JP6938483B2 - Friction clutch control method - Google Patents

Friction clutch control method Download PDF

Info

Publication number
JP6938483B2
JP6938483B2 JP2018517767A JP2018517767A JP6938483B2 JP 6938483 B2 JP6938483 B2 JP 6938483B2 JP 2018517767 A JP2018517767 A JP 2018517767A JP 2018517767 A JP2018517767 A JP 2018517767A JP 6938483 B2 JP6938483 B2 JP 6938483B2
Authority
JP
Japan
Prior art keywords
pressure
characteristic curve
friction clutch
actuator
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018517767A
Other languages
Japanese (ja)
Other versions
JP2018529906A (en
Inventor
エーバーレ クリスティアン
エーバーレ クリスティアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of JP2018529906A publication Critical patent/JP2018529906A/en
Application granted granted Critical
Publication of JP6938483B2 publication Critical patent/JP6938483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1026Hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/108Gear
    • F16D2500/1081Actuation type
    • F16D2500/1083Automated manual transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/108Gear
    • F16D2500/1081Actuation type
    • F16D2500/1085Automatic transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3024Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5012Accurate determination of the clutch positions, e.g. treating the signal from the position sensor, or by using two position sensors for determination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50236Adaptations of the clutch characteristics, e.g. curve clutch capacity torque - clutch actuator displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70205Clutch actuator
    • F16D2500/70217Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70205Clutch actuator
    • F16D2500/70235Displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • F16D2500/70264Stroke

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

本発明は、ハイドロスタティッククラッチアクチュエータを用いて自動的に作動される摩擦クラッチの制御方法であって、モデリングされたハイドロリック区間とクラッチ特性とを表すクラッチモデルに基づいて、少なくともハイドロスタティック区間内の圧力の大きさと、摩擦クラッチを作動させるための、圧力に依存するアクチュエータ移動距離とに依存するクラッチトルクをモデリングし、圧力センサおよび距離センサによって求められたデータに基づいてクラッチトルクを連続的に適合し、クラッチモデルは、アクチュエータ移動距離にわたる圧力から求められた挟込み力剛性の適合可能なモデル特性曲線を含み、圧力およびアクチュエータ移動距離の実データを用いて求められた、挟込み力剛性の実特性曲線と、モデル特性曲線とを連続的に比較し、所定のアクチュエータ移動距離の場合に求められる、モデリングされた圧力と際の圧力との間の圧力偏差を求め、圧力偏差とフィードバック係数とから剛性補正係数を計算する、制御方法に関する。 The present invention is a method of controlling a friction clutch that is automatically actuated using a hydrostatic clutch actuator, at least within the hydrostatic section, based on a clutch model that represents the modeled hydraulic section and clutch characteristics. Modeling the clutch torque depending on the magnitude of the pressure and the pressure-dependent actuator movement distance to operate the friction clutch, the clutch torque is continuously adapted based on the data obtained by the pressure sensor and the distance sensor. However, the clutch model includes a compatible model characteristic curve of the pinching force rigidity obtained from the pressure over the actuator moving distance, and the actual pinching force rigidity obtained using the actual data of the pressure and the actuator moving distance. The characteristic curve and the model characteristic curve are continuously compared, and the pressure deviation between the modeled pressure and the pressure at the time obtained in the case of a predetermined actuator movement distance is obtained, and the pressure deviation and the feedback coefficient are used to obtain the pressure deviation. It relates to a control method for calculating a rigidity correction coefficient.

クラッチアクチュエータを用いてクラッチモデルを使用して制御される自動化された摩擦クラッチは、随分昔から公知である。かかる摩擦クラッチでは、摩擦クラッチのたとえばサンプリング点および摩擦値、クラッチトルク、および、アクチュエータ経路に沿って摩擦クラッチを作動させるためのアクチュエータ移動距離等のシステムパラメータを、クラッチモデルでモデリングして連続的に適合する。かかるクラッチモデルは、拡張されていわゆるハイドロスタティックアクチュエータに適用される。ハイドロスタティックアクチュエータとして構成されたこのようなクラッチアクチュエータは、たとえば独国特許出願公開第10201004780号明細書および同第102010047801号明細書から公知であり、摩擦クラッチの作動機構、たとえば押付式摩擦クラッチのレバー要素と、制御ユニットによって制御される電気モータとの間に、ハイドロスタティック区間を有する。ハイドロスタティックアクチュエータは、アクチュエータ移動距離の検出装置の他にさらに、ハイドロスタティック区間の圧力を検出するための少なくとも1つの圧力センサも備えている。アクチュエータ移動距離と圧力との比から、摩擦クラッチとクラッチアクチュエータとから構成されたクラッチ装置の挟込み力剛性を求めることができる。挟込み力剛性はシステムに起因して変化し得るものであるから、クラッチモデルに記憶され、実際のシステム条件に合わせて連続的に調整される。独国特許出願公開第102012204929号明細書、同第2012204940号明細書、同第102013201215号明細書、同第102013214192号明細書、および、本願出願前には公開されていない独国特許出願第102015215753.6号から、ハイドロスタティックアクチュエータとして構成されたクラッチアクチュエータを用いて摩擦クラッチを制御および始動させる方法が公知となっている。 Automated friction clutches controlled using a clutch model with a clutch actuator have long been known. In such a friction clutch, system parameters such as a sampling point and friction value of the friction clutch, a clutch torque, and an actuator movement distance for operating the friction clutch along an actuator path are continuously modeled by a clutch model. Fits. Such a clutch model is extended and applied to so-called hydrostatic actuators. Such a clutch actuator configured as a hydrostatic actuator is known from, for example, German Patent Application Publication No. 10201004780 and 1020010047801, and is an actuating mechanism of a friction clutch, for example, a lever of a push-type friction clutch. It has a hydrostatic section between the element and the electric motor controlled by the control unit. The hydrostatic actuator further includes at least one pressure sensor for detecting the pressure in the hydrostatic section in addition to the actuator movement distance detecting device. From the ratio of the actuator movement distance to the pressure, the pinching force rigidity of the clutch device composed of the friction clutch and the clutch actuator can be obtained. Since the pinching force rigidity can change due to the system, it is stored in the clutch model and continuously adjusted according to the actual system conditions. German Patent Application Publication Nos. 1020122049429, 20122049440, 102013201215, 102013214192, and German Patent Application No. 102015215753, which has not been published prior to the filing of the present application. From No. 6, a method of controlling and starting a friction clutch using a clutch actuator configured as a hydrostatic actuator has become known.

本発明の課題は、ハイドロスタティックアクチュエータを用いた、特に挟込み力剛性の適合のための、摩擦クラッチの制御方法の改良である。とりわけ本発明の課題は、挟込み力剛性の誤適合を防止または少なくとも低減する、摩擦クラッチの制御方法を実現することである。 An object of the present invention is an improvement of a friction clutch control method using a hydrostatic actuator, particularly for adapting the pinching force rigidity. In particular, an object of the present invention is to realize a method for controlling a friction clutch that prevents or at least reduces the misfitting of the pinching force rigidity.

上記課題は、請求項1記載の方法によって解決される。請求項1を引用する請求項に、請求項1に係る発明の有利な実施形態が記載されている。 The above problem is solved by the method according to claim 1. A claim that cites claim 1 describes an advantageous embodiment of the invention according to claim 1.

ここで開示する方法は、ハイドロリックアクチュエータ等のハイドロスタティッククラッチアクチュエータを用いて自動的に作動される摩擦クラッチの制御に用いられる。摩擦クラッチは有利には、作動されていない状態では開放される押付式摩擦クラッチとして構成されており、作動過程の軸方向移動、たとえばアクチュエータ移動経路に沿ったスレーブシリンダピストンの軸方向移動によって閉鎖される。摩擦クラッチないしはハイドロスタティックアクチュエータの制御は、モデリングされたハイドロリック区間と摩擦クラッチのクラッチ特性、たとえばシステム特性等、たとえばサンプリング点および摩擦値等とに基づいて、ハイドロスタティック区間における圧力の大きさと、摩擦クラッチを作動させるための、圧力に依存するアクチュエータ移動距離とに依存するクラッチトルクとをモデリングするクラッチモデルを用いて行われ、このクラッチモデルは、圧力センサおよび距離センサによって求められたデータに基づいて連続的に適合される。クラッチモデルは、アクチュエータ移動距離にわたる圧力によって得られた挟込み力剛性の適合可能なモデル特性曲線を含み、モデル特性曲線は、圧力およびアクチュエータ移動距離の実データを用いて求められた挟込み力剛性の実特性曲線を使用して連続的に比較される。圧力偏差を求めるためには、少なくとも1つのアクチュエータ移動距離が設定されている場合、ハイドロスタティック区間の圧力とモデリングされた値対とを比較する。たとえば、アクチュエータ移動距離が設定されている場合には、モデリングされた圧力と実際の圧力との圧力偏差を求め、この圧力偏差とフィードバック係数とから、剛性補正係数を計算する。 The method disclosed here is used for controlling a friction clutch that is automatically operated by using a hydrostatic clutch actuator such as a hydraulic actuator. The friction clutch is advantageously configured as a push-type friction clutch that opens when not activated and is closed by axial movement during the actuation process, eg, axial movement of the slave cylinder piston along the actuator movement path. NS. The control of the friction clutch or hydrostatic actuator is based on the modeled hydraulic section and the clutch characteristics of the friction clutch, such as system characteristics, such as sampling points and friction values, and the magnitude of pressure in the hydrostatic section and friction. This is done using a clutch model that models the pressure-dependent actuator travel distance and the dependent clutch torque to actuate the clutch, which is based on the data obtained by the pressure and distance sensors. It is continuously fitted. The clutch model includes a compatible model characteristic curve of the pinch force stiffness obtained by the pressure over the actuator movement distance, and the model characteristic curve is the pinch force stiffness obtained using the actual data of the pressure and the actuator movement distance. The actual characteristic curves of are compared continuously. To determine the pressure deviation, the pressure in the hydrostatic section is compared to the modeled value pair when at least one actuator travel distance is set. For example, when the actuator movement distance is set, the pressure deviation between the modeled pressure and the actual pressure is obtained, and the rigidity correction coefficient is calculated from the pressure deviation and the feedback coefficient.

誤適合を回避するために、モデル特性曲線と実特性曲線とを、設定された交点において互いに交差させ、2つの連続して行われた適合の圧力偏差が負である場合にはフィードバック係数に負の符号を付与することを提案する。これに代えて、モデル特性曲線と実特性曲線との圧力偏差を求めることも可能である。その際には、現時点で測定された実特性曲線を、剛性補正係数による適合後に現時点のモデル特性曲線に引き継ぐことができる。 To avoid misfitting, the model characteristic curve and the actual characteristic curve are crossed at the set intersections, and the feedback coefficient is negative if the pressure deviation of the two consecutive fits is negative. It is proposed to give the code of. Instead of this, it is also possible to obtain the pressure deviation between the model characteristic curve and the actual characteristic curve. In that case, the actual characteristic curve measured at the present time can be taken over to the model characteristic curve at the present time after the adaptation by the rigidity correction coefficient.

有利には、挟込み力剛性の適合過程を行う度に、現時点の交点を新規に規定し、たとえば算出する。たとえば、モデリングされた圧力と実際の圧力との比が、設定された閾値を下回る交点を、挟込み力に規定することによって、交点を算出することができる。たとえば、モデリングされた圧力と実際の圧力との商が1付近になる交点、または、モデリングされた圧力と実際の圧力との差が0付近になる交点を、挟込み力に規定することができる。 Advantageously, each time the sandwiching force rigidity adaptation process is performed, the current intersection point is newly defined and calculated, for example. For example, the intersection can be calculated by defining the intersection where the ratio of the modeled pressure to the actual pressure is below the set threshold value in the pinching force. For example, an intersection where the quotient between the modeled pressure and the actual pressure is close to 1 or an intersection where the difference between the modeled pressure and the actual pressure is close to 0 can be defined as the pinching force. ..

有利には、摩擦クラッチのサンプリング点における圧力よりも圧力が大きくなった場合、すなわち、トルクが摩擦クラッチを介して伝達されることにより摩擦クラッチのハイドロスタティック区間と作動機構とが荷重下におかれる圧力の場合、交点を規定する。 Advantageously, when the pressure becomes higher than the pressure at the sampling point of the friction clutch, that is, the torque is transmitted through the friction clutch, the hydrostatic section of the friction clutch and the operating mechanism are put under load. In the case of pressure, specify the intersection.

その際に有利なのは、圧力偏差が少なくとも1つのアクチュエータ移動経路において閾値よりも大きい場合にのみ、挟込み力剛性の適合を行うことである。 In that case, it is advantageous to adjust the sandwiching force rigidity only when the pressure deviation is larger than the threshold value in at least one actuator movement path.

有利な一実施形態では、フィードバック係数は挟込み力剛性の最後の適合および現時点の適合の交点における圧力偏差の差から求められる。 In one advantageous embodiment, the feedback coefficient is derived from the difference in pressure deviation at the intersection of the last fit and the current fit of the sandwich force stiffness.

図1〜5に示された実施例を参照して、本発明を詳細に説明する。 The present invention will be described in detail with reference to the examples shown in FIGS.

摩擦クラッチの作動のためのアクチュエータ移動距離に対するハイドロスタティック区間の圧力のグラフである。It is a graph of pressure hydro Static interval for actuator travel distance for the actuation of the friction clutch. ハイドロスタティックアクチュエータを備えたクラッチ装置の挟込み力剛性のモデル特性曲線と実特性曲線とを含むグラフである。It is a graph which includes the model characteristic curve and the actual characteristic curve of the pinching force rigidity of the clutch device provided with a hydrostatic actuator. 中間圧力領域における挟込み力剛性の適合を示すグラフである。It is a graph which shows the conformity of the sandwiching force rigidity in an intermediate pressure region. 高圧力領域における挟込み力剛性の適合を示すグラフである。It is a graph which shows the conformity of the sandwiching force rigidity in a high pressure region. 低圧力領域における挟込み力剛性の適合を示すグラフである。It is a graph which shows the conformity of the sandwiching force rigidity in a low pressure region.

図1は、強制閉鎖される、たとえば押付式摩擦クラッチを作動させるためにハイドロスタティックアクチュエータの圧力pによって強制されるアクチュエータ移動距離Iに対する、当該ハイドロスタティックアクチュエータのハイドロスタティック区間における圧力センサの圧力pを示すグラフ100を簡単に示す図である。サンプリング点TPまでのアクチュエータ移動距離が小さい場合、摩擦クラッチは未だ係合状態ではないので、ハイドロスタティックアクチュエータには圧力が生じていない。摩擦クラッチが係合すると、圧力pはアクチュエータ移動距離に対して実質的に比例して上昇して、摩擦クラッチに押圧力を生じさせる。このとき、アクチュエータ移動距離差ΔIにわたる圧力偏差Δpの勾配c=Δp/ΔIによって、挟込み力剛性が生じる。 FIG. 1 shows the pressure p of the pressure sensor in the hydrostatic section of the hydrostatic actuator with respect to the actuator travel distance I forced by the pressure p of the hydrostatic actuator to actuate, for example, a push-type friction clutch. It is a figure which shows the graph 100 shown simply. When the actuator movement distance to the sampling point TP is small, the friction clutch is not yet engaged, so no pressure is generated in the hydrostatic actuator. When the friction clutch is engaged, the pressure p rises substantially in proportion to the actuator movement distance, causing the friction clutch to generate a pressing force. At this time, the sandwiching force rigidity is generated by the gradient c = Δp / ΔI of the pressure deviation Δp over the actuator movement distance difference ΔI.

図2のグラフ101から分かるように、設定されたアクチュエータ移動距離Iの場合、圧力偏差Δpによって挟込み力剛性に誤差が現れる。それと同時に、図2には、挟込み力剛性のモデル特性曲線Kも示されている。挟込み力誤差の場合、圧力pの測定された値とアクチュエータ移動距離Iの測定された値とから求められる実特性曲線Kはモデル特性曲線Kから偏差し、摩擦クラッチを制御するための上位のクラッチモデルにおける誤差を回避するために適合が必要となる。 As can be seen from the graph 101 of FIG. 2, when the actuator travel distance I F which is set, an error appears in the pinch off force rigid by the pressure difference Delta] p. At the same time, FIG. 2 also shows the model characteristic curve K M of pinch off force stiffness. For pinch off power error, the actual characteristic curve K R which is determined from the measured values of the measured values and the actuator travel I of the pressure p is the deviation from the model characteristic curve K M, for controlling the friction clutch Fitting is required to avoid errors in the upper clutch model.

図3〜5のグラフ102,103,104は、挟込み力剛性を適合するための本発明のルーティンを示す。ここで部分グラフIでは、モデル特性曲線Kが交点Sにおいて実特性曲線Kと交差している。それにより生じる圧力偏差Δp,Δpから、部分グラフIIにおいて圧力偏差Δpに対する挟込み力Fの圧力差特性曲線Kが形成され、これにより、アクチュエータ移動距離Iにおける圧力偏差ごとに対応する挟込み力値が得られる。部分グラフIIIではフィードバック特性曲線Kが形成され、負の補償値を回避するため、圧力差特性曲線Kが負の値をとる場合には常に、フィードバック特性曲線Kは負の値をとる。したがって、挟込み力Fごとに圧力偏差Δpと同一の正負符号を有する別個のフィードバック係数f(r)が出力される。その際には、挟込み力補償は、挟込み力Fの各値ごとに、対応する圧力偏差Δpの値と、対応するフィードバック係数f(r)との乗算によって行われる。したがって、個々の剛性補正係数f(F)について、f(r)の正負符号とΔpの正負符号とが同一であるとの条件の下で、f(F)=f(r)×Δpとなる。部分グラフIVから、挟込み力Fと剛性補正係数f(F)との関係が明らかである。本発明の方法により、負になる場合がある剛性補正係数f(F)の形成による誤適合が回避される。剛性補正係数f(F)を用いることにより、摩擦クラッチとハイドロスタティックアクチュエータとを備えたクラッチ装置の実際の挟込み力挙動に合わせてモデル特性曲線Kが調整される。 Graphs 102, 103, 104 of FIGS. 3 to 5 show the routine of the present invention for matching the pinching force rigidity. In this case subgraph I, model characteristic curve K M intersects the actual characteristic curve K R at the intersection S. From the resulting pressure deviations Δp 1 and Δp 2 , a pressure difference characteristic curve K p of the sandwiching force F K with respect to the pressure deviation Δp is formed in the subgraph II, whereby each pressure deviation at the actuator movement distance I corresponds to each pressure deviation. The pinching force value can be obtained. Formed subgraph III Feedback characteristic curve K K is, to avoid the negative compensation value, whenever the pressure difference characteristic curve K p is a negative value, the feedback characteristic curve K K takes a negative value .. Therefore, a separate feedback coefficient f (r) having the same positive and negative signs as the pressure deviation Δp is output for each sandwiching force F K. In that case, the pinching force compensation is performed by multiplying the value of the corresponding pressure deviation Δp and the corresponding feedback coefficient f (r) for each value of the pinching force F K. Therefore, for each stiffness correction coefficient f (F K ), f (F K ) = f (r) × Δp under the condition that the positive and negative signs of f (r) and the positive and negative signs of Δp are the same. It becomes. From the subgraph IV, the relationship between the pinching force F K and the stiffness correction coefficient f (F K ) is clear. According to the method of the present invention, misfitting due to the formation of the rigidity correction coefficient f (FK), which may be negative, is avoided. The use of stiffness correction factor f (F K), the model characteristic curve K M is adjusted in accordance with the actual pinch off force behavior of the clutch device having a friction clutch and hydrostatic actuator.

100 グラフ
101 グラフ
102 グラフ
104 グラフ
挟込み力
f(r) フィードバック係数
f(F) 剛性補正係数
フィードバック特性曲線
モデル特性曲線
圧力差特性曲線
実特性曲線
I アクチュエータ移動距離
アクチュエータ移動距離
p 圧力
S 交点
TP サンプリング点
I 部分グラフ
II 部分グラフ
III 部分グラフ
IV 部分グラフ
Δp 圧力偏差
Δp 圧力偏差
Δp 圧力偏差
ΔΙ アクチュエータ移動距離差
100 graph 101 graph 102 graph 104 graph F K pinch off force f (r) feedback coefficient f (F K) the stiffness correction factor K K feedback characteristic curve K M model characteristic curve K p pressure difference characteristic curve K R actual characteristic curve I actuators Moving distance IF actuator Moving distance p Pressure S Intersection point TP Sampling point I Partial graph
II subgraph
III Subgraph
IV Subgraph Δp Pressure deviation Δp 1 Pressure deviation Δp 2 Pressure deviation ΔΙ Actuator movement distance difference

Claims (6)

ハイドロスタティッククラッチアクチュエータを用いて自動的に作動される摩擦クラッチの制御方法であって、
前記摩擦クラッチが係合しアクチュエータ移動距離(I)に対して実質的に圧力(p)が上昇する区間と定義されるハイドロスタティック区間において、圧力(p)の大きさと、前記摩擦クラッチを作動させるための、圧力に依存するアクチュエータ移動距離(I)とに依存するクラッチトルクをモデリングするモデル特性曲線(K )を用いて前記摩擦クラッチは制御されるように構成されており
前記モデル特性曲線(K )の誤差を回避するために、該モデル特性曲線(K )を、前記圧力(p)および前記アクチュエータ移動距離(I)の実データを用いて求められた実特性曲線(Kと比較して、前記モデル特性曲線(K )を調整する、制御方法において
所定のアクチュエータ移動距離に対する、前記モデル特性曲線(K )から得られる圧力と、前記実特性曲線(K )から得られる圧力との差分である圧力偏差(Δp)を求め、該圧力偏差(Δp)に対する前記摩擦クラッチの挟込み力(F )を表す圧力差特性曲線(K )を作成し、
前記圧力偏差(Δp)とフィードバック係数(f(r))とを乗じて剛性補正係数(f(F))を求め
前記圧力差特性曲線(K が負の値をとる場合には前記フィードバック係数(f(r))に負の符号を付与することを特徴とする制御方法。
Hydrostatic clutch A method of controlling a friction clutch that is automatically activated using an actuator.
In Hydro Static interval defined substantially interval pressure (p) increases the friction clutch against the engaged actuator travel distance (I), the magnitude of the pressure (p), the friction clutch for actuating the friction clutch using the model characteristic curve (K M) for modeling the clutch torque that depends on the actuator travel distance (I) which depends on the pressure are configured to be controlled,
To avoid errors of the model characteristic curve (K M), the model characteristic curve (K M), the actual characteristic obtained by using the actual data of the pressure (p) and the actuator travel distance (I) curve (K R) and by comparing said adjusted model characteristic curve (K M), the control method,
For a given actuator travel distance, determined pressure to be obtained, the pressure difference (Delta] p) which is the difference between the pressure obtained from the real characteristic curve (K R) from the model characteristic curve (K M), said pressure difference ( A pressure difference characteristic curve (K p ) representing the pinching force (F K ) of the friction clutch with respect to Δp) was created.
The rigidity correction coefficient (f ( FK )) is obtained by multiplying the pressure deviation (Δp) and the feedback coefficient (f (r)).
A control method comprising assigning a negative sign to the feedback coefficient (f (r)) when the pressure difference characteristic curve (K p ) takes a negative value.
横軸がアクチュエータ移動距離(I)、縦軸が圧力(p)であるグラフ上において、前記モデル特性曲線(K と前記実特性曲線(K )とが交わる交点(S)における圧力を、挟込み力(Fと定める、請求項1記載の制御方法。 Horizontal axis actuator travel distance (I), in the vertical axis on the graph is the pressure (p), the pressure at the intersection (S) of the the model characteristic curve (K M) and the actual characteristic curve (K R) intersects defines a pinch off force (F K), the control method according to claim 1, wherein. 前記モデル特性曲線(K )の調整の度に前記交点(S)を新規に設定する、請求項2記載の制御方法。 It said setting the intersection whenever the adjustment of the model characteristic curve (K M) and (S) to the new control method of claim 2 wherein. 前記摩擦クラッチの圧力が、前記ハイドロスタティック区間にある場合、前記交点(S)を設定する、請求項2または3記載の制御方法。 The control method according to claim 2 or 3 , wherein when the pressure of the friction clutch is in the hydrostatic section, the intersection (S) is set. 前記圧力偏差(Δp)が少なくとも1つのアクチュエータ移動距離値において閾値よりも大きい場合にのみ、前記調整を行う、請求項2から4までのいずれか1項記載の制御方法。 The control method according to any one of claims 2 to 4 , wherein the adjustment is performed only when the pressure deviation (Δp) is larger than the threshold value in at least one actuator movement distance value. 前記フィードバック係数(f(r))は、前記モデル特性曲線(K 前回の調整時の前記交点(S)における圧力偏差(Δp)と、今回の調整時の前記交点(S)における圧力偏差(Δp)の差から求められる、請求項から4までのいずれか1項記載の制御方法。 Wherein the feedback coefficient (f (r)) is the said model characteristic curve (K M) pressure deviation in the preceding the intersection of time of adjustment (S) of (Delta] p), put on the intersection at the time of this adjustment (S) that it is determined from the difference between the pressure difference (Delta] p), the control method of any one of claims 2 to 4.
JP2018517767A 2015-10-08 2016-09-26 Friction clutch control method Active JP6938483B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102015219510.4 2015-10-08
DE102015219510 2015-10-08
DE102015224393.1 2015-12-07
DE102015224393 2015-12-07
PCT/DE2016/200449 WO2017059856A1 (en) 2015-10-08 2016-09-26 Method for controlling a friction clutch

Publications (2)

Publication Number Publication Date
JP2018529906A JP2018529906A (en) 2018-10-11
JP6938483B2 true JP6938483B2 (en) 2021-09-22

Family

ID=57211219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018517767A Active JP6938483B2 (en) 2015-10-08 2016-09-26 Friction clutch control method

Country Status (4)

Country Link
JP (1) JP6938483B2 (en)
CN (1) CN108138871B (en)
DE (2) DE112016004596A5 (en)
WO (1) WO2017059856A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017100927A1 (en) * 2017-01-18 2018-07-19 Schaeffler Technologies AG & Co. KG Method for adapting a touch point of a friction clutch
DE102021119141B3 (en) * 2021-07-23 2022-10-27 Schaeffler Technologies AG & Co. KG Method for determining a touch point of a separating clutch of a hybrid module
NL2029272B1 (en) * 2021-09-29 2023-04-04 Daf Trucks Nv Clutch system for a drive system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403249A (en) * 1991-10-07 1995-04-04 Eaton Corporation Method and apparatus for robust automatic clutch control
CN100520101C (en) * 2003-10-06 2009-07-29 博格华纳公司 Multi-clutch system with blended output system for powertrain transmissions
DE102007055743A1 (en) * 2007-12-10 2009-06-18 Zf Friedrichshafen Ag Method for determining the axial wear and the counterforce increase in a lamellar switching element
US20100109214A1 (en) * 2008-11-04 2010-05-06 Gm Global Technology Operations, Inc. Assembly For Transporting Pressurized Fluid and Method of Manufacture
JP5738302B2 (en) 2009-10-29 2015-06-24 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフトSchaeffler Technologies AG & Co. KG Fluid pressure actuator
WO2011050766A1 (en) 2009-10-29 2011-05-05 Schaeffler Technologies Gmbh & Co. Kg Hydrostatic clutch actuator
JP5301686B2 (en) * 2010-02-05 2013-09-25 本田技研工業株式会社 Clutch control device
DE102010014198A1 (en) * 2010-04-08 2011-10-13 Schaeffler Technologies Gmbh & Co. Kg Method for controlling a double clutch
WO2012000472A1 (en) * 2010-06-28 2012-01-05 Schaeffler Technologies Gmbh & Co. Kg Hydrostatic actuator and method for controlling a hydrostatic actuator
DE102011080716B4 (en) * 2010-08-30 2021-02-25 Schaeffler Technologies AG & Co. KG Method for controlling a friction clutch
DE102012204929A1 (en) 2011-04-15 2012-10-18 Schaeffler Technologies AG & Co. KG Procedure for commissioning a clutch
DE112012001718B4 (en) * 2011-04-15 2021-11-04 Schaeffler Technologies AG & Co. KG Method for adapting parameters of a clutch
JP2013093018A (en) * 2011-09-29 2013-05-16 Romax Technology Ltd Rotary machine
CN104067017B (en) * 2012-02-22 2016-08-24 舍弗勒技术股份两合公司 For determining and/or compensate the method for crosstalk effect of dual-clutch transmission
DE102013204831A1 (en) * 2012-04-13 2013-10-17 Schaeffler Technologies AG & Co. KG Method for determining a preload force characteristic of a clutch
DE102013207263A1 (en) * 2012-05-08 2013-11-14 Schaeffler Technologies AG & Co. KG Method for adjusting clutch characteristic curve of automatically actuated friction clutch, involves determining touch point change of friction clutch in operating phases before pressure- or volume compensation
WO2014023304A1 (en) 2012-08-06 2014-02-13 Schaeffler Technologies AG & Co. KG Method for determining a bite point of a friction clutch device
DE102013201215A1 (en) 2013-01-25 2014-07-31 Schaeffler Technologies Gmbh & Co. Kg Method for determining operating parameters of friction clutch device for drivetrain of motor vehicle, involves defining contact points with respect to operation of clutch device in open and closed positions
DE102015215753A1 (en) 2015-08-18 2017-02-23 Zf Friedrichshafen Ag Method and electronic control unit for controlling a multi-speed automatic transmission for a motor vehicle

Also Published As

Publication number Publication date
DE102016218428A1 (en) 2017-04-13
JP2018529906A (en) 2018-10-11
CN108138871B (en) 2020-07-07
CN108138871A (en) 2018-06-08
DE112016004596A5 (en) 2018-06-14
WO2017059856A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
KR102651961B1 (en) Clutch control method for vehicle
JP6938483B2 (en) Friction clutch control method
JP5449552B2 (en) Method and control device for calibration of an automatic steering parking assistance device
CN102213281B (en) The bearing calibration of coupling actuator characteristic curve
JP2008519220A5 (en)
CA2568220A1 (en) Control device for vehicle
JP6793550B2 (en) Modeling friction in power steering using point dispersion
JP6104468B2 (en) Automobile haptic accelerator pedal with elastically coupled actuator, method for closed-loop control of the haptic accelerator pedal, and closed-loop control unit
US10801562B2 (en) Clutch control method
JP6545988B2 (en) Electric brake device
JP5069742B2 (en) Apparatus and method for controlling brake pressure by pressure limiting valve
CN102883928A (en) Brake force booster and method for operating the same
US20210131509A1 (en) Clutch Control Reference Value Setting Method
JP2020514156A (en) Method for amplifying braking force in an electronically slip-controllable vehicle braking system and electronically slip-controllable vehicle braking system
KR20150088195A (en) Method for positioning a clutch actuator of a motor vehicle
US11639159B2 (en) Method and device for operating an automated parking brake
JP2013254448A (en) Positioner
JP2017043300A (en) Abnormality detection device
JP7050624B2 (en) Motor control device and electric brake device equipped with it
KR101946705B1 (en) Electro-Hydraulic Servo System and Control Method thereof
US20130248742A1 (en) Digital Control Method for a Hydraulic ON/OFF Valve
US10272893B2 (en) Sensor device for an electromechanical brake booster, and method for ascertaining a torque loss of an electromechanical brake booster of a braking system
CN109058323B (en) Method for calculating a setpoint position of a clutch actuator
Canuto et al. Proportional electro-hydraulic valves: From analogue to digital control
CN109195843A (en) For running method, the hydraulic braking system of hydraulic braking system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150