JP6959564B2 - Radiation detection glass - Google Patents

Radiation detection glass Download PDF

Info

Publication number
JP6959564B2
JP6959564B2 JP2017035684A JP2017035684A JP6959564B2 JP 6959564 B2 JP6959564 B2 JP 6959564B2 JP 2017035684 A JP2017035684 A JP 2017035684A JP 2017035684 A JP2017035684 A JP 2017035684A JP 6959564 B2 JP6959564 B2 JP 6959564B2
Authority
JP
Japan
Prior art keywords
glass
radiation
content
radiation detection
weather resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017035684A
Other languages
Japanese (ja)
Other versions
JP2018141692A (en
Inventor
光 池田
克 岩尾
慎護 中根
高山 佳久
良憲 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017035684A priority Critical patent/JP6959564B2/en
Publication of JP2018141692A publication Critical patent/JP2018141692A/en
Application granted granted Critical
Publication of JP6959564B2 publication Critical patent/JP6959564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は放射線の線量当量を計測するために好適な放射線検出用ガラスに関する。 The present invention relates to a radiation detection glass suitable for measuring a dose equivalent of radiation.

放射線検出用ガラスは、放射線被ばく線量を測定するための検出物質として、医療分野、原子力分野等の放射線を取り扱う分野において広く用いられている。なお、ここで放射線とはベータ線、ガンマ線、エックス線等を指す。一般に放射線検出用ガラスには、例えば、銀イオンを含有したリン酸塩ガラスが用いられている。このガラスに放射線を照射すると、ガラス中に正孔と電子が生成し、生成した正孔と電子がガラス中のAgイオンに捕捉されてAg2+、Agとなる。ガラス中のAg2+、Agを、波長300〜400nmの紫外光により励起すると蛍光を発する(ラジオフォトルミネッセンス現象、以下「RPL現象」と示す。)。 Radiation detection glass is widely used as a detection substance for measuring radiation exposure dose in fields dealing with radiation such as medical fields and nuclear power fields. Here, radiation refers to beta rays, gamma rays, X-rays, and the like. Generally, as the radiation detection glass, for example, phosphate glass containing silver ions is used. When this glass is irradiated with radiation, holes and electrons are generated in the glass, and the generated holes and electrons are captured by Ag + ions in the glass to become Ag 2+ and Ag 0 . When Ag 2+ and Ag 0 in glass are excited by ultraviolet light having a wavelength of 300 to 400 nm, they fluoresce (radiophotoluminescence phenomenon, hereinafter referred to as "RPL phenomenon").

RPL現象による蛍光強度は照射された放射線の線量当量(以下、「放射線量」と記す。) に比例するので、蛍光強度を測定する事により放射線量を計測する事が出来る。このガラスの放射線量に対する蛍光検出感度は、ガラスの組成に応じて変化する。RPL現象によってガラス中に生成した蛍光中心は近接配位原子との相互作用により安定化し、室温下では蛍光中心の消失が起こらないため、長期間にわたり放射線量の計測が可能である。また、ガラス中に生成した蛍光中心は加熱処理により消失するため、繰り返して使用することが可能である。 Since the fluorescence intensity due to the RPL phenomenon is proportional to the dose equivalent of the irradiated radiation (hereinafter referred to as "radiation dose"), the radiation dose can be measured by measuring the fluorescence intensity. The fluorescence detection sensitivity of this glass to the radiation dose varies depending on the composition of the glass. The fluorescent center generated in the glass by the RPL phenomenon is stabilized by the interaction with the proximity coordinating atom, and the fluorescent center does not disappear at room temperature, so that the radiation dose can be measured for a long period of time. Further, since the fluorescent center generated in the glass disappears by the heat treatment, it can be used repeatedly.

ところで、放射線検出用ガラスは、高温高湿環境下で使用される場合があり、高い耐候性が必要になる。耐候性が悪いと、放射線未照射時にガラス自身が有する蛍光(以下、「プレドーズ」と示す。)が増加し、放射線量の計測を阻害する問題がある。更に、ガラス表面のひび割れや異物の発生等の問題が生じる。 By the way, the radiation detection glass may be used in a high temperature and high humidity environment, and high weather resistance is required. If the weather resistance is poor, the fluorescence of the glass itself (hereinafter referred to as "predose") increases when the glass is not irradiated, and there is a problem that the measurement of the radiation dose is hindered. Further, problems such as cracks on the glass surface and generation of foreign matter occur.

そこで、放射線検出用ガラスの耐候性を向上させるために、例えば特許文献1には、オルトリン酸アルミニウム等を原料として使用することが開示されている。 Therefore, in order to improve the weather resistance of the radiation detection glass, for example, Patent Document 1 discloses that aluminum orthophosphate or the like is used as a raw material.

特公平02−025851号公報Special Fair 02-025851 Gazette

特許文献1に記載されているガラスは、耐候性の向上を図っているが蛍光検出感度が十分に確保できないという問題があった。 The glass described in Patent Document 1 has an attempt to improve weather resistance, but has a problem that sufficient fluorescence detection sensitivity cannot be ensured.

以上に鑑み、本発明は、高い蛍光検出感度及び高い耐候性を有する放射線検出用ガラスを提供することを目的とする。 In view of the above, it is an object of the present invention to provide a glass for radiation detection having high fluorescence detection sensitivity and high weather resistance.

本発明者等は、種々の実験を繰り返した結果、ガラス組成を厳密に規制することにより上記技術的課題を解決しえることを見出した。 As a result of repeating various experiments, the present inventors have found that the above technical problems can be solved by strictly regulating the glass composition.

即ち、本発明の放射線検出用ガラスは、質量%で、SiO 0.1〜10%、P 70超〜80%、Al 10〜20%、NaO 5〜19%、AgO 0.01〜3%を含有することを特徴とする。 In other words, the radiation detection glasses of the present invention, in mass%, SiO 2 0.1~10%, P 2 O 5 70 super ~80%, Al 2 O 3 10~20 %, Na 2 O 5~19% , Ag 2 O 0.01 to 3%.

ガラス組成中にAgOを導入することにより、高い蛍光検出感度を有しやすくなる。さらに、ガラス組成中にPを70%より多く含有させ、かつSiOとAlを所定量導入することにより、蛍光検出感度を高い状態に保ちながら耐候性を高めやすくなる。 By introducing Ag 2 O into the glass composition, it becomes easy to have high fluorescence detection sensitivity. Further, by containing more than 70% of P 2 O 5 in the glass composition and introducing a predetermined amount of SiO 2 and Al 2 O 3 , it becomes easy to improve the weather resistance while maintaining the fluorescence detection sensitivity in a high state.

本発明の放射線検出用ガラスは、質量%で、さらにMgO 0〜20%、ZnO 0〜10%、B 0〜10%を含有することが好ましい。 The radiation detection glass of the present invention preferably contains MgO 0 to 20%, ZnO 0 to 10%, and B 2 O 30 to 10% in mass%.

本発明の放射線検出用ガラスは、質量比で、P/(SiO+Al)が2.3以上であることが好ましい。 The radiation detection glass of the present invention preferably has a mass ratio of P 2 O 5 / (SiO 2 + Al 2 O 3 ) of 2.3 or more.

本発明の放射線検出用ガラスは、個人被ばく線量計測に用いられることが好ましい。 The radiation detection glass of the present invention is preferably used for personal exposure dose measurement.

本発明の放射線検出用ガラスは、環境中の放射線計測に用いられることが好ましい。 The radiation detection glass of the present invention is preferably used for radiation measurement in the environment.

本発明によれば、高い蛍光検出感度及び高い耐候性を有する放射線検出用ガラスを提供することができる。 According to the present invention, it is possible to provide a glass for radiation detection having high fluorescence detection sensitivity and high weather resistance.

本発明の放射線検出用ガラスは、ガラス組成として、質量%でSiO 0.1〜10%、P 70超〜80%、Al 10〜20%、NaO 5〜19%、AgO 0.01〜3%を含有する。 Radiation detection glasses of the present invention has a glass composition, SiO 2 0.1 to 10% by mass%, P 2 O 5 70 super ~80%, Al 2 O 3 10~20 %, Na 2 O 5~19 %, Ag 2 O 0.01 to 3%.

ガラス組成を上記のように限定した理由を以下に示す。なお、各成分の含有量の説明において、特に断りのない限り、「%」は「質量%」を意味する。 The reasons for limiting the glass composition as described above are shown below. In the description of the content of each component, "%" means "mass%" unless otherwise specified.

SiOは、ガラスの耐候性を高めるために重要な成分であり、またガラスの機械的強度を高める成分である。SiOの含有量は0.1〜10%であり、0.5〜8%、1.8〜8%、特に2.6〜7%であることが好ましい。SiOの含有量が少な過ぎると、耐候性が著しく低下し易い。一方、SiOの含有量が多過ぎると、溶融性が低下しガラス化し難くなることに加えて、クリストバライト等の失透結晶が析出し易くなる。 SiO 2 is an important component for enhancing the weather resistance of glass, and is also a component for enhancing the mechanical strength of glass. The content of SiO 2 is 0.1 to 10%, preferably 0.5 to 8%, 1.8 to 8%, and particularly preferably 2.6 to 7%. If the content of SiO 2 is too small, the weather resistance tends to be significantly lowered. On the other hand, if the content of SiO 2 is too large, the meltability is lowered and vitrification is difficult, and devitrified crystals such as cristobalite are likely to precipitate.

は、ガラスの骨格を形成する主成分である。Pの含有量は70超〜80%であり、70.5〜79%、特に71〜78%であることが好ましい。Pの含有量が少な過ぎると、蛍光検出感度の低下が起こり易く、またガラスが分相、失透し易くなる。一方、Pの含有量が多過ぎると、溶融性が低下しガラス化し難くなる。 P 2 O 5 is a main component forming the skeleton of glass. The content of P 2 O 5 is more than 70 to 80%, preferably 70.5 to 79%, particularly 71 to 78%. If the content of P 2 O 5 is too small, the fluorescence detection sensitivity tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of P 2 O 5 is too large, the meltability is lowered and it becomes difficult to vitrify.

Alは、ガラスの耐候性を高める成分であると共に、分相、失透を抑制する成分である。Alの含有量は10〜20%であり、12〜20%、特に14〜18%であることが好ましい。Alの含有量が少な過ぎると、耐候性が低下し易くなる。一方、Alの含有量が多過ぎると、溶融性が低下しガラス化し難くなる。 Al 2 O 3 is a component that enhances the weather resistance of glass and is a component that suppresses phase separation and devitrification. The content of Al 2 O 3 is 10 to 20%, preferably 12 to 20%, particularly preferably 14 to 18%. If the content of Al 2 O 3 is too small, the weather resistance tends to decrease. On the other hand, if the content of Al 2 O 3 is too large, the meltability is lowered and it becomes difficult to vitrify.

なお、P/(SiO+Al)は2.3以上、2.5以上、特に3.0以上であることが好ましい。P/(SiO+Al)が小さ過ぎると分相や失透が起り易くなって、ガラス化し難くなる。また、P/(SiO+Al)の上限は特に限定されないが、現実的には、6以下、5以下、特に4.8以下であることが好ましい。なお、「P/(SiO+Al)」はPの含有量をSiO及びAlの合量で除した値を指す。 In addition, P 2 O 5 / (SiO 2 + Al 2 O 3 ) is preferably 2.3 or more, 2.5 or more, and particularly preferably 3.0 or more. If P 2 O 5 / (SiO 2 + Al 2 O 3 ) is too small, phase separation and devitrification are likely to occur, and vitrification becomes difficult. Further, the upper limit of P 2 O 5 / (SiO 2 + Al 2 O 3 ) is not particularly limited, but in reality, it is preferably 6 or less, 5 or less, and particularly preferably 4.8 or less. In addition, "P 2 O 5 / (SiO 2 + Al 2 O 3 )" refers to a value obtained by dividing the content of P 2 O 5 by the total amount of SiO 2 and Al 2 O 3.

NaOはガラス融液の粘度を下げて、溶融性を顕著に高める成分であると共に、蛍光検出感度を高める成分である。NaOの含有量は5〜19%であり、6〜17%、特に8〜14%であることが好ましい。NaOの含有量が少な過ぎると、溶融性が低下し易くなることに加えて、蛍光検出感度が低下しやすくなる。一方、NaOの含有量が多過ぎると、耐候性が低下し易くなる。 Na 2 O is a component that lowers the viscosity of the glass melt and remarkably enhances the meltability, and is a component that enhances the fluorescence detection sensitivity. The content of Na 2 O is 5 to 19%, preferably 6 to 17%, particularly 8 to 14%. If the content of Na 2 O is too small, the meltability tends to decrease and the fluorescence detection sensitivity tends to decrease. On the other hand, if the content of Na 2 O is too large, the weather resistance tends to decrease.

AgOはRPL現象によって蛍光中心を形成するための重要な成分である。AgOの含有量は、0.01〜3%であり、0.01〜2%、特に0.01〜0.5%であることが好ましい。AgOの含有量が少な過ぎると蛍光検出感度が低下し易くなる。一方、AgOの含有量が多過ぎると耐候性が低下し易くなる。 Ag 2 O is an important component for forming a fluorescence center by the RPL phenomenon. The content of Ag 2 O is 0.01 to 3%, preferably 0.01 to 2%, particularly preferably 0.01 to 0.5%. If the content of Ag 2 O is too small, the fluorescence detection sensitivity tends to decrease. On the other hand, if the content of Ag 2 O is too large, the weather resistance tends to decrease.

本発明の放射線検出用ガラスは、上記成分以外にも以下の成分を含有することができる。 The glass for radiation detection of the present invention may contain the following components in addition to the above components.

MgOはガラスの耐候性を高める成分である。MgOの含有量は0〜20%、0〜15%、特に0〜10%であることが好ましい。MgOの含有量が多過ぎると、リン酸マグネシウム等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。 MgO is a component that enhances the weather resistance of glass. The content of MgO is preferably 0 to 20%, 0 to 15%, and particularly preferably 0 to 10%. If the content of MgO is too large, devitrified crystals such as magnesium phosphate are likely to precipitate, and the liquidus temperature is likely to rise.

ZnOはガラスの分相、失透を抑制する成分である。ZnOの含有量は0〜10%、0〜7%、特に0〜4%であることが好ましい。ZnOの含有量が多過ぎると、耐候性、蛍光検出感度が低下し易くなる。 ZnO is a component that suppresses phase separation and devitrification of glass. The ZnO content is preferably 0 to 10%, 0 to 7%, and particularly preferably 0 to 4%. If the ZnO content is too large, the weather resistance and fluorescence detection sensitivity tend to decrease.

はガラスの耐候性を高める成分である。Bの含有量は0〜10%、0〜8%、特に0〜5%であることが好ましい。Bの含有量が多過ぎると、逆に耐候性が低下し易くなる。 B 2 O 3 is a component that enhances the weather resistance of glass. The content of B 2 O 3 is preferably 0 to 10%, 0 to 8%, and particularly preferably 0 to 5%. If the content of B 2 O 3 is too large, the weather resistance tends to decrease.

CaO、SrO及びBaOはガラスの耐候性を高める成分である。CaO+SrO+BaOの含有量は0〜15%、0〜10%、特に0〜5%であることが好ましい。CaO+SrO+BaOの含有量が多すぎると蛍光検出感度が低下し易くなり、また液相温度が低下して、リン酸塩等の失透結晶が析出し易くなる。なお、「CaO+SrO+BaO」は、CaO、SrO及びBaOの各含有量の合量を意味する。 CaO, SrO and BaO are components that enhance the weather resistance of glass. The content of CaO + SrO + BaO is preferably 0 to 15%, 0 to 10%, and particularly preferably 0 to 5%. If the content of CaO + SrO + BaO is too large, the fluorescence detection sensitivity tends to decrease, the liquidus temperature decreases, and devitrified crystals such as phosphates tend to precipitate. In addition, "CaO + SrO + BaO" means the total amount of each content of CaO, SrO and BaO.

なお、CaO、SrO及びBaOの含有量の好ましい範囲は以下の通りである。 The preferable range of the contents of CaO, SrO and BaO is as follows.

CaOの含有量は0〜15%、0〜10%、特に0〜5%であることが好ましい。 The CaO content is preferably 0 to 15%, 0 to 10%, particularly preferably 0 to 5%.

SrOの含有量は0〜15%、0〜10%、特に0〜5%であることが好ましい。 The content of SrO is preferably 0 to 15%, 0 to 10%, particularly preferably 0 to 5%.

BaOの含有量は0〜15%、0〜10%、特に0〜5%であることが好ましい。 The content of BaO is preferably 0 to 15%, 0 to 10%, and particularly preferably 0 to 5%.

次に本発明の放射線検出用ガラスの製造方法について説明する。 Next, the method for producing the radiation detection glass of the present invention will be described.

まず、所望の組成になるように調合した原料粉末を、均質なガラスが得られるまで溶融する。ここで、ガラス溶融用容器としては、石英ガラス、耐火物、グラッシーカーボン、白金や金等の金属等が使用できる。次いで、溶融ガラスをカーボン板等の上に流し出し、板状に成形した後、常温まで徐冷する。徐冷条件としては、例えば、徐冷点より約20℃高い温度から約2℃/分で降温することが好ましい。このようにして、放射線検出用ガラスを得ることができる。得られた放射線検出用ガラスは、個人被ばく線量計測や環境中の放射線計測に用いることができる。 First, the raw material powder prepared to have a desired composition is melted until a homogeneous glass is obtained. Here, as the glass melting container, quartz glass, refractory, glassy carbon, metals such as platinum and gold, and the like can be used. Next, the molten glass is poured onto a carbon plate or the like, formed into a plate shape, and then slowly cooled to room temperature. As the slow cooling condition, for example, it is preferable to lower the temperature at about 2 ° C./min from a temperature about 20 ° C. higher than the slow cooling point. In this way, the radiation detection glass can be obtained. The obtained radiation detection glass can be used for personal exposure dose measurement and radiation measurement in the environment.

なお、溶融時の酸素分圧が低くなるとAg成分が還元され易くなり、ガラス中にAgが生成しやすくなる。ガラス中にAgが多く存在すると、プレドーズ値が高くなり、蛍光検出感度が低下し易くなる。そこで、Ag成分の還元を抑制するために、溶融温度を1000〜1400℃と低くするか、または、原料として酸化剤である硝酸塩を使用することが望ましい。なお、硝酸塩としては、硝酸銀、硝酸アルミニウム、硝酸ナトリウム等を用いることができる。 When the oxygen partial pressure at the time of melting becomes low, the Ag component is easily reduced, and Ag 0 is easily generated in the glass. When a large amount of Ag 0 is present in the glass, the predose value becomes high and the fluorescence detection sensitivity tends to decrease. Therefore, in order to suppress the reduction of the Ag component, it is desirable to lower the melting temperature to 1000 to 1400 ° C. or to use nitrate as an oxidizing agent as a raw material. As the nitrate, silver nitrate, aluminum nitrate, sodium nitrate and the like can be used.

以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. The following examples are merely examples. The present invention is not limited to the following examples.

本発明の実施例(No.1〜12)及び比較例(No.13〜15)のガラスの組成、蛍光検出感度及び耐候性を表1及び2に示す。 Tables 1 and 2 show the glass composition, fluorescence detection sensitivity and weather resistance of Examples (No. 1 to 12) and Comparative Examples (No. 13 to 15) of the present invention.

Figure 0006959564
Figure 0006959564

Figure 0006959564
Figure 0006959564

まず表中のガラス組成になるように、各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、リン酸塩等の通常のガラスに使用される高純度原料を選定し、秤量して均一に混合したガラスバッチを石英ガラスるつぼに投入し、電気炉にて1000〜1300℃で1〜5時間、均質なガラスが得られるまで溶融した。なお、ガラスの均質化及び泡切れ等を目的として、溶融時に攪拌を行った。次いで、溶融ガラスをカーボン板上に流し出し、板形状に成形した後、徐冷点より20℃程度高い温度から2℃/分で常温まで徐冷した。得られた各試料について、耐候性と所定の放射線量を照射した後の蛍光検出感度を評価した。 First, high-purity raw materials used for ordinary glass such as oxides, hydroxides, carbonates, nitrates, and phosphates, which correspond to each component, are selected as raw materials for each component so as to have the glass composition in the table. The weighed and uniformly mixed glass batch was placed in a quartz glass crucible and melted in an electric furnace at 1000 to 1300 ° C. for 1 to 5 hours until a uniform glass was obtained. For the purpose of homogenizing the glass and breaking bubbles, stirring was performed at the time of melting. Next, the molten glass was poured onto a carbon plate, formed into a plate shape, and then slowly cooled from a temperature about 20 ° C. higher than the slow cooling point to room temperature at 2 ° C./min. For each of the obtained samples, the weather resistance and the fluorescence detection sensitivity after irradiation with a predetermined radiation dose were evaluated.

耐候性の評価には、プレドーズ値を用いた。詳細には、両面を光学研磨面(鏡面)となるように研磨した試料を超音波洗浄し、120℃で10分間乾燥させ、試験前の試料を得た。その後、温度50℃、湿度95%の環境下で40時間静置し、試験後の試料を得た。試験前の試料の光学研磨面に紫外光を照射して測定した蛍光強度を[試験前のプレドーズ値]、試験後の試料の光学研磨面に紫外光を照射して測定した蛍光強度を[試験後のプレドーズ値]とした。プレドーズ値の変化を[試験後のプレドーズ値]/[試験前のプレドーズ値]として算出した。 The predose value was used for the evaluation of weather resistance. Specifically, a sample whose both sides were polished so as to be an optically polished surface (mirror surface) was ultrasonically cleaned and dried at 120 ° C. for 10 minutes to obtain a sample before the test. Then, it was allowed to stand for 40 hours in an environment of a temperature of 50 ° C. and a humidity of 95%, and a sample after the test was obtained. The fluorescence intensity measured by irradiating the optically polished surface of the sample before the test with ultraviolet light [predose value before the test], and the fluorescence intensity measured by irradiating the optically polished surface of the sample after the test with ultraviolet light [test] Later predose value]. The change in the predose value was calculated as [predose value after the test] / [predose value before the test].

蛍光検出感度の評価には、両面を光学研磨面(鏡面)となるように研磨した試料を使用した。試料を400℃で1時間熱処理する事で、自然放射線によって形成された蛍光中心を消失させた後、試料の光学研磨面の垂直方向から約1Gyのエックス線を照射した。エックス線照射後に100℃で30分熱処理し、蛍光中心の生成が完了した後、試料の光学研磨面に紫外光を照射して測定した蛍光強度を蛍光検出感度とした。なお、表1及び2に記載の蛍光検出感度の値は、No.15の試料の蛍光強度を1としたときの相対値である。 For the evaluation of the fluorescence detection sensitivity, a sample obtained by polishing both sides so as to be an optically polished surface (mirror surface) was used. The sample was heat-treated at 400 ° C. for 1 hour to eliminate the fluorescent center formed by natural radiation, and then irradiated with X-rays of about 1 Gy from the vertical direction of the optically polished surface of the sample. After X-ray irradiation, heat treatment was performed at 100 ° C. for 30 minutes to complete the formation of the fluorescence center, and then the optically polished surface of the sample was irradiated with ultraviolet light, and the measured fluorescence intensity was defined as the fluorescence detection sensitivity. The values of fluorescence detection sensitivity shown in Tables 1 and 2 are No. It is a relative value when the fluorescence intensity of 15 samples is 1.

表から明らかなように、本発明の実施例であるNo.1〜12の試料は蛍光検出感度が1.5〜3.1と高かった。また、No.1〜12の試料は、プレドーズ値の変化が1.18以下と小さく、耐候性が高かった。一方、比較例であるNo.13の試料は、プレドーズ値の変化が4.60と大きいため耐候性が低かった。No.14の試料は、ガラス化しなかった。No.15の試料は、プレドーズ値の変化が2.24と大きいため耐候性が低く、また、蛍光検出感度も低かった。 As is clear from the table, No. 1 which is an example of the present invention. The samples 1 to 12 had a high fluorescence detection sensitivity of 1.5 to 3.1. In addition, No. The samples 1 to 12 had a small change in the predose value of 1.18 or less and had high weather resistance. On the other hand, No. The 13 samples had low weather resistance because the change in predose value was as large as 4.60. No. 14 samples were not vitrified. No. The 15 samples had low weather resistance because the change in predose value was as large as 2.24, and also had low fluorescence detection sensitivity.

本発明の放射線検出用ガラスは、放射線の個人被ばく線量計、環境中の放射線計測、放射線治療時の患者の被ばく量モニタリング等に用いるガラスとして好適である。なお、ここで放射線とはベータ線、ガンマ線またはエックス線等を指す。 The glass for radiation detection of the present invention is suitable as a glass used for an individual exposure dosimeter of radiation, measurement of radiation in the environment, monitoring of the exposure dose of a patient during radiotherapy, and the like. Here, radiation refers to beta rays, gamma rays, X-rays, and the like.

Claims (5)

質量%で、SiO 2.6〜10%、P 70超〜80%、Al 10〜20%、NaO 5〜10.0%、AgO 0.01〜3%を含有することを特徴とする放射線検出用ガラス。 By mass%, SiO 2 2.6~10%, P 2 O 5 70 super ~80%, Al 2 O 3 10~20 %, Na 2 O 5~ 10.0%, Ag 2 O 0.01~3 A glass for radiation detection, which is characterized by containing%. 質量%で、さらにMgO 0〜20%、ZnO 0〜10%、B 0〜10%含有することを特徴とする請求項1に記載の放射線検出用ガラス。 The radiation detection glass according to claim 1, further containing MgO 0 to 20%, ZnO 0 to 10%, and B 2 O 30 to 10% in mass%. 質量比で、P/(SiO+Al)が2.3以上であることを特徴とする請求項1又は2に記載の放射線検出用ガラス。 The glass for radiation detection according to claim 1 or 2, wherein P 2 O 5 / (SiO 2 + Al 2 O 3) is 2.3 or more in terms of mass ratio. 個人被ばく線量計測に用いられることを特徴とする請求項1〜3のいずれかに記載の放射線検出用ガラス。 The glass for radiation detection according to any one of claims 1 to 3, which is used for measuring personal exposure dose. 環境中の放射線計測に用いられることを特徴とする請求項1〜3のいずれかに記載の放射線検出用ガラス。 The glass for radiation detection according to any one of claims 1 to 3, which is used for measuring radiation in an environment.
JP2017035684A 2017-02-28 2017-02-28 Radiation detection glass Active JP6959564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017035684A JP6959564B2 (en) 2017-02-28 2017-02-28 Radiation detection glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017035684A JP6959564B2 (en) 2017-02-28 2017-02-28 Radiation detection glass

Publications (2)

Publication Number Publication Date
JP2018141692A JP2018141692A (en) 2018-09-13
JP6959564B2 true JP6959564B2 (en) 2021-11-02

Family

ID=63526537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017035684A Active JP6959564B2 (en) 2017-02-28 2017-02-28 Radiation detection glass

Country Status (1)

Country Link
JP (1) JP6959564B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438310A (en) * 1977-08-31 1979-03-22 Toshiba Kasei Kougiyou Kk Glass for dose meter
JP2971782B2 (en) * 1995-05-16 1999-11-08 旭テクノグラス株式会社 Fluorescent glass dosimeter measuring device
US20100111487A1 (en) * 2008-10-31 2010-05-06 Bruce Gardiner Aitken Phosphate Glasses Suitable for Neutron Detection and Fibers Utilizing Such Glasses
JP2011213569A (en) * 2010-03-15 2011-10-27 Tohoku Univ Light emitting glass, light emitting element coated with glass, and light emitting device
JP6748435B2 (en) * 2015-01-30 2020-09-02 Agcテクノグラス株式会社 Fluorescent glass Dosimeter glass
JP6653182B2 (en) * 2015-01-30 2020-02-26 Agcテクノグラス株式会社 Glass for fluorescent glass dosimeter

Also Published As

Publication number Publication date
JP2018141692A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
EP1760049A1 (en) Glass or fluorescent glass
JP6508507B2 (en) Borosilicate glass for pharmaceutical containers
JP2007137705A (en) Glass composition
JP2020189782A (en) Li2O-Al2O3-SiO2 BASED CRYSTALLIZED GLASS
EP0412656A1 (en) Fast response photosensitive opal glasses
US3654172A (en) Terbium activated radioluminescent silicate glasses
Ehrt et al. Glasses and glass ceramics with blue, green and red photoluminescence
JP7397565B2 (en) Radiation detection glass
EP1803691A1 (en) Glass
WO2007046306A1 (en) Radiation shielding glass and method for manufacture thereof
JP6959564B2 (en) Radiation detection glass
Höland et al. Radiopaque strontium fluoroapatite glass-ceramics
JP2018150190A (en) Glass for radiation detection
JPWO2006006640A1 (en) Fluorescent glass
WO2018159194A1 (en) Glass for radiation detection
JP2007137758A (en) Radiation-shielding glass and method for manufacturing the same
JP2018151367A (en) Regenerating method of radiation detection glass
US3461078A (en) Crystalline luminescent ceramic materials
JP7022386B2 (en) Manufacturing method of glass for radiation detection
JP2018150189A (en) Glass for radiation detection
JP7032697B2 (en) Manufacturing method of glass for radiation detection
Abou Neel et al. Utilizing Fe2O3 in phosphate-based glasses to enhance biocompatibility and gamma-ray absorption characteristics: A step towards understanding of Na2O/Fe2O3 translocation in P2O5–CaO–Na2O glass system
JP3109795B2 (en) Neutron shielding glass
JP2018145083A (en) Radiation dose measuring method
JP7094492B2 (en) Treatment method of glass for radiation detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210921

R150 Certificate of patent or registration of utility model

Ref document number: 6959564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150