe 21a, and the sensor pipe 21b is not limited to polytetrafluoroethylene, but is an insulating resin made of fluororesin, silicone, synthetic rubber, or the like, ceramic, or the like. Insulating inorganic substances such as glass may be used.
Furthermore, the outer conductive portion 26 may be made of a material different from that of the inner conductive portion 24.

また、上述の実施形態では、シリコーン油製造装置100は、電荷測定器2を一つだけ備えた構成であるが、距離を離して複数個の電荷測定器2を配置してもよい。これにより、複数点でシリコーン油Rの電荷量を計測できるため、より確実なシリコーン油Rの電荷量を求めることができるとともに、シリコーン油Rの電荷量が増加する特定の場所などを検知でき、より安全にシリコーン油Rの製造や使用することなどができる。 Further, in the above-described embodiment, the silicone oil manufacturing apparatus 100 is configured to include only one charge measuring device 2, but a plurality of charge measuring devices 2 may be arranged at a distance. As a result, the charge amount of the silicone oil R can be measured at a plurality of points, so that a more reliable charge amount of the silicone oil R can be obtained, and a specific place where the charge amount of the silicone oil R increases can be detected. Silicone oil R can be manufactured and used more safely.

また、図9に示すように、静電センサ20は、流れ方向Dに沿って上流側のセンサ用配管21dの内径を縮径するとともに、下流側のセンサ用配管21dの径を内側導電部24に比べて拡径する構成とすることができる。 Further, as shown in FIG. 9, the electrostatic sensor 20 reduces the inner diameter of the sensor pipe 21d on the upstream side along the flow direction D, and reduces the diameter of the sensor pipe 21d on the downstream side to the inner conductive portion 24. The diameter can be increased as compared with the above.

これにより、内側導電部24に帯電する内部電荷Qiの量を増加させることができ、より確実に電荷を評価できる。また、シリコーン油Rの流量が少ない場合であっても、内側導電部24を縮径させることで、内側導電部24の内周全体にシリコーン油Rを接触させることができる。これにより評価・計測するシリコーン油Rの電荷・電荷量のバラツキを抑えることができる。 As a result, the amount of internal charge Qi charged in the inner conductive portion 24 can be increased, and the charge can be evaluated more reliably. Further, even when the flow rate of the silicone oil R is small, the silicone oil R can be brought into contact with the entire inner circumference of the inner conductive portion 24 by reducing the diameter of the inner conductive portion 24. As a result, it is possible to suppress variations in the electric charge and the amount of electric charge of the silicone oil R to be evaluated and measured.

2 電荷測定器
11 シリコーン油用配管
20 静電センサ
22 センサ側フランジ
24 内側導電部
25 絶縁部
26 外側導電部
252 上流側被覆部
253 下流側被覆部
30 電位計
62 電荷量判定部
63 流量制御部
100 シリコーン油製造装置
2 Charge measuring instrument 11 Silicone oil piping 20 Electrostatic sensor 22 Sensor side flange 24 Inner conductive part 25 Insulating part 26 Outer conductive part 252 Upstream side covering part 253 Downstream side covering part 30 Electrometer 62 Charge amount judgment part 63 Flow control part 100 Silicone oil production equipment

Claims (5)

内部に流体が流れる、非導電性の配管における周方向の少なくとも一部の外周に配置され、電荷検知部として機能する外側導電部で構成された静電センサと、
前記外側導電部と接地点との電位差を測定する電位計とが備えられ、
前記外側導電部と接地点との電位差を前記電位計で測定して、前記内部に前記流体が流れることで前記配管の内表面に生じた内部電荷によって前記外側導電部に誘導される外部電荷を測定する
電荷測定器。
An electrostatic sensor composed of an outer conductive part that is arranged on the outer circumference of at least a part of the circumferential direction of a non-conductive pipe through which fluid flows and functions as a charge detection part.
An electrometer for measuring the potential difference between the outer conductive portion and the grounding point is provided.
The potential difference between the outer conductive portion and the grounding point is measured with the electrometer, and the external charge induced in the outer conductive portion by the internal charge generated on the inner surface of the pipe due to the flow of the fluid inside the pipe is obtained. Measuring <br /> Charge measuring device.
前記配管と接続される計測用配管が最径内側に備えられた
請求項1に記載の電荷測定器。
The charge measuring device according to claim 1, wherein the measuring pipe connected to the pipe is provided on the innermost diameter.
内部に流体れる、非導電性の配管と、
前記配管における周方向の少なくとも一部の外周に配置され、電荷検知部として機能する外側導電部で構成された静電センサと、
前記外側導電部と接地点との電位差を測定する電位計とが備えられ、
前記外側導電部と接地点との電位差を前記電位計で測定して、前記内部に前記流体が流れることで前記配管の内表面に生じた内部電荷によって前記外側導電部に誘導される外部電荷を測定する
流体製造装置。
Internal fluid is flow in a non-conductive pipe,
An electrostatic sensor arranged on the outer periphery of at least a part of the pipe in the circumferential direction and composed of an outer conductive portion that functions as a charge detection portion .
An electrometer for measuring the potential difference between the outer conductive portion and the grounding point is provided.
The potential difference between the outer conductive portion and the grounding point is measured with the electrometer, and the external charge induced in the outer conductive portion by the internal charge generated on the inner surface of the pipe due to the flow of the fluid inside the pipe is obtained. Fluid production equipment to measure.
内部に流体が流れる、非導電性の配管における周方向の少なくとも一部の外周に配置され、電荷検知部として機能する外側導電部で構成された静電センサを用い、前記外側導電部と接地点との電位差を測定して、前記内部に前記流体が流れることで前記配管の内表面に生じた内部電荷によって前記外側導電部に誘導される外部電荷を測定する
流体の電荷量の測定方法。
Using an electrostatic sensor composed of an outer conductive part that is arranged on the outer periphery of at least a part of the non-conductive pipe in which fluid flows inside and functions as a charge detection part, the outer conductive part and the grounding point are used. The potential difference between the two and the outside is measured, and the external charge induced to the outer conductive portion by the internal charge generated on the inner surface of the pipe due to the flow of the fluid inside the pipe is measured . Measuring method.
内部に流体れる、非導電性の配管における周方向の少なくとも一部の外周に配置され、電荷検知部として機能する外側導電部で構成された静電センサが備えられ、
前記外側導電部と接地点との電位差を測定して、前記内部に前記流体が流れることで前記配管の内表面に生じた内部電荷によって前記外側導電部に誘導される外部電荷を測定する電荷量測定工程を有する
流体の製造方法。
Internal fluid is flow in, is arranged in the circumferential direction of at least a part of the outer periphery of the non-conductive tubing, provided with a capacitive sensor constituted by outer conductive portion which functions as a charge detecting section,
Amount of charge that measures the potential difference between the outer conductive portion and the grounding point, and measures the external charge induced in the outer conductive portion by the internal charge generated on the inner surface of the pipe due to the flow of the fluid inside the pipe. A method for producing a fluid having a measuring step.
JP2017099474A 2017-05-19 2017-05-19 Charge measuring device, fluid manufacturing equipment, method for measuring the amount of electric charge in a fluid, and method for manufacturing a fluid Active JP6959633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099474A JP6959633B2 (en) 2017-05-19 2017-05-19 Charge measuring device, fluid manufacturing equipment, method for measuring the amount of electric charge in a fluid, and method for manufacturing a fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099474A JP6959633B2 (en) 2017-05-19 2017-05-19 Charge measuring device, fluid manufacturing equipment, method for measuring the amount of electric charge in a fluid, and method for manufacturing a fluid

Publications (2)

Publication Number Publication Date
JP2018194482A JP2018194482A (en) 2018-12-06
JP6959633B2 true JP6959633B2 (en) 2021-11-02

Family

ID=64571767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099474A Active JP6959633B2 (en) 2017-05-19 2017-05-19 Charge measuring device, fluid manufacturing equipment, method for measuring the amount of electric charge in a fluid, and method for manufacturing a fluid

Country Status (1)

Country Link
JP (1) JP6959633B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744760B (en) 2019-12-30 2021-11-01 財團法人工業技術研究院 Electrostatic sensing system and electrostatic sensing assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184672A (en) * 1975-01-22 1976-07-24 Mitsubishi Electric Corp SEIDENKISOKUTEISOCHI
JPH0656386B2 (en) * 1985-09-30 1994-07-27 株式会社クボタ Particle flow detector
JP4568387B2 (en) * 1999-03-19 2010-10-27 嘉二郎 渡邊 Powder flow measurement device
JP2003303695A (en) * 2002-04-09 2003-10-24 Kasuga Electric Works Ltd Automatic charging amount control method and device of charged object
JP2004257957A (en) * 2003-02-27 2004-09-16 Railway Technical Res Inst Electrostatic flowmeter
JP5225321B2 (en) * 2010-04-21 2013-07-03 関西オートメイション株式会社 Powder flow measurement device
JP2012008052A (en) * 2010-06-25 2012-01-12 Kasuga Electric Works Ltd Charge amount measurement device

Also Published As

Publication number Publication date
JP2018194482A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
CA2611321C (en) Self-calibrating liquid level transmitter
CA2663786C (en) Device and method for measuring an electrical property of a fluid flowing through a pipe
Terzic et al. Capacitive sensing technology
EP0112002B1 (en) Liquid level detecting probe
JP6959633B2 (en) Charge measuring device, fluid manufacturing equipment, method for measuring the amount of electric charge in a fluid, and method for manufacturing a fluid
US9395226B2 (en) Apparatus for determining and/or monitoring a process variable
CN105136243A (en) Great-capacitance capacitive liquid level sensor suitable for dynamic environment
US7443174B2 (en) Electric field reciprocal displacement sensors
JP2015155894A (en) Electric characteristics measurement device
JP5564917B2 (en) Film thickness measuring apparatus and method
RU2615910C1 (en) Dynamic fluid level sensor
JP2005274158A (en) Electrostatic capacity type liquid sensor
JP7071733B2 (en) Sensor
RU2636254C1 (en) Method for detecting leakages of technological liquids
JP6366838B2 (en) Capacitance type level gauge
CN110243876B (en) Conductivity sensor for transient measurement of gas-liquid two-phase flow gas content
JP2019035699A (en) Deposit measuring apparatus
US12018970B2 (en) Well bore fluid sensor, system, and method
RU78929U1 (en) CAPACITIVE TWO-ELECTRODE LIQUID SENSOR
CN108344468B (en) Annular capacitive sensor array and sensor formed by same
RU85641U1 (en) CAPACITIVE LIQUID METER
JP2020079735A (en) Measurement device for feature quantity and measurement method for the same
RU2596034C1 (en) Angular position sensor
RU147261U1 (en) CAPACITIVE LIQUID METER
JP4088446B2 (en) Potential difference detection antenna for lightning detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211001

R150 Certificate of patent or registration of utility model

Ref document number: 6959633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150