JP6957958B2 - Hub unit bearing - Google Patents

Hub unit bearing Download PDF

Info

Publication number
JP6957958B2
JP6957958B2 JP2017085210A JP2017085210A JP6957958B2 JP 6957958 B2 JP6957958 B2 JP 6957958B2 JP 2017085210 A JP2017085210 A JP 2017085210A JP 2017085210 A JP2017085210 A JP 2017085210A JP 6957958 B2 JP6957958 B2 JP 6957958B2
Authority
JP
Japan
Prior art keywords
diameter
row
axial
axial direction
stationary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017085210A
Other languages
Japanese (ja)
Other versions
JP2018184969A (en
Inventor
彩水 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62202010&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6957958(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2017085210A priority Critical patent/JP6957958B2/en
Priority to CN201820559956.9U priority patent/CN208138310U/en
Priority to DE202018102280.6U priority patent/DE202018102280U1/en
Publication of JP2018184969A publication Critical patent/JP2018184969A/en
Application granted granted Critical
Publication of JP6957958B2 publication Critical patent/JP6957958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/767Sealings of ball or roller bearings integral with the race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/782Details of the sealing or parts thereof, e.g. geometry, material of the sealing region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7869Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward
    • F16C33/7873Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a single sealing ring of generally L-shaped cross-section
    • F16C33/7876Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a single sealing ring of generally L-shaped cross-section with sealing lips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • F16C33/805Labyrinth sealings in addition to other sealings, e.g. dirt guards to protect sealings with sealing lips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、自動車の車輪を懸架装置に対して回転自在に支持するためのハブユニット軸受に関する。 The present invention relates to a hub unit bearing for rotatably supporting a wheel of an automobile with respect to a suspension device.

従来、自動車の車輪を懸架装置に対して回転自在に支持するためのハブユニット軸受として、内周面に複列の外輪軌道を有し、懸架装置に結合固定される外方部材と、外周面に複列の内輪軌道を有し、車輪と共に回転する内方部材と、複列の外輪軌道と複列の内輪軌道との間に配置された複数個の転動体とを備えたものが知られている。 Conventionally, as a hub unit bearing for rotatably supporting the wheels of an automobile with respect to a suspension device, an outer member having a double-row outer ring track on the inner peripheral surface and being coupled and fixed to the suspension device, and an outer peripheral surface. It is known that the inner ring has a double-row inner ring track and is provided with an inner member that rotates together with the wheels and a plurality of rolling elements arranged between the double-row outer ring track and the double-row inner ring track. ing.

また、特開2012−149721号公報には、軸方向外側列の転動体のピッチ円直径(PCD)が、軸方向内側列の転動体のピッチ円直径よりも大きくなっており、かつ、軸方向外側列の転動体の数が、軸方向内側列の転動体の数よりも多くなっている、異径PCD型のハブユニット軸受が記載されている。なお、軸方向外側は、自動車への組み付け状態で車体の幅方向外側を意味し、軸方向内側は、自動車への組み付け状態で車体の幅方向内側、すなわち幅方向中央側を意味する。異径PCD型のハブユニット軸受は、両列の転動体のピッチ円直径が互いに等しくなっている通常のハブユニット軸受に比べて、重量化を抑えつつ、自動車の旋回時に作用するモーメント荷重の支承能力を高くできるといった利点がある。 Further, in Japanese Patent Application Laid-Open No. 2012-149721, the pitch circle diameter (PCD) of the rolling elements in the outer row in the axial direction is larger than the pitch circle diameter of the rolling elements in the inner row in the axial direction, and the pitch circle diameter is larger in the axial direction. A different diameter PCD type hub unit bearing is described in which the number of rolling elements in the outer row is greater than the number of rolling elements in the inner row in the axial direction. The outside in the axial direction means the outside in the width direction of the vehicle body in the state of being assembled to the automobile, and the inside in the axial direction means the inside in the width direction of the vehicle body in the state of being assembled to the automobile, that is, the central side in the width direction. Compared to ordinary hub unit bearings in which the pitch circle diameters of the rolling elements in both rows are equal to each other, the different diameter PCD type hub unit bearings bear the moment load acting when the vehicle turns while suppressing the weight increase. It has the advantage of being able to increase its ability.

しかしながら、特開2012−149721号公報に記載された異径PCD型のハブユニット軸受では、軸方向外側列の外輪軌道の軌道径(溝底径)が、軸方向内側列の外輪軌道の軌道径(溝底径)よりも大きくなっている。このため、内周面に軸方向外側列の外輪軌道が設けられた外方部材の軸方向外側部は、薄肉になりやすく、モーメント荷重が作用した際に、軸方向から見た形状が略楕円形の筒状に弾性変形し、上記モーメント荷重が変化した場合には上記弾性変形の程度も変化する。このような弾性変形が生じる際には、ハブユニット軸受の剛性が一時的に不安定になって、運転者に違和感を与える可能性がある。したがって、そのような弾性変形を抑えられる構造を実現することが望まれる。 However, in the PCD type hub unit bearing having a different diameter described in Japanese Patent Application Laid-Open No. 2012-149721, the raceway diameter (groove bottom diameter) of the outer ring raceway in the outer row in the axial direction is the raceway diameter of the outer ring raceway in the inner row in the axial direction. It is larger than (groove bottom diameter). For this reason, the axially outer portion of the outer member provided with the outer ring orbit of the axially outer row on the inner peripheral surface tends to be thin, and the shape seen from the axial direction is substantially elliptical when a moment load is applied. It elastically deforms into a tubular shape, and when the moment load changes, the degree of elastic deformation also changes. When such elastic deformation occurs, the rigidity of the hub unit bearing becomes temporarily unstable, which may give the driver a sense of discomfort. Therefore, it is desired to realize a structure capable of suppressing such elastic deformation.

特開2012−149721号公報Japanese Unexamined Patent Publication No. 2012-149721

本発明は、上述のような事情に鑑みてなされたものであり、その目的は、異径PCD型のハブユニット軸受に関して、モーメント荷重が作用する際に、外方部材の軸方向外側部の弾性変形量およびその変化量を抑えられる構造を実現することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is the elasticity of the outer portion in the axial direction of the outer member when a moment load is applied to a hub unit bearing having a different diameter PCD. The purpose is to realize a structure in which the amount of deformation and the amount of change thereof can be suppressed.

本発明の一態様のハブユニット軸受は、外方部材と、内方部材と、複数個の転動体とを備える。
前記外方部材は、静止側筒部と、該静止側筒部の外周面から径方向外方に伸長する、懸架装置に結合固定するための静止側フランジと、前記静止側筒部の内周面に設けられた複列の外輪軌道とを有し、前記複列の外輪軌道のうちの軸方向外側列の外輪軌道の軌道径が、前記複列の外輪軌道のうちの軸方向内側列の外輪軌道の軌道径よりも大きくなっている。
前記内方部材は、外周面に複列の内輪軌道を有する。本発明の一態様では、前記複列の内輪軌道のうちの軸方向外側列の内輪軌道の軌道径は、前記複列の内輪軌道のうちの軸方向内側列の内輪軌道の軌道径よりも大きくなっている。
前記複数個の転動体は、前記複列の外輪軌道と前記複列の内輪軌道との間に配置されている。本発明の一態様では、軸方向外側列の転動体のピッチ円直径(PCD)は、軸方向内側列の転動体のピッチ円直径よりも大きくなっている。
前記静止側筒部は、前記静止側フランジよりも軸方向外側に位置する軸方向範囲のうちの少なくとも一部の軸方向範囲が、前記静止側フランジの軸方向外側面の径方向内端縁よりも外径が大きい大径筒部になっている。本発明の一態様では、前記静止側筒部は、全体が金属により一体に構成されている。
前記大径筒部の軸方向内端縁は、前記軸方向外側列の外輪軌道のうちで最も径方向外側に位置する部位よりも軸方向内側に位置しており、前記大径筒部の軸方向外端縁は、前記軸方向外側列の外輪軌道よりも軸方向外側に位置している。本発明の一態様では、前記軸方向外側列の外輪軌道の全体が、前記大径筒部の内周面に備えられている。
前記大径筒部のうちで前記軸方向外側列の外輪軌道よりも軸方向外側に位置する部位の外周面にのみ、径方向内方に凹入する樋溝が周方向に備えられている。
本発明の一態様では、前記樋溝のうちで最も径方向内側に位置する部位の外径は、前記静止側フランジの軸方向外側面の径方向内端縁の直径よりも小さい。
The hub unit bearing of one aspect of the present invention includes an outer member, an inner member, and a plurality of rolling elements.
The outer member includes a stationary side cylinder portion, a stationary side flange extending radially outward from the outer peripheral surface of the stationary side cylinder portion for coupling and fixing to a suspension device, and an inner circumference of the stationary side cylinder portion. It has a double-row outer ring track provided on the surface, and the track diameter of the outer ring track of the axial outer row of the double-row outer ring track is the axial inner row of the double-row outer ring track. It is larger than the track diameter of the outer ring track.
The inner member has a double-row inner ring track on the outer peripheral surface. In one aspect of the present invention, the raceway diameter of the inner ring raceway in the outer row in the axial direction of the inner ring races of the double row is larger than the raceway diameter of the inner ring raceway in the inner row in the axial direction of the inner ring raceway of the double row. It has become.
The plurality of rolling elements are arranged between the outer ring track of the double row and the inner ring track of the double row. In one aspect of the present invention, the pitch circle diameter (PCD) of the rolling elements in the outer row in the axial direction is larger than the pitch circle diameter of the rolling elements in the inner row in the axial direction.
In the stationary side cylinder portion, at least a part of the axial range located axially outside the stationary side flange is from the radial inner edge of the axial outer surface of the stationary side flange. It is a large-diameter cylinder with a large outer diameter . In one aspect of the present invention, the stationary side cylinder portion is integrally formed of metal as a whole.
The axial inner edge of the large-diameter tubular portion is located axially inside the outer ring track of the axial outer row, which is located on the outermost radial direction, and is the shaft of the large-diameter tubular portion. The directional outer edge is located axially outside the outer ring track of the axial outer row. In one aspect of the present invention, the entire outer ring track of the outer row in the axial direction is provided on the inner peripheral surface of the large-diameter tubular portion.
A gutter groove that is recessed inward in the radial direction is provided in the circumferential direction only on the outer peripheral surface of the portion of the large-diameter tubular portion that is located on the outer side in the axial direction from the outer ring track of the outer row in the axial direction.
In one aspect of the present invention, the outer diameter of the portion of the gutter groove located on the innermost side in the radial direction is smaller than the diameter of the radial inner edge of the axial outer surface of the stationary flange.

本発明のハブユニット軸受は、前記静止側筒部の内周面のうちで前記複列の外輪軌道よりも軸方向外側に設けられた嵌合面部と、該嵌合面部に締り嵌めで内嵌された円環状の芯金を有するシールリングとを、さらに有し、前記大径筒部の軸方向外端縁および前記樋溝のうちで最も径方向内側に位置する部位が、前記嵌合面部と前記芯金との嵌合部よりも軸方向外側に位置している構成を採用することができる。 The hub unit bearing of the present invention has a fitting surface portion provided on the inner peripheral surface of the stationary side cylinder portion axially outside the outer ring raceway of the double row, and is internally fitted to the fitting surface portion by tightening. A seal ring having an annular core metal formed therein is further provided, and the axially outer edge of the large-diameter tubular portion and the portion of the gutter groove located on the innermost radial direction are the fitting surface portions. It is possible to adopt a configuration in which the center metal is located outside the fitting portion in the axial direction.

本発明のハブユニット軸受では、前記内方部材が、前記複列の内輪軌道よりも軸方向外側部に、車輪を支持固定するための回転側フランジをさらに有しており、前記回転側フランジの円周方向複数箇所に透孔が備えられており、前記内方部材の中心軸を中心とする前記透孔の内接円の直径が、前記静止側筒部の軸方向外端面の外径よりも小さくなっている構成を採用することができる。 In the hub unit bearing of the present invention, the inner member further has a rotating side flange for supporting and fixing the wheel on the outer side in the axial direction from the inner ring raceway of the double row, and the rotating side flange. Through holes are provided at a plurality of locations in the circumferential direction, and the diameter of the inscribed circle of the through holes centered on the central axis of the inner member is larger than the outer diameter of the axial outer end surface of the stationary side cylinder portion. It is possible to adopt a configuration in which the size is smaller.

本発明のハブユニット軸受によれば、モーメント荷重が作用する際に、外方部材の軸方向外側部の弾性変形量およびその変化量を効果的に抑えられる。 According to the hub unit bearing of the present invention, when a moment load is applied, the amount of elastic deformation of the outer portion in the axial direction of the outer member and the amount of change thereof can be effectively suppressed.

図1は、実施の形態の第1例を示す、ハブユニット軸受の断面図である。FIG. 1 is a cross-sectional view of a hub unit bearing showing a first example of the embodiment. 図2は、図1の左下部を拡大して示す図である。FIG. 2 is an enlarged view of the lower left portion of FIG. 図3(A)〜図3(D)は、実施の形態の第1例のハブユニット軸受を構成する外方部材の製造工程の一部を、工程順に示す断面図である。3 (A) to 3 (D) are cross-sectional views showing a part of the manufacturing process of the outer member constituting the hub unit bearing of the first example of the embodiment in the order of the process. 図4(A)は、図3(C)に示した第二中間素材を加工装置にセットした状態を示す断面図であり、図4(B)は、該第二中間素材に加工を施して、図3(D)に示した第三中間素材を得た状態を示す断面図である。FIG. 4 (A) is a cross-sectional view showing a state in which the second intermediate material shown in FIG. 3 (C) is set in the processing apparatus, and FIG. 4 (B) shows the second intermediate material processed. , Is a cross-sectional view showing a state in which the third intermediate material shown in FIG. 3D is obtained. 図5は、実施の形態の第2例を示す、図2に相当する図である。FIG. 5 is a diagram corresponding to FIG. 2 showing a second example of the embodiment. 図6は、実施の形態の第3例を示す、図2に相当する図である。FIG. 6 is a diagram corresponding to FIG. 2, showing a third example of the embodiment.

[実施の形態の第1例]
実施の形態の第1例について、図1〜図4を用いて説明する。
本例のハブユニット軸受は、従動輪用のもので、外方部材1と、内方部材2と、それぞれが転動体である複数個の玉3a、3bとを備える。なお、本発明は、従動輪用のハブユニット軸受に限らず、駆動輪用のハブユニット軸受にも適用可能である。
[First Example of Embodiment]
A first example of the embodiment will be described with reference to FIGS. 1 to 4.
The hub unit bearing of this example is for a driven wheel, and includes an outer member 1, an inner member 2, and a plurality of balls 3a and 3b, each of which is a rolling element. The present invention is applicable not only to hub unit bearings for driven wheels but also to hub unit bearings for drive wheels.

外方部材1は、中炭素鋼などの金属製で、筒状に構成されている。外方部材1は、静止側筒部4と、静止側フランジ5とを有する。静止側筒部4は、内周面に複列の外輪軌道6a、6bを有している。複列の外輪軌道6a、6bのうち、軸方向外側列の外輪軌道6aの軌道径(溝底径)は、軸方向内側列の外輪軌道6bの軌道径(溝底径)よりも大きくなっている。静止側筒部4は、内周面のうちで軸方向外側列の外輪軌道6aよりも軸方向外側に位置する箇所に、円筒面状の嵌合面部7を有している。嵌合面部7の内径は、軸方向外側列の外輪軌道6aの軌道径よりも大きくなっている。静止側フランジ5は、懸架装置に結合固定するためのもので、静止側筒部4の軸方向中間部外周面から径方向外方に伸長している。静止側フランジ5は、円周方向複数箇所に取付孔8を有している。取付孔8は、静止側フランジ5を懸架装置に対して結合固定するのに用いられるボルトを挿通するための通孔、または、該ボルトを螺合させるためのねじ孔である。 The outer member 1 is made of a metal such as medium carbon steel and has a cylindrical shape. The outer member 1 has a stationary side cylinder portion 4 and a stationary side flange 5. The stationary side tubular portion 4 has a double row of outer ring tracks 6a and 6b on the inner peripheral surface. Of the double-row outer ring tracks 6a and 6b, the track diameter (groove bottom diameter) of the outer ring track 6a in the outer row in the axial direction is larger than the track diameter (groove bottom diameter) of the outer ring track 6b in the inner row in the axial direction. There is. The stationary side tubular portion 4 has a cylindrical fitting surface portion 7 at a position on the inner peripheral surface located axially outside the outer ring track 6a in the outer row in the axial direction. The inner diameter of the fitting surface portion 7 is larger than the track diameter of the outer ring track 6a in the outer row in the axial direction. The stationary side flange 5 is for coupling and fixing to the suspension device, and extends radially outward from the outer peripheral surface of the axial intermediate portion of the stationary side tubular portion 4. The stationary side flange 5 has mounting holes 8 at a plurality of positions in the circumferential direction. The mounting hole 8 is a through hole for inserting a bolt used for connecting and fixing the stationary side flange 5 to the suspension device, or a screw hole for screwing the bolt.

なお、軸方向外側は、自動車への組み付け状態で車体の幅方向外側を意味し、図1および図2の左側に相当する。一方、軸方向内側は、自動車への組み付け状態で車体の幅方向内側、すなわち幅方向中央側を意味し、図1および図2の右側に相当する。 The outer side in the axial direction means the outer side in the width direction of the vehicle body when assembled to the automobile, and corresponds to the left side in FIGS. 1 and 2. On the other hand, the inside in the axial direction means the inside in the width direction of the vehicle body in the assembled state in the automobile, that is, the center side in the width direction, and corresponds to the right side in FIGS. 1 and 2.

内方部材2は、外周面に複列の内輪軌道9a、9bを有し、かつ、内輪軌道9a、9bよりも軸方向外側部の径方向外側部に、車輪および制動用回転部材を支持固定するための回転側フランジ10を有する。複列の内輪軌道9a、9bのうち、軸方向外側列の内輪軌道9aの軌道径(溝底径)は、軸方向内側列の内輪軌道9bの軌道径(溝底径)よりも大きくなっている。回転側フランジ10は、円周方向複数箇所に取付孔11を有する。取付孔11には、回転側フランジ10に車輪および制動用回転部材を支持固定するのに用いられるスタッドボルト12の基端部が内嵌固定されている。本例では、内方部材2は、ハブ輪13と内輪14とを組み合わせることにより構成されている。 The inner member 2 has a double row of inner ring raceways 9a and 9b on the outer peripheral surface, and supports and fixes the wheel and the rotating member for braking on the radial outer side of the inner ring raceway 9a and 9b in the axial direction. It has a rotating side flange 10 for the purpose. Of the double-row inner ring tracks 9a and 9b, the track diameter (groove bottom diameter) of the inner ring track 9a in the outer row in the axial direction is larger than the track diameter (groove bottom diameter) of the inner ring track 9b in the inner row in the axial direction. There is. The rotary side flange 10 has mounting holes 11 at a plurality of positions in the circumferential direction. In the mounting hole 11, the base end portion of the stud bolt 12 used for supporting and fixing the wheel and the rotating member for braking is internally fitted and fixed to the rotating side flange 10. In this example, the inner member 2 is formed by combining the hub ring 13 and the inner ring 14.

ハブ輪13は、中炭素鋼などの金属製で、筒状に構成されている。回転側フランジ10は、ハブ輪13の軸方向外側部の径方向外側部に備えられており、軸方向外側列の内輪軌道9aは、ハブ輪13の軸方向中間部の外周面に備えられている。ハブ輪13は、軸方向内側部の外周面に、小径段部15を有する。 The hub ring 13 is made of a metal such as medium carbon steel and has a cylindrical shape. The rotary side flange 10 is provided on the radial outer portion of the axial outer portion of the hub ring 13, and the inner ring track 9a of the axial outer row is provided on the outer peripheral surface of the axial intermediate portion of the hub ring 13. There is. The hub ring 13 has a small diameter step portion 15 on the outer peripheral surface of the inner portion in the axial direction.

内輪14は、軸受鋼などの金属製で、筒状に構成されている。軸方向内側列の内輪軌道9bは、内輪14の外周面に備えられている。内輪14は、ハブ輪13の小径段部15に締り嵌めにより外嵌され、かつ、内輪14の軸方向内端部を、ハブ輪13の軸方向内端部に備えられた抑え部16により抑え付けられて、ハブ輪13に固定されている。なお、抑え部16は、ハブ輪13の中間素材の軸方向内端部を塑性加工により径方向外方に折り曲げることにより形成されている。 The inner ring 14 is made of metal such as bearing steel and has a cylindrical shape. The inner ring track 9b in the inner row in the axial direction is provided on the outer peripheral surface of the inner ring 14. The inner ring 14 is externally fitted to the small diameter step portion 15 of the hub ring 13 by tightening, and the axial inner end portion of the inner ring 14 is suppressed by the holding portion 16 provided at the axial inner end portion of the hub ring 13. It is attached and fixed to the hub wheel 13. The holding portion 16 is formed by bending the inner end portion of the intermediate material of the hub ring 13 in the axial direction by plastic working to be bent outward in the radial direction.

玉3a、3bは、軸受鋼などの金属製またはセラミック製で、軸方向外側列の外輪軌道6aと内輪軌道9aとの間、および、軸方向内側列の外輪軌道6bと内輪軌道9bとの間に、それぞれ複数個ずつ転動自在に配置されている。両列の玉3a、3bには、背面組み合わせ型の接触角と共に、予圧が付与されている。 The balls 3a and 3b are made of metal or ceramic such as bearing steel, and are between the outer ring track 6a and the inner ring track 9a in the outer row in the axial direction and between the outer ring track 6b and the inner ring track 9b in the inner row in the axial direction. Each of them is arranged so that it can be rolled freely. Preload is applied to the balls 3a and 3b in both rows together with the contact angle of the back combination type.

また、本例のハブユニット軸受は、異径PCD型であり、両列の玉3a、3bのピッチ円直径は、複列の外輪軌道6a、6bの軌道径差および複列の内輪軌道9a、9bの軌道径差に応じて、互いに異なっている。すなわち、軸方向外側列の玉3aのピッチ円直径は、軸方向内側列の玉3bのピッチ円直径よりも大きくなっている。また、これに伴い、軸方向外側列の玉3aの数を、軸方向内側列の玉3bの数よりも多くしている。このような構成を採用することにより、ハブユニット軸受の重量化を抑えつつ、自動車の旋回時に作用するモーメント荷重の支承能力を高めている。なお、図示の例では、軸方向外側列の玉3aの直径を軸方向内側列の玉3bの直径よりも小さくすることで、軸方向外側列の玉3aの数を、さらに多くできるようにしている。ただし、両列の玉3a、3bの直径は、互いに等しくすることもできる。なお、本発明は、転動体として円すいころを用いたハブユニット軸受にも適用可能である。 Further, the hub unit bearing of this example is a PCD type having a different diameter, and the pitch circle diameters of the balls 3a and 3b in both rows are the difference in the diameters of the outer ring races 6a and 6b in the double row and the inner ring race 9a in the double row. They are different from each other depending on the orbital diameter difference of 9b. That is, the pitch circle diameter of the balls 3a in the outer row in the axial direction is larger than the pitch circle diameter of the balls 3b in the inner row in the axial direction. Along with this, the number of balls 3a in the outer row in the axial direction is made larger than the number of balls 3b in the inner row in the axial direction. By adopting such a configuration, the weight of the hub unit bearing is suppressed, and the bearing capacity of the moment load acting when the vehicle is turned is enhanced. In the illustrated example, the diameter of the balls 3a in the outer row in the axial direction is made smaller than the diameter of the balls 3b in the inner row in the axial direction so that the number of balls 3a in the outer row in the axial direction can be further increased. There is. However, the diameters of the balls 3a and 3b in both rows can be equal to each other. The present invention can also be applied to a hub unit bearing using a tapered roller as a rolling element.

外方部材1の内周面と内方部材2の外周面との間に存在し、玉3a、3bが設置されている内部空間17の軸方向外端開口は、シールリング18により塞がれている。一方、外方部材1の軸方向内端開口は、有底円筒状の軸受キャップ19により塞がれている。 The axial outer end opening of the internal space 17 existing between the inner peripheral surface of the outer member 1 and the outer peripheral surface of the inner member 2 and in which the balls 3a and 3b are installed is closed by the seal ring 18. ing. On the other hand, the axial inner end opening of the outer member 1 is closed by a bottomed cylindrical bearing cap 19.

シールリング18は、金属板製で円環状の芯金20と、芯金20により補強されたゴム製のシール材21とを備える。芯金20は、径方向外端部に円筒状の嵌合筒部22を有している。シール材21は、3本のシールリップ23a、23b、23cを有している。シールリング18は、芯金20の嵌合筒部22が外方部材1の嵌合面部7に締り嵌めで内嵌されて、外方部材1に支持固定されている。この状態で、シール材21を構成する3本のシールリップ23a、23b、23cの先端部は、ハブ輪13の表面に全周にわたり摺接している。 The seal ring 18 includes an annular core metal 20 made of a metal plate and a rubber sealing material 21 reinforced by the core metal 20. The core metal 20 has a cylindrical fitting cylinder portion 22 at the outer end portion in the radial direction. The sealing material 21 has three sealing lips 23a, 23b, and 23c. In the seal ring 18, the fitting cylinder portion 22 of the core metal 20 is internally fitted to the fitting surface portion 7 of the outer member 1 by tightening, and is supported and fixed to the outer member 1. In this state, the tip portions of the three seal lips 23a, 23b, and 23c constituting the seal material 21 are in sliding contact with the surface of the hub ring 13 over the entire circumference.

また、本例では、外方部材1を構成する静止側筒部4は、静止側フランジ5よりも軸方向外側に位置する軸方向範囲Lの全体が、静止側フランジ5の軸方向外側面の径方向内端縁24よりも外径が大きい大径筒部25になっている。大径筒部25の軸方向内端縁は、軸方向外側列の外輪軌道6aのうちで最も径方向外側に位置する部位である溝底部よりも軸方向内側に位置しており、より具体的には、軸方向外側列の外輪軌道6aの軸方向内端縁よりも軸方向内側に位置している。一方、大径筒部25の軸方向外端縁は、軸方向外側列の外輪軌道6aよりも軸方向外側に位置しており、より具体的には、静止側筒部4の軸方向外端縁に位置している。したがって、本例では、軸方向外側列の外輪軌道6aの全体および嵌合面部7の全体は、大径筒部25の内周面に設けられている。 Further, in this example, in the stationary side tubular portion 4 constituting the outer member 1, the entire axial range L located axially outside the stationary side flange 5 is the axial outer surface of the stationary side flange 5. The large-diameter tubular portion 25 has an outer diameter larger than that of the radial inner edge 24. The axial inner edge of the large-diameter tubular portion 25 is located axially inward from the groove bottom portion, which is the most radially outer portion of the outer ring track 6a in the axial outer row, and is more specific. Is located axially inside the outer ring track 6a in the outer row in the axial direction with respect to the inner edge in the axial direction. On the other hand, the axial outer edge of the large-diameter tubular portion 25 is located axially outside the outer ring track 6a of the axial outer row, and more specifically, the axial outer end of the stationary side tubular portion 4. Located on the edge. Therefore, in this example, the entire outer ring track 6a in the outer row in the axial direction and the entire fitting surface portion 7 are provided on the inner peripheral surface of the large-diameter tubular portion 25.

また、本例では、大径筒部25のうちで軸方向外側列の外輪軌道6aよりも軸方向外側に位置する部位の外周面に、径方向内方に凹入する樋溝28が全周にわたり設けられている。樋溝28は、外方部材1の外周面を伝わって軸方向外側へ向かう泥水などの水分を下方へ導くことにより、シールリング18の設置部に到達する水分の量を減少させるものである。本例では、樋溝28は、断面形状が凹円弧形であり、軸方向中央部が、最も径方向内側に位置する部位である底部29になっている。樋溝28の底部29は、外方部材1の嵌合面部7と芯金20の嵌合筒部22との嵌合部よりも、軸方向外側に位置している。また、本例では、樋溝28の底部29の外径は、静止側フランジ5の軸方向外側面の径方向内端縁24の直径よりも大きくなっている。ただし、樋溝28の底部29の外径は、径方向内端縁24の直径以下にすることもできる。また、本例では、大径筒部25の外周面は、軸方向内端部と樋溝28とを除いた箇所が、円筒面部27になっている。 Further, in this example, a gutter groove 28 recessed inward in the radial direction is formed on the outer peripheral surface of a portion of the large-diameter tubular portion 25 located outside the outer ring track 6a in the outer row in the axial direction. It is provided over. The gutter groove 28 reduces the amount of water reaching the installation portion of the seal ring 18 by guiding the water such as muddy water traveling outward in the axial direction along the outer peripheral surface of the outer member 1 downward. In this example, the gutter groove 28 has a concave arc shape in cross section, and the central portion in the axial direction is the bottom portion 29 which is a portion located on the innermost side in the radial direction. The bottom portion 29 of the gutter groove 28 is located axially outside the fitting portion between the fitting surface portion 7 of the outer member 1 and the fitting cylinder portion 22 of the core metal 20. Further, in this example, the outer diameter of the bottom portion 29 of the gutter groove 28 is larger than the diameter of the radial inner edge 24 of the axially outer surface of the stationary side flange 5. However, the outer diameter of the bottom 29 of the gutter groove 28 may be equal to or less than the diameter of the inner edge 24 in the radial direction. Further, in this example, the outer peripheral surface of the large-diameter tubular portion 25 is a cylindrical surface portion 27 except for the inner end portion in the axial direction and the gutter groove 28.

また、本例では、回転側フランジ10は、取付孔11から外れた円周方向複数箇所に、軸方向から見た形状が円形の透孔30を有している。透孔30は、回転側フランジ10の軽量化、および、透孔30を通じて静止側フランジ5の取付孔8にボルトを挿通または螺合する作業などを行う目的で設けられている。本例では、内方部材2の中心軸を中心とする透孔30の内接円の直径D30が、外方部材1を構成する静止側筒部4の軸方向外端面の外径D4よりも小さくなっている(D30<D4)。 Further, in this example, the rotating side flange 10 has through holes 30 having a circular shape when viewed from the axial direction at a plurality of locations in the circumferential direction deviating from the mounting holes 11. The through hole 30 is provided for the purpose of reducing the weight of the rotating side flange 10 and inserting or screwing a bolt into the mounting hole 8 of the stationary side flange 5 through the through hole 30. In this example, the diameter D 30 of the inscribed circle of the through hole 30 around the center axis of the inner member 2, the outer diameter of the axially outer end face of the stationary cylindrical portion 4 constituting the outer member 1 D 4 Is smaller than (D 30 <D 4 ).

さらに、本例では、外方部材1を構成する静止側筒部4の軸方向外端部と回転側フランジ10との間に、断面L字形で円環状のラビリンスシール31が設けられている。ラビリンスシール31は、軸方向ラビリンスシール32と径方向ラビリンスシール33とを組み合わせることにより構成されている。軸方向ラビリンスシール32は、静止側筒部4の軸方向外端部の内周面と、回転側フランジ10に設けられた円筒面状のラビリンス用周面34とを径方向に近接対向させることにより構成されている。径方向ラビリンスシール33は、静止側筒部4の軸方向外端面と、回転側フランジ10に設けられた円輪状のラビリンス用側面35とを軸方向に近接対向させることにより構成されている。 Further, in this example, a labyrinth seal 31 having an L-shaped cross section and an annular shape is provided between the axially outer end portion of the stationary side tubular portion 4 constituting the outer member 1 and the rotating side flange 10. The labyrinth seal 31 is configured by combining an axial labyrinth seal 32 and a radial labyrinth seal 33. In the axial labyrinth seal 32, the inner peripheral surface of the axial outer end of the stationary side tubular portion 4 and the cylindrical labyrinth peripheral surface 34 provided on the rotating side flange 10 are brought close to each other in the radial direction. It is composed of. The radial labyrinth seal 33 is configured such that the axial outer end surface of the stationary side tubular portion 4 and the annular labyrinth side surface 35 provided on the rotating side flange 10 are brought close to each other in the axial direction.

本例のハブユニット軸受を構成する外方部材1は、たとえば、次のような工程順で造ることができる。 The outer member 1 constituting the hub unit bearing of this example can be manufactured, for example, in the following process order.

まず、図3(A)に示すような、鋼製で円柱状の初期素材36を用意し、この初期素材36を軸方向に押し潰す据え込み加工を行うことで、図3(B)に示すようなビヤ樽形の第一中間素材37を得る。 First, as shown in FIG. 3 (A), a steel columnar initial material 36 is prepared, and the initial material 36 is crushed in the axial direction by embossing, as shown in FIG. 3 (B). Obtain a beer barrel-shaped first intermediate material 37 such as.

つぎに、第一中間素材37の周囲にダイスを配置した状態で、第一中間素材37の軸方向両端面に1対の金型を押し付ける荒成形加工を行うことで、図3(C)に示すような第二中間素材38を得る。第二中間素材38は、略円筒状の筒状部39と、該筒状部39の径方向内側の軸方向中間部を仕切る仕切り板部40と、筒状部39の軸方向中間部の外周面から径方向外方に伸長するフランジ部41とを備えている。筒状部39は、最終的に静止側筒部4になる部位であり、フランジ部41は、最終的に静止側フランジ5になる部位である。 Next, with the dies arranged around the first intermediate material 37, rough forming is performed by pressing a pair of dies against both axial end faces of the first intermediate material 37, as shown in FIG. 3 (C). Obtain the second intermediate material 38 as shown. The second intermediate material 38 includes a substantially cylindrical tubular portion 39, a partition plate portion 40 that partitions the radial inner axial intermediate portion of the tubular portion 39, and an outer circumference of the axial intermediate portion of the tubular portion 39. It is provided with a flange portion 41 extending radially outward from the surface. The tubular portion 39 is a portion that finally becomes the stationary side tubular portion 4, and the flange portion 41 is a portion that finally becomes the stationary side flange 5.

つぎに、第二中間素材38の筒状部39のうちで、フランジ部41よりも軸方向外側に位置する円筒状の部位、すなわち筒状部39の軸方向外半部を、軸方向外側が大径側となる円すい筒状に拡径することで、図3(D)に示すような第三中間素材42を得る。具体的には、図4(A)に示すように、第二中間素材38の軸方向内半部を、受台43の上面に開口する保持凹部44に内嵌し、かつ、筒状部39の軸方向外半部の周囲に、筒状の抑え型45を配置する。そして、図4(A)および図4(B)に経時的に示すように、筒状部39の軸方向外半部の径方向内側に、パンチ46を押し込む。これにより、筒状部39の軸方向外半部を、軸方向外側が大径側となる円すい筒状に拡径することで、第三中間素材42を得る。第三中間素材42を構成する筒状部39aの軸方向外半部は、軸方向外側が大径側となる円すい筒状の拡径部47になっている。 Next, among the tubular portions 39 of the second intermediate material 38, the cylindrical portion located axially outside the flange portion 41, that is, the axial outer half portion of the tubular portion 39, is axially outside. By expanding the diameter into a conical cylinder on the large diameter side, the third intermediate material 42 as shown in FIG. 3D is obtained. Specifically, as shown in FIG. 4A, the axial inner half of the second intermediate material 38 is fitted into the holding recess 44 that opens on the upper surface of the pedestal 43, and the tubular portion 39. A cylindrical holding die 45 is arranged around the outer half portion in the axial direction of the above. Then, as shown in FIGS. 4A and 4B over time, the punch 46 is pushed inward in the radial direction of the outer half of the tubular portion 39 in the axial direction. As a result, the third intermediate material 42 is obtained by expanding the diameter of the outer half portion of the tubular portion 39 in the axial direction into a conical tubular shape having a large diameter side on the outer side in the axial direction. The outer half portion in the axial direction of the tubular portion 39a constituting the third intermediate material 42 is a conical cylindrical enlarged diameter portion 47 having a large diameter side on the outer side in the axial direction.

つぎに、第三中間素材42の仕切り板部40を打ち抜いて除去すると共に、第三中間素材42に、切削加工、研削加工などの機械加工および熱処理を施すことにより、外方部材1を完成させる。この際に、本例では、拡径部47に切削加工を施すことにより、外方部材1を構成する静止側筒部4の軸方向外半部の形状を得る。拡径部47の形状は、第二中間素材38を構成する筒状部39の軸方向外半部の形状に比べて、静止側筒部4の軸方向外半部の形状に近づいている。このため、切削量を少なくして、材料の歩留まりを良くすることができる。 Next, the partition plate portion 40 of the third intermediate material 42 is punched out and removed, and the third intermediate material 42 is subjected to machining such as cutting and grinding and heat treatment to complete the outer member 1. .. At this time, in this example, by cutting the enlarged diameter portion 47, the shape of the outer half portion in the axial direction of the stationary side tubular portion 4 constituting the outer member 1 is obtained. The shape of the enlarged diameter portion 47 is closer to the shape of the axial outer half of the stationary side cylindrical portion 4 than the shape of the axial outer half of the tubular portion 39 constituting the second intermediate material 38. Therefore, the cutting amount can be reduced and the material yield can be improved.

本例のハブユニット軸受は、軸方向外側列の外輪軌道6aの軌道径が、軸方向内側列の外輪軌道6bの軌道径よりも大きくなっており、また、軸方向外側列の外輪軌道6aよりも軸方向外側に位置する嵌合面部7の内径が、軸方向外側列の外輪軌道6aの軌道径よりも大きくなっており、さらに、静止側筒部4の軸方向外端部の外周面に樋溝28が設けられているものの、モーメント荷重が作用する際に、外方部材1を構成する静止側筒部4の軸方向外側部の弾性変形量を抑えられる。すなわち、本例のハブユニット軸受では、内周面に軸方向外側列の外輪軌道6aおよび嵌合面部7が設けられた、静止側筒部4の軸方向外側部は、静止側フランジ5の軸方向外側面の径方向内端縁24よりも外径が大きい、大径筒部25になっている。このため、この大径筒部25に相当する、静止側筒部4の軸方向外側部は、静止側フランジ5の軸方向外側面の径方向内端縁24よりも径方向外側に位置する部位、すなわち、図1中の一点鎖線Pよりも径方向外側に位置する部位の分だけ、肉厚が大きくなっている。また、樋溝28は、大径筒部25の外周面に設けられているため、樋溝28が設けられた箇所の肉厚も十分に確保できる。したがって、本例のハブユニット軸受によれば、モーメント荷重が作用する際に、静止側筒部4の軸方向外側部の弾性変形量を抑えられる。 In the hub unit bearing of this example, the raceway diameter of the outer ring raceway 6a in the outer row in the axial direction is larger than the raceway diameter of the outer ring raceway 6b in the inner row in the axial direction, and is larger than the raceway diameter of the outer ring raceway 6a in the outer row in the axial direction. The inner diameter of the fitting surface portion 7 located on the outer side in the axial direction is larger than the orbital diameter of the outer ring orbit 6a in the outer row in the axial direction, and further on the outer peripheral surface of the outer end portion in the axial direction of the stationary side cylinder portion 4. Although the gutter groove 28 is provided, the amount of elastic deformation of the axially outer portion of the stationary side tubular portion 4 constituting the outer member 1 can be suppressed when a moment load is applied. That is, in the hub unit bearing of this example, the axially outer portion of the stationary side cylinder portion 4 provided with the outer ring track 6a and the fitting surface portion 7 of the axially outer row on the inner peripheral surface is the shaft of the stationary side flange 5. The large-diameter tubular portion 25 has an outer diameter larger than that of the radial inner edge 24 of the outer surface in the direction. Therefore, the axially outer portion of the stationary side tubular portion 4, which corresponds to the large-diameter tubular portion 25, is a portion located radially outer of the radial inner end edge 24 of the axially outer surface of the stationary side flange 5. That is, the wall thickness is increased by the portion located radially outside the one-dot chain line P in FIG. 1. Further, since the gutter groove 28 is provided on the outer peripheral surface of the large-diameter tubular portion 25, it is possible to sufficiently secure the wall thickness of the portion where the gutter groove 28 is provided. Therefore, according to the hub unit bearing of this example, the amount of elastic deformation of the axially outer portion of the stationary side tubular portion 4 can be suppressed when a moment load is applied.

なお、本発明を実施する場合には、大径筒部25の軸方向内端縁は、軸方向外側列の外輪軌道6aの溝底部よりも軸方向内側に位置していればよく、必ずしも軸方向外側列の外輪軌道6aの軸方向内側縁よりも軸方向内側に位置していなくてもよい。また、大径筒部25の軸方向外端縁は、樋溝28よりも軸方向外側に位置していればよく、必ずしも静止側筒部4の軸方向外端縁に位置していなくてもよい。 In the case of carrying out the present invention, the axial inner edge of the large-diameter tubular portion 25 may be located axially inside the groove bottom portion of the outer ring track 6a of the axial outer row, and is not necessarily the shaft. It does not have to be located axially inside the outer ring track 6a in the outer row in the direction with respect to the inner edge in the axial direction. Further, the axial outer edge of the large-diameter tubular portion 25 may be located axially outside the gutter groove 28, and may not necessarily be located at the axial outer edge of the stationary side tubular portion 4. good.

ところで、静止側筒部4の嵌合面部7に対する、シールリング18を構成する芯金20の嵌合筒部22の嵌合は、大径筒部25の肉厚をさらに増すのと同じ効果、すなわち、モーメント荷重が作用する際に、静止側筒部4の軸方向外側部の弾性変形量を抑制する効果がある。しかしながら、嵌合面部7と嵌合筒部22との嵌合部に対して樋溝28が径方向に重畳していると、樋溝28の深さ分だけ静止側筒部4の肉厚が小さくなり、当該効果がそがれることになる。これに対して、本例では、樋溝28の底部29が、嵌合面部7と嵌合筒部22との嵌合部よりも軸方向外側に位置しており、該嵌合部に対しては、樋溝28のうちで深さが浅い軸方向内端部のみが径方向に重畳している。このため、当該効果がそがれることを抑えられる。なお、本発明を実施する場合には、当該効果を高める観点より、樋溝28の全体を、嵌合面部7と嵌合筒部22との嵌合部よりも軸方向外側に位置させるのが好ましい。 By the way, the fitting of the fitting cylinder portion 22 of the core metal 20 constituting the seal ring 18 with respect to the fitting surface portion 7 of the stationary side cylinder portion 4 has the same effect as further increasing the wall thickness of the large diameter cylinder portion 25. That is, when a moment load is applied, there is an effect of suppressing the amount of elastic deformation of the axially outer portion of the stationary side tubular portion 4. However, when the gutter groove 28 overlaps the fitting portion between the fitting surface portion 7 and the fitting cylinder portion 22 in the radial direction, the wall thickness of the stationary side cylinder portion 4 increases by the depth of the gutter groove 28. It becomes smaller and the effect is diminished. On the other hand, in this example, the bottom portion 29 of the gutter groove 28 is located axially outside the fitting portion between the fitting surface portion 7 and the fitting cylinder portion 22, and is relative to the fitting portion. In the gutter groove 28, only the shallow inner end portion in the axial direction overlaps in the radial direction. Therefore, it is possible to prevent the effect from being diminished. When carrying out the present invention, from the viewpoint of enhancing the effect, the entire gutter groove 28 is positioned outside the fitting portion between the fitting surface portion 7 and the fitting cylinder portion 22 in the axial direction. preferable.

また、本例では、外方部材1を構成する静止側筒部4の軸方向外端部と回転側フランジ10との間に、断面L字形で円環状のラビリンスシール31が設けられている。このため、泥水などの異物が、静止側筒部4の軸方向外端部と回転側フランジ10との間を通じて、シールリング18の設置部に到達しにくくできる。 Further, in this example, a labyrinth seal 31 having an L-shaped cross section and an annular shape is provided between the axially outer end portion of the stationary side tubular portion 4 constituting the outer member 1 and the rotating side flange 10. Therefore, foreign matter such as muddy water can hardly reach the installation portion of the seal ring 18 through between the axially outer end portion of the stationary side cylinder portion 4 and the rotation side flange 10.

また、仮に、異物がラビリンスシール31内に侵入したとしても、該異物は、回転側フランジ10(車輪)の回転に伴ってラビリンスシール31内に発生する気流により、速度が速く圧力が低い、回転側フランジ10側に引き寄せられる。また、本例では、内方部材2の中心軸を中心とする透孔30の内接円の直径D30が、外方部材1を構成する静止側筒部4の軸方向外端面の外径D4よりも小さくなっている(D30<D4)。すなわち、内方部材2の径方向に関する透孔30の内端部と、静止側筒部4の軸方向外端面とが軸方向に対向している。このような透孔30と静止側筒部4の軸方向外端面との対向箇所では、周囲の箇所に比べて、静止側筒部4の軸方向外端面の軸方向外側に位置する空間が広くなるため、気流の速度が低下し、圧力が上昇する。この圧力の上昇は、異物を外部空間に排出するための排出力となる。したがって、回転側フランジ10側に引き寄せられた異物は、かかる排出力により透孔30内に排出された後、遠心力の作用により外部空間に排出される。このため、該異物がシールリング18の設置部に到達しにくくできる。 Further, even if a foreign matter enters the labyrinth seal 31, the foreign matter rotates at a high speed and a low pressure due to the air flow generated in the labyrinth seal 31 as the rotating side flange 10 (wheel) rotates. It is attracted to the side flange 10 side. Further, in this example, the diameter D 30 of the inscribed circle of the through hole 30 centered on the central axis of the inner member 2 is the outer diameter of the axial outer end surface of the stationary side tubular portion 4 constituting the outer member 1. It is smaller than D 4 (D 30 <D 4 ). That is, the inner end portion of the through hole 30 in the radial direction of the inner member 2 and the outer end surface in the axial direction of the stationary side tubular portion 4 face each other in the axial direction. At such a portion where the through hole 30 and the axially outer end surface of the stationary side tubular portion 4 face each other, the space located on the axially outer side of the axially outer end surface of the stationary side tubular portion 4 is wider than that of the surrounding portion. Therefore, the velocity of the airflow decreases and the pressure increases. This increase in pressure serves as a discharge force for discharging foreign matter into the external space. Therefore, the foreign matter attracted to the rotation side flange 10 side is discharged into the through hole 30 by the discharge force, and then discharged to the external space by the action of the centrifugal force. Therefore, it is possible to prevent the foreign matter from reaching the installation portion of the seal ring 18.

[実施の形態の第2例]
実施の形態の第2例について、図5を用いて説明する。
本例では、外方部材1を構成する静止側筒部4の軸方向外端縁部のうち、ハブユニット軸受を懸架装置に組み付けた状態での下端部に、静止側筒部4の軸方向外端面と内周面と外周面との3方に開口する凹溝48が備えられている。
[Second Example of Embodiment]
A second example of the embodiment will be described with reference to FIG.
In this example, of the axial outer end edges of the stationary side tubular portion 4 constituting the outer member 1, the lower end portion of the stationary side tubular portion 4 in the state where the hub unit bearing is assembled to the suspension device is located at the lower end portion in the axial direction of the stationary side tubular portion 4. A concave groove 48 that opens in three directions, an outer end surface, an inner peripheral surface, and an outer peripheral surface, is provided.

本例では、回転側フランジ10に設けられた透孔30が、凹溝48と軸方向に対向する際に、これら透孔30と凹溝48との対向箇所において、回転側フランジ10の回転に伴って発生する気流の速度がより低くなり、圧力がより高くなる。このため、ラビリンスシール31内に侵入した異物の排出効果をより高めることができる。また、凹溝48は、ハブユニット軸受を懸架装置に組み付けた状態での下端部に配置されるため、重力の作用も加わって、異物の排出効果をさらに高めることができる。なお、本発明を実施する場合、凹溝48は、ハブユニット軸受を懸架装置に組み付けた状態での下端部から外れた円周方向位置に配置することもできる。また、凹溝48は、円周方向複数箇所に配置することもできる。
その他の構成および作用は、実施の形態の第1例と同様である。
In this example, when the through hole 30 provided in the rotation side flange 10 faces the concave groove 48 in the axial direction, the rotation of the rotation side flange 10 occurs at the position where the through hole 30 and the concave groove 48 face each other. The accompanying airflow will be slower and the pressure will be higher. Therefore, the effect of discharging the foreign matter that has entered the labyrinth seal 31 can be further enhanced. Further, since the concave groove 48 is arranged at the lower end portion of the hub unit bearing in the state of being assembled to the suspension device, the action of gravity can be added to further enhance the effect of discharging foreign matter. When carrying out the present invention, the concave groove 48 may be arranged at a position in the circumferential direction away from the lower end portion in a state where the hub unit bearing is assembled to the suspension device. Further, the concave grooves 48 can be arranged at a plurality of locations in the circumferential direction.
Other configurations and operations are similar to those of the first embodiment.

[実施の形態の第3例]
実施の形態の第3例について、図6を用いて説明する。
本例では、外方部材1を構成する静止側筒部4の軸方向外端縁部のうち、円周方向に関して静止側フランジ5に設けられた取付孔8(図1参照)と同位相となる複数箇所に、静止側筒部4の軸方向外端面と外周面との2方に開口する凹部26が設けられている。凹部26の径方向深さは、軸方向外側から軸方向内側に向かうほど小さくなっている。このような凹部26は、ハブユニット軸受を懸架装置に対して着脱するのに用いる工具を、透孔30を通じて回転側フランジ10の軸方向外側から軸方向内側に挿入する際に、工具の先端部を案内して、工具の先端部を静止側筒部4の径方向外側に導く機能を有する。また、凹部26は、実施の形態の第2例の凹溝48(図5参照)と同様の機能を発揮することもできる。図示の例では、外方部材1の中心軸を中心とする凹部26の内接円の直径D26は、内方部材2の中心軸(=外方部材1の中心軸)を中心とする透孔30の内接円の直径D30よりも大きくなっている(D26>D30)。ただし、凹部26の内接円の直径D26は、透孔30の内接円の直径D30以下とすることもできる(D26≦D30)。
その他の構成および作用は、実施の形態の第1例と同様である。
[Third example of the embodiment]
A third example of the embodiment will be described with reference to FIG.
In this example, among the axially outer edge portions of the stationary side tubular portion 4 constituting the outer member 1, the phase is the same as that of the mounting hole 8 (see FIG. 1) provided in the stationary side flange 5 in the circumferential direction. The recesses 26 that open in two directions, the outer end surface in the axial direction and the outer peripheral surface of the stationary side tubular portion 4, are provided at a plurality of locations. The radial depth of the recess 26 decreases from the outside in the axial direction to the inside in the axial direction. Such a recess 26 is a tip portion of the tool when the tool used for attaching / detaching the hub unit bearing to / from the suspension device is inserted through the through hole 30 from the axially outer side to the axially inner side of the rotating side flange 10. Has a function of guiding the tip of the tool outward in the radial direction of the stationary side cylinder portion 4. Further, the recess 26 can also exhibit the same function as the recess 48 (see FIG. 5) of the second example of the embodiment. In the illustrated example, the diameter D 26 of the inscribed circle of the recess 26 centered on the central axis of the outer member 1 is transparent centered on the central axis of the inner member 2 (= the central axis of the outer member 1). It is larger than the diameter D 30 of the inscribed circle of the hole 30 (D 26> D 30) . However, the diameter D 26 of the inscribed circle of the recess 26 may also be a diameter D 30 of the inscribed circle of the through hole 30 below (D 26 ≦ D 30).
Other configurations and operations are similar to those of the first embodiment.

1 外方部材
2 内方部材
3a、3b 玉
4 静止側筒部
5 静止側フランジ
6a、6b 外輪軌道
7 嵌合面部
8 取付孔
9a、9b 内輪軌道
10 回転側フランジ
11 取付孔
12 スタッドボルト
13 ハブ輪
14 内輪
15 小径段部
16 抑え部
17 内部空間
18 シールリング
19 軸受キャップ
20 芯金
21 シール材
22 嵌合筒部
23a、23b、23c シールリップ
24 径方向内端縁
25 大径筒部
26 凹部
27 円筒面部
28 樋溝
29 底部
30 透孔
31 ラビリンスシール
32 軸方向ラビリンスシール
33 径方向ラビリンスシール
34 ラビリンス用周面
35 ラビリンス用側面
36 初期素材
37 第一中間素材
38 第二中間素材
39、39a 筒状部
40 仕切り板部
41 フランジ部
42 第三中間素材
43 受台
44 保持凹部
45 抑え型
46 パンチ
47 拡径部
48 凹溝
1 Outer member 2 Inner member 3a, 3b Ball 4 Static side cylinder 5 Static side flange 6a, 6b Outer ring track 7 Fitting surface 8 Mounting hole 9a, 9b Inner ring track 10 Rotating side flange 11 Mounting hole 12 Stud bolt 13 Hub Ring 14 Inner ring 15 Small diameter step part 16 Retaining part 17 Internal space 18 Seal ring 19 Bearing cap 20 Core metal 21 Sealing material 22 Fitting cylinder part 23a, 23b, 23c Seal lip 24 Radial inner edge 25 Large diameter cylinder part 26 Recess 27 Cylindrical surface 28 Gutter groove 29 Bottom 30 Through hole 31 Labyrinth seal 32 Axial labyrinth seal 33 Radial labyrinth seal 34 Labyrinth peripheral surface 35 Labyrinth side surface 36 Initial material 37 First intermediate material 38 Second intermediate material 39, 39a Shape 40 Partition plate 41 Flange 42 Third intermediate material 43 Cradle 44 Holding recess 45 Retaining type 46 Punch 47 Expanded diameter 48 Concave groove

Claims (3)

静止側筒部と、該静止側筒部の外周面から径方向外方に伸長する、懸架装置に結合固定するための静止側フランジと、前記静止側筒部の内周面に設けられた複列の外輪軌道とを有し、前記複列の外輪軌道のうちの軸方向外側列の外輪軌道の軌道径が、前記複列の外輪軌道のうちの軸方向内側列の外輪軌道の軌道径よりも大きくなっている、外方部材と、
外周面に複列の内輪軌道を有する内方部材と、
前記複列の外輪軌道と前記複列の内輪軌道との間に配置された複数個の転動体と、を備え、
前記静止側筒部は、全体が金属により一体に構成されており、かつ、前記静止側フランジよりも軸方向外側に位置する軸方向範囲のうちの少なくとも一部の軸方向範囲が、前記静止側フランジの軸方向外側面の径方向内端縁よりも外径が大きい大径筒部になっており、該大径筒部の軸方向内端縁は、前記軸方向外側列の外輪軌道のうちで最も径方向外側に位置する部位よりも軸方向内側に位置しており、前記大径筒部の軸方向外端縁は、前記軸方向外側列の外輪軌道よりも軸方向外側に位置しており、
前記軸方向外側列の外輪軌道の全体が、前記大径筒部の内周面に備えられており、
前記大径筒部のうちで前記軸方向外側列の外輪軌道よりも軸方向外側に位置する部位の外周面にのみ、径方向内方に凹入する樋溝が周方向に備えられており、
前記樋溝のうちで最も径方向内側に位置する部位の外径は、前記静止側フランジの軸方向外側面の径方向内端縁の直径よりも小さい、
ハブユニット軸受。
A stationary side cylinder portion, a stationary side flange extending radially outward from the outer peripheral surface of the stationary side cylinder portion for coupling and fixing to a suspension device, and a compound provided on the inner peripheral surface of the stationary side cylinder portion. It has a row outer ring raceway, and the raceway diameter of the outer ring raceway in the axial outer row of the double row outer ring raceway is larger than the raceway diameter of the outer ring raceway in the axial inner row of the double row outer ring raceway. The outer member and the outer member, which are also getting bigger,
An inner member having a double row of inner ring tracks on the outer peripheral surface,
A plurality of rolling elements arranged between the double-row outer ring track and the double-row inner ring track are provided.
The stationary side cylinder portion is integrally formed of metal, and at least a part of the axial range located axially outside the stationary side flange is the stationary side. The outer diameter of the outer surface of the flange in the axial direction is larger than that of the inner edge in the radial direction. It is located axially inward from the part located on the outermost radial direction, and the axial outer edge of the large-diameter tubular portion is located axially outer than the outer ring trajectory of the axial outer row. Ori
The entire outer ring track of the outer row in the axial direction is provided on the inner peripheral surface of the large-diameter tubular portion.
A gutter groove that is recessed inward in the radial direction is provided in the circumferential direction only on the outer peripheral surface of the portion of the large-diameter tubular portion that is located axially outside the outer ring track of the outer row in the axial direction .
The outer diameter of the portion of the gutter groove located on the innermost side in the radial direction is smaller than the diameter of the radial inner edge of the axial outer surface of the stationary flange.
Hub unit bearing.
前記静止側筒部の内周面のうちで前記複列の外輪軌道よりも軸方向外側に設けられた嵌合面部と、該嵌合面部に締り嵌めで内嵌された円環状の芯金を有するシールリングとを、さらに有し、
前記大径筒部の軸方向外端縁および前記樋溝のうちで最も径方向内側に位置する部位が、前記嵌合面部と前記芯金との嵌合部よりも軸方向外側に位置している、
請求項1に記載のハブユニット軸受。
Of the inner peripheral surfaces of the stationary side cylinder portion, a fitting surface portion provided axially outside the outer ring track of the double row and an annular core metal fitted in the fitting surface portion by tightening. With a seal ring to have
The axially outer edge of the large-diameter tubular portion and the portion of the gutter groove located on the innermost side in the radial direction are located on the outer side in the axial direction with respect to the fitting portion between the fitting surface portion and the core metal. Yes,
The hub unit bearing according to claim 1.
前記内方部材が、前記複列の内輪軌道よりも軸方向外側部に、車輪を支持固定するための回転側フランジをさらに有しており、
前記回転側フランジの円周方向複数箇所に透孔が備えられており、
前記内方部材の中心軸を中心とする前記透孔の内接円の直径が、前記静止側筒部の軸方向外端面の外径よりも小さくなっている、
請求項1または2に記載のハブユニット軸受。
The inner member further has a rotation-side flange for supporting and fixing the wheel on the outer side in the axial direction from the inner ring track of the double row.
Through holes are provided at a plurality of locations in the circumferential direction of the rotary side flange.
The diameter of the inscribed circle of the through hole centered on the central axis of the inner member is smaller than the outer diameter of the axial outer end surface of the stationary side cylinder portion.
The hub unit bearing according to claim 1 or 2.
JP2017085210A 2017-04-24 2017-04-24 Hub unit bearing Active JP6957958B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017085210A JP6957958B2 (en) 2017-04-24 2017-04-24 Hub unit bearing
CN201820559956.9U CN208138310U (en) 2017-04-24 2018-04-19 Hub unit bearing
DE202018102280.6U DE202018102280U1 (en) 2017-04-24 2018-04-24 Bearing of a hub unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085210A JP6957958B2 (en) 2017-04-24 2017-04-24 Hub unit bearing

Publications (2)

Publication Number Publication Date
JP2018184969A JP2018184969A (en) 2018-11-22
JP6957958B2 true JP6957958B2 (en) 2021-11-02

Family

ID=62202010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085210A Active JP6957958B2 (en) 2017-04-24 2017-04-24 Hub unit bearing

Country Status (3)

Country Link
JP (1) JP6957958B2 (en)
CN (1) CN208138310U (en)
DE (1) DE202018102280U1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858828A4 (en) 2018-09-28 2022-07-06 Takeda Pharmaceutical Company Limited Heterocyclic compound
JP7251440B2 (en) * 2019-10-16 2023-04-04 日本精工株式会社 Hub unit bearing with generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720262B2 (en) 2011-01-20 2015-05-20 株式会社ジェイテクト Rolling bearing device for wheels

Also Published As

Publication number Publication date
CN208138310U (en) 2018-11-23
JP2018184969A (en) 2018-11-22
DE202018102280U1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP4466112B2 (en) Rolling bearing unit for wheel support
JP6957958B2 (en) Hub unit bearing
EP3444491B1 (en) Hub unit bearing
JP2006316903A (en) Bearing device for wheel
US11273670B2 (en) Hub unit bearing
JP6610441B2 (en) Rolling bearing unit for wheel support
JP3815376B2 (en) Rolling bearing unit for wheel support
US20120189236A1 (en) Wheel rolling bearing device
US20090154860A1 (en) Tapered roller bearing
JP4305514B2 (en) Axle bearing device
JP2016109183A (en) Outer ring for rolling bearing unit, and rolling bearing unit for supporting wheel
JP5087901B2 (en) Rolling bearing device for wheels
JP2007100715A (en) Bearing device for vehicle
JP6515774B2 (en) Double row tapered roller bearing unit for wheel support
JP4517617B2 (en) Outer ring member of rolling bearing device and manufacturing method thereof
JP4042528B2 (en) Rolling bearing device
CN209067659U (en) Hub unit bearing
JP5024850B2 (en) Wheel bearing device
WO2020225992A1 (en) Vehicle wheel bearing device
JP4595582B2 (en) Hub unit
JP2004116716A (en) Rolling bearing device
JP2018034735A (en) Wheel support rolling bearing unit
JP6597353B2 (en) Rolling bearing unit for wheel support
JP2007211989A (en) Bearing device for wheel
WO2017033653A1 (en) Rolling bearing unit for wheel support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6957958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150