JP6948203B2 - Wireless communication device - Google Patents

Wireless communication device Download PDF

Info

Publication number
JP6948203B2
JP6948203B2 JP2017185291A JP2017185291A JP6948203B2 JP 6948203 B2 JP6948203 B2 JP 6948203B2 JP 2017185291 A JP2017185291 A JP 2017185291A JP 2017185291 A JP2017185291 A JP 2017185291A JP 6948203 B2 JP6948203 B2 JP 6948203B2
Authority
JP
Japan
Prior art keywords
signal
interference wave
unit
noise interference
preamble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185291A
Other languages
Japanese (ja)
Other versions
JP2019062385A (en
Inventor
大季 加藤
大季 加藤
仲田 樹広
樹広 仲田
史貴 鵜澤
史貴 鵜澤
伊藤 史人
史人 伊藤
和彦 光山
和彦 光山
直彦 居相
直彦 居相
知弘 斉藤
知弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Japan Broadcasting Corp
Original Assignee
Hitachi Kokusai Electric Inc
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc, Japan Broadcasting Corp filed Critical Hitachi Kokusai Electric Inc
Priority to JP2017185291A priority Critical patent/JP6948203B2/en
Publication of JP2019062385A publication Critical patent/JP2019062385A/en
Application granted granted Critical
Publication of JP6948203B2 publication Critical patent/JP6948203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Noise Elimination (AREA)

Description

本発明は、デジタル無線通信に関し、特に、受信信号に含まれる雑音や干渉波のレベル、周波数特性を算出する技術に関する。 The present invention relates to digital wireless communication, and more particularly to a technique for calculating the level and frequency characteristics of noise and interference waves contained in a received signal.

無線通信に関する従来技術の一つとして、受信信号に含まれる雑音干渉波レベルを算出し、受信信号に対し雑音正規化や干渉抑圧フィルタ処理を行うことで受信特性を向上させる技術がある(特許文献1参照)。 As one of the conventional techniques related to wireless communication, there is a technique of calculating the noise interference wave level included in the received signal and improving the reception characteristic by performing noise normalization or interference suppression filter processing on the received signal (Patent Document). 1).

雑音や干渉波のレベルや周波数を算出する方式として、OFDM(Orthogonal Frequency Division Multiplexing;直交波周波数分割多重)シンボル内に含まれるパイロットキャリアをシンボル間で減算する方式が使用されている。この方式では、パイロットシンボルの時間方向の間隔が広いフォーマットを用いた場合、移動伝送環境においてパイロットシンボル間のチャネル変動が大きく、雑音干渉波算出精度が低下する。また、パイロットキャリアとデータキャリアの比率を一定とした場合、時間方向に密にパイロットキャリアが配置されるフォーマットでは、周波数方向の配置は粗となり、狭帯域干渉波の検出ができない周波数が多く存在してしまう。 As a method for calculating the level and frequency of noise and interference waves, a method of subtracting pilot carriers included in an OFDM (Orthogonal Frequency Division Multiplexing) symbol is used. In this method, when a format in which the intervals in the time direction of the pilot symbols are wide is used, the channel variation between the pilot symbols is large in the mobile transmission environment, and the noise interference wave calculation accuracy is lowered. In addition, when the ratio of pilot carriers to data carriers is constant, in a format in which pilot carriers are densely arranged in the time direction, the arrangement in the frequency direction becomes coarse, and there are many frequencies at which narrow-band interference waves cannot be detected. Will end up.

別の従来技術として、帯域外のNULLキャリアの雑音干渉レベルから全帯域の雑音干渉レベルを推定する技術もあるが、雑音干渉波成分の周波数特性が得られないため、帯域内干渉波が検出できない問題やアナログによる雑音の周波数特性差を検出できない問題がある。また、別の従来技術として、無信号の時間や周波数を設ける方法がある。この場合、雑音干渉波の周波数特性の検出や狭帯域干渉波の検出に関する問題はないが、無信号区間を設ける必要があり、スループットが低下してしまう。スループットの低下を避けるために無信号区間を少なくすると、干渉検出に要する時間が長くなってしまう。 As another conventional technique, there is a technique of estimating the noise interference level of the entire band from the noise interference level of the NUML carrier outside the band, but the in-band interference wave cannot be detected because the frequency characteristic of the noise interference wave component cannot be obtained. There is a problem that the frequency characteristic difference of noise due to analog cannot be detected. Further, as another conventional technique, there is a method of providing a non-signal time and frequency. In this case, there is no problem in detecting the frequency characteristic of the noise interference wave and the detection of the narrow band interference wave, but it is necessary to provide a non-signal section, which reduces the throughput. If the non-signal section is reduced to avoid a decrease in throughput, the time required for interference detection becomes long.

特開2014−236337号公報Japanese Unexamined Patent Publication No. 2014-236337

上述したように、従来技術では、移動環境での雑音干渉波の検出、干渉波の高速検出、雑音干渉波の周波数特性の取得、高スループットを同時に実現することができない等の問題がある。
本発明は、上記のような事情に鑑みて為されたものであり、雑音干渉波を効率的に検出できる技術を提案することを目的としている。
As described above, the prior art has problems such as detection of noise interference waves in a mobile environment, high-speed detection of interference waves, acquisition of frequency characteristics of noise interference waves, and high throughput cannot be realized at the same time.
The present invention has been made in view of the above circumstances, and an object of the present invention is to propose a technique capable of efficiently detecting noise interference waves.

本発明は、上記目的を達成するために、無線通信装置を以下のように構成した。
すなわち、相手側装置から無線により送信される信号を受信する無線通信装置において、受信信号に含まれる雑音又は干渉波の成分(以下、「雑音干渉波成分」という)を抽出する抽出手段を備え、相手側装置は、所定の周期で、第1の既知信号と、第1の既知信号と同一又は符号反転させた第2の既知信号とを送信しており、抽出手段は、受信信号と受信信号を遅延させた遅延信号とを、受信信号に含まれる第2の既知信号と遅延信号に含まれる第1の既知信号とが打ち消し合うように減算又は加算して、雑音干渉波成分を抽出することを特徴とする。
In the present invention, in order to achieve the above object, the wireless communication device is configured as follows.
That is, in a wireless communication device that receives a signal transmitted wirelessly from the other party device, an extraction means for extracting a noise or interference wave component (hereinafter, referred to as "noise interference wave component") contained in the received signal is provided. The remote device transmits a first known signal and a second known signal that is the same as or inverted in sign from the first known signal in a predetermined cycle, and the extraction means receives the received signal and the received signal. The delayed signal, which is delayed from the above, is subtracted or added so that the second known signal included in the received signal and the first known signal included in the delayed signal cancel each other, and the noise interference wave component is extracted. It is characterized by.

ここで、一構成例として、相手側装置は、第1の既知信号と、第1の既知信号と同一の第2の既知信号とを挿入した第1フレームと、第1の既知信号と、第1の既知信号を符号反転させた第2の既知信号とを挿入した第2フレームとを交互に送信し、抽出手段は、第1フレームの受信時は受信信号と遅延信号とを減算して雑音干渉波成分を抽出し、第2フレームの受信時は受信信号と遅延信号とを加算して雑音干渉波成分を抽出する構成としてもよい。 Here, as a configuration example, the other party device includes a first frame in which a first known signal and a second known signal which is the same as the first known signal are inserted, a first known signal, and a first known signal. The second known signal obtained by inverting the code of the known signal of 1 and the second frame in which the known signal is inserted are alternately transmitted, and the extraction means subtracts the received signal and the delay signal when the first frame is received to generate noise. The interference wave component may be extracted, and when the second frame is received, the received signal and the delay signal may be added to extract the noise interference wave component.

また、別の構成例として、相手側装置は、第1の既知信号と、第1の既知信号を符号反転させた第2の既知信号とのセットを複数挿入したフレームを送信し、抽出手段は、受信信号に含まれる第2の既知信号と遅延信号に含まれる第1の既知信号とが打ち消し合うように加算して雑音干渉波成分を抽出する処理と、受信信号に含まれる後方側のセットと遅延信号に含まれる前方側のセットとが打ち消し合うように減算して雑音干渉波成分を抽出する処理とを有する構成としてもよい。 Further, as another configuration example, the remote device transmits a frame in which a plurality of sets of a first known signal and a second known signal obtained by sign-inverting the first known signal are inserted, and the extraction means , The process of adding the second known signal included in the received signal and the first known signal included in the delay signal so as to cancel each other to extract the noise interference wave component, and the rear side set included in the received signal. The configuration may include a process of extracting the noise interference wave component by subtracting the set on the front side included in the delay signal so as to cancel each other out.

また、無線通信装置は更に、抽出手段により抽出された雑音干渉波成分に対して周波数解析を行う周波数解析手段と、雑音干渉波成分のうちの周波数解析手段による周波数解析の対象とする時間窓を、第1又は第2の既知信号の信号長以下の時間窓長で設定する窓調整手段と、を備えた構成としてもよい。 Further, the wireless communication device further provides a frequency analysis means for performing frequency analysis on the noise interference wave component extracted by the extraction means, and a time window for frequency analysis by the frequency analysis means among the noise interference wave components. , The configuration may include a window adjusting means for setting a time window length equal to or less than the signal length of the first or second known signal.

本発明によれば、雑音干渉波の検出のために未送信期間や未送信周波数を設ける必要がないため、効率的に雑音干渉波を検出することができ、スループットの向上も実現することができる。 According to the present invention, since it is not necessary to provide an untransmitted period or an untransmitted frequency for detecting a noise interference wave, the noise interference wave can be detected efficiently and the throughput can be improved. ..

本発明の一実施形態に係る無線通信装置において送信に使用する無線フレームのフォーマット例を示す図である。It is a figure which shows the format example of the wireless frame used for transmission in the wireless communication apparatus which concerns on one Embodiment of this invention. 実施例1〜3に係る送信機の構成例を示す図である。It is a figure which shows the configuration example of the transmitter which concerns on Examples 1 to 3. 実施例1〜3に係る受信機の構成例を示す図である。It is a figure which shows the structural example of the receiver which concerns on Examples 1 to 3. 実施例1に係る雑音干渉波の抽出処理のタイムチャート例を示す図である。It is a figure which shows the time chart example of the extraction processing of the noise interference wave which concerns on Example 1. FIG. 実施例1に係る雑音干渉波抽出部の構成例を示す図である。It is a figure which shows the structural example of the noise interference wave extraction part which concerns on Example 1. FIG. 実施例2に係る雑音干渉波の抽出処理のタイムチャート例を示す図である。It is a figure which shows the time chart example of the extraction processing of the noise interference wave which concerns on Example 2. 実施例2に係る雑音干渉波抽出部の構成例を示す図である。It is a figure which shows the structural example of the noise interference wave extraction part which concerns on Example 2. FIG. 実施例3に係る雑音干渉波の抽出処理のタイムチャート例を示す図である。It is a figure which shows the time chart example of the extraction processing of the noise interference wave which concerns on Example 3. FIG. 実施例3に係る雑音干渉波抽出部の構成例を示す図である。It is a figure which shows the structural example of the noise interference wave extraction part which concerns on Example 3. FIG. 実施例2において、全帯域に雑音を混入させた場合の雑音干渉波抽出シミュレーションの結果を示す図である。It is a figure which shows the result of the noise interference wave extraction simulation at the time of mixing noise in the whole band in Example 2. FIG. 実施例2において、プリアンブルの前半と後半で同一パターンとなる干渉波を混入させた場合のシミュレーション結果を示す図である。It is a figure which shows the simulation result at the time of mixing the interference wave which becomes the same pattern in the first half and the latter half of the preamble in Example 2. 実施例2において、プリアンブルの前半と後半で逆パターンとなる干渉波を混入させた場合のシミュレーション結果を示す図である。It is a figure which shows the simulation result at the time of mixing the interference wave which becomes the reverse pattern in the first half and the latter half of the preamble in Example 2.

以下、本発明の実施形態について、図面を参照して説明する。
図1には、本発明の一実施形態に係る無線通信装置において送信に使用する無線フレームのフォーマット例を示してある。図1のフレームフォーマットは、既知信号であるプリアンブルが格納される第1領域と、パイロットやデータ等が格納される第2領域とを有している。ここでは、実施例毎に異なる3つのプリアンブルパターンを想定している。実施例1では、プリアンブルを2分割し、前半と後半で同じパターンAの信号とする。実施例2では、偶数フレームと奇数フレームで二種類のプリアンブルを用意し、例えば偶数フレームは実施例1と同一とし、奇数フレームではプリアンブル後半をパターンAの符号を反転させた信号とする。実施例3では、プリアンブルを4つに分割し、先頭から順に、パターンB、パターンBの符号反転、パターンB、パターンBの符号反転を配置した信号とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a format of a wireless frame used for transmission in the wireless communication device according to the embodiment of the present invention. The frame format of FIG. 1 has a first region in which a preamble which is a known signal is stored and a second region in which a pilot, data, and the like are stored. Here, three preamble patterns that are different for each embodiment are assumed. In the first embodiment, the preamble is divided into two to obtain the same pattern A signal in the first half and the second half. In the second embodiment, two types of preambles are prepared for an even-numbered frame and an odd-numbered frame. For example, the even-numbered frame is the same as that of the first embodiment, and in the odd-numbered frame, the latter half of the preamble is a signal in which the code of the pattern A is inverted. In the third embodiment, the preamble is divided into four, and the signal is obtained by arranging the code inversion of the pattern B and the pattern B, and the code inversion of the pattern B and the pattern B in order from the beginning.

以下に、図2、図3を使用して、本発明の着眼点である雑音干渉波検出を行う無線機の構成について説明し、雑音干渉波検出の詳細については後述する。
図2は、送信側の無線通信装置の一例である送信機の構成例を示すブロック図である。送信機は、実施例に応じたプリアンブルパターンを送信信号に挿入する機能を持つ。送信機は、符号化部201、変調部202、IFFT(Inverse Fast Fourier transform;逆高速フーリエ変換)部203、選択部204、プリアンブルパターンメモリ205、符号反転部206、フレームタイミング部207、DA部208、送信アンテナ209を備える。
Hereinafter, the configuration of the radio device for detecting the noise interference wave, which is the focus of the present invention, will be described with reference to FIGS. 2 and 3, and the details of the noise interference wave detection will be described later.
FIG. 2 is a block diagram showing a configuration example of a transmitter, which is an example of a wireless communication device on the transmitting side. The transmitter has a function of inserting a preamble pattern according to an embodiment into a transmission signal. The transmitter includes a coding unit 201, a modulation unit 202, an IFFT (Inverse Fast Fourier transform) unit 203, a selection unit 204, a preamble pattern memory 205, a code inversion unit 206, a frame timing unit 207, and a DA unit 208. , The transmitting antenna 209 is provided.

符号化部201は、送信対象となる情報を符号化し、変調部202へ出力する。変調部202は、入力された信号を変調し、IFFT部203へ出力する。IFFT部203は、入力された周波数領域の信号を時間領域の信号に変換し、選択部204へ出力する。また、送信信号に既知信号であるプリアンブル信号を挿入するために、プリアンブルパターンメモリ205に予め保持されたプリアンブルパターンが、選択部204と符号反転部206とに出力される。プリアンブルパターンメモリ205に予め保持するプリアンブルパターンは、実施例により異なり、実施例1,2ではパターンA、実施例3ではパターンBを保持する。符号反転部206は、入力されたプリアンブルパターン信号の符号を反転し、選択部204へ出力する。 The coding unit 201 encodes the information to be transmitted and outputs it to the modulation unit 202. The modulation unit 202 modulates the input signal and outputs it to the IFFT unit 203. The IFFT unit 203 converts the input signal in the frequency domain into a signal in the time domain and outputs it to the selection unit 204. Further, in order to insert the preamble signal which is a known signal into the transmission signal, the preamble pattern previously held in the preamble pattern memory 205 is output to the selection unit 204 and the code inversion unit 206. The preamble pattern stored in the preamble pattern memory 205 in advance differs depending on the embodiment, and pattern A is retained in Examples 1 and 2 and pattern B is retained in Example 3. The code inversion unit 206 inverts the code of the input preamble pattern signal and outputs it to the selection unit 204.

フレームタイミング部207は、フレームタイミング情報を生成する。フレームタイミング情報は実施例毎に異なり、送信するプリアンブルパターンに合わせて送信信号切り替え信号を生成し、選択部204に出力する。選択部204は、フレームタイミング生成部207から入力される送信信号切替え信号に従い、送信信号を選択してDA部208へ出力する。そのため、実施例毎に異なるプリアンブルが、DA部208へ出力されることになる。DA部208は、入力された信号をアナログ信号に変換し、送信アンテナ209に出力して送信させる。 The frame timing unit 207 generates frame timing information. The frame timing information differs for each embodiment, generates a transmission signal switching signal according to the preamble pattern to be transmitted, and outputs the transmission signal switching signal to the selection unit 204. The selection unit 204 selects a transmission signal according to the transmission signal switching signal input from the frame timing generation unit 207 and outputs the transmission signal to the DA unit 208. Therefore, a different preamble for each embodiment will be output to the DA unit 208. The DA unit 208 converts the input signal into an analog signal, outputs the signal to the transmitting antenna 209, and transmits the signal.

図3は、受信側の無線通信装置の一例である受信機の構成例を示すブロック図である。受信機は、送信機より送信された信号を受信し、雑音干渉波の周波数特性を算出する機能を持つ。受信機は、受信アンテナ301、AD部302、狭帯域干渉波抑圧フィルタ303、プリアンブルタイミング検出部304、雑音干渉波抽出部305、窓調整部306、周波数解析部307、干渉閾値判定部308、平均部309、周波数解析部310、雑音正規化部311、復調・復号処理部312を備える。 FIG. 3 is a block diagram showing a configuration example of a receiver, which is an example of a wireless communication device on the receiving side. The receiver has a function of receiving the signal transmitted from the transmitter and calculating the frequency characteristic of the noise interference wave. The receiver includes a receiving antenna 301, an AD unit 302, a narrow band interference wave suppression filter 303, a preamble timing detection unit 304, a noise interference wave extraction unit 305, a window adjustment unit 306, a frequency analysis unit 307, an interference threshold determination unit 308, and an average. A unit 309, a frequency analysis unit 310, a noise normalization unit 311 and a demodulation / decoding processing unit 312 are provided.

AD部302は、受信アンテナ301にて受信された信号をデジタル信号に変換し、狭帯域干渉波抑圧フィルタ303と、プリアンブルタイミング検出部304と、雑音干渉波抽出部305とに出力する。狭帯域干渉波抑圧フィルタ部303については後述する。プリアンブルタイミング検出部304は、例えば入力された受信信号とプリアンブルパターンとの相互相関を行うことで、プリアンブル位置を検出し、プリアンブル位置を示すタイミングパルス信号を窓調整部306へ出力する。窓調整部306は、プリアンブルタイミング検出部304からのタイミングパルス信号を遅延し、後述する雑音干渉波抽出部305からの出力信号に対する周波数解析の位置を示すパルス信号を周波数解析部307へ出力する。雑音干渉波抽出部305は、プリアンブル信号の特徴を利用して雑音干渉波成分のみを抽出し、周波数解析部307へ出力する。雑音干渉波抽出部305の内部構成は実施例により異なるため、図5、7、9を使用して別途説明する。 The AD unit 302 converts the signal received by the receiving antenna 301 into a digital signal and outputs the signal to the narrow band interference wave suppression filter 303, the preamble timing detection unit 304, and the noise interference wave extraction unit 305. The narrow band interference wave suppression filter unit 303 will be described later. The preamble timing detection unit 304 detects the preamble position by performing cross-correlation between the input received signal and the preamble pattern, and outputs a timing pulse signal indicating the preamble position to the window adjustment unit 306. The window adjustment unit 306 delays the timing pulse signal from the preamble timing detection unit 304, and outputs a pulse signal indicating the position of frequency analysis with respect to the output signal from the noise interference wave extraction unit 305, which will be described later, to the frequency analysis unit 307. The noise interference wave extraction unit 305 extracts only the noise interference wave component by utilizing the characteristics of the preamble signal and outputs it to the frequency analysis unit 307. Since the internal configuration of the noise interference wave extraction unit 305 differs depending on the embodiment, it will be described separately with reference to FIGS. 5, 7 and 9.

周波数解析部307は、雑音干渉波抽出部305から入力された信号に対し、窓調整部306から入力される周波数解析の位置を示すパルス信号に従って周波数解析を行うことで、雑音干渉波の周波数特性を得ることができる。周波数解析部307は、得られた雑音干渉波の周波数特性を、干渉閾値判定部308と平均部309とに出力する。干渉閾値判定部308は、予め設定された閾値を上回る雑音干渉波が検出された場合に、干渉周波数を示す信号を狭帯域干渉波抑圧フィルタ303に出力する。雑音干渉波の検出に要する時間を短くするために、上記の閾値判定に使用する信号は平均部309の入力の信号を使用する。平均部309は、雑音干渉波の算出精度を向上するために、AGC(Automatic Gain Control;自動利得制御)の時定数に対して十分短い期間で平均処理を行い、雑音正規化311に出力する。 The frequency analysis unit 307 performs frequency analysis on the signal input from the noise interference wave extraction unit 305 according to a pulse signal indicating the position of the frequency analysis input from the window adjustment unit 306, thereby performing frequency analysis on the frequency characteristics of the noise interference wave. Can be obtained. The frequency analysis unit 307 outputs the frequency characteristics of the obtained noise interference wave to the interference threshold value determination unit 308 and the average unit 309. The interference threshold determination unit 308 outputs a signal indicating the interference frequency to the narrow band interference wave suppression filter 303 when a noise interference wave exceeding a preset threshold value is detected. In order to shorten the time required for detecting the noise interference wave, the signal used for the above threshold value determination is the signal of the input of the average unit 309. In order to improve the calculation accuracy of the noise interference wave, the averaging unit 309 performs averaging processing on the time constant of AGC (Automatic Gain Control) in a sufficiently short period and outputs it to the noise normalization 311.

狭帯域干渉波抑圧フィルタ303は、AD部302から入力された受信信号に対し、干渉閾値判定部308から入力された干渉波周波数を示す信号に従って対象の周波数の信号を抑圧するフィルタ処理を行い、周波数解析部310へ出力する。周波数解析部310は、入力された信号を周波数領域の信号に変換し、雑音正規化部311へ入力する。雑音正規化部311は、平均部309から入力された雑音干渉波のレベルが一定となるように、周波数解析部310からの信号に対し、周波数と時間方向で雑音干渉波のレベルの正規化処理を行い、復調・復号処理部312へ出力する。この正規化処理により、受信信号の品質で重みづけ行うことができ、復号特性を向上させることができる。また、複数の受信アンテナを持つ受信機の場合は、各受信系統間の雑音干渉波のレベルの正規化も行い、復調・復号処理部312へ出力する。復調・復号処理部312は、入力された信号の復調・復号処理を行う。 The narrow band interference wave suppression filter 303 performs filter processing on the received signal input from the AD unit 302 to suppress the signal of the target frequency according to the signal indicating the interference wave frequency input from the interference threshold determination unit 308. Output to the frequency analysis unit 310. The frequency analysis unit 310 converts the input signal into a signal in the frequency domain and inputs it to the noise normalization unit 311. The noise normalization unit 311 normalizes the level of the noise interference wave in the frequency and time directions with respect to the signal from the frequency analysis unit 310 so that the level of the noise interference wave input from the average unit 309 becomes constant. Is performed, and the output is output to the demodulation / decoding processing unit 312. By this normalization processing, weighting can be performed by the quality of the received signal, and the decoding characteristics can be improved. Further, in the case of a receiver having a plurality of receiving antennas, the level of noise interference waves between the receiving systems is also normalized and output to the demodulation / decoding processing unit 312. The demodulation / decoding processing unit 312 performs demodulation / decoding processing of the input signal.

以下、雑音干渉波の抽出処理について、実施例1〜3を挙げて説明する。
(実施例1)
実施例1に係る雑音干渉波の抽出方法について説明する。図4には、実施例1に係る雑音干渉波の抽出処理のタイムチャート例を示してある。
図4に示すように、受信信号と1/2プリアンブル遅延の受信信号(1プリアンブル時間の半分の時間を遅延させた受信信号)とでは、同一パターンタイミング401のタイミングでパターンAが一致する。したがって、受信信号と1/2プリアンブル遅延の受信信号の減算を行うことで、雑音干渉波成分のみを抽出できる。ただし、プリアンブルパターンの前半と後半で同一パターンとなるような干渉波が混入した場合には、減算により干渉波成分同士が打ち消し合うので干渉波を検出することができない。そのための対策は、後述する実施例2で説明する。
Hereinafter, the noise interference wave extraction process will be described with reference to Examples 1 to 3.
(Example 1)
The method of extracting the noise interference wave according to the first embodiment will be described. FIG. 4 shows an example of a time chart of the noise interference wave extraction process according to the first embodiment.
As shown in FIG. 4, the received signal and the received signal with the 1/2 preamble delay (the received signal delayed by half the time of one preamble time) have the same pattern A at the same pattern timing 401. Therefore, only the noise interference wave component can be extracted by subtracting the received signal and the received signal having a 1/2 preamble delay. However, when interference waves having the same pattern in the first half and the second half of the preamble pattern are mixed, the interference wave components cancel each other out by subtraction, so that the interference wave cannot be detected. Measures for that purpose will be described in Example 2 described later.

図4で説明した処理を実現する雑音干渉波抽出部305の内部構成について、図5を使用して説明する。AD部302から雑音干渉波抽出部305に入力された受信信号は、減算部501と、遅延部502とに入力される。遅延部502は、1プリアンブル時間の半分の時間、信号を遅延させて、減算部501へ出力する。減算部501では、入力された各信号(受信信号と1/2プリアンブル遅延の受信信号)の減算処理を行うことで、プリアンブル信号成分が打ち消し合って雑音干渉波成分が抽出される。抽出された雑音干渉波成分は、周波数解析部307へ出力される。 The internal configuration of the noise interference wave extraction unit 305 that realizes the processing described with reference to FIG. 4 will be described with reference to FIG. The received signal input from the AD unit 302 to the noise interference wave extraction unit 305 is input to the subtraction unit 501 and the delay unit 502. The delay unit 502 delays the signal for half the time of one preamble time and outputs the signal to the subtraction unit 501. In the subtraction unit 501, the preamble signal components cancel each other out and the noise interference wave component is extracted by performing the subtraction process of each input signal (received signal and received signal with 1/2 preamble delay). The extracted noise interference wave component is output to the frequency analysis unit 307.

(実施例2)
実施例2に係る雑音干渉波の抽出方法について説明する。図6には、実施例2に係る雑音干渉波の抽出処理のタイムチャート例を示してある。
偶数フレームの受信時は、実施例1の処理と同様となり、同一パターンタイミング601のタイミングでパターンAが一致するため、減算処理により雑音干渉波成分のみを抽出できる。奇数フレームの受信時は、受信信号と1/2プリアンブル遅延の受信信号とでは、逆パターンタイミング602のタイミングでパターンAとパターンAの符号反転が現れる関係になるため、これら信号の加算処理を行うことで、雑音干渉波成分のみを抽出できる。
(Example 2)
The method of extracting the noise interference wave according to the second embodiment will be described. FIG. 6 shows an example of a time chart of the noise interference wave extraction process according to the second embodiment.
When an even number of frames is received, the process is the same as in the first embodiment, and the pattern A matches at the same pattern timing 601. Therefore, only the noise interference wave component can be extracted by the subtraction process. When an odd-numbered frame is received, the received signal and the received signal with a 1/2 preamble delay have a relationship in which the sign inversion of the pattern A and the pattern A appears at the timing of the reverse pattern timing 602, so the addition processing of these signals is performed. Therefore, only the noise interference wave component can be extracted.

偶数フレームでは、実施例1と同様に、プリアンブルの前半と後半で同一パターンとなるような干渉波が混入した場合には、減算により干渉波成分同士が打ち消し合うので干渉波成分を検出することできないが、逆パターンとなる干渉波成分は検出することができる。反対に、奇数フレームでは、プリアンブルの前半と後半で逆パターンとなる干渉波が混入した場合には干渉波成分を検出できないが、同一パターンとなる干渉波成分は検出することができる。そのため、偶数フレームと奇数フレームでそれぞれ算出された信号を加算することで、いずれの干渉波が混入した場合も検出することが可能となる。ただし、雑音干渉波成分の検出は、偶数フレームと奇数フレームを受信する必要があり、2フレーム時間を要する。そのための対策について、後述する実施例3で説明する。 In the even-numbered frame, as in Example 1, when interference waves having the same pattern in the first half and the second half of the preamble are mixed, the interference wave components cancel each other out by subtraction, so that the interference wave components cannot be detected. However, the interference wave component having the opposite pattern can be detected. On the contrary, in the odd frame, when the interference waves having opposite patterns are mixed in the first half and the second half of the preamble, the interference wave components cannot be detected, but the interference wave components having the same pattern can be detected. Therefore, by adding the signals calculated in the even-numbered frame and the odd-numbered frame, it is possible to detect when any interference wave is mixed. However, the detection of the noise interference wave component requires receiving even-numbered frames and odd-numbered frames, which requires two frame times. Measures for that purpose will be described in Example 3 described later.

図6で説明した処理を実現する雑音干渉波抽出部305の内部構成について、図7を使用して説明する。AD部302から雑音干渉波抽出部305に入力された受信信号は、フレームパターン判定部701と、加算部702と、減算部703と、遅延部704とに入力される。フレームパターン判定部701は、相互相関や自己相関等を用いて、偶数フレーム又は奇数フレームのどちらを受信しているかを判定し、判定結果を示す切り替え信号を選択部705へ出力する。遅延部704は、プリアンブル信号時間の半分の時間を遅延させた信号を、加算部702と減算部703とに出力する。加算部702は、入力された各信号(受信信号と1/2プリアンブル遅延の受信信号)の加算処理を行い、選択部705へ出力する。減算部703は、入力された各信号(受信信号と1/2プリアンブル遅延の受信信号)の減算処理を行い、選択部705へ出力する。 The internal configuration of the noise interference wave extraction unit 305 that realizes the processing described with reference to FIG. 6 will be described with reference to FIG. 7. The received signal input from the AD unit 302 to the noise interference wave extraction unit 305 is input to the frame pattern determination unit 701, the addition unit 702, the subtraction unit 703, and the delay unit 704. The frame pattern determination unit 701 determines whether an even number frame or an odd number frame is received by using cross-correlation, autocorrelation, or the like, and outputs a switching signal indicating the determination result to the selection unit 705. The delay unit 704 outputs a signal delayed by half the preamble signal time to the addition unit 702 and the subtraction unit 703. The addition unit 702 performs addition processing of each input signal (received signal and received signal with 1/2 preamble delay) and outputs the input signal to the selection unit 705. The subtraction unit 703 performs a subtraction process for each input signal (received signal and received signal with 1/2 preamble delay) and outputs the input signal to the selection unit 705.

選択部705は、フレームパターン判定部701から入力される切り替え信号に従い、偶数フレーム受信時は減算部703からの信号を選択し、奇数フレーム受信時は加算部702からの信号を選択して、加算部706とフレーム遅延部707とに出力する。この選択により、雑音干渉波が抽出された信号のみが、後段へと出力される。フレーム遅延部707は、入力された信号を1フレーム遅延させ、加算部706へ出力する。加算部706は、選択部705からの信号と、フレーム遅延部707から出力された信号とを加算し、周波数解析部307へ出力する。このような処理により、偶数フレームの雑音干渉波検出結果と奇数フレームの雑音干渉波検出結果とを加算して、全ての雑音干渉波成分を網羅して検出することが可能となる。 The selection unit 705 selects a signal from the subtraction unit 703 when receiving an even frame, and selects a signal from the addition unit 702 when receiving an odd frame, according to the switching signal input from the frame pattern determination unit 701, and adds. Output to unit 706 and frame delay unit 707. By this selection, only the signal from which the noise interference wave is extracted is output to the subsequent stage. The frame delay unit 707 delays the input signal by one frame and outputs it to the addition unit 706. The addition unit 706 adds the signal from the selection unit 705 and the signal output from the frame delay unit 707, and outputs the signal to the frequency analysis unit 307. By such processing, the noise interference wave detection result of the even-numbered frame and the noise interference wave detection result of the odd-numbered frame can be added to cover and detect all the noise interference wave components.

(実施例3)
実施例3に係る雑音干渉波の抽出方法について説明する。図8には、実施例3に係る雑
音干渉波の抽出処理のタイムチャート例を示してある。
まず、受信信号と1/2プリアンブル遅延の受信信号とは、同一パターンタイミング801のタイミングで同一パターンとなり、これら信号の減算処理を行うことで、プリアンブル成分同士が打ち消し合って雑音干渉波成分のみが抽出される。この信号をD1とする。信号D1の算出では、実施例2の偶数フレームと同様に、既知信号に対して同一パターンとなる干渉波は検出することができないが、逆パターンになる干渉波は検出することができる。
(Example 3)
The method of extracting the noise interference wave according to the third embodiment will be described. FIG. 8 shows an example of a time chart of the noise interference wave extraction process according to the third embodiment.
First, the received signal and the received signal with the 1/2 preamble delay have the same pattern at the timing of the same pattern timing 801. By performing the subtraction processing of these signals, the preamble components cancel each other out and only the noise interference wave component is generated. Be extracted. Let this signal be D1. In the calculation of the signal D1, as in the even frame of the second embodiment, the interference wave having the same pattern as the known signal cannot be detected, but the interference wave having the opposite pattern can be detected.

次に、受信信号と1/4プリアンブル遅延の受信信号(1プリアンブル時間の1/4の時間を遅延させた受信信号)では、逆パターンタイミング802及び逆パターンタイミング803のタイミングで、各信号のパターンが逆になる。そのため、各信号を加算することで、プリアンブル信号成分を打ち消し合って雑音干渉波成分のみを抽出することができる。この信号をD2とする。信号D2の算出では、実施例2の奇数フレームと同様に、既知信号に対して逆パターンとなる干渉波は検出することができないが、同一パターンになる干渉波は検出することができる。信号D1と信号D2では、雑音干渉波成分の位置が異なるため、信号D2を1/4プリアンブル時間遅延させる。この信号をD3とする。実施例2と同様に、信号D1と信号D3を加算することで、すべての干渉波を網羅して検出することができる。 Next, in the received signal and the received signal with the 1/4 preamble delay (the received signal delayed by 1/4 of the 1 preamble time), the pattern of each signal is the timing of the reverse pattern timing 802 and the reverse pattern timing 803. Is reversed. Therefore, by adding each signal, the preamble signal components can be canceled out and only the noise interference wave component can be extracted. Let this signal be D2. In the calculation of the signal D2, as in the odd frame of the second embodiment, the interference wave having the opposite pattern to the known signal cannot be detected, but the interference wave having the same pattern can be detected. Since the positions of the noise interference wave components are different between the signal D1 and the signal D2, the signal D2 is delayed by 1/4 preamble time. Let this signal be D3. By adding the signal D1 and the signal D3 as in the second embodiment, all the interference waves can be comprehensively detected.

図8で説明した処理を実現する雑音干渉波抽出部305の内部構成について、図9を使用して説明する。AD部302から雑音干渉波抽出部305に入力された受信信号は、A遅延部901と、B遅延部902と、減算部903と、加算部904とに入力される。A遅延部901は、1プリアンブル時間の半分の時間、受信信号を遅延させ、減算部903へ出力する。減算部903は、入力された各信号(受信信号と1/2プリアンブル遅延の受信信号)の減算処理を行い、選択部705へ出力する。この減算処理は、プリアンブルの前半と後半が同一という特徴を利用して、プリアンブル信号を打ち消して雑音干渉波のみを抽出する。B遅延部902は、1プリアンブル時間の1/4の時間、受信信号を遅延させ、加算部904へ出力する。加算部904は、入力された各信号(受信信号と1/4プリアンブル遅延の受信信号)の加算処理を行い、B遅延部906へ出力する。この加算処理は、プリアンブルの一部の区間のパターンが逆という特徴を利用して、プリアンブル信号を打ち消して雑音干渉波のみを抽出する。B遅延部906は、各抽出結果のタイミングを合わせるために、入力された信号を1/4プリアンブル時間遅延させて加算部905へ出力する。加算部905は、入力された各信号の加算処理を行うことで、減算部903と加算部904による各雑音干渉波の抽出結果を加算して、周波数解析部307へ出力する。 The internal configuration of the noise interference wave extraction unit 305 that realizes the processing described with reference to FIG. 8 will be described with reference to FIG. The received signal input from the AD unit 302 to the noise interference wave extraction unit 305 is input to the A delay unit 901, the B delay unit 902, the subtraction unit 903, and the addition unit 904. The A delay unit 901 delays the received signal for half the time of one preamble time and outputs it to the subtraction unit 903. The subtraction unit 903 performs subtraction processing for each input signal (received signal and received signal with 1/2 preamble delay), and outputs the subtracted signal to the selection unit 705. This subtraction process uses the feature that the first half and the second half of the preamble are the same, cancels the preamble signal, and extracts only the noise interference wave. The B delay unit 902 delays the received signal for 1/4 of the 1 preamble time and outputs it to the addition unit 904. The addition unit 904 performs addition processing of each input signal (received signal and received signal with 1/4 preamble delay), and outputs the input signal to the B delay unit 906. This addition process cancels the preamble signal and extracts only the noise interference wave by utilizing the feature that the pattern of a part of the preamble is reversed. The B delay unit 906 delays the input signal by a 1/4 preamble time and outputs the input signal to the addition unit 905 in order to match the timing of each extraction result. The addition unit 905 adds the extraction results of each noise interference wave by the subtraction unit 903 and the addition unit 904 by performing the addition processing of each input signal, and outputs the result to the frequency analysis unit 307.

次に、図10〜図12を用いて、実施例2に係る雑音干渉波の抽出方法のシミュレーション結果について説明する。
図10には、受信信号に0dBの白色雑音のみが混入している場合の雑音干渉波算出のシミュレーション結果を示してある。ここでは、全帯域に白色雑音を混入させている。図10によれば、偶数フレーム受信時の減算結果と奇数フレーム受信時の加算結果のどちらにも雑音成分が検出されており、加減算結果を加算した結果を周波数解析することで、広帯域の雑音が検出できていることがわかる。
Next, the simulation result of the noise interference wave extraction method according to the second embodiment will be described with reference to FIGS. 10 to 12.
FIG. 10 shows a simulation result of noise interference wave calculation when only 0 dB white noise is mixed in the received signal. Here, white noise is mixed in the entire band. According to FIG. 10, noise components are detected in both the subtraction result when the even-numbered frames are received and the addition result when the odd-numbered frames are received. It can be seen that it can be detected.

図11には、プリアンブルの前半と後半に含まれる干渉波のパターンが同一となるときの雑音干渉波算出のシミュレーション結果を示してある。図11では、干渉波パターンが一致するために、減算結果では干渉波が検出できていないが、加算結果では検出できている。したがって、加減算結果を加算した結果を周波数解析することで、干渉波の周波数と電力を検出できていることがわかる。 FIG. 11 shows a simulation result of noise interference wave calculation when the patterns of the interference waves included in the first half and the second half of the preamble are the same. In FIG. 11, since the interference wave patterns match, the interference wave cannot be detected in the subtraction result, but it can be detected in the addition result. Therefore, it can be seen that the frequency and power of the interference wave can be detected by frequency analysis of the result of adding the addition / subtraction results.

図12には、kプリアンブルの前半と後半に含まれる干渉波のパターンが逆となるときの雑音干渉波算出のシミュレーション結果を示してある。図12では、干渉波パターンが逆であるために、加算結果では干渉波成分が打ち消し合って干渉波が検出できていないが、減算結果では検出できている。したがって、加減算結果を加算しした結果を周波数解析することで、干渉波の周波数と電力を検出できていることがわかる。
以上のシミュレーション結果より、雑音干渉波の帯域幅や周波数にかかわらず、雑音干渉波の周波数とレベルを検出でることがわかる。
FIG. 12 shows a simulation result of noise interference wave calculation when the patterns of the interference waves included in the first half and the second half of the k preamble are reversed. In FIG. 12, since the interference wave patterns are opposite, the interference wave components cancel each other out in the addition result and the interference wave cannot be detected, but it can be detected in the subtraction result. Therefore, it can be seen that the frequency and power of the interference wave can be detected by frequency analysis of the result of adding the addition / subtraction results.
From the above simulation results, it can be seen that the frequency and level of the noise interference wave can be detected regardless of the bandwidth and frequency of the noise interference wave.

以上説明したように、本例の送信機は、受信信号に含まれる雑音干渉波成分を抽出する雑音干渉波抽出部305を備える。また、送信機は、所定の周期で、第1の既知信号と、第1の既知信号と同一又は符号反転させた第2の既知信号とを送信する。そして、雑音干渉波抽出部305は、受信信号と、受信信号を遅延させた遅延信号とを、受信信号に含まれる第2の既知信号と遅延信号に含まれる第1の既知信号とが打ち消し合うように減算又は加算して、雑音干渉波成分を抽出するように構成されている。 As described above, the transmitter of this example includes a noise interference wave extraction unit 305 that extracts noise interference wave components included in the received signal. In addition, the transmitter transmits a first known signal and a second known signal that is the same as or inverted in sign from the first known signal at a predetermined cycle. Then, the noise interference wave extraction unit 305 cancels the received signal and the delayed signal obtained by delaying the received signal by the second known signal included in the received signal and the first known signal included in the delayed signal. It is configured to extract the noise interference wave component by subtracting or adding as described above.

より具体的には、実施例1では、送信機は、フレーム毎に(1フレーム周期で)、フレーム中のプリアンブル区間の1/2の長さを持つパターンAのプリアンブル信号(第1の既知信号)と、パターンAと同一のプリアンブル信号(第2の既知信号)とを送信する。雑音干渉波抽出部305は、受信信号に含まれるパターンAと遅延信号に含まれるパターンAとが同相になるように調整(1/2プリアンブル時間の遅延処理)し、受信信号と遅延信号とを減算して雑音干渉波成分を抽出する。なお、送信機が、第2の既知信号として、パターンAを符号反転させたプリアンブル信号を送信し、雑音干渉波抽出部305が、受信信号に含まれるパターンA(符号反転)と遅延信号に含まれるパターンAとが同相になるように調整(1/2プリアンブル時間の遅延処理)し、受信信号と遅延信号とを加算して雑音干渉波成分を抽出してもよい。 More specifically, in the first embodiment, the transmitter uses a pattern A preamble signal (first known signal) having a length of 1/2 of the preamble section in the frame for each frame (in one frame cycle). ) And the same preamble signal (second known signal) as the pattern A are transmitted. The noise interference wave extraction unit 305 adjusts the pattern A included in the received signal and the pattern A included in the delay signal so as to be in phase (delay processing of 1/2 preamble time), and adjusts the received signal and the delay signal. The noise interference wave component is extracted by subtraction. The transmitter transmits a preamble signal in which the pattern A is code-inverted as the second known signal, and the noise interference wave extraction unit 305 is included in the pattern A (code inversion) and the delay signal included in the received signal. The noise interference wave component may be extracted by adjusting so that the pattern A is in phase with the pattern A (delay processing of 1/2 preamble time) and adding the received signal and the delay signal.

また、実施例2では、送信機は、パターンAのプリアンブル信号(第1の既知信号)と、パターンAと同一のプリアンブル信号(第2の既知信号)とを挿入した偶数フレーム(第1フレーム)と、パターンAのプリアンブル(第1の既知信号)と、パターンAを符号反転させたプリアンブル(第2の既知信号)とを挿入した奇数フレーム(第2フレーム)とを交互に送信する。雑音干渉波抽出部305は、偶数フレームの受信時は、受信信号に含まれるパターンAと遅延信号に含まれるパターンAとが同相になるように調整(1/2プリアンブル時間の遅延処理)し、受信信号と遅延信号とを減算して雑音干渉波成分を抽出する。一方、雑音干渉波抽出部305は、奇数フレームの受信時は、受信信号に含まれるパターンA(符号反転)と遅延信号に含まれるパターンAとが同相になるように調整(1/2プリアンブル時間の遅延処理)し、受信信号と遅延信号とを加算して雑音干渉波成分を抽出する。そして、偶数フレーム時に抽出した雑音干渉波成分と奇数フレーム時に抽出した雑音干渉波成分とを加算して、雑音干渉波成分の抽出結果として後段の処理部(周波数解析部307)へ出力する。なお、奇数フレーム時と偶数フレーム時で処理内容を入れ替えてもよい。 Further, in the second embodiment, the transmitter has an even frame (first frame) in which the preamble signal of the pattern A (first known signal) and the same preamble signal as the pattern A (second known signal) are inserted. And an odd-numbered frame (second frame) in which the preamble (first known signal) of the pattern A and the preamble (second known signal) in which the sign of the pattern A is inverted are inserted are alternately transmitted. When receiving an even frame, the noise interference wave extraction unit 305 adjusts the pattern A included in the received signal and the pattern A included in the delay signal so that they are in phase (delay processing of 1/2 preamble time). The noise interference wave component is extracted by subtracting the received signal and the delay signal. On the other hand, the noise interference wave extraction unit 305 adjusts so that the pattern A (sign inversion) included in the received signal and the pattern A included in the delay signal are in phase when receiving an odd frame (1/2 preamble time). The delay processing of) is performed, and the received signal and the delay signal are added to extract the noise interference wave component. Then, the noise interference wave component extracted at the even frame and the noise interference wave component extracted at the odd frame are added and output to the subsequent processing unit (frequency analysis unit 307) as the extraction result of the noise interference wave component. The processing contents may be exchanged between odd-numbered frames and even-numbered frames.

また、実施例3では、送信機は、フレーム中のプリアンブル区間の1/4の長さを持つパターンBのプリアンブル信号(第1の既知信号)と、パターンBを符号反転させたプリアンブル(第2の既知信号)とのセットを2つ挿入したフレームを送信する。雑音干渉波抽出部305は、受信信号に含まれるパターンB(符号反転)と遅延信号に含まれるパターンBとが同相になるように調整(1/4プリアンブル時間の遅延処理)し、受信信号と遅延信号とを加算して雑音干渉波成分(D2)を抽出する。また、雑音干渉波抽出部305は、受信信号に含まれる後方側のセット(パターンB及びその符号反転)と遅延信号に含まれる前方側のセットとが同相になるように調整(1/2プリアンブル時間の遅延処理)し、受信信号と遅延信号とを減算して雑音干渉波成分(D1)を抽出する。そして、雑音干渉波成分(D2)を雑音干渉波成分(D1)と同相になるように調整(1/4プリアンブル時間の遅延処理)し、その結果(D3)を雑音干渉波成分(D1)と加算して、雑音干渉波成分の抽出結果として後段の処理部(周波数解析部307)へ出力する。 Further, in the third embodiment, the transmitter uses a preamble signal (first known signal) of pattern B having a length of 1/4 of the preamble section in the frame and a preamble (second known signal) in which pattern B is code-inverted. A frame in which two sets with (known signals of) are inserted is transmitted. The noise interference wave extraction unit 305 adjusts the pattern B (sign inversion) included in the received signal and the pattern B included in the delay signal to be in phase (1/4 preamble time delay processing), and sets the received signal. The noise interference wave component (D2) is extracted by adding the delay signal. Further, the noise interference wave extraction unit 305 is adjusted so that the rear set (pattern B and its code inversion) included in the received signal and the front set included in the delay signal are in phase with each other (1/2 preamble). Time delay processing) is performed, and the received signal and the delay signal are subtracted to extract the noise interference wave component (D1). Then, the noise interference wave component (D2) is adjusted so as to be in phase with the noise interference wave component (D1) (1/4 preamble time delay processing), and the result (D3) is referred to as the noise interference wave component (D1). It is added and output to the processing unit (frequency analysis unit 307) in the subsequent stage as the extraction result of the noise interference wave component.

また更に、実施例1〜3に係る受信機は、雑音干渉波抽出部305により抽出された雑音干渉波成分に対して周波数解析を行う周波数解析部307と、雑音干渉波成分のうちの周波数解析部307による周波数解析の対象とする時間窓を、第1又は第2の既知信号の信号長以下の時間窓長で設定する窓調整部306を備える。 Furthermore, the receivers according to Examples 1 to 3 include a frequency analysis unit 307 that performs frequency analysis on the noise interference wave component extracted by the noise interference wave extraction unit 305, and a frequency analysis of the noise interference wave components. The window adjusting unit 306 is provided to set the time window to be the target of the frequency analysis by the unit 307 with a time window length equal to or less than the signal length of the first or second known signal.

以上のような構成によれば、雑音干渉波の検出のために未送信期間や未送信周波数を設ける必要がないため、効率的に雑音干渉波を検出することができ、スループットの向上も実現することができる。また、下記(1)〜(3)の効果も期待できる。
(1)雑音干渉波の抽出結果に対して周波数解析を行う範囲を適切に設定することで、マルチパスによる影響を受けない雑音干渉波成分の抽出が可能となる。
(2)ガード長を超える遅延波成分を雑音とみなすように周波数解析の位置を設定することで、後段の復調・復号処理において等価的な雑音を正確に算出できる
(3)干渉波の帯域幅や周波数に関係なく干渉波を検出可能であり、従来技術では検出に制限があったプリアンブルシンボルに直交する狭帯域干渉波も抽出でき、周波数特性も解析可能である。
また、実施例2では、2フレームの時間があれば雑音干渉波を検出することができ、実施例3では、1フレームの時間があれば雑音干渉波を検出することができる。
According to the above configuration, since it is not necessary to provide an untransmitted period or an untransmitted frequency for detecting the noise interference wave, the noise interference wave can be detected efficiently and the throughput can be improved. be able to. In addition, the following effects (1) to (3) can be expected.
(1) By appropriately setting the range for frequency analysis for the noise interference wave extraction result, it is possible to extract the noise interference wave component that is not affected by the multipath.
(2) By setting the position of the frequency analysis so that the delayed wave component exceeding the guard length is regarded as noise, the equivalent noise can be accurately calculated in the subsequent demodulation / decoding process (3) Interference wave bandwidth. Interference waves can be detected regardless of frequency or frequency, narrow-band interference waves orthogonal to the preamble symbol, which was limited in detection by the prior art, can be extracted, and frequency characteristics can also be analyzed.
Further, in the second embodiment, the noise interference wave can be detected if the time is two frames, and in the third embodiment, the noise interference wave can be detected if the time is one frame.

なお、上記の説明では、第1の既知信号と第2の既知信号のセットをフレーム毎に(1フレーム周期で)送信しているが、必ずしも全フレームで送信する必要はなく、例えば1フレーム置きに送信してもよい。
また、上記の説明では、第1又は第2の既知信号として、プリアンブル区間を2分割または4分割した長さのプリアンブル信号を用いているが、これは一例に過ぎない。例えば、プリアンブル区間内に2つ以上を格納できる任意の長さの既知信号を用いることができる。
In the above description, the set of the first known signal and the second known signal is transmitted frame by frame (in one frame cycle), but it is not always necessary to transmit in all frames, for example, every other frame. May be sent to.
Further, in the above description, as the first or second known signal, a preamble signal having a length obtained by dividing the preamble section into two or four is used, but this is only an example. For example, known signals of arbitrary length that can store more than one in the preamble interval can be used.

また、上記の説明では、第1の既知信号と第2の既知信号を連続で送信しているが、必ずしも連続で送信する必要はなく、その間の区間を無送信区間としたり、別のデータを送信する区間としてもよい。なお、第1の既知信号と第2の既知信号を連続で送信する場合は、第1又は第2の既知信号の信号長に合わせて遅延処理を施せばよく、第1の既知信号と第2の既知信号を連続で送信しない場合には、その間の区間長を加味して遅延処理を施せばよい。 Further, in the above description, the first known signal and the second known signal are continuously transmitted, but it is not always necessary to continuously transmit, and the section between them may be a non-transmission section or another data may be transmitted. It may be a transmission section. When the first known signal and the second known signal are continuously transmitted, delay processing may be performed according to the signal length of the first or second known signal, and the first known signal and the second known signal may be transmitted. When the known signals of are not continuously transmitted, delay processing may be performed in consideration of the section length between them.

また、本発明は、以下のような無線通信装置として把握することもできる。
すなわち、相手側装置から無線により送信される信号を受信する無線通信装置において、相手側装置は、Mサンプル間隔と、Mサンプル以上のNサンプル間隔で既知信号を繰り返し送信し、無線通信装置は、受信信号に含まれる既知信号(X)とその後に受信される既知信号(Y)とが同じタイミングとなるように、受信信号をMサンプル遅延させ、遅延前の受信信号との減算処理を行うことにより、既知信号成分を打ち消し合わせて雑音干渉波成分を抽出する。
The present invention can also be grasped as the following wireless communication device.
That is, in the wireless communication device that receives the signal transmitted wirelessly from the other party device, the other party device repeatedly transmits the known signal at the M sample interval and the N sample interval of M sample or more, and the wireless communication device causes the wireless communication device. The received signal is delayed by M samples so that the known signal (X) included in the received signal and the known signal (Y) received thereafter have the same timing, and subtraction processing from the received signal before the delay is performed. To cancel out known signal components and extract noise interference wave components.

ここで、Mは、0以上N未満とするが、Mの値が大きくなると既知信号間のチャネル変動が大きくなって雑音干渉波の抽出精度が低下するため、Nは小さい方が望ましい。Nは雑音干渉波成分の検出周期を決定するため、値が小さい方が望ましいが、値を小さくすると送信信号内の既知信号の割合が増加する(すなわち、伝送レートとトレードオフの関係にある)。Nとしては、例えば、無線フレームの信号長に対応するサンプル数を用いることができ、Mとしては、例えば、無線フレームのプリアンブル区間を2分割(または4分割)した長さのサンプル数を用いることができる。 Here, M is set to 0 or more and less than N, but as the value of M increases, the channel variation between known signals increases and the extraction accuracy of noise interference waves decreases. Therefore, it is desirable that N is small. Since N determines the detection cycle of the noise interference wave component, it is desirable that the value is small, but if the value is small, the ratio of known signals in the transmission signal increases (that is, there is a trade-off relationship with the transmission rate). .. For N, for example, the number of samples corresponding to the signal length of the wireless frame can be used, and for M, for example, the number of samples having a length obtained by dividing the preamble section of the wireless frame into two (or four) can be used. Can be done.

また、既知信号の長さをKサンプルとし、雑音干渉波成分の周波数解析のためにKサンプル以下の取り込み時間窓長Lを設定し、雑音干渉波成分の抽出結果に対して時間窓長Lの範囲で周波数解析を行うことで、雑音干渉波の周波数特性を算出してもよい。 Further, the length of the known signal is set to K sample, the capture time window length L of K sample or less is set for frequency analysis of the noise interference wave component, and the time window length L is set with respect to the extraction result of the noise interference wave component. The frequency characteristics of the noise interference wave may be calculated by performing the frequency analysis in the range.

また、上述した減算処理のみでは、既知信号に同一パターンで干渉する干渉波を検出することができない。そこで、相手側装置は、既知信号に加え、既知信号の符号を逆転させた信号を、Pサンプル間隔と、Pサンプル以上のQサンプル間隔で繰り返し送信し、無線通信装置は、受信信号に含まれる既知信号(X)とその後に受信される符号反転の既知信号(Z)とが同じタイミングとなるように、受信信号をPサンプル遅延させ、遅延前の受信信号との加算処理を行うことにより、既知信号成分を打ち消し合わせて雑音干渉波成分を抽出する。これにより、既知信号に同一パターンで干渉する干渉波も検出することができる。 Further, it is not possible to detect an interference wave that interferes with a known signal in the same pattern only by the subtraction process described above. Therefore, the other party device repeatedly transmits a signal obtained by reversing the sign of the known signal in addition to the known signal at the P sample interval and the Q sample interval of P sample or more, and the wireless communication device is included in the received signal. By delaying the received signal by P sample and performing addition processing with the received signal before the delay so that the known signal (X) and the known signal (Z) of code inversion received thereafter have the same timing, The noise interference wave component is extracted by canceling out the known signal components. As a result, it is possible to detect an interference wave that interferes with a known signal in the same pattern.

以上、本発明について詳細に説明したが、本発明は、ここに記載された無線通信装置に限定されるものではなく、上記以外の無線通信装置に広く適用することができることは言うまでもない。
また、本発明は、例えば、本発明に係る処理を実行する方法や方式、そのような方法や方式を実現するためのプログラム、そのプログラムを記憶する記憶媒体などとして提供することも可能である。
Although the present invention has been described in detail above, it goes without saying that the present invention is not limited to the wireless communication devices described here, and can be widely applied to wireless communication devices other than the above.
Further, the present invention can be provided, for example, as a method or method for executing the process according to the present invention, a program for realizing such a method or method, a storage medium for storing the program, or the like.

本発明は、相手側装置から無線により送信される信号を受信する無線通信装置に利用することができる。 The present invention can be used for a wireless communication device that receives a signal transmitted wirelessly from a remote device.

201:符号化部、 202:変調部、 203:IFFT部、 204:選択部、 205:プリアンブルパターンメモリ部、 206:符号反転部、 207:フレームタイミング部、 208:DA部、 209:送信アンテナ、
301:受信アンテナ、 302:AD部、 303:狭帯域干渉抑圧フィルタ、 304:プリアンブルタイミング検出部、 305:雑音干渉波抽出部、 306:窓調整部、 307:周波数解析部、 308:干渉閾値判定部、 309:平均部、 310:周波数解析部、 311:雑音正規化部、 312:復調・復号部、
401:同一パターンタイミング、
501:減算部、 502:遅延部、
601:同一パターンタイミング、 602:逆パターンタイミング、
701:フレームパターン判定部、 702:加算部、 703:減算部、 704:遅延部、 705:選択部、 706:加算部、 707:フレーム遅延部、
801:同一パターンタイミング、 802:逆パターンタイミング、 803:逆パターンタイミング、
901:A遅延部、 902:B遅延部、 903:減算部、 904:加算部、 905:加算部、 906:B遅延部
201: Encoding section, 202: Modulation section, 203: Fourier section, 204: Selection section, 205: Preamble pattern memory section, 206: Code inversion section, 207: Frame timing section, 208: DA section, 209: Transmission antenna,
301: Receive antenna, 302: AD unit, 303: Narrow band interference suppression filter, 304: Preamble timing detection unit, 305: Noise interference wave extraction unit, 306: Window adjustment unit, 307: Frequency analysis unit, 308: Interference threshold determination Part, 309: Average part, 310: Frequency analysis part, 311: Noise normalization part, 312: Demodulation / decoding part,
401: Same pattern timing,
501: Subtraction section, 502: Delay section,
601: Same pattern timing, 602: Reverse pattern timing,
701: Frame pattern determination unit, 702: Addition unit, 703: Subtraction unit, 704: Delay unit, 705: Selection unit, 706: Addition unit, 707: Frame delay unit,
801: Same pattern timing, 802: Reverse pattern timing, 803: Reverse pattern timing,
901: A delay part, 902: B delay part, 903: subtraction part, 904: addition part, 905: addition part, 906: B delay part

Claims (2)

相手側装置から無線により送信される信号を受信する無線通信装置において、
受信信号に含まれる雑音又は干渉波の成分を抽出する抽出手段を備え、
前記相手側装置は、所定の周期で、第1の既知信号と共に前記第1の既知信号と同一の信号を第2の既知信号として挿入した第1フレームと、前記第1の既知信号と共に前記第1の既知信号を符号反転させた信号を第2の既知信号として挿入した第2フレームとを交互に送信し、
前記抽出手段は、前記受信信号と前記受信信号を遅延させた遅延信号とに基づいて、前記受信信号に含まれる前記第2の既知信号と前記遅延信号に含まれる前記第1の既知信号とが打ち消し合うように、前記第1フレームの受信時は前記受信信号と前記遅延信号とを減算して前記成分を抽出し、前記第2フレームの受信時は前記受信信号と前記遅延信号とを加算して前記成分を抽出することを特徴とする無線通信装置。
In a wireless communication device that receives a signal transmitted wirelessly from the other device
It is equipped with an extraction means for extracting noise or interference wave components contained in the received signal.
The mating device in a predetermined cycle, the first frame of inserting the first known signal are both the same signal as the first known signal as a second known signal, the together with the first known signal A signal obtained by inverting the code of the first known signal is alternately transmitted to the second frame in which the signal is inserted as the second known signal.
The extraction means includes the second known signal included in the received signal and the first known signal included in the delayed signal based on the received signal and the delayed signal obtained by delaying the received signal. as cancel, upon receipt of the first frame by subtracting said delayed signal and said received signal to extract the components, upon receipt of the second frame adding the said delayed signal and said received signal A wireless communication device characterized by extracting the above-mentioned components.
相手側装置から無線により送信される信号を受信する無線通信装置において、
受信信号に含まれる雑音又は干渉波の成分を抽出する抽出手段を備え、
前記相手側装置は、所定の周期で、第1の既知信号と、前記第1の既知信号を符号反転させた第2の既知信号とのセットを複数挿入したフレームを送信し、
前記抽出手段は、前記受信信号と前記受信信号を遅延させた遅延信号とに基づいて、前記受信信号に含まれる前記第2の既知信号と前記遅延信号に含まれる前記第1の既知信号とが打ち消し合うように加算して前記成分を抽出する処理と、前記受信信号に含まれる後方側の前記セットと前記遅延信号に含まれる前方側の前記セットとが打ち消し合うように減算して前記成分を抽出する処理とを有することを特徴とする無線通信装置。
In a wireless communication device that receives a signal transmitted wirelessly from the other device
It is equipped with an extraction means for extracting noise or interference wave components contained in the received signal.
The mating device in a predetermined cycle, and transmits the first known signal, the first second plurality inserted frames a set of known signal to a known signal obtained by sign inversion,
The extraction means includes the second known signal included in the received signal and the first known signal included in the delayed signal based on the received signal and the delayed signal obtained by delaying the received signal. The component is extracted by adding so as to cancel each other, and the component is subtracted so that the set on the rear side included in the received signal and the set on the front side included in the delay signal cancel each other out. A wireless communication device having a process of extracting.
JP2017185291A 2017-09-26 2017-09-26 Wireless communication device Active JP6948203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185291A JP6948203B2 (en) 2017-09-26 2017-09-26 Wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185291A JP6948203B2 (en) 2017-09-26 2017-09-26 Wireless communication device

Publications (2)

Publication Number Publication Date
JP2019062385A JP2019062385A (en) 2019-04-18
JP6948203B2 true JP6948203B2 (en) 2021-10-13

Family

ID=66177657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185291A Active JP6948203B2 (en) 2017-09-26 2017-09-26 Wireless communication device

Country Status (1)

Country Link
JP (1) JP6948203B2 (en)

Also Published As

Publication number Publication date
JP2019062385A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
EP2016731B1 (en) Signal detection in multicarrier communication system
EP2274864B1 (en) Autocorrelation-based multi-band signal detection
US20190068273A1 (en) Receiving apparatus and receiving method, and program and recording medium
KR100891267B1 (en) Training Sequence for Wireless Communication Systems
KR101656083B1 (en) Apparatus and method for obtaining reception synchronization in wireless communication system
US8139699B2 (en) Process for preamble detection in a multi-stream 802.16E receiver
US8121654B2 (en) Apparatus and method for removing an echo signal in a signal transmission/reception apparatus of a communication system
JP2007324754A (en) Signal receiving section detector
US20160128010A1 (en) Single carrier frequency domain equalizer time synchronization in a broadband transceiver
US10084636B2 (en) Transmission apparatus, reception apparatus, transmission method, and reception method
GB2504057A (en) Frequency error estimation
US8045448B2 (en) Apparatus and method for detecting packet of zero-padded OFDM signal
JP6948203B2 (en) Wireless communication device
KR102091513B1 (en) Apparatus and method for receiving of rfid reader
CN101795249B (en) Receiving apparatus with frequency domain equalizer
RU2700005C1 (en) Method of estimating channel parameters in broadband hydroacoustic communication and a device for realizing said channel
JP4506248B2 (en) Synchronization apparatus and synchronization method
KR20210003849A (en) Packet Correlator for Wireless Transmission System
JP2010103716A (en) Receiving apparatus or relay apparatus
EP3238398B1 (en) Inter-block interference suppression using a null guard interval
US20200280345A1 (en) Coordinated beamforming with active synchronization
WO2019167140A1 (en) Radio communication system and interference suppression method
KR101346436B1 (en) Apparatus and method of estimating channel using adaptive channel estimation window in wireless communication based on CAZAC sequence
CN114280367B (en) Unmanned aerial vehicle signal frequency point detection method under complex electromagnetic environment
EP1966963B1 (en) Apparatus and methods for determining timing in a communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210917

R150 Certificate of patent or registration of utility model

Ref document number: 6948203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250