JP6949332B2 - 雷危険度判定装置 - Google Patents

雷危険度判定装置 Download PDF

Info

Publication number
JP6949332B2
JP6949332B2 JP2018021261A JP2018021261A JP6949332B2 JP 6949332 B2 JP6949332 B2 JP 6949332B2 JP 2018021261 A JP2018021261 A JP 2018021261A JP 2018021261 A JP2018021261 A JP 2018021261A JP 6949332 B2 JP6949332 B2 JP 6949332B2
Authority
JP
Japan
Prior art keywords
data
unit
prediction
lightning
risk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018021261A
Other languages
English (en)
Other versions
JP2019138737A (ja
Inventor
慎吾 清水
慎吾 清水
南海子 櫻井
南海子 櫻井
晃一 長谷川
晃一 長谷川
大輔 内藤
大輔 内藤
真樹子 早藤
真樹子 早藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Earth Science and Disaster Prevention (NIED)
Chuden Cti Co Ltd
Original Assignee
National Research Institute for Earth Science and Disaster Prevention (NIED)
Chuden Cti Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Earth Science and Disaster Prevention (NIED), Chuden Cti Co Ltd filed Critical National Research Institute for Earth Science and Disaster Prevention (NIED)
Priority to JP2018021261A priority Critical patent/JP6949332B2/ja
Publication of JP2019138737A publication Critical patent/JP2019138737A/ja
Application granted granted Critical
Publication of JP6949332B2 publication Critical patent/JP6949332B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、雷の危険度を判定する雷危険度判定装置に関する。
従来、雷の発生を気象レーダと外気温度を用いて判定している技術が開示されている(特許文献1参照)。特許文献1に記載された技術は、外気温に基づき凍結高度を決定し、凍結高度よりも上の高度に関する反射率が雷閾値よりも大きいとき雷アイコンを生成し、凍結高度と所定距離値との和における高度の反射率が雹閾値よりも大きいとき雹アイコンを生成する。
特開2011−128150号公報
数値予報課,「数値予報の基礎知識と最新の数値予報システム」,気象庁予報部,平成24年度数値予報研修テキスト,2012年11月 清水慎吾,前坂剛,「三次元風速場の推定のための変分法を用いた複数台ドップラーレーダデータの解析手法」,防災科学技術研究所研究報告第70号,2007年1月(http://dil-opac.bosai.go.jp/publication/nied_report/PDF/70/70shimizu.pdf) TAKEHARU KOUKETSU, 外8名,「A Hydrometeor Classification Method for X-Band Polarimetric Rader: Construction and Validation Focusing on Solid Hydrometeors under Moist Environments」,American Meteorological Society,JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY,VOLUME 32,pp2052-2074,Nov 2015(https://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-14-00124.1) HYPERLINK "https://journals.ametsoc.org/author/Hauser%2C+Dani%C3%A8le" Daniele Hauser HYPERLINK "https://journals.ametsoc.org/author/Amayenc%2C+Paul" Paul Amayenc,「Retrieval of Cloud Water and Water Vapor Contents from Doppler Radar Data in a Tropical Squall Line」,American Meteorological Society,JOURNAL OF ATMOSPHERIC SCIENCES,VOL 43,No.8,pp823-838,15 APRIL,1986(https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281986%29043%3C0823%3AROCWAW%3E2.0.CO%3B2) Lawrence D. Carey and Steven A. Rutledge,「The Relationship between Precipitation and Lightning in Tropical Island Convection:A C-Band Polarimetric Radar Study」,American Meteorological Society,MONTHLY WEATHER REVIEW,VOL 128,pp2687-2710,AUGUST 2000(https://journals.ametsoc.org/doi/full/10.1175/1520-0493%282000%29128%3C2687%3ATRBPAL%3E2.0.CO%3B2) Gregory N. Seroka, Richard E. Orville, Courtney Schumacher, 「Radar Nowcasting of Total Lightning over the Kennedy Space Center」,American Meteorological Society,WEATHER AND FORECASTING, VOL 27, pp189-204, FEBRUARY 2012(https://journals.ametsoc.org/doi/pdf/10.1175/WAF-D-11-00035.1)
しかしながら、特許文献1に記載された技術は、雹と雷を関係づけて予測したものではないので、予測精度がよくなかった。
本発明は、従来技術と比較して、雷の危険度を精度良く予測することが可能な雷危険度判定装置を提供することを目的とする。
本発明に係る雷危険度判定装置は、
積乱雲を検出する気象情報取得部と、
前記気象情報取得部で取得された気象データから客観解析技術を用いて現在の積乱雲の状況を表す現況データ及び過去の積乱雲の状況を表す過去データを含む三次元データを作成する三次元データ作成部と、
前記現況データ及び前記過去データから積乱雲の移動を予測し未来の積乱雲の状況を表すナウキャスト予測データ、及び、前記現況データを初期値とし雲解像数値モデルによる気象予測を行うことで作成する数値予測データを含む未来予測データを作成する移動予測部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記現況データ、前記過去データ及び前記未来予測データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記未来予測データに関しては、前記ナウキャスト予測データ及び前記数値予測データの結果をブレンドするブレンディング部と、
前記危険度計算部及び前記ブレンディング部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備える
ことを特徴とする。
本発明に係る雷危険度判定装置は、
前記三次元データ、前記雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を前記危険度計算部に入力する観測データ入力部を備える
ことを特徴とする。
本発明に係る雷危険度判定装置は、
前記状態変化計算部は、積乱雲内の上昇流の体積変化を計算し、
前記状態閾値入力部は、状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する
ことを特徴とする。
本発明に係る雷危険度判定装置は、
前記状態変化計算部は、積乱雲内の霰の体積変化を計算し、
前記状態閾値入力部は、状態変化計算部で計算された値と比較する霰の体積の閾値を定義する
ことを特徴とする。
このような雷危険度判定装置によれば、雷の危険度を精度良く予測することが可能となる。
積乱雲内の雷の仕組みを示す。 本実施形態の雷危険度判定装置のシステムブロックを示す。 本実施形態の積乱雲検出のイメージを示す。 本実施形態の三次元データ作成部を示す。 本実施形態の三次元データ作成部の解析の流れを示す。 本実施形態の三次元データ作成部の各時刻におけるデータを示す。 本実施形態の三次元データ作成部の制御フローチャートを示す。 積乱雲が発生してから経過する時間に対する各高度での霰の体積を示す。 本実施形態の降水予測装置のシステムブロック図を示す。 予測時間に対する数値予測による予測正解率とナウキャスト予測による予測正解率の比を示す。 格子毎の観測データと予測データの比較を示す。 予測時間に対する正解率の関係を示す。 本実施形態の降水予測方法のフローチャートを示す。 本実施形態の降水予測装置及び降水予測方法で得られる降水予測データを示す。 本実施形態の積乱雲予測システムのシステムブロックを示す。 本実施形態の積乱雲予測システムのフローチャートを示す。
本発明にかかる実施の形態を図により説明する。
図1は、積乱雲内の雷の仕組みを示す。
雷は、積乱雲から発生する。積乱雲は、強い上昇気流によって下層の空気が持ち上げられ、上空で空気中の水蒸気が水滴となることで形成される。気温が氷点下の高度では、雨粒だけでなく霰や氷晶といった氷の粒も形成される。氷の粒は、上昇流の中で周囲の過冷却水滴と呼ばれる水滴と衝突することで成長する。やがて、氷の粒は、上昇気流で支えきれないほど大きくなると、落下し始める。
この上昇中および落下時に、氷の粒同士は、ぶつかり合い、大きな粒と小さな粒の間で電荷の受け渡しが発生する。それぞれの氷の粒が帯電する電荷の符号は、雲水量と呼ばれる単位体積あたりの大気に含まれている水の質量と周囲の気温によって決まる。適度な雲水量がある場合は、気温が−10℃より低いところでは、大きな氷の粒はマイナス、小さな氷の粒はプラスの電荷が帯電する。このような氷の粒どうしの衝突が続くと、積乱雲内に多くの電荷が蓄えられる。
空気は電気を通さない絶縁体だが、電位差が1メートルあたり300万Vを超えると、絶縁破壊という現象が発生し、空気中を電気が通る放電が始まり、雷が発生する。雷には、落雷と雲放電があり、落雷は積乱雲と地面の間で電気が流れる現象で、雲放電は積乱雲内や異なる積乱雲同士などで電気が流れる現象である。
本実施形態の雷危険度判定装置10は、積乱雲内の霰や気流の体積変化を求め、急激な増加が認められた場合に危険であると判定する。
図2は、本実施形態の雷危険度判定装置10のシステムブロックを示す。図3は、本実施形態の積乱雲検出のイメージを示す。
雷危険度判定装置10は、積乱雲を検出する気象情報取得部11と、三次元データを作成する三次元データ作成部12と、積乱雲の移動を予測する移動予測部13と、積乱雲内の状態変化を計算する状態変化計算部14と、状態変化計算部14で計算された値と比較する閾値を定義し入力する状態閾値入力部15と、状態変化計算部14で計算された状態変化から危険度を計算する危険度計算部16と、三次元データ等を学習処理することで作成された統計情報を入力する観測データ入力部17と、移動予測部13でナウキャスト及び数値予測から得られたそれぞれの未来予測データから危険度計算部16が計算した結果をブレンドするブレンディング部18と、危険度計算部16が計算した現況データ及びブレンディング部18でブレンドされた未来予測データから危険度の高い場所の位置情報、移動方向及び移動速度を作成する雷情報作成部19と、を備える。
本実施形態の気象情報取得部11は、気象庁等の現業の単偏波レーダ等から得られる観測データを取得する。観測データは、極座標系の仰角を表すデータでよい。
三次元データ作成部12は、1台以上の気象情報取得部11が取得した観測データを気象場客観解析の入力として用いて、気象場客観解析技術により複数の極座標系の仰角データを、直交座標系における格子状の三次元データに変換する。
本実施形態の三次元データ作成部12では、客観解析による三次元積乱雲を復元する技術を用いて、データを作成すればよい。三次元データ作成部12は、現在の積乱雲の状況を示す現況データを作成すると共に、過去の積乱雲の状況を過去データとして保存しておく。ここで、客観解析による三次元積乱雲を復元する技術について説明する。
図4は、本実施形態の三次元データ作成部12を示す。図5は、本実施形態の三次元データ作成部12客観解析の流れを示す。図5の横軸は、時間の流れを表す。図6は、本実施形態の三次元データ作成部12の各時刻におけるデータを示す。
三次元データ作成部12は、観測データ取得部121と、初期値作成部122と、予報値作成部123と、リスタートファイル作成部124と、推定値作成部125と、仮解析部126と、本解析部127と、を備える。
観測データ取得部121は、地上観測、気象衛星及びレーダー等の観測データを、世界各国の気象機関又は宇宙機関等から取得する。観測は、様々な場所や時刻で行われているので、観測データはそれぞれの取得先から所定の時間毎に取得される。また、観測データ取得部121は、気象庁の全球モデル又はメソモデルの格子点データ等の背景場データも取得することが好ましい。観測データには、人為的なミスや機器の故障等によって精度が低く、利用できないものが存在するので、これらのデータは除外する。取得された観測データは、初期値作成部122に出力される。
初期値作成部122は、背景場データ及び観測データ取得部121が取得した観測データから初期時刻に初期値を作成する。図6に示すように、観測データは、分布が不均一であるため、そのまま使用することはできない。そのため、初期値作成部122は、空間的且つ時間的に均一な形式の初期値を作成する。
予報値作成部123は、初期値作成部122が作成した初期値から継続的に所定時間毎に気象場の予報値を作成する。予報値は、初期値と同様に空間的且つ時間的に均一な形式で作成される。ここで、気象場とは、気圧、気温、湿度、風向、風速、降水量、積雪の深さ、降雪の深さ、日照時間、日射量、雲、視程、大気現象等をいう。
リスタートファイル作成部124は、本解析に使用するリスタートファイルを作成する。リスタートファイルは、解析時刻より前の予め定めたリスタート時刻tにおける予報変数(風、気温、気圧、水物質等)、予報変数の時間変化項、境界値、及びリスタート時刻の一つ前のタイムステップ時間t−Δtにおける予報変数等によって、作成される(非特許文献1参照)。
推定値作成部125は、初期時刻の後、所定時刻毎に観測データ取得部121が取得する観測データが入力された解析時刻の予報値を推定値として作成する。推定値は、予報値と同様に空間的且つ時間的に均一な形式で作成される。
仮解析部126は、観測データ取得部121が取得した新たな観測データと推定値作成部125が作成した推定値とから解析インクリメントを計算する。解析インクリメントは、推定値と新たな観測値の誤差を修正する値である。解析インクリメントは、推定値と同様に空間的且つ時間的に均一な形式で作成される。本実施形態では、3次元変分法を用いて解析を行うことが好ましい。
ここで、3次元変分法について簡単に説明する。3次元変分法では、以下の式(1)及び(2)を用いる。
[数1]
J = 1/2 (x-xb)T B-1 (x-xb) + 1/2 [H(x)-y]T R-1 [H(x)-y] (1)
∇xJ = B-1 (x-xb) + HT R-1 [H(x)-y] (2)
ただし、
B-1は、背景誤差共分散行列の逆行列、
R-1は、観測誤差共分散行列の逆行列、
yは、観測値、
xbは、推定値、
H(x) は、解析値から観測に相当する量を求める関数(観測演算子)、
HT は、観測演算子が解析値の線形変換に相当する場合の行列Hの転置行列
である。
式(1)は、コストファンクションと呼ばれ、観測値や数値モデルの推定値の誤差を二次形式で定量化したものである。式(2)は、コストファンクションの勾配ベクトルと呼ばれ、スカラー量のコストファンクションをこれから求めようとするベクトル量の推定値で微分したものであり、推定値と同じ次元をもつベクトル量である。
勾配ベクトルは、誤差を小さくするために推定値をどのように修正すればよいかについての定量的情報を与えるものである。背景誤差共分散行列の逆行列と観測誤差共分散行列の逆行列は、既知であって、予め記憶されている。すなわち、3次元変分法とは、勾配ベクトルを利用し、コストファンクションを最小にする未知値x を解析値として探査する問題である。
本解析部127は、リスタート時刻まで遡り、解析時刻に仮解析部126が計算した解析インクリメントを平滑化して用いて、リスタート予報値をリスタート時刻でのデータ分から継続的に修正し、本解析値を出力する。修正方法は、IAU(Incremental Analysis Update)フィルター等を用いることが好ましい。本解析後、新たな本解析値を初期値として、予報値作成部13が予報値を継続的に作成する。すなわち、次の観測値を取得すると、すぐに計算を再開することが可能となる。
ここで、IAUフィルターについて説明する。IAUフィルターは、以下の式(3)を用いる。
[数2]
∂A/∂t = Adv.A + Diff.A + Src.A + β( t - t 0 ) * Inc.A (3)
数値予測の時間発展は一般に、式(3)のように、移流項(Adv)、拡散項(Diff)、発生・消滅項(Src)によって、時間発展が決定されている。IAUフィルターでは、さらにβ( t - t 0 ) * Inc.Aを付加することで、時間発展の仕方を変更し、予測を改善させるものである。
β( t - t 0 )は、ある時刻 t と同化が行われた時刻 t 0との時間差の関数で与えられる。t が t 0 に一致する時に最大となり、時間差が大きくなるほど0に近づく。Inc.Aは、ある時刻 t 0に式(1)と式(2)で得られた x-xb である。
図7は、本実施形態の三次元データ作成部12の制御フローチャートを示す。
まず、ステップ1で、観測データ取得部121で背景場データ及び気象庁等から取得した観測データを、初期値作成部122で同化し、初期値を作成する(ST1)。背景場データは、初期値作成時に取得してもよい。
続いて、ステップ2で、初期値から予報値作成部123が気象場の予報値を継続的に作成する(ST2)。
続いて、ステップ3で、リスタートファイル作成部124がリスタートファイルを作成する(ST3)。リスタートファイルは、解析時刻より前の予め定めたリスタート時刻に作成される。
ステップ4では、新たな観測データが有るか否かを判定する(ST4)。新たな観測データは解析時刻に入力されるので、通常、解析時刻になるまでは、新たな観測データは、入力されない。新たな観測データが有る場合、ステップ5に進む。新たな観測データが無い場合、ステップ4に戻る。
ステップ5では、推定値作成部125が解析時刻の予報値を推定値として作成する(ST5)。
続いて、ステップ6で、仮解析部126が推定値と新たな観測データから解析インクリメントを計算する(ST6)。
次に、ステップ7で、本解析部127において、解析インクリメントを保持し、リスタート時刻へ遡る(ST7)。
次に、ステップ8で、本解析部127がリスタートファイルと解析インクリメントから本解析を行い、本解析値を出力する(ST8)。本解析は、解析インクリメントを平滑化して用いて、リスタート予報値をリスタート時刻でのデータ分から継続的に修正することが好ましい。
次に、ステップ9で、解析期間が終了したか否かを判定する(ST9)。解析期間が終了した場合には、制御を終了する。
解析期間が終了した場合、ステップ10で、本解析値を新たな初期値とし、且つ、解析インクリメントを削除し、ステップ2に戻る(ST10)。すなわち、本実施形態の客観解析装置は、解析期間が終了するまで、客観解析を繰り返す。
移動予測部13は、三次元データ作成部12で作成された現況データ及び過去データを用いて積乱雲の移動を予測する。
一例として、過去データと現況データから相互相関数法等によるパターンマッチを行うことで、移動ベクトルを算出し、未来予測データとして出力すればよい。移動予測部13を用いることによって、精度良く未来の雷の予測をすることが可能となる。このように得られた予測データをナウキャスト予測データと呼ぶ。
また、現況データを初期値とし、雲解像数値モデルによる気象予測を行うことで、予測データを作成してもよい。このように得られた予測データを数値予測データと呼ぶ。雲解像数値モデルとしては、例えば、CReSS(Cloud Resolving Storm Simulator)等を用いればよい。
図8は、積乱雲が発生してから経過する時間に対する各高度での霰の体積を示す。
状態変化計算部14は、三次元データ作成部12で作成された現況データ及び過去データ並びに移動予測部13で作成された未来予測データから積乱雲の状態の変化を計算する。状態の変化の指標としては、上昇流の予め定めた所定時間の体積、霰と判別された領域の予め定めた所定時間の体積、霰の単位体積当たりの質量、鉛直積算した霰の質量又はエコー頂高度のうち少なくとも1つでよい。
例えば、計算される状態変化は、状態閾値入力部15から入力される予め定めた閾値以上とする。状態変化計算部14は、過去から現在の三次元データから、同一と思われる積乱雲を特定し、その状態変化を計算する。同一と思われる積乱雲の特定は、既存の積乱雲自動追跡技術を利用すればよい。
ここで、状態変化を評価する変数について説明する。図8は、これらの状態変化のうち、一例として霰の体積を示している。
上昇流の体積を求めるには、複数台のレーダで観測されたドップラー速度を合成し、風の三成分を推定する。三成分は東西風、南北風、鉛直風であって、鉛直上向きを正とする座標系において、正の鉛直風を上昇流と呼ぶ。閾値以上の上昇流が検出された格子グリッドの総体積を「上昇流の体積」とする。風の三成分を推定する手法は、非特許文献2を参照すればよい。
霰と判別された領域の体積は、例えば、二重偏波レーダを用いた降水粒子の判別法を用いて霰と分類された格子グリッドの総体積を求めればよい。二重偏波レーダを用いた降水粒子の判別法は、非特許文献3を参照すればよい。
霰の単位体積当たりの質量は、例えば、二重偏波レーダを用いた降水粒子の判別法を用いて霰と分類された格子グリッドにおいて、反射強度及び偏波パラメータ等の測定値から単位体積当たりの質量を推定する手法を用いて算出された各格子グリッドにおける単位体積当たりの質量である。霰の単位体積当たりの質量を推定する手法は、非特許文献4及び5を参照すればよい。
鉛直積算した降水粒子の質量は、反射強度および偏波パラメータ等の測定値から単位体積当たりの降水粒子(雨、霰、雪)の質量を推定する手法を用いて、各格子グリッドにおける降水粒子の質量を算出し、各格子グリッドの質量を鉛直方向に積算したものである(非特許文献6参照)。
エコー頂高度は、積乱雲内にあるレーダ反射強度の等値面の最高到達高度である。
等温度面エコー強度は、気温の三次元分布から気温の等値面を作成し、ある温度の等値面における反射強度をいう。具体的には、−10度程度の霰が負に帯電する温度を選択し、−10度高度における反射強度を抽出すればよい。
危険度計算部16は、状態変化計算部14が計算した上昇流の体積変化率、霰の体積変化率、霰の質量変化率、鉛直積算した降水粒子の質量の変化率、エコー頂高度変化率、又は、等温度面エコー強度変化率、並びに、観測データ入力部17から入力される統計情報を用いて、変化率が予め定めた所定値以上の積乱雲を雷の危険度が高いと判定する。危険度の判定は、統計情報によってモデル化される。
観測データ入力部17は、三次元データ、雷危険度データ及びLMA(Lightning Mapping Array)センサ等の観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を危険度計算部16に入力する。学習処理をすることによって、より精度良く、雷の危険度を予測することが可能となる。なお、観測データ入力部17は、必ず用いる必要は無い。
モデル化された雷危険度データは、水平分布図として出力される。水平分布図は、三次元データ作成部12で作成された現況のデータ及び過去データと移動予測部13で作成された未来予測データをそれぞれ用いて、現況水平分布図及び未来水平分布図として出力される。
このうち、未来予測データに関しては、移動予測部で作成されたナウキャスト予測データ及び数値予測データの結果を、ブレンディング部18において、それぞれブレンドする。ここで、ブレンディング予測について説明する。
図9は、本実施形態のブレンディング部18のシステムブロック図を示す。
ブレンディング部18は、観測データ取得部181と、数値予測部182と、ナウキャスト予測部183と、正解率計算部184と、位置ズレ格子数入力部185と、合成部186と、を備える。
観測データ取得部181は、地上観測、気象衛星及びレーダー等の観測データを、世界各国の気象機関又は宇宙機関等から取得する。観測は、様々な場所や時刻で行われているので、観測データはそれぞれの取得先から所定の時間毎に取得される。観測データには、人為的なミスや機器の故障等によって精度が低く、利用できないものが存在するので、これらのデータは除外する。取得された観測データは、数値予測部182及びナウキャスト予測部183に出力される。
数値予測部182は、観測領域を格子状に分割し、観測データ取得部181から取得した観測データを用いて、格子毎に数値予報を行う部分である。数値予報は、物理法則を用いて降水の時間変化をコンピュータで計算して未来の降水を予測する。
ナウキャスト予測部183は、観測領域を格子状に分割し、観測データ取得部181から取得した観測データを用いて、過去の降水域の動きと現在の降水の分布を用いて、短時間後の降水の分布を格子毎に予測する部分である。
正解率計算部184は、数値予測部182から得られる数値予測データとナウキャスト予測部183から得られるナウキャスト予測データに対して、位置ズレを許容しながら、位置ズレ格子数(位置ズレを許容する空間スケール)毎の正解率を以下の式(4)を用いて計算する。
Figure 0006949332
ただし、
O(n)(i,j) は、格子(i,j)での観測値のFraction、
M(n)(i,j) は、格子(i,j)での予測値のFraction、
Fractionは、n×n領域に対して降水量が予め定めた所定の値以上となる格子の割合、
nは、Fractionを計算する正方形の1辺の格子数、
Nは、 評価領域の全格子数、
ΣiΣjは、評価領域内の和
である。
位置ズレ格子数入力部185は、必要な位置ズレ格子数を適宜入力する。位置ズレ格子数nを大きくすると、降水発生確率の予測精度は上がる。しかしながら、広い範囲内の何れかの場所で雨が降るという予報は的中するが、実用的ではない。逆に、位置ズレ格子数nを小さくすると、降水発生確率の予測精度は下がる。すなわち、この地点で数十分後に雨が降るというピンポイントの予報は、困難である。したがって、位置ズレ格子数nは、利用者の要望に応じて、適宜決定することが好ましい。
合成部186は、正解率計算部184で求めた正解率を考慮して、最適な合成係数をリアルタイムで推定し、その合成係数を用いて数値予測データとナウキャスト予測データを、以下の式(5)を用いて合成する。
R(n,t)=C(n,t)×R1(n,t)+(1−C(n,t))×R2(n,t) (5)
ただし、
nはFractionを計算する正方形の1辺の格子数、
tは、時間、
R1(n,t)は、1辺の格子数nでのt時間後のナウキャスト予測データ、
R2(n,t)は、1辺の格子数nでのt時間後の数値予測データ、
C(n,t)は、1辺の格子数nでの数値予測データR2(n,t)に対するナウキャスト予測データR1(n,t)のt時間後の合成係数(nとtの関数、0≦C(n,t)≦1)、
である。
合成係数は、数値予測データとナウキャスト予測データの正解率を考慮して決定される。予測データの正解率は、過去1時間の真値と比較することで、リアルタイムに算出される。
図10は、予測時間に対する数値予測による予測正解率とナウキャスト予測による予測正解率の比を示す。
図10に示すように、数値予測は、予測時間が短い場合、正解率が低く、予測時間が長くなると正解率が高くなる。ナウキャスト予測は、予測時間が短い場合、正解率が高く、予測時間が長くなると正解率が低くなる。したがって、予測時間が短い場合にはナウキャスト予測を重視し、予測時間が長い場合には数値予測を重視する合成係数を求めることが好ましい。
また、局地的大雨を予測する場合には、格子を1km以下とした高い分解能での予測が求められる。高い格子分解能で予測すると、格子毎の予測データの精度は、一般に低くなる。すなわち、高い格子分解能での予測は、誤差が大きい。
図11は、格子毎の観測データと予測データの比較を示す。図11(a)は観測データ、図11(b)は予測データを示す。斜線部分の格子は予め定めた所定量以上の降水量の位置を示す。
図11に示した例において、位置ズレを許容しないn=1の格子スケールを選択すると、予測データは観測データと異なる結果と判定される。しかしながら、位置ズレを5グリッド許容するn=5の格子スケールを選択すると、予測データと観測データがどちらも所定量以上の降水量の位置が6つなので、予測データは観測データと同一の結果と判定される。
本実施形態では、正解率計算部184において、式(4)を用いて、ある程度の位置ズレを許容し、高い格子分解能においても、予測精度を維持することができる。そして、合成部186で、正解率計算部184の結果を用いて、数値予測データとナウキャスト予測データを合成する。
式(4)は、評価する座標(i,j)における位置ズレ格子数nを許容した時のFractionの正解率を示す。Fractionには、OとMがある。FractionOは、実際に観測された雨に対して位置ズレ許容した時の降水発生確率である。FractionMは、予測された雨に対して位置ズレ許容した時の降水発生確率である。
式(4)は、過去に得られた数値予測データとナウキャスト予測データに対して、各位置ズレ格子数について求められ、予測の正解率を計算することができる。また、式(4)は、予測のリードタイム毎に計算される。そして、数値予測とナウキャスト予測のリードタイム毎の正解率の比から合成係数を決定する。したがって、合成係数は、各位置ズレ格子数と各リードタイムによって決定される。
つまり、正解率計算部184は、数値予測データとナウキャスト予測データを位置ズレ格子数nだけ許容した降水量分布及び降水発生確率分布をリードタイム毎に計算する。そして、合成部186は、リードタイム及び位置ズレ格子数n毎の予測に対して、合成係数をもとに最新の数値予測データとナウキャスト予測データを合成し、降水量分布及び降水発生確率分布を求める。
このように、本実施形態のブレンディング部18は、降水量予測分布に加えて、降水発生確率分布を求めることが可能となる。
図12は、予測時間に対する正解率の関係を示す。図12(a)は1時間に50mmの降水を予測した場合、図12(b)は1時間に20mmの降水を予測した場合を示す。図12に示すグラフ内のLは、位置ズレ許容スケール(km)を示す。
例えば、予測の正解率が50%は必要であると決めた場合、図12に示した許容ラインよりも上方にあるデータを用いることが好ましい。
次に、本実施形態のブレンディング部18の制御フローについて説明する。
図13は、本実施形態の降水予測方法のフローチャートを示す。
まず、ステップ11で、過去の実際の降水データの読み込む(ST11)。続いて、ステップ12で、過去の数値予測データ及びナウキャスト予測データの読み込む(ST12)。
次に、ステップ13で、位置ズレ格子数nを決定する(ST13)。位置ズレ格子数nは、利用者が適宜決定することが可能である。
次に、ステップ14で、式(4)に示した正解率を計算する(ST14)。続いて、ステップ15で、数値予測データとナウキャスト予測データの合成係数を計算する(ST15)。正解率及び合成係数の計算時には、ステップ11〜ステップ13において求めた降水データ、予測データ及び位置ズレ格子数n等を用いる。
次に、ステップ16で、最新の数値予測データとナウキャスト予測データを読み込む(ST16)。続いて、ステップ17で、ステップ16において読み込んだ最新の数値予測データ及びナウキャスト予測データにおける位置ズレ格子数毎の降水量予測及び降水確率予測を求める(ST17)。
次に、ステップ18で、数値予測データによる予測とナウキャスト予測データによる予測を合成する(ST18)。合成の際は、ステップ15で計算した合成係数を用いて、式(5)から求める。また、図12に示した許容ライン等を考慮することが好ましい。
最後に、ステップ19で、位置ズレ格子数毎の降水量及び降水確率を予測した合成予測ファイルを出力する(ST19)。
図14は、本実施形態のブレンディング部18で得られる降水予測データを示す。図14(a)は雨量予測データを示し、図14(b)は降水発生確率データを示す。
図14(a)及び図14(b)に示すように、本実施形態のブレンディング部18では、降水量予測データに加えて、降水発生確率データを求めることが可能となる。また、降水発生確率データにおいては、位置ズレ格子数nを選択することで、所定の領域に所定量以上の雨が降る確率を適宜求めることが可能となる。例えば、図14(b)に示す例では、周囲5km四方に50mm以上の雨が降る確率を求めている。
雷情報作成部19は、危険度計算部16及びブレンディング部18で計算された時系列の雷危険度データと移動予測部13で計算された移動ベクトルを用いて、三次元分布の予測を行う。その後、現況の雷危険度の高い積乱雲の位置、並びに、積乱雲の未来の移動方向及び移動速度を計算する。
このように、本実施形態の雷危険度判定装置1によれば、雷の危険度を精度良く予測することが可能となる。
図15は、本実施形態の積乱雲予測システムのシステムブロックを示す。
積乱雲予測システム21は、雷危険度判定装置10と、受信者の情報を入力する受信者情報入力部24と、雷危険度判定装置10が演算した積乱雲の情報と受信者情報入力部24から受信者が入力した受信者の情報とからそれぞれの関係を演算する積乱雲・受信者関係演算部25と、積乱雲・受信者関係演算部25が演算した結果を出力する出力部26と、を備える。
受信者情報入力部24は、受信者が予め自分の情報を入力するものである。例えば、受信者情報入力部24は、携帯端末等を使用してもよい。受信者が危険か否かを知りたい位置を知らせる受信者の位置情報24a、受信者が設定した危険度のレベル及び距離等を知らせる受信者の危険設定情報24b、受信者が設定した位置ズレの許容範囲を知らせる受信者の位置ズレ許容情報24cを入力する。
受信者の位置情報24aは、受信者が現在存在する場所、受信者がこれから移動する場所又は受信者が知りたい場所等でよい。場所は、GPS等の緯度経度情報から特定すればよい。受信者はこれらの場所から少なくとも1つを選択する。
受信者の危険設定情報24bは、受信者が設定する危険度の情報である。例えば、受信者は危惧している現象を雨、風、雷、雹の中から少なくとも1つ特定し、その現象の危険度をレベル毎に選択する。危険度は、雨の場合は時間雨量又は積算雨量等、風の場合は風速等、雷の場合は気象庁の定めた雷ナウキャストの活動度等、雹の場合は上空での存在又は落下確認等を参考にして少なくとも注意及び警戒等の2つのレベルを設定すればよい。受信者はこれらのレベルから少なくとも1つを選択する。
受信者の位置ズレ許容情報24cは、受信者が設定する位置ズレを許容できる範囲である。例えば、受信者は位置ズレ無し〜20kmまでを調整すればよい。位置ズレ距離は、連続的又は段階的に設定可能であればよい。積乱雲の大きさは約10kmなので、その2倍を最大値とすることが好ましい。
積乱雲・受信者関係演算部25は、積乱雲の座標系を受信者の座標系に変換して、受信者が設定した位置の危険度レベルを現象毎に時系列で演算する。積乱雲は常に大きさを変え、移動する。また、受信者は、危険度を知りたい現象、位置等が時間毎にかわる場合がある。したがって、座標系をあわせて積乱雲と受信者の関係を演算する。
出力部26は、積乱雲・受信者関係演算部5が演算した結果を出力する。出力部26は、受信者が受信者情報入力部24で設定した場所が危険な位置か否かを知らせる危険位置情報26a、受信者が受信者情報入力部24で設定した時刻が危険な時刻か否かを知らせる危険時刻情報26b、受信者が受信者情報入力部24で設定した雨、風、雷又は雹等の種別が危険か否かを知らせる危険種別情報26c、及び、受信者が受信者情報入力部24で設定した危険レベルのどのレベルなのかを知らせる危険レベル情報26d等のうち少なくとも1つを出力する。
なお、受信者情報入力部24と出力部26は、パーソナルコンピュータ又は携帯端末等でよい。受信者は、パーソナルコンピュータ又は携帯端末等から受信者の情報及び知りたい情報を入力し、演算された後の積乱雲に関する情報を携帯端末等で見ることができる。
図16は、本実施形態の積乱雲予測システムのフローチャートを示す。
まず、ステップ21で、雷危険度判定装置10が危険な雷の情報を演算して出力する(ST21)。
次に、ステップ22で、受信者情報入力部24が、受信者の情報を取得する(ST22)。取得される受信者の情報は、受信者の位置情報24a、受信者の危険設定情報24b、受信者の位置ズレ許容情報24c等でよい。
次に、ステップ23で、積乱雲・受信者関係演算部25が、積乱雲と受信者の関係を演算する(ST23)。積乱雲と受信者の関係は、積乱雲の座標系を受信者の座標系に変換して、受信者が設定した位置の危険度レベルを現象毎に時系列で演算すればよい。
次に、ステップ24で、出力部25が、積乱雲と受信者の関係を出力する(ST24)。出力部26は、危険位置情報26a、危険時刻情報26b、危険種別情報26c、及び、危険レベル情報26d等のうち少なくとも1つを出力すればよい。
このように、積乱雲予測システム1によれば、雷危険度判定装置10によって雷の危険度を精度良く予測することができ、受信者に的確に積乱雲の情報を知らせることが可能となる。
以上、本実施形態の雷危険度判定装置10は、積乱雲を検出する気象情報取得部11と、気象情報取得部11で取得された気象データから客観解析技術を用いて現在の積乱雲の状況を表す現況データ及び過去の積乱雲の状況を表す過去データを含む三次元データを作成する三次元データ作成部12と、現況データ及び過去データから積乱雲の移動を予測し未来の積乱雲の状況を表すナウキャスト予測データ、及び、現況データを初期値とし雲解像数値モデルによる気象予測を行うことで作成する数値予測データを含む未来予測データを作成する移動予測部13と、状態変化に関する予め定めた閾値を定義する状態閾値入力部と、現況データ、過去データ及び未来予測データから積乱雲内の状態変化を計算する状態変化計算部14と、状態変化計算部14で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部16と、未来予測データに関してナウキャスト予測データ及び数値予測データの結果をブレンドするブレンディング部18と、危険度計算部16及びブレンディング部18が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部19と、を備える。したがって、雷の危険度を精度良く予測することが可能となる。
また、本実施形態の雷危険度判定装置10は、三次元データ、雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を危険度計算部16に入力する観測データ入力部17を備える。したがって、より精度良く、雷の危険度を予測することが可能となる。
また、本実施形態の雷危険度判定装置10では、状態変化計算部14は、積乱雲内の上昇流の体積変化を計算し、状態閾値入力部16は、状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する。したがって、より精度良く、雷の危険度を予測することが可能となる。
また、本実施形態の雷危険度判定装置10では、状態変化計算部14は、積乱雲内の霰の体積変化を計算し、状態閾値入力部16は、状態変化計算部で計算された値と比較する霰の体積の閾値を定義する。したがって、より精度良く、雷の危険度を予測することが可能となる。
なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、当業者であれば、これらの詳細な内容に色々なバリエーションや変更を加えてもよい。
1…積乱雲予測システム
2…積乱雲検出部
3…積乱雲情報演算部
4…受信者情報入力部
5…積乱雲受信者関係演算部
6…出力部
10…雷危険度判定装置
11…気象情報取得部
12…三次元データ作成部
13…移動予測部
14…状態変化計算部
15…状態閾値入力部
16…危険度計算部
17…観測データ入力部
18…ブレンディング部
19…雷情報作成部

Claims (4)

  1. 積乱雲を検出する気象情報取得部と、
    前記気象情報取得部で取得された気象データから客観解析技術を用いて現在の積乱雲の状況を表す現況データ及び過去の積乱雲の状況を表す過去データを含む三次元データを作成する三次元データ作成部と、
    状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
    前記現況データ及び前記過去データから積乱雲の移動を予測し未来の積乱雲の状況を表すナウキャスト予測データ、及び、前記現況データを初期値とし雲解像数値モデルによる気象予測を行うことで作成する数値予測データを含む未来予測データを作成する移動予測部と、
    前記現況データ、前記過去データ及び前記未来予測データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
    前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
    前記未来予測データに関して前記ナウキャスト予測データ及び前記数値予測データの結果をブレンドするブレンディング部と、
    前記危険度計算部及び前記ブレンディング部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
    を備える
    ことを特徴とする雷危険度判定装置。
  2. 前記三次元データ、前記雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を前記危険度計算部に入力する観測データ入力部を備える
    ことを特徴とする請求項1に記載の雷危険度判定装置。
  3. 前記状態変化計算部は、積乱雲内の上昇流の体積変化を計算し、
    前記状態閾値入力部は、状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する
    ことを特徴とする請求項1又は2に記載の雷危険度判定装置。
  4. 前記状態変化計算部は、積乱雲内の霰の体積変化を計算し、
    前記状態閾値入力部は、状態変化計算部で計算された値と比較する霰の体積の閾値を定義する
    ことを特徴とする請求項1又は2に記載の雷危険度判定装置。
JP2018021261A 2018-02-08 2018-02-08 雷危険度判定装置 Active JP6949332B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021261A JP6949332B2 (ja) 2018-02-08 2018-02-08 雷危険度判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021261A JP6949332B2 (ja) 2018-02-08 2018-02-08 雷危険度判定装置

Publications (2)

Publication Number Publication Date
JP2019138737A JP2019138737A (ja) 2019-08-22
JP6949332B2 true JP6949332B2 (ja) 2021-10-13

Family

ID=67693651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021261A Active JP6949332B2 (ja) 2018-02-08 2018-02-08 雷危険度判定装置

Country Status (1)

Country Link
JP (1) JP6949332B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850414A (zh) * 2019-11-26 2020-02-28 北京天元创新科技有限公司 降雨预警方法及装置
CN112819312B (zh) * 2021-01-25 2023-06-16 华中科技大学 气候变化情景下干旱社会经济暴露度评估方法和***
WO2023155179A1 (zh) * 2022-02-19 2023-08-24 中国科学院深圳先进技术研究院 热带气旋影响下特定区域闪电与温度相关性的计算方法及***
CN114706146B (zh) * 2022-03-23 2023-11-03 成都信息工程大学 复杂地形下雹暴过程中雹胚的生长和降雹阶段的预报方法
CN117706663B (zh) * 2024-02-05 2024-04-16 江西省气象数据中心(江西省气象档案馆) 一种基于多元数据的冰雹降水现象质控方法及***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621410A (en) * 1992-11-05 1997-04-15 New Mexico Tech Research Foundation Remote prediction of lightning hazards
JPH07110385A (ja) * 1993-10-12 1995-04-25 Tokyo Electric Power Co Inc:The 発雷ポテンシャル判定装置
JPH09329672A (ja) * 1996-06-07 1997-12-22 Kansai Electric Power Co Inc:The 発雷予測方法
JPH10268064A (ja) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp 発雷危険度判定システム
JP2003098267A (ja) * 2001-09-21 2003-04-03 Mitsubishi Electric Corp 発雷予測支援装置
US7043368B1 (en) * 2002-04-08 2006-05-09 Wsi Corporation Method and system for creating visualizations of future weather conditions
JP4067999B2 (ja) * 2003-04-11 2008-03-26 三菱電機株式会社 雷観測システム
JP4480630B2 (ja) * 2005-06-06 2010-06-16 日本電信電話株式会社 雷位置予測方法及び雷位置予測システム
JP5090954B2 (ja) * 2008-02-13 2012-12-05 日本電信電話株式会社 発雷予測装置およびその方法、プログラム
JP2014048273A (ja) * 2012-09-04 2014-03-17 Toshiba Corp 気象レーダ装置、フェーズドアレイレーダ装置、観測シーケンス作成方法
CN105474041B (zh) * 2013-07-11 2018-09-21 古野电气株式会社 气象信息处理装置、气象雷达***及气象信息处理方法
CN106959475B (zh) * 2016-01-08 2019-06-14 株式会社东芝 估计装置、估计方法和计算机可读存储介质

Also Published As

Publication number Publication date
JP2019138737A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6949332B2 (ja) 雷危険度判定装置
US7486220B1 (en) Storm top detection and prediction
US7062066B2 (en) Method and apparatus for short-term prediction of convective weather
Cai et al. Object-based evaluation of a numerical weather prediction model’s performance through forecast storm characteristic analysis
JP3737463B2 (ja) 落雷予想方法
JP5200736B2 (ja) 予報装置、その方法及びプログラム
Gravelle et al. Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak
Apke et al. Analysis of mesoscale atmospheric flows above mature deep convection using super rapid scan geostationary satellite data
JPWO2018168165A1 (ja) 気象予測装置、気象予測方法、およびプログラム
Tsonevsky et al. Early warnings of severe convection using the ECMWF extreme forecast index
Sokol et al. Nowcasting of precipitation–advective statistical forecast model (SAM) for the Czech Republic
Steiger et al. Lake-effect thunderstorms in the lower Great Lakes
JP2018031682A (ja) 降水予測装置及び降水予測方法
Krzysztofowicz Recent advances associated with flood forecast and warning systems
Beaucage et al. Synthetic aperture radar satellite data for offshore wind assessment: A strategic sampling approach
Lee et al. Operational Rainfall Prediction on Meso‐γ Scales for Hydrologic Applications
Sharif et al. Mass-conserving remapping of radar data onto two-dimensional cartesian coordinates for hydrologic applications
KR102168427B1 (ko) 지역별 공간 특성이 반영되는 규모 상세화 방법
Dixon Automated storm identification, tracking and forecasting: A radar-based method
JP6994735B2 (ja) 雷危険度判定装置
Gijben A lightning threat index for South Africa using numerical weather prediction data
Vitalii et al. WRF reflectivity simulation and verification of thunderstorm forecast by radar and surface observation
Sokol et al. Comparing nowcastings of three severe convective events by statistical and NWP models
Villa High resolution forecasts of short duration extreme precipitation-forecasting quality and sensitivity to parameterization for two Norwegian cases
Kim et al. Development of tracking technique for the short term rainfall field forecasting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6949332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150