JP6950471B2 - Insulation spacer - Google Patents

Insulation spacer Download PDF

Info

Publication number
JP6950471B2
JP6950471B2 JP2017215155A JP2017215155A JP6950471B2 JP 6950471 B2 JP6950471 B2 JP 6950471B2 JP 2017215155 A JP2017215155 A JP 2017215155A JP 2017215155 A JP2017215155 A JP 2017215155A JP 6950471 B2 JP6950471 B2 JP 6950471B2
Authority
JP
Japan
Prior art keywords
insulating spacer
insulating
gas
spacer
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017215155A
Other languages
Japanese (ja)
Other versions
JP2019087428A (en
Inventor
兼一郎 松下
兼一郎 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2017215155A priority Critical patent/JP6950471B2/en
Publication of JP2019087428A publication Critical patent/JP2019087428A/en
Application granted granted Critical
Publication of JP6950471B2 publication Critical patent/JP6950471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Insulating Bodies (AREA)

Description

本発明は、ガス絶縁開閉装置用の絶縁スペーサに関する。 The present invention relates to an insulating spacer for a gas insulated switchgear.

ガス絶縁開閉装置は、高電圧大容量の電力系統等で広く使用されている。ガス絶縁開閉装置において、六フッ化硫黄(SF6)ガスや乾燥空気等の絶縁性ガスが絶縁媒体または消弧媒体として用いられる。また、ガス絶縁開閉装置において、金属容器の内部に高電圧導体を絶縁支持する絶縁スペーサが用いられる。 Gas-insulated switchgear is widely used in high-voltage, large-capacity power systems and the like. In a gas insulated switchgear, an insulating gas such as sulfur hexafluoride (SF 6 ) gas or dry air is used as an insulating medium or an arc extinguishing medium. Further, in a gas-insulated switchgear, an insulating spacer that insulates and supports a high-voltage conductor is used inside a metal container.

絶縁スペーサは、求められる耐熱性、強度、または誘電率傾斜等の特性に応じて、樹脂材料の開発や新規の構造の提案が多くなされている(例えば、特許文献1)。 As for the insulating spacer, many developments of resin materials and proposals of new structures have been made according to the required properties such as heat resistance, strength, and dielectric constant inclination (for example, Patent Document 1).

例えば、特許文献1に記載の絶縁スペーサでは、通電部から接地部に向けて一時的に空間を制御し、絶縁スペーサに誘電率の傾斜を設けている。このように、絶縁スペーサに誘電率の傾斜を設けることで、絶縁スペーサの表面の最大電界値が抑えられ、絶縁スペーサの絶縁性能が高められる。 For example, in the insulating spacer described in Patent Document 1, the space is temporarily controlled from the energized portion to the grounding portion, and the insulating spacer is provided with an inclination of the dielectric constant. By providing the insulating spacer with an inclination of the dielectric constant in this way, the maximum electric field value on the surface of the insulating spacer is suppressed, and the insulating performance of the insulating spacer is enhanced.

特開2016−031845号公報Japanese Unexamined Patent Publication No. 2016-031845

絶縁スペーサは、区分スペーサとしての役割も担っているので、区分時に生じるガス(または、絶縁油)の差圧等による負荷に耐えることが求められる。絶縁スペーサの厚みを増やすことで、絶縁スペーサの強度を向上させることができるが、絶縁スペーサの厚みを増やすと、絶縁スペーサの重量が増加することとなる。 Since the insulating spacer also plays a role as a sorting spacer, it is required to withstand the load due to the differential pressure of the gas (or insulating oil) generated at the time of sorting. The strength of the insulating spacer can be improved by increasing the thickness of the insulating spacer, but increasing the thickness of the insulating spacer increases the weight of the insulating spacer.

また、特許文献1に記載の発明では、三次元造形装置によってトラス構造を有する絶縁スペーサを製作しているが、絶縁スペーサにおける比誘電率を連続的に傾斜変化させるための構造(すなわち、電界緩和効果を向上させる構造)であり、絶縁スペーサの強度を向上させる構造ではない。 Further, in the invention described in Patent Document 1, an insulating spacer having a truss structure is manufactured by a three-dimensional modeling apparatus, but a structure for continuously inclining and changing the relative permittivity of the insulating spacer (that is, electric field relaxation). It is a structure that improves the effect), and is not a structure that improves the strength of the insulating spacer.

本発明は、上記事情に鑑みて成されたものであり、ガス絶縁開閉装置用の絶縁スペーサを軽量化し、絶縁スペーサの強度を向上させることを目的としている。 The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the weight of the insulating spacer for a gas-insulated switchgear and to improve the strength of the insulating spacer.

上記目的を達成する本発明の絶縁スペーサの一態様は、
接地された金属容器に備えられ、該金属容器に複数の通電部を絶縁支持するガス絶縁開閉装置用の絶縁スペーサであって、
絶縁性ガスが満たされる中空部と、
前記絶縁スペーサ内部であって、前記通電部から選択される一対の通電部の間に、それぞれ柱状の補強部材を備えた、ことを特徴としている。
One aspect of the insulating spacer of the present invention that achieves the above object is
An insulating spacer for a gas-insulated switchgear that is provided in a grounded metal container and that insulates and supports a plurality of current-carrying parts in the metal container.
Hollow part filled with insulating gas and
It is characterized in that a columnar reinforcing member is provided between the pair of energizing portions selected from the energizing portions inside the insulating spacer.

また、上記目的を達成する本発明の絶縁スペーサの他の態様は、
接地された金属容器に備えられ、該金属容器に複数の通電部を絶縁支持するガス絶縁開閉装置用の絶縁スペーサであって、
絶縁性ガスが満たされる中空部と、
前記絶縁スペーサ内部であって、前記通電部から選択される一対の通電部の間に、それぞれ前記一対の通電部の中央部を中心に放射状に延びた骨格を有する補強部材を、備えた、ことを特徴としている。
In addition, another aspect of the insulating spacer of the present invention that achieves the above object is
An insulating spacer for a gas-insulated switchgear that is provided in a grounded metal container and that insulates and supports a plurality of current-carrying parts in the metal container.
Hollow part filled with insulating gas and
Inside the insulating spacer, between the pair of energizing portions selected from the energizing portions, a reinforcing member having a skeleton extending radially around the central portion of the pair of energizing portions is provided. It is characterized by.

また、上記目的を達成する本発明の絶縁スペーサの他の態様は、上記絶縁スペーサにおいて、
前記補強部材は、トラス構造またはハニカム構造の骨格を有し、
該トラス構造またはハニカム構造は、前記一対の通電部の中央部から外周部にいくにしたがって粗となる、ことを特徴としている。
In addition, another aspect of the insulating spacer of the present invention that achieves the above object is the insulating spacer.
The reinforcing member has a truss structure or a honeycomb structure skeleton.
The truss structure or the honeycomb structure is characterized in that it becomes coarser from the central portion to the outer peripheral portion of the pair of energized portions.

また、上記目的を達成する本発明の絶縁スペーサの他の態様は、上記絶縁スペーサにおいて、
前記絶縁スペーサは、三次元造形装置によって、絶縁材料から製造された、ことを特徴としている。
In addition, another aspect of the insulating spacer of the present invention that achieves the above object is the insulating spacer.
The insulating spacer is characterized in that it is manufactured from an insulating material by a three-dimensional modeling apparatus.

また、上記目的を達成する本発明の絶縁スペーサの他の態様は、上記絶縁スペーサにおいて、
前記絶縁スペーサは、三相の母線を絶縁支持する絶縁スペーサであり、前記金属容器内を、前記中空部に満たされる絶縁性ガスと同種または異なる絶縁性ガスで満たされた空間と、絶縁油で満たされた空間とに区分する、ことを特徴としている。
In addition, another aspect of the insulating spacer of the present invention that achieves the above object is the insulating spacer.
The insulating spacer is an insulating spacer that insulates and supports the three-phase bus, and the inside of the metal container is filled with a space filled with an insulating gas of the same type or different from the insulating gas filled in the hollow portion, and an insulating oil. It is characterized by dividing it into a filled space.

以上の発明によれば、ガス絶縁開閉装置用の絶縁スペーサを軽量化し、絶縁スペーサの強度を向上することができる。 According to the above invention, the weight of the insulating spacer for the gas-insulated switchgear can be reduced, and the strength of the insulating spacer can be improved.

本発明の第1実施形態に係る絶縁スペーサの取付状態を説明する説明図である。It is explanatory drawing explaining the mounting state of the insulating spacer which concerns on 1st Embodiment of this invention. (a)本発明の第1実施形態に係る絶縁スペーサの正面図、(b)同絶縁スペーサの断面図である。(A) is a front view of the insulating spacer according to the first embodiment of the present invention, and (b) is a cross-sectional view of the insulating spacer. (a)本発明の第2実施形態に係る絶縁スペーサの正面図、(b)同絶縁スペーサの断面図である。(A) is a front view of the insulating spacer according to the second embodiment of the present invention, and (b) is a cross-sectional view of the insulating spacer. 本発明の第3実施形態に係る絶縁スペーサの断面図である。It is sectional drawing of the insulation spacer which concerns on 3rd Embodiment of this invention. (a)従来技術に係る絶縁スペーサの正面図、(b)同絶縁スペーサの断面図である。(A) is a front view of the insulating spacer according to the prior art, and (b) is a cross-sectional view of the insulating spacer.

本発明の実施形態に係る絶縁スペーサについて、図面に基づいて詳細に説明する。 The insulating spacer according to the embodiment of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明の第1実施形態に係る絶縁スペーサ1は、ディスク状であり、外周部が接地された金属容器2の内壁面に固定される。絶縁スペーサ1には、例えば、高電圧導体である通電部3が挿通して設けられ、絶縁スペーサ1により金属容器2内に通電部3が絶縁支持される。なお、通電部3は、金属容器2を挿通した状態で金属容器2内に絶縁支持されるが、説明の便宜上、図1では絶縁スペーサ1部分以外の通電部3は図示省略している(図2−5も同様である)。金属容器2は、絶縁スペーサ1により、絶縁油が充填された区画2aと、絶縁性ガス(例えば、SF6、乾燥空気、二酸化炭素、窒素、または、それらの混合ガス等、以下同じ)が充填された区画2bとに区分される。 As shown in FIG. 1, the insulating spacer 1 according to the first embodiment of the present invention has a disk shape and is fixed to the inner wall surface of the metal container 2 whose outer peripheral portion is grounded. For example, an energizing portion 3 which is a high voltage conductor is inserted and provided in the insulating spacer 1, and the energizing portion 3 is insulatedly supported in the metal container 2 by the insulating spacer 1. The energizing portion 3 is insulated and supported in the metal container 2 with the metal container 2 inserted, but for convenience of explanation, the energizing portion 3 other than the insulating spacer 1 portion is not shown in FIG. 1 (FIG. 1). The same applies to 2-5). The metal container 2 is filled with a compartment 2a filled with insulating oil by an insulating spacer 1 and an insulating gas (for example, SF 6 , dry air, carbon dioxide, nitrogen, or a mixed gas thereof, etc., the same applies hereinafter). It is divided into the divided compartments 2b.

図2に示すように、絶縁スペーサ1は、絶縁性ガスが充填される中空部4と補強部材5を備え、三相の通電部3が挿通して設けられる。三相の通電部3は、同一円周上に等間隔で配置される。図示省略しているが、通電部3の周囲は異種接合界面となるため、厚さを増すなどの構造がとられている。また、図2(a)では、説明の便宜上補強部材5を記載しているが、補強部材5は、絶縁スペーサ1の外側を覆う絶縁材料により外部から見えない位置に配置される(後に詳細に説明する図3(a)も同様である)。 As shown in FIG. 2, the insulating spacer 1 includes a hollow portion 4 filled with an insulating gas and a reinforcing member 5, and is provided by inserting a three-phase energizing portion 3. The three-phase energizing portions 3 are arranged on the same circumference at equal intervals. Although not shown, the periphery of the energized portion 3 is a heterogeneous bonding interface, so that the thickness is increased. Further, in FIG. 2A, the reinforcing member 5 is shown for convenience of explanation, but the reinforcing member 5 is arranged at a position invisible from the outside by the insulating material covering the outside of the insulating spacer 1 (detailed later). The same applies to FIG. 3 (a) to be described).

絶縁スペーサ1を構成する絶縁材料は、例えば、エポキシ樹脂にフィラーとしてシリカ(酸化ケイ素)を充填した材料が用いられる。フィラーを充填する樹脂としては、エポキシ樹脂の他に、フェノール樹脂、ユリア樹脂、メラミン樹脂、ケイ素樹脂、ポリウレタン樹脂、ジシクロペンタジエン樹脂のいずれか、またはそれらの組み合わせたもの等が用いられる。また、フィラーとしては、シリカの他に、アルミナ(酸化アルミニウム)、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム等が用いられる。絶縁スペーサ1を構成する絶縁材料の種類やその配合比、フィラーの種類やフィラーの密度等は適宜変更可能である。また、絶縁スペーサ1の外周を形成する絶縁材料と、補強部材5を構成する絶縁材料は、同じであっても、異なるものであってもよい。絶縁スペーサ1の外周を形成する絶縁材料と補強部材5を構成する絶縁材料が同種の場合、絶縁スペーサ1と補強部材5は一体に形成される。 As the insulating material constituting the insulating spacer 1, for example, a material in which silica (silicon oxide) is filled as a filler in an epoxy resin is used. As the resin to be filled with the filler, in addition to the epoxy resin, any one of phenol resin, urea resin, melamine resin, silicon resin, polyurethane resin, dicyclopentadiene resin, or a combination thereof and the like are used. As the filler, in addition to silica, alumina (aluminum oxide), titanium oxide, barium titanate, strontium titanate and the like are used. The type of the insulating material constituting the insulating spacer 1, the compounding ratio thereof, the type of the filler, the density of the filler, and the like can be appropriately changed. Further, the insulating material forming the outer circumference of the insulating spacer 1 and the insulating material constituting the reinforcing member 5 may be the same or different. When the insulating material forming the outer periphery of the insulating spacer 1 and the insulating material constituting the reinforcing member 5 are of the same type, the insulating spacer 1 and the reinforcing member 5 are integrally formed.

中空部4は、絶縁スペーサ1の内部であって、応力集中の小さい箇所に形成される。つまり、絶縁スペーサ1は、中空部4に絶縁性ガスが満たされ、密閉された構造を備えている。中空部4に絶縁性ガスを満たすことで局所的な部分放電が抑制される。なお、絶縁スペーサ1の中心から外周部にかけて中空部4の分布に疎密を付けることで、絶縁スペーサ1の誘電率に傾斜(例えば、高電圧となる通電部3側の誘電率が絶縁スペーサ1の外周部と比較して高くなるような傾斜)を付けることもできる。 The hollow portion 4 is formed inside the insulating spacer 1 at a location where stress concentration is small. That is, the insulating spacer 1 has a structure in which the hollow portion 4 is filled with an insulating gas and is sealed. By filling the hollow portion 4 with an insulating gas, local partial discharge is suppressed. By making the distribution of the hollow portion 4 sparse and dense from the center of the insulating spacer 1 to the outer peripheral portion, the dielectric constant of the insulating spacer 1 is inclined (for example, the dielectric constant of the energized portion 3 side which becomes a high voltage is the insulating spacer 1). It is also possible to add an inclination) that is higher than the outer peripheral portion.

補強部材5は、通電部3と通電部3の間に設けられる。補強部材5は、対となる通電部3と通電部3の間にそれぞれ設けられる。補強部材5は、例えば、通電部3の挿通方向と平行な軸を有する柱状の構造を有するものが好ましい。例えば、補強部材5は、円柱状や双曲面構造(例えば、中央部がくびれた円柱状)を有する柱状の構造を有する。補強部材5を双曲面構造とすることで、絶縁スペーサ1の外周側の強度が向上し、中空部4の割合が増加することで絶縁スペーサ1をより軽量化できる。また、補強部材5は、対となる通電部3と通電部3の中間点から放射状にトラス構造またはハニカム構造をとるもの等でも良い。この場合、補強部材5は、例えば、複数の三角筒や六角筒等の角筒が、通電部の挿通方向と平行方向を軸として隙間なく並べられた構造となる。角筒の孔を小さくすれば強度が増すので、通電部3と通電部3の中間点から遠くに配置される角筒の孔(単位面積)を広くすることで、応力が集中する箇所の強度を向上し、絶縁スペーサ1の軽量化を図ることができる。また、通電部3の挿通方向に3次元のトラス構造を備えた構造とすることもできる。 The reinforcing member 5 is provided between the energizing portion 3 and the energizing portion 3. The reinforcing member 5 is provided between the paired energizing portion 3 and the energizing portion 3, respectively. The reinforcing member 5 preferably has, for example, a columnar structure having an axis parallel to the insertion direction of the energizing portion 3. For example, the reinforcing member 5 has a columnar structure having a columnar or hyperboloidal structure (for example, a columnar structure having a constricted central portion). By forming the reinforcing member 5 into a hyperboloid structure, the strength of the outer peripheral side of the insulating spacer 1 is improved, and the proportion of the hollow portion 4 is increased, so that the insulating spacer 1 can be made lighter. Further, the reinforcing member 5 may have a truss structure or a honeycomb structure radially from the midpoint between the paired energizing portion 3 and the energizing portion 3. In this case, the reinforcing member 5 has a structure in which, for example, a plurality of square cylinders such as a triangular cylinder and a hexagonal cylinder are arranged without a gap about a direction parallel to the insertion direction of the energizing portion. If the hole of the square tube is made smaller, the strength will increase. Therefore, by widening the hole (unit area) of the square tube located far from the midpoint between the energizing part 3 and the energizing part 3, the strength of the place where the stress is concentrated is increased. It is possible to improve the weight of the insulating spacer 1 and reduce the weight of the insulating spacer 1. Further, the structure may be provided with a three-dimensional truss structure in the insertion direction of the energizing unit 3.

絶縁スペーサ1(補強部材5を含む)は、例えば、三次元造形装置を用いて作製される。絶縁スペーサ1を作製する際、三次元造形装置内の雰囲気を所定の絶縁性ガスとすることで、絶縁スペーサ1の中空部4に所定の絶縁性ガスが満たされる。三次元造形装置とは、3Dプリンタ等とも呼ばれる装置であり、3Dデータに基づいて、断面形状を積層していくことで立体物を造形する装置である。三次元造形装置の造形方法は、樹脂材料をノズルから射出して積み重ねて造形する熱溶解積層方式、液体樹脂を紫外線で固める光造形方式等いずれの方式であってもよい。 The insulating spacer 1 (including the reinforcing member 5) is manufactured by using, for example, a three-dimensional modeling apparatus. When the insulating spacer 1 is manufactured, the atmosphere inside the three-dimensional modeling apparatus is set to a predetermined insulating gas, so that the hollow portion 4 of the insulating spacer 1 is filled with the predetermined insulating gas. The three-dimensional modeling device is a device also called a 3D printer or the like, and is a device for modeling a three-dimensional object by stacking cross-sectional shapes based on 3D data. The modeling method of the three-dimensional modeling apparatus may be any method such as a fused deposition modeling method in which resin materials are ejected from a nozzle and stacked to form a resin material, or a stereolithography method in which a liquid resin is solidified by ultraviolet rays.

図3は、本発明の第2実施形態に係る絶縁スペーサ6である。第1実施形態に係る絶縁スペーサ1と同様に、絶縁スペーサ6は、金属容器2(図3では図示せず)に三相の通電部3を絶縁支持する。通電部3と通電部3の間には、それぞれ補強部材5が設けられる。 FIG. 3 is an insulating spacer 6 according to the second embodiment of the present invention. Similar to the insulating spacer 1 according to the first embodiment, the insulating spacer 6 insulates and supports the three-phase energizing portion 3 in the metal container 2 (not shown in FIG. 3). Reinforcing members 5 are provided between the energizing portion 3 and the energizing portion 3, respectively.

第2実施形態に係る絶縁スペーサ6は、三相の通電部3が同一直線上に配置されていることが、第1実施形態に係る絶縁スペーサ1と異なるものである。その他の構成は、第1実施形態に係る絶縁スペーサ1と同様であるので、第1実施形態に係る絶縁スペーサ1と同様の構成については同じ符号を付し、詳細な説明を省略する。 The insulating spacer 6 according to the second embodiment is different from the insulating spacer 1 according to the first embodiment in that the three-phase energizing portions 3 are arranged on the same straight line. Since other configurations are the same as those of the insulating spacer 1 according to the first embodiment, the same components as those of the insulating spacer 1 according to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

図4は、本発明の第3実施形態に係る絶縁スペーサ7である。第1実施形態に係る絶縁スペーサ1と同様に、絶縁スペーサ7は、金属容器2(図4では図示せず)に三相の通電部3を絶縁支持する。絶縁スペーサ7の内部であって、通電部3と通電部3の間には、それぞれ補強部材8が設けられる。 FIG. 4 is an insulating spacer 7 according to a third embodiment of the present invention. Similar to the insulating spacer 1 according to the first embodiment, the insulating spacer 7 insulates and supports the three-phase energizing portion 3 in the metal container 2 (not shown in FIG. 4). Reinforcing members 8 are provided inside the insulating spacer 7 between the energizing portion 3 and the energizing portion 3, respectively.

第3実施形態に係る絶縁スペーサ7は、補強部材8の形状が、第1実施形態に係る絶縁スペーサ1と異なるものである。その他の構成は、第1実施形態に係る絶縁スペーサ1と同様であるので、第1実施形態に係る絶縁スペーサ1と同様の構成については同じ符号を付し、詳細な説明を省略する。なお、補強部材8を第2実施形態に係る絶縁スペーサ6に適用することもできる。 The shape of the reinforcing member 8 of the insulating spacer 7 according to the third embodiment is different from that of the insulating spacer 1 according to the first embodiment. Since other configurations are the same as those of the insulating spacer 1 according to the first embodiment, the same components as those of the insulating spacer 1 according to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. The reinforcing member 8 can also be applied to the insulating spacer 6 according to the second embodiment.

補強部材8は、通電部3の挿通方向と平行に設けられる芯部8aと、芯部8aから放射状に延びる補強部8bを備える。補強部材8は、例えば、補強部材5と同様の絶縁材料を用いて三次元造形装置により作製される。補強部材8と絶縁スペーサ7の外周を覆う壁面との接触部における補強部8bの断面は、トラス構造やハニカム構造とすることができる。また、補強部8bの断面を芯部8aを中心とした同心円状とすることもできる。補強部材8と絶縁スペーサ7の外周を覆う壁面との接触部において、補強部8bにより形成される空間部の面積を芯部8aから遠くにいくにしたがって広くすることで、絶縁スペーサ8の軽量化と、芯部8a近傍(すなわち、応力が集中する箇所)の強度を向上させることができる。 The reinforcing member 8 includes a core portion 8a provided parallel to the insertion direction of the energizing portion 3 and a reinforcing portion 8b extending radially from the core portion 8a. The reinforcing member 8 is manufactured by, for example, a three-dimensional modeling apparatus using the same insulating material as the reinforcing member 5. The cross section of the reinforcing portion 8b at the contact portion between the reinforcing member 8 and the wall surface covering the outer periphery of the insulating spacer 7 may be a truss structure or a honeycomb structure. Further, the cross section of the reinforcing portion 8b may be concentric with the core portion 8a as the center. The weight of the insulating spacer 8 is reduced by increasing the area of the space formed by the reinforcing portion 8b in the contact portion between the reinforcing member 8 and the wall surface covering the outer periphery of the insulating spacer 7 as the distance from the core portion 8a increases. And, the strength in the vicinity of the core portion 8a (that is, the place where the stress is concentrated) can be improved.

以上のような本発明の実施形態に係る絶縁スペーサ1、6、7によれば、通電部3と通電部3の間を補強する補強部材5(または、補強部材8)を備えることで、絶縁スペーサ1、6、7の強度を向上することができる。 According to the insulating spacers 1, 6 and 7 according to the embodiment of the present invention as described above, insulation is provided by providing the reinforcing member 5 (or the reinforcing member 8) for reinforcing between the energizing portion 3 and the energizing portion 3. The strength of the spacers 1, 6 and 7 can be improved.

また、絶縁スペーサ1、6、7に中空部4を形成することにより、絶縁スペーサ1、6、7を軽量化することができる。 Further, by forming the hollow portion 4 in the insulating spacers 1, 6 and 7, the weight of the insulating spacers 1, 6 and 7 can be reduced.

図5に示すように、従来の絶縁スペーサ9は、樹脂注型等により作製され、内部に空間はないものであった。これに対して、本発明の実施形態に係る絶縁スペーサ1、6、7は、最も応力の集中する箇所を構造上強化し、さらに応力集中の小さい箇所では内部を中空構造とすることで、絶縁スペーサ1、6、7の高強度化と軽量化を達成している。つまり、機械強度的な弱点を内部構造により強化し、内部を中空構造とすることで絶縁スペーサ1、6、7の軽量化が実現される。特に、絶縁スペーサ1、6、7の内部において、通電部3と通電部3の中間点から放射状に延びた柱状、トラス構造またはハニカム構造を有する補強部材5、8を備えることにより、絶縁スペーサ1、6、7の強度向上と重量低減を実現する。 As shown in FIG. 5, the conventional insulating spacer 9 is manufactured by resin casting or the like, and has no space inside. On the other hand, the insulating spacers 1, 6 and 7 according to the embodiment of the present invention are insulated by structurally strengthening the portion where the stress is most concentrated and making the inside a hollow structure at the portion where the stress concentration is small. The spacers 1, 6 and 7 have been made stronger and lighter. That is, the weight reduction of the insulating spacers 1, 6 and 7 is realized by strengthening the weak point of the mechanical strength by the internal structure and making the inside a hollow structure. In particular, the insulating spacer 1 is provided with reinforcing members 5 and 8 having a columnar, truss structure or honeycomb structure radially extending from the midpoint between the energizing portion 3 and the energizing portion 3 inside the insulating spacers 1, 6 and 7. , 6 and 7 to improve strength and reduce weight.

つまり、本発明の実施形態に係る絶縁スペーサ1、6、7は、絶縁スペーサ1、6、7の破壊の起点となる箇所を特定し、破壊の起点となる箇所を中心に応力を分散する構造を備える。例えば、三相の通電部3を絶縁支持する絶縁スペーサ1、6、7であれば、破壊の起点となる箇所は通電部3周辺と考えられる。しかし、絶縁スペーサ1、6、7の通電部3の周囲は異種接合界面となるため、厚さを増すなどの構造がとられている。したがって、何らかの外力により破壊に至るとして、通電部3とモールド材(絶縁スペーサ1、6、7の絶縁部)の界面が破壊の起点となることはなく、破壊の起点となり得るのは通電部3と通電部3の中間点と考えられる。そこで、本発明の実施形態に係る絶縁スペーサ1、6、7は、該当箇所(通電部3と通電部3の各中間点(通電部3を除く))を中心に応力を分散する補強構造を備えることで、絶縁スペーサ1、6、7の強度を向上させることができる。例えば、補強部材5のように、絶縁スペーサ1、6の外周を覆う壁面と補強部材5の接触部の断面形状が、通電部3と通電部3の中央部を中心に放射状に延びた骨格を備える構造とすることで絶縁スペーサ1、6の強度を向上させることができる。また、補強部材8のように、絶縁スペーサ7の外周を覆う壁面と補強部材8の接触部の断面形状だけでなく、通電部3と通電部3の中央部を中心に三次元的に放射状に延びた骨格を備える構造とすることで、絶縁スペーサ7の強度を向上させることができる。 That is, the insulating spacers 1, 6 and 7 according to the embodiment of the present invention have a structure in which the starting point of the failure of the insulating spacers 1, 6 and 7 is specified and the stress is dispersed around the starting point of the failure. To be equipped. For example, in the case of the insulating spacers 1, 6 and 7 that insulate and support the three-phase energizing portion 3, the starting point of destruction is considered to be around the energizing portion 3. However, since the periphery of the energized portion 3 of the insulating spacers 1, 6 and 7 is a heterogeneous bonding interface, a structure such as increasing the thickness is adopted. Therefore, the interface between the energized portion 3 and the molding material (insulating portions of the insulating spacers 1, 6 and 7) does not become the starting point of the fracture even if the fracture is caused by some external force, and the energized portion 3 can be the starting point of the fracture. It is considered to be an intermediate point between the current-carrying portion 3 and the current-carrying portion 3. Therefore, the insulating spacers 1, 6 and 7 according to the embodiment of the present invention have a reinforcing structure that disperses stress around the corresponding portion (each intermediate point between the energized portion 3 and the energized portion 3 (excluding the energized portion 3)). By providing it, the strength of the insulating spacers 1, 6 and 7 can be improved. For example, like the reinforcing member 5, a skeleton in which the cross-sectional shape of the contact portion between the wall surface covering the outer periphery of the insulating spacers 1 and 6 and the reinforcing member 5 extends radially around the central portion of the energizing portion 3 and the energizing portion 3. The strength of the insulating spacers 1 and 6 can be improved by providing the structure. Further, like the reinforcing member 8, not only the cross-sectional shape of the contact portion between the wall surface covering the outer periphery of the insulating spacer 7 and the reinforcing member 8 but also the energizing portion 3 and the central portion of the energizing portion 3 are three-dimensionally radial. The strength of the insulating spacer 7 can be improved by adopting a structure having an extended skeleton.

また、三次元造形装置を用いて絶縁スペーサ1、6、7を作製することで、複雑な内部構造を有する絶縁スペーサ1、6、7を容易且つ効率よく作製することができる。従来、中空充填剤を添加して、意図的に絶縁スペーサ内部に空隙を作製し、絶縁スペーサの軽量化や低誘電率化とする手法も提案されているが、空隙の制御ができず欠陥として破壊の起点となるおそれがある。そこで、三次元造形装置を用いて絶縁スペーサ1、6、7を作製することで、空隙や補強部材の構造を細かく制御し、絶縁スペーサ1、6、7の高強度化と軽量化が達成される。 Further, by manufacturing the insulating spacers 1, 6 and 7 using the three-dimensional modeling apparatus, the insulating spacers 1, 6 and 7 having a complicated internal structure can be easily and efficiently manufactured. Conventionally, a method has been proposed in which a hollow filler is added to intentionally create a gap inside the insulating spacer to reduce the weight and dielectric constant of the insulating spacer, but the gap cannot be controlled and is regarded as a defect. It may be the starting point of destruction. Therefore, by manufacturing the insulating spacers 1, 6 and 7 using a three-dimensional modeling device, the structure of the voids and the reinforcing member can be finely controlled, and the strength and weight of the insulating spacers 1, 6 and 7 can be increased and reduced. NS.

本発明の実施形態に係る絶縁スペーサ1、6、7は、三相の母線を絶縁支持する絶縁スペーサ等、高温且つ高負荷に耐えることが要求される区分スペーサに好適に用いることができる。 The insulating spacers 1, 6 and 7 according to the embodiment of the present invention can be suitably used for a compartmentalized spacer that is required to withstand a high temperature and a high load, such as an insulating spacer that insulates and supports a three-phase generatrix.

以上、具体的な実施形態を示して本発明の絶縁スペーサについて説明したが、本発明の絶縁スペーサは、実施形態に限定されるものではなく、その特徴を損なわない範囲で適宜設計変更が可能であり、設計変更されたものも、本発明の技術的範囲に属する。 Although the insulating spacer of the present invention has been described above by showing a specific embodiment, the insulating spacer of the present invention is not limited to the embodiment, and the design can be appropriately changed as long as its characteristics are not impaired. Yes, the redesigned ones also belong to the technical scope of the present invention.

例えば、絶縁スペーサを絶縁性ガスが充填された区画間を隔てる金属壁に備え、絶縁スペーサで、金属壁を挿通して設けられる通電部を絶縁支持することもできる。 For example, an insulating spacer may be provided on a metal wall that separates compartments filled with an insulating gas, and an insulating spacer may be used to insulate and support an energized portion provided by inserting the metal wall.

また、実施形態の説明では、三次元造形装置で絶縁スペーサを製作する例を示したが、従来の方法により絶縁スペーサを製作してもよい。ただし、遠心法や多段充填法のような製作方法は、3つの同軸放射形状等複雑な傾斜制御には向かない。また、モールド成形では、成形体輪郭の設計は可能であるが、内部の構造を複雑に制御することは非常に困難である。 Further, in the description of the embodiment, an example in which the insulating spacer is manufactured by the three-dimensional modeling apparatus is shown, but the insulating spacer may be manufactured by a conventional method. However, manufacturing methods such as the centrifugal method and the multi-stage filling method are not suitable for complicated tilt control such as three coaxial radial shapes. Further, in molding, although it is possible to design the contour of the molded body, it is very difficult to control the internal structure in a complicated manner.

また、絶縁スペーサに満たされる絶縁性ガスは、ガス絶縁開閉装置に満たされた絶縁性ガスと同種の絶縁性ガスでも異なる種類の絶縁性ガスでもよい。 Further, the insulating gas filled in the insulating spacer may be an insulating gas of the same type as the insulating gas filled in the gas-insulated switchgear or an insulating gas of a different type.

また、絶縁スペーサに形成される中空部は、トラス構造またはハニカム構造により形成される空間部分だけであってもよい。 Further, the hollow portion formed in the insulating spacer may be only the space portion formed by the truss structure or the honeycomb structure.

1、6、7…絶縁スペーサ
2…金属容器
3…通電部
4…中空部
5、8…補強部材
8a…芯部、8b…補強部
1, 6, 7 ... Insulating spacer 2 ... Metal container 3 ... Energizing part 4 ... Hollow part 5, 8 ... Reinforcing member 8a ... Core part, 8b ... Reinforcing part

Claims (5)

接地された金属容器に備えられ、該金属容器に複数の通電部を絶縁支持するガス絶縁開閉装置用の絶縁スペーサであって、
絶縁性ガスが満たされる中空部と、
前記絶縁スペーサ内部であって、前記通電部から選択される一対の通電部の間に、それぞれ柱状の補強部材を備えた、ことを特徴とする絶縁スペーサ。
An insulating spacer for a gas-insulated switchgear that is provided in a grounded metal container and that insulates and supports a plurality of current-carrying parts in the metal container.
Hollow part filled with insulating gas and
An insulating spacer inside the insulating spacer, each of which is provided with a columnar reinforcing member between a pair of energizing portions selected from the energizing portions.
接地された金属容器に備えられ、該金属容器に複数の通電部を絶縁支持するガス絶縁開閉装置用の絶縁スペーサであって、
絶縁性ガスが満たされる中空部と、
前記絶縁スペーサ内部であって、前記通電部から選択される一対の通電部の間に、それぞれ前記一対の通電部の中央部を中心に放射状に延びた骨格を有する補強部材を、備えた、ことを特徴とする絶縁スペーサ。
An insulating spacer for a gas-insulated switchgear that is provided in a grounded metal container and that insulates and supports a plurality of current-carrying parts in the metal container.
Hollow part filled with insulating gas and
Inside the insulating spacer, between the pair of energizing portions selected from the energizing portions, a reinforcing member having a skeleton extending radially around the central portion of the pair of energizing portions is provided. Insulation spacer featuring.
前記補強部材は、トラス構造またはハニカム構造の骨格を有し、
該トラス構造またはハニカム構造は、前記一対の通電部の中央部から外周部にいくにしたがって粗となる、ことを特徴とする請求項2に記載の絶縁スペーサ。
The reinforcing member has a truss structure or a honeycomb structure skeleton.
The insulating spacer according to claim 2, wherein the truss structure or the honeycomb structure becomes coarser from the central portion to the outer peripheral portion of the pair of energizing portions.
前記絶縁スペーサは、三次元造形装置によって、絶縁材料から製造された、ことを特徴とする請求項1から請求項3のいずれか1項に記載の絶縁スペーサ。 The insulating spacer according to any one of claims 1 to 3, wherein the insulating spacer is manufactured from an insulating material by a three-dimensional modeling apparatus. 前記絶縁スペーサは、三相の母線を絶縁支持する絶縁スペーサであり、前記金属容器内を、前記中空部に満たされる絶縁性ガスと同種または異なる絶縁性ガスで満たされた空間と、絶縁油で満たされた空間とに区分する、ことを特徴とする請求項1から請求項4のいずれか1項に記載の絶縁スペーサ。 The insulating spacer is an insulating spacer that insulates and supports the three-phase bus, and the inside of the metal container is filled with a space filled with an insulating gas of the same type or different from the insulating gas filled in the hollow portion, and an insulating oil. The insulating spacer according to any one of claims 1 to 4, wherein the insulating spacer is divided into a filled space.
JP2017215155A 2017-11-08 2017-11-08 Insulation spacer Active JP6950471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215155A JP6950471B2 (en) 2017-11-08 2017-11-08 Insulation spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215155A JP6950471B2 (en) 2017-11-08 2017-11-08 Insulation spacer

Publications (2)

Publication Number Publication Date
JP2019087428A JP2019087428A (en) 2019-06-06
JP6950471B2 true JP6950471B2 (en) 2021-10-13

Family

ID=66763279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215155A Active JP6950471B2 (en) 2017-11-08 2017-11-08 Insulation spacer

Country Status (1)

Country Link
JP (1) JP6950471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400113B2 (en) * 2020-09-09 2023-12-18 東芝エネルギーシステムズ株式会社 gas insulated equipment
KR102471505B1 (en) * 2021-01-21 2022-11-28 (주)이플전기 Miniature Insulated Spacer for Gas Insulated Switchgear with Additive Manufacturing Processes

Also Published As

Publication number Publication date
JP2019087428A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6950471B2 (en) Insulation spacer
CN101346778B (en) High voltage bushing and high voltage device comprising such bushing
EP2405550A1 (en) Hermetically-sealed insulated device
BRPI1001839B1 (en) HIGH VOLTAGE DEVICE, TRANSFORMING STATION AND HIGH VOLTAGE DC CURRENT STATION
JP5065994B2 (en) Sealed insulation device and operation method thereof
KR102083337B1 (en) High voltage connection sealing method for corona ignition coil
JP6338960B2 (en) Insulating spacer for gas insulated switchgear and method for manufacturing the same
US8802993B2 (en) High voltage bushing
EP2057643B1 (en) High voltage dc bushing and device comprising such high voltage bushing
US10930454B2 (en) Insulation arrangement for a high or medium voltage assembly
US7435120B2 (en) Electrical insulator, especially for medium and high voltages
JPH04229512A (en) Insulator
JP6640505B2 (en) Gas insulation equipment, insulation spacers and three-dimensional objects
RU2593762C2 (en) Multipolar gas-insulated section of busbar
KR101697625B1 (en) Gas insulated switchgear and manufacturing method of this
SE531321C2 (en) High Voltage Cable Connection
JP7400113B2 (en) gas insulated equipment
US9837184B2 (en) High-voltage insulator
KR102525268B1 (en) Transformer with casting in which winding arrangement is embedded and method for manufacturing winding arrangement for transformer
US1230610A (en) High-potential insulator.
CN109346249B (en) Bus support insulator
JP6022955B2 (en) Insulation bush for lightning protection
JP2000164081A (en) Insulator for high-voltage switching device
JP2024035987A (en) switch gear
US11915895B2 (en) Interrupter unit having a vacuum tube and an insulating housing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6950471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150