JP6927479B1 - Model vehicle driving control system - Google Patents

Model vehicle driving control system Download PDF

Info

Publication number
JP6927479B1
JP6927479B1 JP2021004717A JP2021004717A JP6927479B1 JP 6927479 B1 JP6927479 B1 JP 6927479B1 JP 2021004717 A JP2021004717 A JP 2021004717A JP 2021004717 A JP2021004717 A JP 2021004717A JP 6927479 B1 JP6927479 B1 JP 6927479B1
Authority
JP
Japan
Prior art keywords
light emitting
unit
model vehicle
illuminance
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021004717A
Other languages
Japanese (ja)
Other versions
JP2022109420A (en
Inventor
一彦 柴田
一彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAB SAS
Original Assignee
LAB SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAB SAS filed Critical LAB SAS
Priority to JP2021004717A priority Critical patent/JP6927479B1/en
Application granted granted Critical
Publication of JP6927479B1 publication Critical patent/JP6927479B1/en
Publication of JP2022109420A publication Critical patent/JP2022109420A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toys (AREA)

Abstract

【課題】簡易な構成で、模型車両の走行、停止、速度制御を可能とする模型車両の走行制御システムを提供することである。【解決手段】 模型車両の走行制御システム10は、走行路20と、走行路20を走行する模型車両30と、走行路20の側に配置された走行許可装置60を備えている。走行許可装置60は、走行路に配置される発光部64と、遮蔽物検知部66を備えて、発光部64の発光状態と非発光状態を制御する。模型車両30は、電源32と走行停止制御装置40と駆動モータ44を備え、走行停止制御装置40装置の照度測定部42が測定した照度に応じて、駆動モータ44への電源32の供給を制御する。【選択図】図1PROBLEM TO BE SOLVED: To provide a travel control system for a model vehicle capable of traveling, stopping and speed control of the model vehicle with a simple configuration. A travel control system 10 for a model vehicle includes a travel path 20, a model vehicle 30 traveling on the travel path 20, and a travel permission device 60 arranged on the side of the travel path 20. The travel permission device 60 includes a light emitting unit 64 arranged on the traveling path and a shield detecting unit 66 to control the light emitting state and the non-light emitting state of the light emitting unit 64. The model vehicle 30 includes a power supply 32, a travel stop control device 40, and a drive motor 44, and controls the supply of the power supply 32 to the drive motor 44 according to the illuminance measured by the illuminance measuring unit 42 of the travel stop control device 40 device. do. [Selection diagram] Fig. 1

Description

この発明は模型車両の走行制御システムに関する。さらに詳しくは、模型車両の走行、停止、及び速度の制御をするシステムに関する。 The present invention relates to a travel control system for a model vehicle. More specifically, the present invention relates to a system for controlling the running, stopping, and speed of a model vehicle.

プラスチック製の走行路で鉄道模型車両を走行させる簡易な鉄道模型システムでは、レール部品を接続して周回路を形成した走行路の上を、電源スイッチを入れると車輪が回転する自走式の鉄道模型車両を自動走行させて遊ぶことができる。そして、レール部品には直線レール、曲線レール、ポイントレール等が用意されており、これらの組み合わせにより多様な形態の走行路を形成することができる。
また、プラスチック製の並列された走行路で自動車模型車両を走行させる簡易なサーキット模型システムでは、電源スイッチを入れると車輪が回転する自走式の自動車模型車両を、並列する走行路に投入して競走させて遊ぶことができる。
In a simple model railroad system that runs a model railroad vehicle on a plastic runway, a self-propelled railroad whose wheels rotate when the power switch is turned on on the runway where rail parts are connected to form a circuit. You can play with the model vehicle running automatically. Straight rails, curved rails, point rails, and the like are prepared as rail parts, and various forms of travel paths can be formed by combining these rail parts.
In addition, in a simple circuit model system that runs a car model vehicle on a parallel running path made of plastic, a self-propelled car model vehicle whose wheels rotate when the power switch is turned on is put into the parallel running path. You can race and play.

しかし、上記の簡易な鉄道模型システムでは、鉄道模型車両は電源スイッチを入れた後は一定の速度で走行を続けるのみであり、停止させる手段としては電源スイッチを切ることしかないため、走行方法については遊び方のバリエーションが少ない。そして、同一の走行路で複数の鉄道模型車両を走行させると、走行速度の違いにより、衝突してしまうことがある。 However, in the above-mentioned simple model railroad system, the model railroad vehicle only continues to run at a constant speed after the power switch is turned on, and the only way to stop it is to turn off the power switch. There are few variations in how to play. Then, when a plurality of model railroad vehicles are run on the same running path, they may collide due to the difference in running speed.

そこで、鉄道模型車両の停止を可能とするために、特殊なレール部品として、鉄道模型車両の走行と停止を制御できる停止レールが提案されている。停止レールは、直線レールの幅方向の中央部にレバー操作等により昇降する台座部が設けられたレール部品である。そして、台座部が下降している状態では、鉄道模型車両を台座部の上を通過させ、台座部が上昇している状態では、鉄道模型車両の底部を台座部に乗り上げさせ車輪を走行路から浮き上がらせて空転させることで、鉄道模型車両を停止レール上で停止させる。そして、鉄道模型車両が停止レールで停止した状態でレバー操作等により台座部を下降させると、回転している車輪が走行路に下りて、鉄道模型車両は走行を再開する。 Therefore, in order to enable the stop of the model railroad vehicle, a stop rail capable of controlling the running and stopping of the model railroad vehicle has been proposed as a special rail component. The stop rail is a rail component in which a pedestal portion that moves up and down by lever operation or the like is provided at the center portion in the width direction of the straight rail. Then, when the pedestal portion is lowered, the model railroad vehicle is passed over the pedestal portion, and when the pedestal portion is raised, the bottom portion of the model railroad vehicle is mounted on the pedestal portion and the wheels are moved from the running path. By floating and spinning, the model railroad vehicle is stopped on the stop rail. Then, when the pedestal portion is lowered by lever operation or the like while the model railroad vehicle is stopped at the stop rail, the rotating wheels are lowered to the traveling path, and the model railway vehicle resumes traveling.

特開平7−96081号公報(特許文献1)には、自走式車両模型が通過する軌道脇に信号機を敷設し、信号機の手前の軌道にストッパ機構を設けた、自走式車両模型軌道が提案されている。この軌道では、信号機を赤に切り換えると、ストッパ機構のストッパ板が上昇し、信号機を青に切り換えるとストッパ板が下降する構成となっている。そこで、赤信号に差し掛かった自走式車両模型は、シャーシ部分がストッパ板に乗り上げて、駆動輪が非接地状態となり、赤信号の手前で停止する。そして、信号機が青の時は、ストッパ板に乗り上げることなく、青信号を通過する。これは、前述の停止レールの応用であるが、信号機の操作で、自走式車両模型の走行と停止を制御することができる。 Japanese Patent Application Laid-Open No. 7-96081 (Patent Document 1) describes a self-propelled vehicle model track in which a traffic light is laid on the side of the track through which the self-propelled vehicle model passes and a stopper mechanism is provided on the track in front of the traffic light. Proposed. In this orbit, when the traffic light is switched to red, the stopper plate of the stopper mechanism is raised, and when the traffic light is switched to blue, the stopper plate is lowered. Therefore, in the self-propelled vehicle model approaching the red light, the chassis part rides on the stopper plate, the drive wheels are in a non-grounded state, and the vehicle stops before the red light. Then, when the traffic light is blue, it passes through the green light without riding on the stopper plate. This is an application of the above-mentioned stop rail, but the running and stopping of the self-propelled vehicle model can be controlled by operating the traffic light.

ところで、鉄道模型システムには、上述のプラスチック製の走行路を自走式の鉄道模型車両を走行させる簡易な方式の他に、2本のレールに電気を流し、レールに接触する車輪から電気の供給を受ける鉄道模型車両が線路上を走行するレール給電方式のシステムがある。レール給電方式の鉄道模型システムでは、レールへの給電を制御することで鉄道模型車両の走行及び停止を制御することができる。
そして、レール給電方式の鉄道模型システムには、周回路を形成する線路を複数のセクションに分割して各セクションへの給電を制御する事により、セクション毎に、鉄道模型車両の走行及び停止を制御できるものがある。
By the way, in the model railroad system, in addition to the simple method of running a self-propelled model railroad vehicle on the above-mentioned plastic track, electricity is passed through two rails and electricity is supplied from the wheels in contact with the rails. There is a rail-powered system in which model railroad vehicles to be supplied run on railroad tracks. In the rail power supply type model railroad system, it is possible to control the running and stopping of the model railroad vehicle by controlling the power supply to the rail.
Then, in the rail power supply type model railroad system, the track forming the peripheral circuit is divided into a plurality of sections and the power supply to each section is controlled, so that the running and stopping of the model railroad vehicle is controlled for each section. There is something you can do.

特開2003−225472号公報(特許文献2)には、線路を複数のセクションに分割し、セクションの境界部分に鉄道模型車両を検出する車両センサを設置し、各セクションへの給電を制御することにより、セクション毎に鉄道模型車両の走行及び停止を制御する車両運転装置が提案されている。
特許文献2の車両運転装置では、車両センサにより鉄道模型車両の各セクションへの入出を検知して、鉄道模型車両の居るセクションを把握し、次に走行するセクションに他の鉄道模型車両が存在する場合は、次のセクションへの進入不可と判断して現在居るセクションへの給電を停止して鉄道模型車両を停止させ、次のセクションに他の鉄道模型車両が存在しなければ、現在居るセクションに給電して鉄道模型車両が次のセクションに進入する事を可能としている(特許文献2の段落[0004]の(1)、(2)参照)。
このように、特許文献2の車両運転装置では、線路上で鉄道模型車両が接近すると後続の鉄道模型車両へのレールからの給電が停止して後続の鉄道模型車両を停止させるため、衝突を回避して複数の鉄道模型車両を同一の線路上で走行させることができる。
In Japanese Patent Application Laid-Open No. 2003-225472 (Patent Document 2), a railroad track is divided into a plurality of sections, a vehicle sensor for detecting a model railroad vehicle is installed at the boundary between the sections, and power supply to each section is controlled. Has proposed a vehicle driving device that controls the running and stopping of a model railroad vehicle for each section.
In the vehicle driving device of Patent Document 2, the vehicle sensor detects the entry and exit of the model railroad vehicle to each section, the section where the model railroad vehicle is located is grasped, and another model railroad vehicle exists in the section to be driven next. In that case, it is judged that it is impossible to enter the next section, the power supply to the current section is stopped and the model railroad vehicle is stopped, and if there is no other model railroad vehicle in the next section, the current section Power is supplied to allow the model railroad vehicle to enter the next section (see paragraphs [0004] of Patent Document 2 (1) and (2)).
As described above, in the vehicle driving device of Patent Document 2, when the model railroad vehicle approaches on the railroad track, the power supply from the rail to the subsequent model railroad vehicle is stopped and the following model railroad vehicle is stopped, so that collision is avoided. Therefore, a plurality of model railroad vehicles can be run on the same track.

特開平7−96081号公報Japanese Unexamined Patent Publication No. 7-96081 特開2003−225472号公報Japanese Unexamined Patent Publication No. 2003-225472

しかしながら、特許文献2の車両運転装置では、複雑な制御用のシステムが必要となるため費用が掛かり、鉄道模型を気軽に楽しめないという不都合が生じてしまう。
また、上述の鉄道模型車両も自動車模型車両も一定の速度で走行し、減速させることができないため、走行路にカーブを設けると、カーブの部分で脱線したり、走行路から飛び出してしまうことがある。
However, the vehicle driving device of Patent Document 2 requires a complicated control system, which is costly and causes a disadvantage that the model railroad cannot be easily enjoyed.
In addition, since neither the model railroad vehicle nor the model car vehicle described above travels at a constant speed and cannot be decelerated, if a curve is provided on the travel path, the vehicle may derail at the curved portion or jump out of the travel path. be.

そこで、本発明が解決しようとする課題は、簡易な構成で、模型車両の走行、停止、速度制御を可能とする模型車両の走行制御システムを提供することである。 Therefore, an object to be solved by the present invention is to provide a travel control system for a model vehicle, which enables traveling, stopping, and speed control of the model vehicle with a simple configuration.

上記の課題を解決するため、本発明に係る模型車両の速度制御システムは次の手段をとる。
まず、本発明の第1の発明は、模型車両の走行制御システムであって、
走行路と、走行路を走行する模型車両と、走行許可装置を備え、
前記模型車両は、電源と、電源スイッチと、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記走行許可装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、遮蔽物検知部と、発光制御部を備え、
前記走行許可装置の発光制御部は、前記遮蔽物検知部が遮蔽物を検知しない時は、前記発光部を発光状態とさせ、該遮蔽物検知部が遮蔽物を検知した時は、所定の期間は該発光部を非発光状態とさせた後に該発光部を発光状態とさせ、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電源スイッチと前記駆動モータの間を電気的な接続状態とし、該照度測定部が測定した照度が該基準照度よりも高い時は、該電源スイッチと該駆動モータの間を電気的な切断状態とし、
前記走行路の、前記走行許可装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が該基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システムである。
In order to solve the above problems, the speed control system of the model vehicle according to the present invention takes the following means.
First, the first invention of the present invention is a traveling control system for a model vehicle.
Equipped with a driving path, a model vehicle traveling on the driving path, and a traveling permission device,
The model vehicle includes a power supply, a power switch, a traveling stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The travel permit device includes a power supply, a light emitting unit that is arranged on the travel path and emits visible light or infrared rays, a shield detection unit, and a light emission control unit.
The light emitting control unit of the travel permit device puts the light emitting unit into a light emitting state when the shield detecting unit does not detect a shield, and when the shield detecting unit detects a shield, a predetermined period of time. Puts the light emitting part into a non-light emitting state and then puts the light emitting part into a light emitting state.
When the illuminance measured by the illuminance measuring unit is lower than the predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power switch and the drive motor, and the illuminance. When the illuminance measured by the measuring unit is higher than the reference illuminance, the power switch and the drive motor are electrically disconnected.
When the model vehicle is placed at a position on the travel path where the light emitting unit of the travel permission device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the travel stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.

この第1の発明によれば、模型車両は、照度測定部が測定した照度が基準照度よりも低い時は、電源スイッチと駆動モータの間が電気的な接続状態となり、駆動モータが回転して、走行路を走行する。そして、模型車両は、照度測定部が測定した照度が基準照度よりも高い時は、電源スイッチと駆動モータの間が電気的な切断状態となり、駆動モータが停止して、走行路で停止する。
そして、走行許可装置の遮蔽物検知部が遮蔽物を検知しない時は、走行路に配置された発光部が発光状態となる。そして、走行許可装置の遮蔽物検知部が遮蔽物を検知した時は、走行路に配置された発光部が所定の期間は非発光状態となった後に発光状態となる。
よって、遮蔽物検知部に遮蔽物が無ければ、発光部が発光状態となるので、走行路を発光部が配置された位置まで走行してきた模型車両は、照度測定部が測定した照度が基準照度よりも高くなるため、発光部で停止する。そして、模型車両が発光部で停止した状態で遮蔽物検知部を遮蔽物で覆うと、遮蔽物検知部が遮蔽物を検知して、発光部が非発光状態となる。すると、照度測定部が測定した照度が基準照度よりも低くなるため、模型車両は走行を始める。また、模型車両が発光部の手前に来たときに、遮蔽物検知部を手などで覆って遮蔽物を検知させ、発光部を非発光状態にすれば、模型車両は停止することなく発光部を通過する。
したがって、第1の発明によれば、簡易な構成で、模型車両の走行及び停止を制御することができる。
According to the first invention, in the model vehicle, when the illuminance measured by the illuminance measuring unit is lower than the reference illuminance, the power switch and the drive motor are in an electrically connected state, and the drive motor rotates. , Drive on the road. Then, in the model vehicle, when the illuminance measured by the illuminance measuring unit is higher than the reference illuminance, the power switch and the drive motor are in an electrically disconnected state, the drive motor stops, and the model vehicle stops on the traveling path.
When the shield detection unit of the travel permission device does not detect the shield, the light emitting unit arranged on the travel path is in the light emitting state. Then, when the shield detection unit of the travel permission device detects the shield, the light emitting unit arranged on the travel path is in the non-light emitting state for a predetermined period and then in the light emitting state.
Therefore, if there is no shield in the shield detection unit, the light emitting unit will be in a light emitting state. Therefore, in the model vehicle that has traveled along the traveling path to the position where the light emitting unit is arranged, the illuminance measured by the illuminance measuring unit is the reference illuminance. Because it is higher than, it stops at the light emitting part. Then, when the shield detection unit is covered with a shield while the model vehicle is stopped at the light emitting unit, the shield detection unit detects the shield and the light emitting unit is in a non-light emitting state. Then, the illuminance measured by the illuminance measuring unit becomes lower than the reference illuminance, so that the model vehicle starts running. Further, when the model vehicle comes in front of the light emitting part, if the shield detection part is covered with a hand or the like to detect the shield and the light emitting part is put into a non-light emitting state, the model vehicle does not stop and the light emitting part is not stopped. Pass through.
Therefore, according to the first invention, it is possible to control the running and stopping of the model vehicle with a simple configuration.

次に、本発明の第2の発明は、上記第1の発明に係る模型車両の走行制御システムであって、
前記走行許可装置の遮蔽物検知部が、前記発光部から離れた位置で、前記走行路に配置され、
前記発光部は、該発光部が発光状態を継続する時、前記模型車両が該発光部で停止することができる長さを有し、他の模型車両が前記遮蔽物検知部で遮蔽物として検知された時は、該発光部で停止した該模型車両が該発光部から離脱することを特徴とする、模型車両の走行制御システムである。
Next, the second invention of the present invention is a traveling control system for a model vehicle according to the first invention.
The shield detection unit of the travel permit device is arranged on the travel path at a position away from the light emitting unit.
The light emitting unit has a length that allows the model vehicle to stop at the light emitting unit when the light emitting unit continues to emit light, and another model vehicle detects the light emitting unit as a shield by the shield detecting unit. This is a travel control system for a model vehicle, characterized in that the model vehicle stopped at the light emitting unit is separated from the light emitting unit when the light is generated.

この第2の発明により、遮蔽物検知部に遮蔽物が無く発光部が発光状態で、発光部に到達した模型車両Aの照度測定部が基準照度よりも高い照度を測定して、模型車両Aが発光部で停止しているとき、別の模型車両Bを遮蔽物検知部の手前から走行させる。ここで、模型車両Bが遮蔽物検知部に到達すると、遮蔽物検知部が模型車両Bで覆われ、遮蔽物検知部が模型車両Bを遮蔽物として検知し、発光部が非発光状態となる。すると、模型車両Aの照度測定部が測定する照度が基準照度より低くなるため、模型車両Aが走行を開始する。そこで、模型車両Aが発光部から離脱するまでの期間は発光部を非発光状態とし、その後に発光部を発光状態とする。すると、模型車両Aが離脱した後、発光状態となった発光部に到達した模型車両Bは、発光部で停止する。
そして、模型車両Aが走行路を周回して遮蔽物検知部に到達すると、発光部が非発光状態となり、発光部で停止していた模型車両Bが走行を開始する。よって、模型車両Aと模型車両Bの走行速度が違っても、衝突する事はない。また、衝突を回避するために人が模型車両の走行制御システムを操作する必要もない。
したがって、この第2の発明によれば、簡易な構成で、同一の走行路で複数の模型車両を、衝突を回避して走行させることができる。
According to this second invention, the illuminance measuring unit of the model vehicle A that has reached the light emitting unit measures the illuminance higher than the reference illuminance while the shield detecting unit has no obstacle and the light emitting unit is in a light emitting state. Is stopped at the light emitting unit, another model vehicle B is driven from the front of the obstruction detection unit. Here, when the model vehicle B reaches the shield detection unit, the shield detection unit is covered with the model vehicle B, the shield detection unit detects the model vehicle B as a shield, and the light emitting unit is in a non-light emitting state. .. Then, the illuminance measured by the illuminance measuring unit of the model vehicle A becomes lower than the reference illuminance, so that the model vehicle A starts traveling. Therefore, the light emitting portion is put into a non-light emitting state until the model vehicle A is separated from the light emitting portion, and then the light emitting portion is put into a light emitting state. Then, after the model vehicle A is separated, the model vehicle B that has reached the light emitting portion in the light emitting state stops at the light emitting portion.
Then, when the model vehicle A goes around the traveling path and reaches the shield detection unit, the light emitting unit is in a non-light emitting state, and the model vehicle B stopped at the light emitting unit starts traveling. Therefore, even if the traveling speeds of the model vehicle A and the model vehicle B are different, they do not collide. Also, it is not necessary for a person to operate the travel control system of the model vehicle in order to avoid a collision.
Therefore, according to the second invention, it is possible to run a plurality of model vehicles on the same traveling path while avoiding a collision with a simple configuration.

次に、本発明の第3の発明は、上記第2の発明に係る模型車両の走行制御システムであって、
前記走行許可装置を2つ以上備え、
各走行許可装置の遮蔽物検知部と発光部は、前記模型車両の進行方向の後方に遮蔽物検知部が配置され、進行方向の前方に該発光部が配置され、
前記走行路の、1つの走行許可装置の遮蔽物検知部が配置された位置から前記模型車両の進行方向で見て発光部が配置された位置に至る区間には、他の走行許可装置の遮蔽物検知部及び発光部のいずれも配置されないことを特徴とする、模型車両の走行制御システムである。
Next, the third invention of the present invention is a traveling control system for a model vehicle according to the second invention.
Equipped with two or more of the travel permit devices
As for the shield detection unit and the light emitting unit of each travel permission device, the shield detection unit is arranged behind the model vehicle in the traveling direction, and the light emitting unit is arranged in front of the traveling direction.
In the section of the travel path from the position where the shield detection unit of one travel permission device is arranged to the position where the light emitting unit is arranged when viewed in the traveling direction of the model vehicle, the other travel permission device is shielded. It is a travel control system for a model vehicle, characterized in that neither an object detection unit nor a light emitting unit is arranged.

この第3の発明によれば、複数の走行許可御装置の遮蔽物検知部と発光部を組として、走行路の進行方向で、走行許可装置毎に順番に並んでいる。したがって、ある遮蔽物検知部を通過する模型車両は前方の発光部に停止している別の模型車両を走行させ、発光部に到達して停止する。発光部から走行を開始した模型車両は次の遮蔽物検知部を通過するとき前方の発光部に停止している別の模型車両を走行させ、発光部に到達して停止する。これの繰り返しにより、走行許可装置の数よりも1多い台数の模型車両をリレー方式で衝突を回避して、同一の走行路を走行させることができる。
したがって、この第3の発明によれば、走行許可装置を追加して走行路に遮蔽物検知部と発光部を設置することで、衝突を回避して同一の走行路を走行できる模型車両の台数を増やすことができる。
According to the third invention, a shield detection unit and a light emitting unit of a plurality of travel permission devices are arranged in order for each travel permission device in the traveling direction of the travel path. Therefore, the model vehicle passing through a certain obstruction detection unit runs another model vehicle stopped at the light emitting unit in front, reaches the light emitting unit, and stops. When the model vehicle that starts running from the light emitting unit passes through the next shield detection unit, another model vehicle that is stopped at the light emitting unit in front is made to run, reaches the light emitting unit, and stops. By repeating this, it is possible to avoid collisions with a number of model vehicles, which is one more than the number of travel permission devices, by a relay system, and to travel on the same travel path.
Therefore, according to the third invention, the number of model vehicles capable of avoiding a collision and traveling on the same travel path by adding a travel permit device and installing a shield detection unit and a light emitting unit on the travel path. Can be increased.

次に、本発明の第4の発明は、模型車両の走行制御システムであって、
走行路と、走行路を走行する模型車両と、速度制御装置を備え、
前記模型車両は、電源と、電源スイッチと、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記速度制御装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、発光制御部を備え、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電源スイッチと前記駆動モータの間を電気的な接続状態とし、前記照度測定部が測定した照度が該基準照度よりも高い時は、該電源スイッチと該駆動モータの間を電気的な切断状態とし、
前記速度制御装置は、前記発光制御部に制御されて、前記発光部が発光状態と非発光状態を所定の時間間隔で繰り返し、
前記走行路の、前記速度制御装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システムである。
Next, the fourth invention of the present invention is a traveling control system for a model vehicle.
Equipped with a running path, a model vehicle running on the running path, and a speed control device,
The model vehicle includes a power supply, a power switch, a traveling stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The speed control device includes a power supply, a light emitting unit arranged on a traveling path and emitting visible light or infrared light, and a light emitting control unit.
When the illuminance measured by the illuminance measuring unit is lower than a predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power switch and the drive motor, and the illuminance When the illuminance measured by the measuring unit is higher than the reference illuminance, the power switch and the drive motor are electrically disconnected.
The speed control device is controlled by the light emitting control unit, and the light emitting unit repeats a light emitting state and a non-light emitting state at predetermined time intervals.
When the model vehicle is placed at a position on the traveling path where the light emitting unit of the speed control device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the traveling stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.

走行している模型車両は、駆動モータへの電源の供給を止めると、減速しながら一定の時間走行した後に停止する。また、停止している模型車両は、駆動モータに電源を供給すると、一定の時間加速した後に通常速度となる。
この第4の発明によれば、走行路で発光部に到達した模型車両は、発光部が発光状態の時は照度測定部が測定する照度が基準照度よりも高くなるため、駆動モータへの電源の供給が止められて停止に向けて減速する。そして、停止する前に発光部が非発光状態となると、照度測定部が測定する照度が基準照度よりも低くなるため、駆動モータへの電源の供給が再開されて、通常速度に向けて加速する。そして、模型車両が通常速度に達する前に発光部を発光状態にすれば、模型車両は停止に向けて減速する。
したがって、発光部の発光状態と非発光状態を一定の時間間隔で繰り返すと、発光部を走行する模型車両は速度が低下した状態で減速と加速を繰り返す。そこで、発光状態と非発光状態の短時間での繰り返しを行うことにより、模型車両は速度の変化の目立たない速度が低下した状態で、発光部を走行することができる。
したがって、この第4の発明によれば、簡易な構成で、模型車両の走行速度を制御することができる。
When the power supply to the drive motor is stopped, the running model vehicle stops after running for a certain period of time while decelerating. Further, when the power is supplied to the drive motor, the stopped model vehicle accelerates for a certain period of time and then reaches the normal speed.
According to the fourth invention, in the model vehicle that has reached the light emitting unit on the traveling path, the illuminance measured by the illuminance measuring unit is higher than the reference illuminance when the light emitting unit is in the light emitting state, so that the power supply to the drive motor is supplied. Supply is stopped and decelerates toward the stop. If the light emitting unit is in a non-light emitting state before stopping, the illuminance measured by the illuminance measuring unit becomes lower than the reference illuminance, so that the power supply to the drive motor is restarted and the vehicle accelerates toward the normal speed. .. Then, if the light emitting portion is put into a light emitting state before the model vehicle reaches the normal speed, the model vehicle decelerates toward a stop.
Therefore, when the light emitting state and the non-light emitting state of the light emitting unit are repeated at regular time intervals, the model vehicle traveling on the light emitting unit repeats deceleration and acceleration in a state where the speed is reduced. Therefore, by repeating the light emitting state and the non-light emitting state in a short time, the model vehicle can travel in the light emitting unit in a state where the speed change is inconspicuous and the speed is reduced.
Therefore, according to the fourth invention, the traveling speed of the model vehicle can be controlled with a simple configuration.

次に、本発明の第5の発明は、模型車両の走行制御システムであって、
走行路と、走行路を走行する模型車両と、停止指示装置を備え、
前記模型車両は、電源と、電源スイッチと、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記停止指示装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、遮蔽物検知部と、発光制御部を備え、
前記停止指示装置の発光制御部は、前記遮蔽物検知部が遮蔽物を検知しない時は、前記発光部を非発光状態とさせ、前記遮蔽物検知部が遮蔽物を検知した時は、所定の期間は該発光部を発光状態とさせた後に該発光部を非発光状態とさせ、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電源スイッチと前記駆動モータの間を電気的な接続状態とし、該照度測定部が測定した照度が該基準照度よりも高い時は、該電源スイッチと該駆動モータの間を電気的な切断状態とし、
前記走行路の、前記停止指示装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が該基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システムである。
Next, the fifth invention of the present invention is a traveling control system for a model vehicle.
Equipped with a driving path, a model vehicle traveling on the driving path, and a stop instruction device,
The model vehicle includes a power supply, a power switch, a traveling stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The stop instruction device includes a power supply, a light emitting unit that is arranged on a traveling path and emits visible light or infrared rays, a shield detection unit, and a light emission control unit.
The light emitting control unit of the stop instruction device puts the light emitting unit in a non-light emitting state when the shield detecting unit does not detect a shield, and determines a predetermined light when the shield detecting unit detects a shield. During the period, the light emitting part is put into a light emitting state, and then the light emitting part is made into a non-light emitting state.
When the illuminance measured by the illuminance measuring unit is lower than the predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power switch and the drive motor, and the illuminance. When the illuminance measured by the measuring unit is higher than the reference illuminance, the power switch and the drive motor are electrically disconnected.
When the model vehicle is placed at a position on the travel path where the light emitting unit of the stop instruction device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the traveling stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.

この第5の発明の模型車両は第1の発明の模型車両と同様に、発光部が発光状態の時は発光部で停止し、発光部が非発光状態の時は発光部を通過する。そして、遮蔽物検知部が遮蔽物を検知しない時は発光部が非発光状態となり、遮蔽物検知部が遮蔽物を検知した時は、所定の期間は発光部を発光状態とした後に発光部が非発光状態となる。
よって、遮蔽物検知部に遮蔽物が無ければ発光部が非発光状態となるので、模型車両は発光部を通過する。そして、模型車両が発光部まで走行してきたときに遮蔽物検知部を手などで覆って遮蔽物として検知させ、発光部を発光状態にすれば、模型車両は発光部で停止する。そして、所定の期間を経過すれば、発光部が非発光状態となり、模型車両は走行を再開する。
したがって、第5の発明によれば、簡易な構成で、模型車両の走行及び停止を制御することができる。
Like the model vehicle of the first invention, the model vehicle of the fifth invention stops at the light emitting unit when the light emitting unit is in the light emitting state, and passes through the light emitting unit when the light emitting unit is in the non-light emitting state. When the shield detection unit does not detect a shield, the light emitting unit is in a non-light emitting state, and when the shield detection unit detects a shield, the light emitting unit is in a light emitting state for a predetermined period and then the light emitting unit is in a light emitting state. It becomes a non-luminous state.
Therefore, if there is no shield in the shield detection unit, the light emitting unit is in the non-light emitting state, and the model vehicle passes through the light emitting unit. Then, when the model vehicle travels to the light emitting portion, the shield detecting portion is covered with a hand or the like to detect it as a shield, and the light emitting portion is put into a light emitting state, the model vehicle stops at the light emitting portion. Then, after a predetermined period of time elapses, the light emitting unit is in a non-light emitting state, and the model vehicle resumes running.
Therefore, according to the fifth invention, it is possible to control the running and stopping of the model vehicle with a simple configuration.

次に、本発明の第6の発明は、上記第5の発明に係る模型車両の走行制御システムであって、
前記停止指示装置は、電源と、第1発光部と、第1遮蔽物検知部と、第2発光部と、第2遮蔽物検知部と、発光制御部を備え、
前記走行路は第1進入路と第2進入路が交差する交差部を有しており、
前記第1進入路の前記交差部の手前に前記第2発光部が配置され、該第2発光部の模型車両の進行方向の後方に前記第1遮蔽物検知部が配置され、
前記第2進入路の前記交差部の手前に前記第1発光部が配置され、該第1発光部の模型車両の進行方向の後方に前記第2遮蔽物検知部が配置され、
前記発光制御部は、前記第1進入路に配置された前記第1遮蔽物検知部が前記模型車両を遮蔽物として検知した時は、該模型車両の検知から該模型車両が前記交差部を通過するまでの期間を第1進入路通過期間として前記第1発光部を発光状態とさせ、該第1進入路通過期間の経過後に該第1発光部を非発光状態とさせ、
前記発光制御部は、前記第1進入路通過期間の経過中に前記第2進入路に配置された前記第2遮蔽物検知部が他の模型車両を遮蔽物として検知した時は、前記第1進入路通過期間の経過後に前記第2発光部を発光状態とさせ、他の模型車両が前記交差部を通過後に該第2発光部を非発光状態とさせ、
前記発光制御部は、前記第2進入路に配置された前記第2遮蔽物検知部が前記模型車両を遮蔽物として検知した時は、該模型車両の検知から該模型車両が前記交差部を通過するまでの期間を第2進入路通過期間として前記第2発光部を発光状態とさせ、該第2進入路通過期間の経過後に該第2発光部を非発光状態とさせ、
前記発光制御部は、前記第2進入路通過期間の経過中に前記第1進入路に配置された前記第1遮蔽物検知部が他の模型車両を遮蔽物として検知した時は、前記第2進入路通過期間の経過後に前記第1発光部を発光状態とさせ、他の模型車両が前記交差部を通過後に該第1発光部を非発光状態とさせることを特徴とする、模型車両の走行制御システムである。
Next, the sixth invention of the present invention is a traveling control system for a model vehicle according to the fifth invention.
The stop instruction device includes a power supply, a first light emitting unit, a first obstruction detection unit, a second light emitting unit, a second obstruction detection unit, and a light emission control unit.
The traveling road has an intersection where the first approach road and the second approach road intersect.
The second light emitting unit is arranged in front of the intersection of the first approach road, and the first shield detecting unit is arranged behind the model vehicle of the second light emitting unit in the traveling direction.
The first light emitting unit is arranged in front of the intersection of the second approach road, and the second shield detecting unit is arranged behind the model vehicle of the first light emitting unit in the traveling direction.
When the first shield detection unit arranged on the first approach path detects the model vehicle as a shield, the light emission control unit detects the model vehicle and the model vehicle passes through the intersection. The first light emitting unit is put into a light emitting state, and the first light emitting part is put into a non-light emitting state after the elapse of the first approach road passing period.
When the second obstacle detection unit arranged on the second approach road detects another model vehicle as a shield during the elapse of the first approach road passage period, the light emission control unit causes the first approach. After the passage period of the approach road has elapsed, the second light emitting unit is put into a light emitting state, and after another model vehicle has passed the intersection, the second light emitting part is put into a non-light emitting state.
When the second obstacle detection unit arranged on the second approach path detects the model vehicle as a shield, the light emission control unit detects the model vehicle and the model vehicle passes through the intersection. The second light emitting unit is put into a light emitting state, and the second light emitting part is put into a non-light emitting state after the elapse of the second approach road passing period.
When the first shield detection unit arranged on the first approach road detects another model vehicle as a shield during the elapse of the second approach road passage period, the light emission control unit performs the second. Traveling of the model vehicle, characterized in that the first light emitting portion is put into a light emitting state after the lapse of the approach road passage period, and the first light emitting portion is put into a non-light emitting state after the other model vehicle passes through the intersection. It is a control system.

この第6の発明によれば、第1進入路から模型車両が交差部に進入するとき、第1進入路に配置された第1遮蔽物検知部が模型車両を遮蔽物として検知してから模型車両が交差部を通過するまでの期間(第1進入路通過期間)は、第2進入路の交差部の手前に配置された第1発光部が発光状態となり、第2進入路からの他の模型車両の進入を抑止するので、模型車両は他の模型車両と衝突することなく交差部を通過できる。
そして、第1進入路通過期間の経過中に第2進入路に配置された第2遮蔽物検知部が他の模型車両を遮蔽物として検知した時は、第1進入路通過期間の経過中は第1進入路に配置された第2発光部は非発光状態のままなので、模型車両は第2発光部で停止することなく交差部を通過できる。
そして、第1進入路通過期間が過ぎると、第2進入路に配置された第1発光部が非発光状態となり走行可能となって、第1進入路に配置された第2発光部が発光状態となるので、他の模型車両は衝突を回避して交差部を通過することが出来る。そして、他の模型車両が交差部を通過後は第2発光部が非発光状態となるので、第1進入路から交差部への進入が可能となる。
先に第2進入路から模型車両が進入する場合も同様の制御により、交差部での衝突が回避される。
したがって、第6の発明によれば、簡易な構成で、走行路の交差部で模型車両の走行及び停止を制御し衝突を回避して、交差部を通過させることができる。
According to the sixth invention, when the model vehicle enters the intersection from the first approach road, the first shield detection unit arranged on the first approach road detects the model vehicle as a shield and then the model. During the period until the vehicle passes the intersection (first approach road passage period), the first light emitting unit arranged in front of the intersection of the second approach road is in a light emitting state, and other light emitting parts from the second approach road are emitted. Since the model vehicle is prevented from entering, the model vehicle can pass through the intersection without colliding with other model vehicles.
Then, when the second obstruction detection unit arranged on the second approach road detects another model vehicle as a shield during the elapse of the first approach road passage period, the first approach road passage period elapses. Since the second light emitting portion arranged on the first approach road remains in the non-light emitting state, the model vehicle can pass through the intersection without stopping at the second light emitting portion.
Then, after the passage period of the first approach road has passed, the first light emitting unit arranged in the second approach road becomes non-light emitting state and can run, and the second light emitting unit arranged in the first approach road is in a light emitting state. Therefore, other model vehicles can avoid collisions and pass through intersections. Then, after the other model vehicle passes through the intersection, the second light emitting portion is in a non-light emitting state, so that it is possible to enter the intersection from the first approach road.
When the model vehicle enters from the second approach road first, the same control is used to avoid a collision at the intersection.
Therefore, according to the sixth invention, it is possible to control the running and stopping of the model vehicle at the intersection of the traveling path to avoid the collision and pass the intersection with a simple configuration.

次に、本発明の第7の発明は、模型車両の走行制御システムであって、
通電されるレールが敷設された走行路と、走行路を走行する模型車両と、走行許可装置を備え、
前記模型車両は、レールから電気を取得する電力取得部と、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記走行許可装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、遮蔽物検知部と、発光制御部を備え、
前記走行許可装置の発光制御部は、前記遮蔽物検知部が遮蔽物を検知しない時は、前記発光部を発光状態とさせ、該遮蔽物検知部が遮蔽物を検知した時は、所定の期間は該発光部を非発光状態とさせた後に該発光部を発光状態とさせ、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電力取得部と前記駆動モータの間を電気的な接続状態とし、該照度測定部が測定した照度が該基準照度よりも高い時は、該電力取得部と該駆動モータの間を電気的な切断状態とし、
前記走行路の、前記走行許可装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システムである。
Next, the seventh invention of the present invention is a traveling control system for a model vehicle.
It is equipped with a running path on which rails to be energized are laid, a model vehicle running on the running path, and a running permit device.
The model vehicle includes a power acquisition unit that acquires electricity from rails, a travel stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The travel permit device includes a power supply, a light emitting unit that is arranged on the travel path and emits visible light or infrared rays, a shield detection unit, and a light emission control unit.
The light emitting control unit of the travel permit device puts the light emitting unit into a light emitting state when the shield detecting unit does not detect a shield, and when the shield detecting unit detects a shield, a predetermined period of time. Puts the light emitting part into a non-light emitting state and then puts the light emitting part into a light emitting state.
When the illuminance measured by the illuminance measuring unit is lower than a predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power acquisition unit and the drive motor. When the illuminance measured by the illuminance measuring unit is higher than the reference illuminance, the power acquisition unit and the drive motor are electrically disconnected.
When the model vehicle is placed at a position on the travel path where the light emitting unit of the travel permission device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the travel stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.

この第7の発明は、模型車両を駆動する電力を走行路に敷設され通電されるレールから取得することを除いて、上述の第1の発明と構成が共通するので、第1の発明と同様の効果が得られる。
したがって、この第7の発明によれば、簡易な構成で、模型車両の走行及び停止を制御することができる。
This seventh invention is the same as the first invention because it has the same configuration as the first invention described above, except that the electric power for driving the model vehicle is obtained from the rail laid on the traveling path and energized. The effect of is obtained.
Therefore, according to the seventh invention, it is possible to control the running and stopping of the model vehicle with a simple configuration.

次に、本発明の第8の発明は、上記第7の発明に係る模型車両の走行制御システムであって、
前記走行許可装置の遮蔽物検知部が、前記発光部から離れた位置で、前記走行路に配置され、
前記発光部は、該発光部が発光状態を継続する時、前記模型車両が該発光部で停止することができる長さを有し、他の模型車両が前記遮蔽物検知部で遮蔽物として検知された時は、該発光部で停止した該模型車両が該発光部から離脱することを特徴とする、模型車両の走行制御システムである。
Next, the eighth invention of the present invention is a traveling control system for a model vehicle according to the seventh invention.
The shield detection unit of the travel permit device is arranged on the travel path at a position away from the light emitting unit.
The light emitting unit has a length that allows the model vehicle to stop at the light emitting unit when the light emitting unit continues to emit light, and another model vehicle detects the light emitting unit as a shield by the shield detecting unit. This is a travel control system for a model vehicle, characterized in that the model vehicle stopped at the light emitting unit is separated from the light emitting unit when the light is generated.

この第8の発明は、模型車両を駆動する電力を走行路に敷設され通電されるレールから取得することを除いて、上述の第2の発明と構成が共通するので、第2の発明と同様の効果が得られる。
したがって、この第8の発明によれば、簡易な構成で、同一の走行路で複数の模型車両を、衝突を回避して走行させることができる。
This eighth invention is the same as the second invention because it has the same configuration as the second invention described above, except that the electric power for driving the model vehicle is obtained from the rail laid on the traveling path and energized. The effect of is obtained.
Therefore, according to the eighth invention, it is possible to run a plurality of model vehicles on the same traveling path while avoiding a collision with a simple configuration.

次に、本発明の第9の発明は、模型車両の走行制御システムであって、
通電されるレールが敷設された走行路と、走行路を走行する模型車両と、速度制御装置を備え、
前記模型車両は、レールから電力を取得する電力取得部と、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記速度制御装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、発光制御部を備え、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電力取得部と前記駆動モータの間を電気的な接続状態とし、前記照度測定部が測定した照度が該基準照度よりも高い時は、該電力取得部と該駆動モータの間を電気的な切断状態とし、
前記速度制御装置は、前記発光制御部に制御されて、前記発光部が発光状態と非発光状態を所定の時間間隔で繰り返し、
前記走行路の、前記速度制御装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システムである。
Next, the ninth invention of the present invention is a traveling control system for a model vehicle.
It is equipped with a running path on which rails to be energized are laid, a model vehicle running on the running path, and a speed control device.
The model vehicle includes a power acquisition unit that acquires electric power from a rail, a running stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The speed control device includes a power supply, a light emitting unit arranged on a traveling path and emitting visible light or infrared light, and a light emitting control unit.
When the illuminance measured by the illuminance measuring unit is lower than a predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power acquisition unit and the drive motor, and the above-mentioned When the illuminance measured by the illuminance measuring unit is higher than the reference illuminance, the power acquisition unit and the drive motor are electrically disconnected.
The speed control device is controlled by the light emitting control unit, and the light emitting unit repeats a light emitting state and a non-light emitting state at predetermined time intervals.
When the model vehicle is placed at a position on the traveling path where the light emitting unit of the speed control device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the traveling stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.

この第9の発明は、模型車両を駆動する電力を走行路に敷設され通電されるレールから取得することを除いて、上述の第4の発明と構成が共通するので、第4の発明と同様の効果が得られる。
したがって、この第9の発明によれば、レール給電方式の模型車両の走行制御システムにおいても、簡易な構成で、模型車両の走行速度を制御することができる。
The ninth invention is the same as the fourth invention because it has the same configuration as the fourth invention described above, except that the electric power for driving the model vehicle is obtained from the rail laid on the traveling path and energized. The effect of is obtained.
Therefore, according to the ninth invention, the traveling speed of the model vehicle can be controlled with a simple configuration even in the traveling control system of the model vehicle of the rail power feeding system.

上述の本発明の各発明によれば、次の効果が得られる。
まず、上述の第1の発明によれば、簡易な構成で、模型車両の走行及び停止を制御することができる。
次に上述の第2の発明によれば、簡易な構成で、同一の走行路で複数の模型車両を、衝突を回避して走行させることができる。
次に上述の第3の発明によれば、走行許可装置を追加して走行路に遮蔽物検知部と発光部を設置することで、衝突を回避して同一の走行路を走行できる模型車両の台数を増やすことができる。
次に上述の第4の発明によれば、簡易な構成で、模型車両の走行速度を制御することができる。
次に上述の第5の発明によれば、簡易な構成で、模型車両の走行及び停止を制御することができる。
次に上述の第6の発明によれば、簡易な構成で、走行路の交差部で模型車両の走行及び停止を制御し衝突を回避して、交差部を通過させることができる。
次に上述の第7の発明によれば、レール給電方式の場合も、簡易な構成で、模型車両の走行及び停止を制御することができる。
次に上述の第8の発明によれば、レール給電方式の場合も、簡易な構成で、同一の走行路で複数の模型車両を、衝突を回避して走行させることができる。
次に上述の第9の発明によれば、レール給電方式の場合も、簡易な構成で、模型車両の走行速度を制御することができる。
According to each invention of the present invention described above, the following effects can be obtained.
First, according to the first invention described above, it is possible to control the running and stopping of the model vehicle with a simple configuration.
Next, according to the second invention described above, it is possible to run a plurality of model vehicles on the same traveling path while avoiding a collision with a simple configuration.
Next, according to the third invention described above, a model vehicle capable of avoiding a collision and traveling on the same travel path by adding a travel permit device and installing a shield detection unit and a light emitting unit on the travel path. The number can be increased.
Next, according to the fourth invention described above, the traveling speed of the model vehicle can be controlled with a simple configuration.
Next, according to the fifth invention described above, it is possible to control the running and stopping of the model vehicle with a simple configuration.
Next, according to the sixth invention described above, it is possible to control the running and stopping of the model vehicle at the intersection of the traveling path to avoid a collision and pass the intersection with a simple configuration.
Next, according to the seventh invention described above, even in the case of the rail power feeding system, it is possible to control the running and stopping of the model vehicle with a simple configuration.
Next, according to the eighth invention described above, even in the case of the rail power feeding system, it is possible to run a plurality of model vehicles on the same traveling path while avoiding collisions with a simple configuration.
Next, according to the ninth invention described above, even in the case of the rail power feeding system, the traveling speed of the model vehicle can be controlled with a simple configuration.

実施例1における模型車両の走行制御システムの全体構成図である。FIG. 5 is an overall configuration diagram of a travel control system for a model vehicle according to the first embodiment. 実施例1の走行許可装置の構成図である。It is a block diagram of the travel permission device of Example 1. FIG. 実施例1の走行停止制御装置の構成図である。It is a block diagram of the traveling stop control device of Example 1. FIG. 実施例2における模型車両の走行制御システムの全体構成図である。It is an overall block diagram of the travel control system of the model vehicle in Example 2. FIG. 実施例3における模型車両の走行制御システムの全体構成図である。It is an overall block diagram of the travel control system of the model vehicle in Example 3. FIG. 実施例3の速度制御装置の構成図であるIt is a block diagram of the speed control device of Example 3. 実施例3の速度制御のタイムチャートである。It is a time chart of speed control of Example 3. 実施例4における模型車両の走行制御システムの全体構成図である。It is an overall block diagram of the travel control system of the model vehicle in Example 4. FIG. 実施例4の停止指示装置の構成図である。It is a block diagram of the stop instruction device of Example 4. 実施例5における模型車両の走行制御システムの全体構成図である。FIG. 5 is an overall configuration diagram of a travel control system for a model vehicle according to a fifth embodiment.

以下、本発明を実施するための形態について実施例にしたがって説明する。 Hereinafter, embodiments for carrying out the present invention will be described according to examples.

[実施例1の構成]
図1に本発明の実施例1における模型車両の走行制御システム10の全体構成図を示す。模型車両の走行制御システム10は、走行路20と、走行路20を走行する模型車両30と、走行路20の側に配置された走行許可装置60を備えている。
走行路20は、プラスチック製のレール部材を接続して1つの周回路を形成したものであり、模型車両30は鉄道車両の形態をした自走式の玩具である。
模型車両30は、電源32と電源スイッチ34と走行停止制御装置40と駆動モータ44と車輪46を備えており、電源スイッチ34の手動操作により、駆動モータ44の側への電源32の接続及び切断を制御し、駆動モータ44により車輪46を回転させて模型車両30を走行させる構造となっている。そして、走行停止制御装置40は電源スイッチ34と駆動モータ44の間で、電源スイッチ34から駆動モータ44への電力の供給を制御する機能を有する。走行停止制御装置40の動作に必要な電力は電源32から電源スイッチ34を経由して供給される。なお、電源32として単3型乾電池を使用している。
走行許可装置60は、電源62と可視光を発する発光部64と遮蔽物検知部66と発光制御部70を備えており、発光部64は走行路20に配置され、遮蔽物検知部66は発光部64から離れた位置で、走行路20に配置されている。そして、電源62から、発光部64、遮蔽物検知部66及び発光制御部70の動作に必要な電力が供給される。電源62として単3型乾電池を4個使用している。
なお、昼間の室内において模型車両の走行制御システム10で遊ぶためには、発光部64を室内にて太陽光でできる影よりも明るく光らせる必要があることから、電源容量を考慮し、電源62として、単1型乾電池、モバイルバッテリー、家庭用AC電源のアダプター等を使用しても良い。
[Structure of Example 1]
FIG. 1 shows an overall configuration diagram of a travel control system 10 for a model vehicle according to a first embodiment of the present invention. The travel control system 10 of the model vehicle includes a travel path 20, a model vehicle 30 traveling on the travel path 20, and a travel permission device 60 arranged on the side of the travel path 20.
The runway 20 is formed by connecting plastic rail members to form one circuit, and the model vehicle 30 is a self-propelled toy in the form of a railroad vehicle.
The model vehicle 30 includes a power supply 32, a power supply switch 34, a running stop control device 40, a drive motor 44, and wheels 46. By manually operating the power supply switch 34, the power supply 32 is connected to and disconnected from the drive motor 44 side. The structure is such that the model vehicle 30 is driven by rotating the wheels 46 by the drive motor 44. The travel stop control device 40 has a function of controlling the supply of electric power from the power switch 34 to the drive motor 44 between the power switch 34 and the drive motor 44. The electric power required for the operation of the traveling stop control device 40 is supplied from the power supply 32 via the power supply switch 34. An AA battery is used as the power source 32.
The travel permit device 60 includes a power supply 62, a light emitting unit 64 that emits visible light, a shield detection unit 66, and a light emission control unit 70. The light emitting unit 64 is arranged on the travel path 20, and the shield detection unit 66 emits light. It is arranged on the traveling path 20 at a position away from the portion 64. Then, the power supply 62 supplies the electric power required for the operation of the light emitting unit 64, the shield detecting unit 66, and the light emitting control unit 70. Four AA batteries are used as the power source 62.
In addition, in order to play with the travel control system 10 of the model vehicle in the room in the daytime, it is necessary to make the light emitting unit 64 shine brighter than the shadow formed by sunlight in the room. , AA battery, mobile battery, household AC power adapter, etc. may be used.

図2に走行許可装置60の詳細構成を示す。走行許可装置60の発光制御部70は、光電気変換部72と照度判定部74と制御計算部76と信号出力部78を備えている。そして、遮蔽物検知部66は入射する光の強さを測定する機能を有し、遮蔽物検知部66で測定した光の強さは、光電気変換部72で電圧に変換されて照度判定部74に出力される。そして、照度判定部74では、光電気変換部72から入力された電圧が下限照度に相当する電圧レベルより高い時は、制御計算部76にHi信号を出力し、光電気変換部72から入力された電圧が下限照度に相当する電圧レベルより低い時は、制御計算部76にLo信号を出力する。
ここで、下限照度とは、走行許可装置60の遮蔽物検知部66が遮蔽物で覆われているか、遮蔽物検知部66の近傍に光を遮る遮蔽物が存在しないかを判定するための基準となる照度である。そして、下限照度として、遮蔽物検知部66に模型車両30が存在しない時に遮蔽物検知部66で測定される周囲の環境の照度よりも低い照度であって、遮蔽物検知部66に模型車両30を置いた時に遮蔽物検知部66で測定される照度よりも高い照度が設定されている。
なお、模型車両の走行制御システム10で遊ぶ場合、室内が非常に暗く遮蔽物検知部66に遮蔽物が存在しない時に測定される照度が下限照度よりも低くなると、遮蔽物の有無が区別出来ないので、その場合は、室内をもっと明るくする必要がある。
FIG. 2 shows a detailed configuration of the travel permission device 60. The light emission control unit 70 of the travel permission device 60 includes a photoelectric conversion unit 72, an illuminance determination unit 74, a control calculation unit 76, and a signal output unit 78. The obstruction detection unit 66 has a function of measuring the intensity of incident light, and the light intensity measured by the obstruction detection unit 66 is converted into a voltage by the photoelectric conversion unit 72 to determine the illuminance. It is output to 74. Then, when the voltage input from the photoelectric conversion unit 72 is higher than the voltage level corresponding to the lower limit illuminance, the illuminance determination unit 74 outputs a Hi signal to the control calculation unit 76 and inputs it from the photoelectric conversion unit 72. When the voltage is lower than the voltage level corresponding to the lower limit illuminance, the Lo signal is output to the control calculation unit 76.
Here, the lower limit illuminance is a reference for determining whether the shield detection unit 66 of the travel permit device 60 is covered with a shield or whether there is a shield that blocks light in the vicinity of the shield detection unit 66. It is the illuminance that becomes. The lower limit illuminance is lower than the illuminance of the surrounding environment measured by the shield detection unit 66 when the model vehicle 30 does not exist in the shield detection unit 66, and the model vehicle 30 is in the shield detection unit 66. The illuminance is set to be higher than the illuminance measured by the shield detection unit 66 when the illuminance is placed.
When playing with the travel control system 10 of the model vehicle, if the interior is very dark and the illuminance measured when there is no shield in the shield detection unit 66 is lower than the lower limit illuminance, the presence or absence of the shield cannot be distinguished. Therefore, in that case, it is necessary to make the room brighter.

そして、制御計算部76は、照度判定部74からHi信号が入力された時は、信号出力部78からHi信号を発光部64に出力して発光部64を発光状態とさせ、照度判定部74からLo信号が入力された時は、所定の期間は信号出力部78からLo信号を発光部64に出力して発光部64を非発光状態とさせた後に、制御信号出力部78からHi信号を発光部64に出力して発光部64を発光状態とさせる。
したがって、走行許可装置60においては、遮蔽物検知部66に模型車両30が存在しない時は遮蔽物検知部66が測定した照度が下限照度よりも高くなり、発光部64が発光状態となる。そして、模型車両30が遮蔽物検知部66に到達した時は、遮蔽物検知部66が測定した照度が下限照度よりも低くなるので、発光部64は非発光状態となる。
Then, when the Hi signal is input from the illuminance determination unit 74, the control calculation unit 76 outputs the Hi signal from the signal output unit 78 to the light emitting unit 64 to put the light emitting unit 64 in the light emitting state, and the illuminance determination unit 74 When the Lo signal is input from the signal output unit 78, the Lo signal is output from the signal output unit 78 to the light emitting unit 64 to put the light emitting unit 64 in a non-light emitting state, and then the Hi signal is output from the control signal output unit 78. Output to the light emitting unit 64 to bring the light emitting unit 64 into a light emitting state.
Therefore, in the travel permit device 60, when the model vehicle 30 does not exist in the shield detection unit 66, the illuminance measured by the shield detection unit 66 becomes higher than the lower limit illuminance, and the light emitting unit 64 is in the light emitting state. When the model vehicle 30 reaches the shield detection unit 66, the illuminance measured by the shield detection unit 66 becomes lower than the lower limit illuminance, so that the light emitting unit 64 is in a non-light emitting state.

図3に模型車両30の走行停止制御装置40の詳細構成を示す。走行停止制御装置40は、照度測定部42と動力源制御部50から構成され、動力源制御部50は、光電気変換部52と照度判定部54と電気制御部56から構成されている。
照度測定部42は、模型車両30の走行路20に面する底面側に取り付けられている。そして、照度測定部42で測定した光の強さは、光電気変換部52で電圧に変換されて照度判定部54に出力される。そして、照度判定部54では、光電気変換部52から入力された電圧レベルが基準照度に相当する電圧レベルより低い時は、電気制御部56にLo信号を出力し、光電気変換部52から入力された電圧レベルが基準照度に相当する電圧レベルより高い時は、電気制御部56にHi信号を出力する。
ここで、基準照度とは、模型車両30を走行させるか停止させるかを判断する為の基準となる照度である。そして、基準照度として、走行許可装置60の発光部64が非発光状態で模型車両30が走行路20を周回するときに照度測定部42で測定される照度よりも高い照度であって、模型車両30を発光状態の発光部64に置いたときに照度測定部42で測定される照度よりも低い照度が設定されている。
FIG. 3 shows a detailed configuration of the travel stop control device 40 of the model vehicle 30. The traveling stop control device 40 is composed of an illuminance measuring unit 42 and a power source control unit 50, and the power source control unit 50 is composed of an optical electric conversion unit 52, an illuminance determination unit 54, and an electric control unit 56.
The illuminance measuring unit 42 is attached to the bottom surface side of the model vehicle 30 facing the travel path 20. Then, the light intensity measured by the illuminance measuring unit 42 is converted into a voltage by the photoelectric conversion unit 52 and output to the illuminance determination unit 54. Then, when the voltage level input from the photoelectric conversion unit 52 is lower than the voltage level corresponding to the reference illuminance, the illuminance determination unit 54 outputs a Lo signal to the electric control unit 56 and inputs it from the photoelectric conversion unit 52. When the voltage level is higher than the voltage level corresponding to the reference illuminance, a Hi signal is output to the electric control unit 56.
Here, the reference illuminance is an illuminance that serves as a reference for determining whether to run or stop the model vehicle 30. Then, as the reference illuminance, the illuminance is higher than the illuminance measured by the illuminance measuring unit 42 when the model vehicle 30 goes around the traveling path 20 while the light emitting unit 64 of the traveling permission device 60 is not emitting light, and the model vehicle. An illuminance lower than the illuminance measured by the illuminance measuring unit 42 when the 30 is placed on the light emitting unit 64 in the light emitting state is set.

そして、電気制御部56は、照度判定部54からLo信号が入力された時は、電源スイッチ34と駆動モータ44の間を電気的な接続状態とし、照度判定部54からHi信号が入力された時は、電源スイッチ34と駆動モータ44の間を電気的な切断状態とする。
したがって、走行路20に配置された走行許可装置60の発光部64が非発光状態の時は、模型車両30の照度測定部42が測定する照度は基準照度よりも低いため、駆動モータ44に電力が供給されるので、模型車両30は発光部64を走行する。そして、発光部64が発光状態の時は、模型車両30の照度測定部42が測定する照度は基準照度よりも高くなるので、駆動モータ44に電力の供給が止まるため、模型車両30は発光部64で停止する。
なお、電源スイッチ34と駆動モータ44の間の電気的な接続及び切断の制御は半導体素子(FET、トランジスタ、IC等)を使用して行っている。
Then, when the Lo signal is input from the illuminance determination unit 54, the electric control unit 56 puts the power switch 34 and the drive motor 44 in an electrically connected state, and the Hi signal is input from the illuminance determination unit 54. At the time, the power switch 34 and the drive motor 44 are electrically disconnected.
Therefore, when the light emitting unit 64 of the travel permission device 60 arranged on the travel path 20 is in the non-light emitting state, the illuminance measured by the illuminance measuring unit 42 of the model vehicle 30 is lower than the reference illuminance, so that the drive motor 44 is powered. Is supplied, the model vehicle 30 travels on the light emitting unit 64. When the light emitting unit 64 is in the light emitting state, the illuminance measured by the illuminance measuring unit 42 of the model vehicle 30 is higher than the reference illuminance, so that the power supply to the drive motor 44 is stopped, so that the model vehicle 30 is the light emitting unit. Stop at 64.
A semiconductor element (FET, transistor, IC, etc.) is used to control the electrical connection and disconnection between the power switch 34 and the drive motor 44.

なお、走行している模型車両30は、駆動モータ44への電力の供給を止めても停止するまでに一定の距離を走行する。本発明ではこの距離を停止距離と呼ぶこととする。したがって、発光部64で模型車両30を完全停止させるためには、発光部64の基準照度より明るい部分の長さを停止距離よりも長くする必要が有る。発光部64の長さが停止距離よりも短い場合は、模型車両30は発光部64を減速しながら走行し、模型車両30の照度測定部42が発光部64を通過した直後に、駆動モータ44への電力の供給が再開されて、加速しながら走行するため、発光部64で停止しないこととなる。
発光部64は、帯状にLEDが並んだLED部品を走行路20の方向に並べて配置しており、LED部品の数を調整することで、停止距離以上の長さを確保している。
The running model vehicle 30 travels a certain distance until it stops even if the supply of electric power to the drive motor 44 is stopped. In the present invention, this distance is referred to as a stop distance. Therefore, in order for the light emitting unit 64 to completely stop the model vehicle 30, it is necessary to make the length of the portion brighter than the reference illuminance of the light emitting unit 64 longer than the stopping distance. When the length of the light emitting unit 64 is shorter than the stopping distance, the model vehicle 30 travels while decelerating the light emitting unit 64, and immediately after the illuminance measuring unit 42 of the model vehicle 30 passes through the light emitting unit 64, the drive motor 44 Since the supply of electric power to the vehicle is resumed and the vehicle travels while accelerating, the light emitting unit 64 does not stop.
In the light emitting unit 64, LED parts in which LEDs are arranged in a band shape are arranged side by side in the direction of the traveling path 20, and the length of the stop distance or more is secured by adjusting the number of LED parts.

そして、発光状態の発光部64で停止した模型車両30は、発光部64が非発光状態となると通常速度に向けて加速しながら走行を開始するが、模型車両30の照度測定部42が発光部64を離脱するまでに一定の時間を要する。本発明ではこの時間を離脱時間とよぶこととする。したがって、発光部64で停止した模型車両30の照度測定部42を発光部64から離脱させる為には、発光部64の非発光状態を離脱時間よりも長い時間維持する必要が有る。
発光部64の長さと模型車両30の速さにより離脱時間が決まるので、発光部64の長さを短くすることにより離脱時間を短くすることができる。そして、発光部64の走行路20の進行方向側を不透明な黒色のビニールテープなどで覆うことで、発光部64を短くしたのと同様の効果が得られる。
Then, the model vehicle 30 stopped at the light emitting unit 64 in the light emitting state starts running while accelerating toward the normal speed when the light emitting unit 64 is in the non-light emitting state, but the illuminance measuring unit 42 of the model vehicle 30 starts running. It takes a certain amount of time to leave 64. In the present invention, this time is referred to as a withdrawal time. Therefore, in order to separate the illuminance measuring unit 42 of the model vehicle 30 stopped at the light emitting unit 64 from the light emitting unit 64, it is necessary to maintain the non-light emitting state of the light emitting unit 64 for a longer time than the leaving time.
Since the detachment time is determined by the length of the light emitting unit 64 and the speed of the model vehicle 30, the detachment time can be shortened by shortening the length of the light emitting unit 64. Then, by covering the traveling path side of the light emitting unit 64 in the traveling direction with an opaque black vinyl tape or the like, the same effect as shortening the light emitting unit 64 can be obtained.

[実施例1の効果]
図1を参照して実施例1の効果を説明する。遮蔽物検知部66に遮蔽物が無く発光部64が発光状態の時、走行路20を走行する模型車両30は、発光部64に到達し、照度測定部42が基準照度より高い照度を測定して停止動作を行い、発光部64の長さが模型車両30の停止距離よりも長ければ、発光部64で停止する。
次に、模型車両30と同様の構成の図示しない模型車両30xを走行路20の遮蔽物検知部66の手前から走行させる。ここで、模型車両30xが遮蔽物検知部66に到達すると、遮蔽物検知部66が模型車両30xで覆われ、遮蔽物検知部66が測定する照度が下限照度よりも低くなり、発光部64が非発光状態となる。すると、模型車両30の照度測定部42が測定する照度が基準照度より低くなるため、模型車両30が走行を開始する。ここで、発光制御部70で、発光部64を非発光状態とする期間を前述の離脱時間よりも長く設定しておけば、模型車両30が発光部64を通過した後で、発光部64は発光状態となる。そして、遮蔽物検知部66を通過して発光部64に到達した他の模型車両30xは、発光部64で停止する。
[Effect of Example 1]
The effect of the first embodiment will be described with reference to FIG. When there is no shield in the shield detection unit 66 and the light emitting unit 64 is in the light emitting state, the model vehicle 30 traveling on the traveling path 20 reaches the light emitting unit 64, and the illuminance measuring unit 42 measures the illuminance higher than the reference illuminance. If the length of the light emitting unit 64 is longer than the stopping distance of the model vehicle 30, the light emitting unit 64 stops.
Next, a model vehicle 30x (not shown) having the same configuration as the model vehicle 30 is driven from the front of the shield detection unit 66 of the travel path 20. Here, when the model vehicle 30x reaches the obstruction detection unit 66, the obstruction detection unit 66 is covered with the model vehicle 30x, the illuminance measured by the obstruction detection unit 66 becomes lower than the lower limit illuminance, and the light emitting unit 64 becomes It becomes a non-luminous state. Then, the illuminance measured by the illuminance measuring unit 42 of the model vehicle 30 becomes lower than the reference illuminance, so that the model vehicle 30 starts traveling. Here, if the light emitting control unit 70 sets the period during which the light emitting unit 64 is in the non-light emitting state longer than the above-mentioned withdrawal time, the light emitting unit 64 will move after the model vehicle 30 has passed through the light emitting unit 64. It becomes a light emitting state. Then, the other model vehicle 30x that has passed through the shield detection unit 66 and reached the light emitting unit 64 stops at the light emitting unit 64.

なお、他の模型車両30xが遮蔽物検知部66を通過する時間が前述の離脱時間よりも長い場合は、発光部64を非発光状態とする期間を遮蔽物検知部66が他の模型車両30xで遮蔽されている期間としても良い。この場合は、発光制御部70に発光部64を非発光状態とする期間を設定しておく必要がなく、発光制御部70は、遮蔽物検知部66が遮蔽物を検知している時は発光部64を非発光状態とし、遮蔽物を検知しない時は発光部64を発光状態とすればよい。
そして、模型車両30が走行路20を周回して、遮蔽物検知部66に到達すると、発光部64が非発光状態となり模型車両30xが走行を開始するので、模型車両30と模型車両30xの走行速度が違っても、衝突することはない。また、衝突を回避するために模型車両の走行制御システム10を操作する必要もない。
したがって、実施例1によれば、簡易な構成で、同一の走行路で複数の模型車両を、衝突を回避して走行させることができる。
If the time for the other model vehicle 30x to pass through the shield detection unit 66 is longer than the above-mentioned detachment time, the shield detection unit 66 sets the light emitting unit 64 in the non-light emitting state for the other model vehicle 30x. It may be a period that is shielded by. In this case, it is not necessary to set the light emitting control unit 70 for a period during which the light emitting unit 64 is in the non-light emitting state, and the light emitting control unit 70 emits light when the shield detecting unit 66 detects a shield. The light emitting unit 64 may be set to the non-light emitting state, and when the shield is not detected, the light emitting unit 64 may be set to the light emitting state.
Then, when the model vehicle 30 goes around the traveling path 20 and reaches the shield detection unit 66, the light emitting unit 64 is in a non-light emitting state and the model vehicle 30x starts traveling. Therefore, the model vehicle 30 and the model vehicle 30x travel. Even if the speed is different, there is no collision. Further, it is not necessary to operate the travel control system 10 of the model vehicle in order to avoid a collision.
Therefore, according to the first embodiment, it is possible to run a plurality of model vehicles on the same traveling path while avoiding a collision with a simple configuration.

[実施例1の変形例]
実施例1では、走行許可装置の発光部が可視光を発する構成としたが、発光部が赤外線を発する構成としても良い。このときは、模型車両の照度測定部を赤外線を測定する構成とする。
実施例1では、遮蔽物検知部を走行路に配置したが、模型車両の走行及び停止を制御するのであれば、遮蔽物検知部を配置する位置は走行路に限られず、遮蔽物検知部を発光制御部と一体の構成としてもよい。そして、遮蔽物検知部を手で覆ったり避けたりする事により、発光部の非発光状態と発光状態を切り換えることができ、模型車両を発光部を通過させたり、発光部で停止させたりする事ができる。
そして、遮蔽物検知部は、走行路の両側に赤外線発信部と赤外線受信部を設け、赤外線受信部が受信する赤外線の強さによって、遮蔽物検知部を模型車両が通過しているか否かを判断することとしても良い。
実施例1では、走行停止制御装置の動作に必要な電力は模型車両の走行に使用する電源から供給を受けたが、走行停止制御装置に専用の電源を用意しても良い。このときは、走行停止制御装置の起動用のスイッチを設ける事が好ましい。
[Modification of Example 1]
In the first embodiment, the light emitting portion of the travel permit device is configured to emit visible light, but the light emitting portion may be configured to emit infrared light. At this time, the illuminance measuring unit of the model vehicle is configured to measure infrared rays.
In the first embodiment, the obstruction detection unit is arranged on the traveling path, but if the running and stopping of the model vehicle are to be controlled, the position where the obstruction detection unit is arranged is not limited to the traveling path, and the obstruction detection unit is used. It may be integrated with the light emission control unit. Then, by covering or avoiding the shield detection unit with a hand, it is possible to switch between the non-light emitting state and the light emitting state of the light emitting unit, and the model vehicle can be passed through the light emitting unit or stopped at the light emitting unit. Can be done.
Then, the shield detection unit is provided with an infrared transmitter and an infrared receiver on both sides of the traveling path, and whether or not the model vehicle is passing through the shield detection unit is determined by the intensity of the infrared rays received by the infrared receiver. You may judge it.
In the first embodiment, the electric power required for the operation of the travel stop control device is supplied from the power supply used for traveling the model vehicle, but a dedicated power supply may be prepared for the travel stop control device. At this time, it is preferable to provide a switch for starting the traveling stop control device.

そして、走行許可装置は、遮蔽物検知部に遮蔽物を検知しない時は発光部を発光状態とし、遮蔽物検知部が遮蔽物を検知した時は、所定の期間は発光部を発光状態とした後に発光部を非発光状態にする事ができれば、実施例1に記載した構成に限られない。
例えば、遮蔽物検知部を第1検知部と第2検知部からなる構成とし、走行路の模型車両の進行方向の後方に第1検知部を、前方に第2検知部を配置する。そして、第1検知部が模型車両を検知してから第2検知部が模型車両を検知するまでの間を所定の期間として、第1検知部にて検知が完了して非検知状態となった後も発光部の非発光状態を保持し、第2検知部で模型車両が検知された時に発光部を発光状態とさせる構成が考えられる。
そして、走行停止制御装置は、発光部が発光状態の時は駆動モータへの電力の供給を停止し、発光部が非発光状態の時は駆動モータに電力を供給できる構成であれば、実施例1に記載した構成に限られない。
Then, the travel permit device puts the light emitting unit in the light emitting state when the shield detection unit does not detect the shield, and puts the light emitting part in the light emitting state for a predetermined period when the shield detection unit detects the shield. If the light emitting unit can be brought into a non-light emitting state later, the configuration is not limited to the configuration described in the first embodiment.
For example, the shield detection unit is composed of a first detection unit and a second detection unit, and the first detection unit is arranged behind the model vehicle on the traveling path in the traveling direction and the second detection unit is arranged in front of the model vehicle. Then, the first detection unit completes the detection and the non-detection state is set, with the period from the detection of the model vehicle by the first detection unit to the detection of the model vehicle by the second detection unit as a predetermined period. It is conceivable that the non-light emitting state of the light emitting unit is maintained even after that, and the light emitting unit is put into the light emitting state when the model vehicle is detected by the second detection unit.
Then, if the traveling stop control device has a configuration capable of stopping the supply of electric power to the drive motor when the light emitting unit is in the light emitting state and supplying electric power to the drive motor when the light emitting unit is in the non-light emitting state, the embodiment is implemented. It is not limited to the configuration described in 1.

[実施例2の構成]
図4に本発明の実施例2における模型車両の走行制御システム10aの全体構成図を示す。模型車両の走行制御システム10aは走行路20aを走行する模型車両30aと、走行路20aの側に配置された走行許可装置60a及び走行許可装置60bを備えている。図4の矢印Fは、模型車両の進行方向を示している。
走行路20aは実施例1の走行路20と同じ構成であり、模型車両30aは実施例1の模型車両30と同じ構成であり、走行許可装置60a及び走行許可装置60bは実施例1の走行許可装置60と同じ構成なので、構成要素には対応する符号を付し、構成要素の説明は省略する。
[Structure of Example 2]
FIG. 4 shows an overall configuration diagram of the travel control system 10a of the model vehicle according to the second embodiment of the present invention. The travel control system 10a of the model vehicle includes a model vehicle 30a traveling on the travel path 20a, and a travel permission device 60a and a travel permission device 60b arranged on the side of the travel path 20a. The arrow F in FIG. 4 indicates the traveling direction of the model vehicle.
The travel path 20a has the same configuration as the travel path 20 of the first embodiment, the model vehicle 30a has the same configuration as the model vehicle 30 of the first embodiment, and the travel permission device 60a and the travel permission device 60b have the same configuration as the travel permission of the first embodiment. Since the configuration is the same as that of the device 60, the components are designated by corresponding reference numerals, and the description of the components will be omitted.

走行許可装置60aの遮蔽物検知部66aと発光部64aは、模型車両30aの進行方向の後方に遮蔽物検知部66aを配置し、進行方向の前方に発光部64aを配置する。そして、模型車両30aの進行方向で見た遮蔽物検知部66aが配置された位置から発光部64aが配置された位置までの区間は制御区間68aとし、他の走行許可装置の遮蔽物検知部及び発光部の配置を禁止する。そして、走行許可装置60bの遮蔽物検知部66bと発光部64bは、制御区間68a以外の区間で、模型車両30aの進行方向の後方に遮蔽物検知部66bを配置し、進行方向の前方に発光部64bを配置する。そして、模型車両30aの進行方向で見た遮蔽物検知部66bが配置された位置から発光部64bが配置された位置までの区間を走行許可装置60bの制御区間68bとする。
なお、実施例2では、遮蔽物検知部が遮蔽物を検知している間、発光部を非発光状態とする構成としている。
The shield detection unit 66a and the light emitting unit 64a of the travel permission device 60a arrange the shield detection unit 66a behind the model vehicle 30a in the traveling direction and the light emitting unit 64a in front of the traveling direction. The section from the position where the shield detection unit 66a is arranged to the position where the light emitting unit 64a is arranged as viewed in the traveling direction of the model vehicle 30a is set as a control section 68a, and the shield detection unit and the obstacle detection unit of another travel permission device and the other travel permission device. Arrangement of the light emitting part is prohibited. Then, the shield detection unit 66b and the light emitting unit 64b of the travel permission device 60b arrange the shield detection unit 66b behind the traveling direction of the model vehicle 30a in the section other than the control section 68a, and emit light in front of the traveling direction. Part 64b is arranged. Then, the section from the position where the shield detection unit 66b is arranged to the position where the light emitting unit 64b is arranged as seen in the traveling direction of the model vehicle 30a is defined as the control section 68b of the travel permission device 60b.
In the second embodiment, the light emitting unit is in a non-light emitting state while the shield detecting unit detects the shield.

[実施例2の効果]
実施例2によれば、2つの走行許可装置60a及び走行許可装置60bの遮蔽物検知部及び発光部が、走行路の進行方向で、走行許可装置毎に、遮蔽物検知部66a、発光部64a、遮蔽物検知部66b、発光部64bの順番に並んでいる。そこで、発光部64aに模型車両30aと同じ構成の模型車両30yが停止し、発光部64bに模型車両30aと同じ構成の模型車両30zが停止した状態で、遮蔽物検知部66aの手前から模型車両30aを走行させる。図4はこの状態を示したものである。
すると、模型車両30aが遮蔽物検知部66aを通過している間に、発光部64aで停止していた模型車両30yが発光部64aを離脱して走行を開始し、模型車両30aは発光部64aに到達して停止する。
そして、模型車両30yが遮蔽物検知部66bを通過している間に、発光部64bで停止していた模型車両30zが発光部64bを離脱して走行を開始し、模型車両30yは発光部64bに到達して停止する。
すると、発光部64aには模型車両30aが停止し、発光部64bには模型車両30yが停止した状態で、模型車両30zが遮蔽物検知部66aの手前に接近してくる。
これの繰り返しにより、実施例3では、3台の模型車両をリレー方式で衝突を回避して、同一の走行路を走行させることができる。
そして、制御区間を避けて走行許可装置を追加することにより、同一の走行路を走行できる模型車両の台数を増やすことができる。
[Effect of Example 2]
According to the second embodiment, the shield detection unit and the light emitting unit of the two travel permission devices 60a and the travel permission device 60b are the shield detection unit 66a and the light emitting unit 64a for each travel permission device in the traveling direction of the travel path. , The shield detection unit 66b and the light emitting unit 64b are arranged in this order. Therefore, with the model vehicle 30y having the same configuration as the model vehicle 30a stopped at the light emitting unit 64a and the model vehicle 30z having the same configuration as the model vehicle 30a stopped at the light emitting unit 64b, the model vehicle is stopped from the front of the shield detection unit 66a. Run 30a. FIG. 4 shows this state.
Then, while the model vehicle 30a is passing through the shield detection unit 66a, the model vehicle 30y stopped at the light emitting unit 64a leaves the light emitting unit 64a and starts running, and the model vehicle 30a starts running with the light emitting unit 64a. Reach and stop.
Then, while the model vehicle 30y is passing through the shield detection unit 66b, the model vehicle 30z stopped at the light emitting unit 64b leaves the light emitting unit 64b and starts traveling, and the model vehicle 30y starts running with the light emitting unit 64b. Reach and stop.
Then, the model vehicle 30a stops at the light emitting unit 64a, and the model vehicle 30z approaches the shield detecting unit 66a with the model vehicle 30y stopped at the light emitting unit 64b.
By repeating this, in the third embodiment, three model vehicles can be made to travel on the same traveling path by avoiding a collision by a relay method.
Then, by avoiding the control section and adding a travel permission device, the number of model vehicles that can travel on the same travel path can be increased.

[実施例3の構成]
図5に本発明の実施例3における模型車両の走行制御システム10bの全体構成図を示す。実施例3では実施例1と同じ構造の模型車両を使用することができる。そして、模型車両の走行制御システム10bは、走行路20bと走行路20bを走行する模型車両30bと走行路20bの側に配置された速度制御装置80を備えている。
走行路20bは、実施例1の走行路20と同じ構成である。
速度制御装置80は、電源82と可視光を発する発光部84と発光制御部86を備えており、発光部84は走行路20bに配置されている。そして、電源82から、発光部84及び発光制御部86の動作に必要な電力が供給される。
[Structure of Example 3]
FIG. 5 shows an overall configuration diagram of the travel control system 10b of the model vehicle according to the third embodiment of the present invention. In the third embodiment, a model vehicle having the same structure as that of the first embodiment can be used. The travel control system 10b of the model vehicle includes the travel path 20b, the model vehicle 30b traveling on the travel path 20b, and the speed control device 80 arranged on the side of the travel path 20b.
The travel path 20b has the same configuration as the travel path 20 of the first embodiment.
The speed control device 80 includes a power supply 82, a light emitting unit 84 that emits visible light, and a light emitting control unit 86, and the light emitting unit 84 is arranged on the traveling path 20b. Then, the power supply 82 supplies the electric power required for the operation of the light emitting unit 84 and the light emitting control unit 86.

図6に実施例3の速度制御装置80の詳細構成を示す。速度制御装置80の発光制御部86は、信号出力部90と速度計算部92と周期設定部94と通電割合設定部96を備えている。周期設定部94には発光部84の点滅する周期を設定することができ、通電割合設定部96には発光部84が点滅する周期での通電時間の割合を設定することができる。例えば、周期設定部94に100ミリ秒と設定し通電割合設定部96に70%と設定すると、発光部84を、70ミリ秒は通電して発光状態し、次に30ミリ秒は遮断して非発光状態として、100ミリ秒周期で点滅を繰り返すように指定したことになる。 FIG. 6 shows a detailed configuration of the speed control device 80 of the third embodiment. The light emission control unit 86 of the speed control device 80 includes a signal output unit 90, a speed calculation unit 92, a cycle setting unit 94, and an energization ratio setting unit 96. The cycle setting unit 94 can set the blinking cycle of the light emitting unit 84, and the energization ratio setting unit 96 can set the ratio of the energization time in the cycle in which the light emitting unit 84 blinks. For example, if the cycle setting unit 94 is set to 100 milliseconds and the energization ratio setting unit 96 is set to 70%, the light emitting unit 84 is energized for 70 milliseconds to emit light, and then shut off for 30 milliseconds. It means that it is specified to repeat blinking every 100 milliseconds as a non-light emitting state.

発光制御部86の速度計算部92は、周期設定部94に設定された周期と通電割合設定部96に設定された通電割合を読み取って、通電時間と遮断時間を算出し、通電時間の間は信号出力部90から発光部84にHi信号を出させ、遮断時間の間は信号出力部90から発光部84にLo信号を出力させることを繰り返す。
そして、発光部84は信号出力部90からHi信号が入力されている間は発光状態となり、信号出力部90からLo信号が入力されている間は非発光状態となって、点滅を繰り返す。
The speed calculation unit 92 of the light emission control unit 86 reads the cycle set in the cycle setting unit 94 and the energization ratio set in the energization ratio setting unit 96, calculates the energization time and the cutoff time, and during the energization time, The signal output unit 90 causes the light emitting unit 84 to output a Hi signal, and the signal output unit 90 repeatedly outputs a Lo signal to the light emitting unit 84 during the cutoff time.
Then, the light emitting unit 84 is in a light emitting state while the Hi signal is input from the signal output unit 90, is in a non-light emitting state while the Lo signal is input from the signal output unit 90, and repeats blinking.

実施例3の模型車両30bは、実施例1の模型車両30と同じ構造なので、図3を参照して、発光部84での速度制御について説明する。
模型車両30bは走行路20bに面する底面側に取り付けられた照度測定部42で走行路20bの照度を測定し、測定した照度が基準照度よりも低い時は電気制御部56が電源スイッチ34と駆動モータ44の間を電気的な接続状態として模型車両30bを走行させ、測定した照度が基準照度よりも高い時は電気制御部56が電源スイッチ34と駆動モータ44の間を電気的な切断状態として模型車両30bを停止させる。
そして、基準照度を、発光部84が発光状態の時に照度測定部42で測定される照度よりも低く、発光部84が非発光状態の時に照度測定部42で測定される照度よりも高い照度に設定することで、発光部84が発光状態を維持していれば模型車両30bは発光部84で停止し、発光部84が非発光状態を維持していれば模型車両30bは発光部84を通過する。
そこで、発光部84が発光状態と非発光状態を周期的に繰り返し、模型車両30bが発光状態を検知して停止に向けて減速し、停止する前に非発光状態を検知して通常走行に向けて加速することを繰り返すことで、発光部84で模型車両30bを減速走行させることができる。
Since the model vehicle 30b of the third embodiment has the same structure as the model vehicle 30 of the first embodiment, the speed control in the light emitting unit 84 will be described with reference to FIG.
The model vehicle 30b measures the illuminance of the traveling path 20b with an illuminance measuring unit 42 attached to the bottom surface facing the traveling path 20b, and when the measured illuminance is lower than the reference illuminance, the electric control unit 56 calls the power switch 34. The model vehicle 30b is run with the drive motor 44 in an electrically connected state, and when the measured illuminance is higher than the reference illuminance, the electric control unit 56 electrically disconnects the power switch 34 and the drive motor 44. As a result, the model vehicle 30b is stopped.
Then, the reference illuminance is set to be lower than the illuminance measured by the illuminance measuring unit 42 when the light emitting unit 84 is in the light emitting state and higher than the illuminance measured by the illuminance measuring unit 42 when the light emitting unit 84 is in the non-light emitting state. By setting, if the light emitting unit 84 maintains the light emitting state, the model vehicle 30b stops at the light emitting unit 84, and if the light emitting unit 84 maintains the non-light emitting state, the model vehicle 30b passes through the light emitting unit 84. do.
Therefore, the light emitting unit 84 periodically repeats the light emitting state and the non-light emitting state, the model vehicle 30b detects the light emitting state and decelerates toward the stop, detects the non-light emitting state before stopping, and heads for normal driving. By repeating the acceleration, the model vehicle 30b can be decelerated and traveled by the light emitting unit 84.

[実施例3の効果]
図7を用いて、発光部84での速度制御について説明する。図7は速度制御のタイムチャートである。横軸は経過時間を示している。制御信号100は信号出力部90から発光部84に出力される信号であり、周期設定部94と通電割合設定部96の設定値が使用され速度計算部92により制御される。そして、Lo信号が出力されている時は発光部84が非発光状態となり、Hi信号が出力されている時は発光部84が発光状態となる。駆動モータ電源102は駆動モータ44と電源との接続状態を示す。駆動モータ駆動力104は、駆動モータ44の駆動力の有無を示す。そして、走行速度106は模型車両30bの走行速度を示す。なお、走行速度106は速度変化を模式的に表したものである。
[Effect of Example 3]
The speed control in the light emitting unit 84 will be described with reference to FIG. 7. FIG. 7 is a time chart of speed control. The horizontal axis shows the elapsed time. The control signal 100 is a signal output from the signal output unit 90 to the light emitting unit 84, and the set values of the cycle setting unit 94 and the energization ratio setting unit 96 are used and controlled by the speed calculation unit 92. Then, when the Lo signal is output, the light emitting unit 84 is in the non-light emitting state, and when the Hi signal is output, the light emitting unit 84 is in the light emitting state. The drive motor power supply 102 indicates a connection state between the drive motor 44 and the power supply. The drive motor driving force 104 indicates the presence or absence of the driving force of the drive motor 44. The traveling speed 106 indicates the traveling speed of the model vehicle 30b. The traveling speed 106 schematically represents a speed change.

図7に示すように、制御信号100がHi信号に変わると発光部84が発光状態となり、模型車両30bの照度測定部42が基準照度より高い照度を測定し、動力源制御部50が電源を駆動モータ44から切断するため駆動モータ電源102が接続から切断に変わり、駆動モータ駆動力104が無しに変わる。すると、駆動力の無い駆動モータ44が負荷となって模型車両30bが停止に向けて減速する。
そして、模型車両30bが完全停止する前に制御信号100がLo信号に変わると発光部84が非発光状態となり、模型車両30bの照度測定部42が基準照度より低い照度を測定し、動力源制御部50が電源を駆動モータ44に接続するため駆動モータ電源102が切断から接続に変わり、駆動モータ駆動力104が有りに変わる。すると、駆動モータ44に駆動されて模型車両30bが通常速度に向けて加速する。このように、制御信号100のHi信号とLo信号の変化に応じて、模型車両30bは減速と加速を繰り返しながら発光部84を走行し、発光部84を通過すると通常速度での走行となる。
As shown in FIG. 7, when the control signal 100 is changed to a Hi signal, the light emitting unit 84 is in a light emitting state, the illuminance measuring unit 42 of the model vehicle 30b measures the illuminance higher than the reference illuminance, and the power source control unit 50 powers the power source. Since the drive motor 44 is disconnected, the drive motor power supply 102 is changed from connected to disconnected, and the drive motor driving force 104 is changed to none. Then, the drive motor 44 having no driving force becomes a load, and the model vehicle 30b decelerates toward the stop.
If the control signal 100 changes to a Lo signal before the model vehicle 30b completely stops, the light emitting unit 84 goes into a non-light emitting state, and the illuminance measuring unit 42 of the model vehicle 30b measures an illuminance lower than the reference illuminance to control the power source. Since the unit 50 connects the power supply to the drive motor 44, the drive motor power supply 102 changes from disconnection to connection, and the drive motor driving force 104 changes to illuminance. Then, the model vehicle 30b is driven by the drive motor 44 and accelerates toward the normal speed. In this way, the model vehicle 30b travels on the light emitting unit 84 while repeating deceleration and acceleration in response to changes in the Hi signal and the Lo signal of the control signal 100, and when it passes through the light emitting unit 84, it travels at a normal speed.

このように、制御信号100のHi信号とLo信号を繰り返すことにより、速度制御装置80の発光部84の手前までは連続通電されていた模型車両30bは、発光部84に到達すると、通常速度より速度が低下したレベルで減速と加速を繰り返す。この繰り返しを単位時間当たり速い繰り返しを行うことにより速度の変化を少なくし、あたかも安定した状態で速度が低下できるようにするために、周期設定部94及び通電割合設定部96で、周期及び通電割合を設定できるようにしている。
そして、周期を100ミリ秒、通電割合を50%に設定して走行させたところ、通常走行の50%程度の減速した速度で走行する事を確認した。
この速度制御装置80の発光部84を走行路20bのカーブ部分に配置すれば、模型車両30bをカーブ部分では通常速度より減速した速度で走行させ、直線部分ではカーブ部分の走行速度よりも速い通常速度で走行させることができる。
鉄道模型システムやサーキット模型システムでは、鉄道模型車両や自動車模型車の減速制御ができず、カーブで脱線したりコースアウトしてしまうことがあるが、実施例3の模型車両と速度制御装置を使用すれば、カーブで減速させて、脱線やコースアウトを回避することができる。
By repeating the Hi signal and the Lo signal of the control signal 100 in this way, the model vehicle 30b, which has been continuously energized up to the front of the light emitting unit 84 of the speed control device 80, reaches the normal speed when it reaches the light emitting unit 84. Repeat deceleration and acceleration at the reduced speed level. In order to reduce the change in speed by repeating this repetition at a high speed per unit time and to reduce the speed in a stable state, the cycle setting unit 94 and the energization ratio setting unit 96 use the cycle and energization ratio. Can be set.
Then, when the vehicle was run with the cycle set to 100 milliseconds and the energization ratio was set to 50%, it was confirmed that the vehicle traveled at a decelerated speed of about 50% of the normal traveling speed.
If the light emitting portion 84 of the speed control device 80 is arranged in the curved portion of the traveling path 20b, the model vehicle 30b is driven at a speed decelerated from the normal speed in the curved portion, and is faster than the traveling speed in the curved portion in the straight portion. It can be driven at speed.
In the model railroad system and the circuit model system, the deceleration control of the model railroad vehicle and the model railroad car cannot be performed, and the vehicle may derail or go off course at a curve. For example, it is possible to decelerate on a curve to avoid derailment and off course.

[実施例3の変形例]
実施例3では、速度制御装置の発光部が可視光を発する構成としたが、発光部が赤外線を発する構成としても良い。このときは、模型車両の照度測定部を赤外線を測定する構成とする。
実施例3では、発光制御部はマイクロプログラムで制御しており、周期設定部と通電割合設定部はマイクロプログラムのパラメータで設定及び調整をしているが、速度制御装置に周期及び通電割合を設定するダイヤルを設け、ダイヤルで値を調整してダイヤルの値を読み取る方式としても良い。
そして、速度制御装置は、発光部を点滅させることができる構成あれば、実施例3に記載した構成に限られない。
[Modification of Example 3]
In the third embodiment, the light emitting portion of the speed control device is configured to emit visible light, but the light emitting portion may be configured to emit infrared light. At this time, the illuminance measuring unit of the model vehicle is configured to measure infrared rays.
In the third embodiment, the light emission control unit is controlled by the microprogram, and the cycle setting unit and the energization ratio setting unit are set and adjusted by the parameters of the microprogram, but the cycle and the energization ratio are set in the speed control device. It is also possible to provide a dial to read the value of the dial by adjusting the value with the dial.
The speed control device is not limited to the configuration described in the third embodiment as long as it has a configuration capable of blinking the light emitting unit.

[実施例4の構成]
図8に本発明の実施例4における模型車両の走行制御システム10cの全体構成図を示す。模型車両の走行制御システム10cは、走行路20cと、走行路を走行する模型車両30cと、走行路20cの側に配置された停止指示装置110を備えている。
走行路20cは、プラスチック製のレール部材を接続して一つの周回路を形成したものであり、交差部22を有している。そこで、矢印Fで示した模型車両の進行方向で見て、走行路20cの交差部22に進入する部分の一方を第1進入路24、他方を第2進入路26と呼ぶこととする。
停止指示装置110は、電源111と、可視光を発する第1発光部112と、第1遮蔽物検知部114と、可視光を発する第2発光部116と、第2遮蔽物検知部118と、発光制御部120を備えている。そして、第1進入路24の交差部22の手前に第2発光部116が配置され、第2発光部116の模型車両の進行方向後方に第1遮蔽物検知部114が配置されており、第2進入路26の交差部22の手前に第1発光部112が配置され、第1発光部112の模型車両の進行方向後方に第2遮蔽物検知部118が配置されている。
[Structure of Example 4]
FIG. 8 shows an overall configuration diagram of the travel control system 10c of the model vehicle according to the fourth embodiment of the present invention. The travel control system 10c of the model vehicle includes a travel path 20c, a model vehicle 30c traveling on the travel path, and a stop instruction device 110 arranged on the side of the travel path 20c.
The runway 20c is formed by connecting plastic rail members to form one peripheral circuit, and has an intersection 22. Therefore, when viewed in the traveling direction of the model vehicle indicated by the arrow F, one of the portions entering the intersection 22 of the traveling path 20c is referred to as the first approaching path 24, and the other is referred to as the second approaching path 26.
The stop instruction device 110 includes a power supply 111, a first light emitting unit 112 that emits visible light, a first obstruction detection unit 114, a second light emitting unit 116 that emits visible light, and a second obstruction detection unit 118. A light emission control unit 120 is provided. A second light emitting unit 116 is arranged in front of the intersection 22 of the first approach road 24, and a first shield detecting unit 114 is arranged behind the model vehicle of the second light emitting unit 116 in the traveling direction. The first light emitting unit 112 is arranged in front of the intersection 22 of the approach road 26, and the second shield detecting unit 118 is arranged behind the model vehicle of the first light emitting unit 112 in the traveling direction.

模型車両30cは、実施例1の模型車両30と同様の構成なので、実施例1の記載及び図3を参照することとして詳細な説明は省略する。そして、図3を参照して、停止指示装置110との関係について説明する。模型車両30cでは、照度測定部が測定した照度が基準照度より低い時は駆動モータに電力が供給され、照度測定部が測定した照度が基準照度より高い時は駆動モータへの電力の供給が遮断される。
ここで、基準照度は、模型車両30cを走行させるか停止させるかを判断する為の基準となる照度である。そして、基準照度として、停止指示装置110の第1発光部112及び第2発光部116が非発光状態で模型車両30cが走行路20cを周回するときに照度測定部で測定される照度よりも高い照度であって、模型車両30cを発光状態の第1発光部112に置いたときに照度測定部で測定される照度及び模型車両30cを発光状態の第2発光部116に置いたときに照度測定部で測定される照度の、いずれよりも低い照度が設定されている。
したがって、模型車両30cは、第1発光部112及び第2発光部116が非発光状態の時は、照度測定部で測定される照度が基準照度より低いので、駆動モータに電力が供給され第1発光部112及び第2発光部116を通過する。そして、第1発光部112及び第2発光部116が発光状態の時は照度測定部で測定される照度が基準照度より高いので、駆動モータへの電力の供給が遮断され、模型車両30cは第1発光部112及び第2発光部116で停止する。
Since the model vehicle 30c has the same configuration as the model vehicle 30 of the first embodiment, detailed description thereof will be omitted by referring to the description of the first embodiment and FIG. Then, the relationship with the stop instruction device 110 will be described with reference to FIG. In the model vehicle 30c, power is supplied to the drive motor when the illuminance measured by the illuminance measuring unit is lower than the reference illuminance, and power supply to the drive motor is cut off when the illuminance measured by the illuminance measuring unit is higher than the reference illuminance. Will be done.
Here, the reference illuminance is a reference illuminance for determining whether to run or stop the model vehicle 30c. The reference illuminance is higher than the illuminance measured by the illuminance measuring unit when the model vehicle 30c orbits the travel path 20c in a non-light emitting state when the first light emitting unit 112 and the second light emitting unit 116 of the stop instruction device 110 are in a non-light emitting state. The illuminance measured by the illuminance measuring unit when the model vehicle 30c is placed on the first light emitting unit 112 in the light emitting state and the illuminance measured when the model vehicle 30c is placed on the second light emitting unit 116 in the light emitting state. The illuminance measured by the unit is set to be lower than any of them.
Therefore, in the model vehicle 30c, when the first light emitting unit 112 and the second light emitting unit 116 are in the non-light emitting state, the illuminance measured by the illuminance measuring unit is lower than the reference illuminance, so that power is supplied to the drive motor and the first It passes through the light emitting unit 112 and the second light emitting unit 116. When the first light emitting unit 112 and the second light emitting unit 116 are in the light emitting state, the illuminance measured by the illuminance measuring unit is higher than the reference illuminance, so that the supply of electric power to the drive motor is cut off, and the model vehicle 30c becomes the first. 1 Stops at the light emitting unit 112 and the second light emitting unit 116.

次に、停止指示装置110の発光制御部120の機能について説明する。図9に停止指示装置110の詳細構成を示す。停止指示装置110の各構成要素の動作に必要な電力は電源111から供給される。
第1遮蔽物検知部114は入射する光の強さを測定する機能を有し、第1遮蔽物検知部114で測定した光の強さは、第1光電気変換部121で電圧に変換されて第1照度判定部122に出力される。そして、第1照度判定部122では、第1光電気変換部121から入力された電圧が下限照度に相当する電圧レベルより高い時は制御計算部128にHi信号を出力、第1光電気変換部121から入力された電圧が下限照度に相当する電圧レベルより低い時は制御計算部128にLo信号を出力する。
第2遮蔽物検知部118は入射する光の強さを測定する機能を有し、第2遮蔽物検知部118で測定した光の強さは、第2光電気変換部124で電圧に変換されて第2照度判定部125に出力される。そして、第2照度判定部125では、第2光電気変換部124から入力された電圧が下限照度に相当する電圧レベルより高い時は制御計算部128にHi信号を出力し、第2光電気変換部124から入力された電圧が下限照度に相当する電圧レベルより低い時は制御計算部128にLo信号を出力する。
Next, the function of the light emission control unit 120 of the stop instruction device 110 will be described. FIG. 9 shows a detailed configuration of the stop instruction device 110. The electric power required for the operation of each component of the stop instruction device 110 is supplied from the power supply 111.
The first obstruction detection unit 114 has a function of measuring the intensity of incident light, and the light intensity measured by the first obstruction detection unit 114 is converted into a voltage by the first photoelectric conversion unit 121. Is output to the first illuminance determination unit 122. Then, when the voltage input from the first opto-electric conversion unit 121 is higher than the voltage level corresponding to the lower limit illuminance, the first illuminance determination unit 122 outputs a Hi signal to the control calculation unit 128, and the first opto-electric conversion unit When the voltage input from 121 is lower than the voltage level corresponding to the lower limit illuminance, the Lo signal is output to the control calculation unit 128.
The second obstruction detection unit 118 has a function of measuring the intensity of incident light, and the light intensity measured by the second obstruction detection unit 118 is converted into a voltage by the second photoelectric conversion unit 124. Is output to the second illuminance determination unit 125. Then, when the voltage input from the second photoelectric conversion unit 124 is higher than the voltage level corresponding to the lower limit illuminance, the second illuminance determination unit 125 outputs a Hi signal to the control calculation unit 128 to perform the second photoelectric conversion. When the voltage input from the unit 124 is lower than the voltage level corresponding to the lower limit illuminance, the Lo signal is output to the control calculation unit 128.

ここで、下限照度は実施例1で説明した下限照度と同じ意味内容のものであり、停止指示装置110の各遮蔽物検知部が遮蔽物で覆われているか、各遮蔽物検知部の近傍に遮蔽物が存在しないかを判断するための基準となる照度である。そして、下限照度として、各遮蔽物検知部に模型車両30cが存在しない時に各遮蔽物検知部で測定される周囲の環境の照度よりも低い照度であって、各遮蔽物検知部に模型車両30cを置いたときに各遮蔽物検知部で測定される照度よりも高い照度が設定されている。
したがって、第1遮蔽物検知部114に模型車両30cが居ない時は第1照度判定部122から制御計算部128にHi信号が出力され、模型車両30cが居る時は第1照度判定部122から制御計算部128にLo信号が出力される。
そして、第2遮蔽物検知部118に模型車両30cが居ない時は第2照度判定部125から制御計算部128にHi信号が出力され、模型車両30cが居る時は第2照度判定部125から制御計算部128にLo信号が出力される。
Here, the lower limit illuminance has the same meaning as the lower limit illuminance described in the first embodiment, and each shield detection unit of the stop instruction device 110 is covered with a shield or is near each shield detection unit. This is the illuminance that serves as a reference for determining whether or not there is a shield. The lower limit illuminance is lower than the illuminance of the surrounding environment measured by each obstruction detection unit when the model vehicle 30c does not exist in each obstruction detection unit, and the model vehicle 30c is in each obstruction detection unit. The illuminance is set higher than the illuminance measured by each obstruction detector when the is placed.
Therefore, when the model vehicle 30c is not present in the first obstruction detection unit 114, the Hi signal is output from the first illuminance determination unit 122 to the control calculation unit 128, and when the model vehicle 30c is present, the first illuminance determination unit 122 outputs the Hi signal. A Lo signal is output to the control calculation unit 128.
Then, when the model vehicle 30c is not present in the second obstruction detection unit 118, the Hi signal is output from the second illuminance determination unit 125 to the control calculation unit 128, and when the model vehicle 30c is present, the second illuminance determination unit 125 outputs the Hi signal. A Lo signal is output to the control calculation unit 128.

制御計算部128は、マイクロプログラムで制御されており、所定の時間間隔で、例えば5ミリ秒の間隔で、第1照度判定部122及び第2照度判定部125から入力される信号を監視する。
そして、第1照度判定部122からHi信号が入力されている時は、第1信号出力部123から第1発光部112にLo信号を出力して第1発光部112を非発光状態とさせる。そして、第1照度判定部122からLo信号が入力された時は、所定の期間が経過するまでの間は、第1信号出力部123から第1発光部112にHi信号を出力して第1発光部112を発光状態とし、所定の期間の経過後に、第1発光部112にLo信号を出力して第1発光部112を非発光状態とする。
そして、第2照度判定部125からHi信号が入力されている時は、第2信号出力部126から第2発光部116にLo信号を出力して第2発光部116を非発光状態とさせる。そして、第2照度判定部125からLo信号が入力された時は、所定の期間が経過するまでの間は、第2信号出力部126から第2発光部116にHi信号を出力して第2発光部116を発光状態とし、所定の期間の経過後に、第2発光部116にLo信号を出力して第2発光部116を非発光状態とする。
The control calculation unit 128 is controlled by a microprogram, and monitors signals input from the first illuminance determination unit 122 and the second illuminance determination unit 125 at predetermined time intervals, for example, at intervals of 5 milliseconds.
Then, when the Hi signal is input from the first illuminance determination unit 122, the Lo signal is output from the first signal output unit 123 to the first light emitting unit 112 to put the first light emitting unit 112 in a non-light emitting state. Then, when the Lo signal is input from the first illuminance determination unit 122, the Hi signal is output from the first signal output unit 123 to the first light emitting unit 112 until a predetermined period elapses, and the first The light emitting unit 112 is put into a light emitting state, and after a lapse of a predetermined period, a Lo signal is output to the first light emitting unit 112 to put the first light emitting unit 112 in a non-light emitting state.
Then, when the Hi signal is input from the second illuminance determination unit 125, the Lo signal is output from the second signal output unit 126 to the second light emitting unit 116 to put the second light emitting unit 116 in the non-light emitting state. Then, when the Lo signal is input from the second illuminance determination unit 125, the Hi signal is output from the second signal output unit 126 to the second light emitting unit 116 until a predetermined period elapses, and the second signal is output. The light emitting unit 116 is put into a light emitting state, and after a predetermined period of time elapses, a Lo signal is output to the second light emitting unit 116 to put the second light emitting unit 116 in a non-light emitting state.

したがって、発光制御部120による制御は、第1遮蔽物検知部114で遮蔽物を検知しない時は、第1発光部112を非発光状態として第1発光部112での模型車両30cの通行を可能とし、第1遮蔽物検知部114が遮蔽物を検知した時は、所定の期間が経過するまでは第1発光部112を発光状態として第1発光部112で模型車両30cの通行を禁止し、所定の期間の経過後は第1発光部112を非発光状態として模型車両30cの通行を可能とするものである。そして、第2遮蔽物検知部118が遮蔽物を検知しない時及び遮蔽物を検知した時の第2発光部116の制御も同様である。
なお、第1遮蔽物検知部114が遮蔽物を検知後、所定の期間の経過する前に第2遮蔽物検知部118が遮蔽物を検知する場合があり、その逆の場合もあるので、その場合は特別な処理として、後から遮蔽物を検知した遮蔽物検知部に対応する発光部を発光状態にする制御を保留するような処理をしている。
Therefore, the control by the light emitting control unit 120 allows the model vehicle 30c to pass through the first light emitting unit 112 with the first light emitting unit 112 in a non-light emitting state when the first shield detecting unit 114 does not detect a shield. When the first shield detection unit 114 detects a shield, the first light emitting unit 112 is set to a light emitting state and the first light emitting unit 112 prohibits the passage of the model vehicle 30c until a predetermined period elapses. After the elapse of a predetermined period, the first light emitting unit 112 is set to a non-light emitting state so that the model vehicle 30c can pass through. The same applies to the control of the second light emitting unit 116 when the second obstruction detection unit 118 does not detect the obstruction and when the second obstruction detection unit 118 detects the obstruction.
After the first shield detection unit 114 detects the shield, the second shield detection unit 118 may detect the shield before a predetermined period of time elapses, and vice versa. In this case, as a special process, a process is performed such that the control of setting the light emitting unit corresponding to the shield detection unit that has detected the shield to the light emitting state is suspended.

[実施例4の効果]
図8で、実施例4における衝突回避の制御について説明する。図8は模型車両30cが走行路20cを走行して第1進入路24に配置された第1遮蔽物検知部114の直前まで到達し、模型車両30cと同様の構成の他の模型車両30xが走行路20cを走行して第2進入路26に配置された第2遮蔽物検知部118に近づいている状態を示している。
ここで、模型車両30cが第1遮蔽物検知部114の位置まで進んで第1遮蔽物検知部114が模型車両30cを遮蔽物として検知すると、制御計算部128は、模型車両30cの検知から模型車両30cが交差部22を通過するまでの期間を第1進入路通過期間として第2進入路26に配置された第1発光部112を発光状態とさせ、第1進入路通過期間の経過後に第1発光部112を非発光状態とさせる。これにより、模型車両30cが交差部22を通過するまでは第1発光部112が発光状態となり、第2進入路から交差部22に入ってくる模型車両30xは交差部22の手前に設置された第1発光部112で停止するので衝突を回避できる。
[Effect of Example 4]
FIG. 8 describes the collision avoidance control in the fourth embodiment. In FIG. 8, the model vehicle 30c travels on the travel path 20c and reaches immediately before the first shield detection unit 114 arranged on the first approach path 24, and another model vehicle 30x having the same configuration as the model vehicle 30c It shows a state in which the vehicle travels on the travel path 20c and approaches the second shield detection unit 118 arranged on the second approach path 26.
Here, when the model vehicle 30c advances to the position of the first obstruction detection unit 114 and the first obstruction detection unit 114 detects the model vehicle 30c as an obstruction, the control calculation unit 128 detects the model vehicle 30c to model. The period until the vehicle 30c passes through the intersection 22 is set as the first approach road passage period, and the first light emitting unit 112 arranged on the second approach road 26 is put into a light emitting state, and after the first approach road passage period elapses, the first light emitting unit 112 is put into a light emitting state. 1 The light emitting unit 112 is put into a non-light emitting state. As a result, the first light emitting unit 112 is in a light emitting state until the model vehicle 30c passes through the intersection 22, and the model vehicle 30x entering the intersection 22 from the second approach road is installed in front of the intersection 22. Since it stops at the first light emitting unit 112, a collision can be avoided.

しかし、図8に示した位置関係になった場合は、模型車両30cが第1進入路24の第2発光部116を通過する前に模型車両30xが第2進入路26に配置された第2遮蔽物検知部118に到達する。ここで、第2遮蔽物検知部118が模型車両30xを遮蔽物として検知し第2発光部116を発光状態にしてしまうと、模型車両30cは、第2発光部116で停止し、交差部22を通過できないこととなる。
そこで、第1進入路通過期間の経過中に第2進入路26に配置された第2遮蔽物検知部118が模型車両30xを遮蔽物として検知した時は、第1進入路通過期間の経過中は第2発光部116を非発光状態とする。そして、第1進入路通過期間が経過後に第2発光部116を発光状態とさせる。そして、第1進入路通過期間を経過すると第1発光部112が非発光状態となり模型車両30xが走行を再開する。そこで、模型車両30xが交差部22を通過した後に、第2発光部116を非発光状態とさせる。
However, in the case of the positional relationship shown in FIG. 8, the model vehicle 30x is arranged in the second approach road 26 before the model vehicle 30c passes through the second light emitting unit 116 of the first approach road 24. It reaches the shield detection unit 118. Here, when the second obstruction detection unit 118 detects the model vehicle 30x as a shield and puts the second light emitting unit 116 into a light emitting state, the model vehicle 30c stops at the second light emitting unit 116 and the intersection 22 Will not be able to pass.
Therefore, when the second obstruction detection unit 118 arranged on the second approach road 26 detects the model vehicle 30x as a shield during the elapse of the first approach road passage period, the first approach road passage period is in progress. Puts the second light emitting unit 116 in a non-light emitting state. Then, after the first approach passage passage period has elapsed, the second light emitting unit 116 is put into a light emitting state. Then, when the first approach road passage period elapses, the first light emitting unit 112 is in a non-light emitting state, and the model vehicle 30x resumes traveling. Therefore, after the model vehicle 30x has passed the intersection 22, the second light emitting unit 116 is put into a non-light emitting state.

そして、模型車両30xが第2進入路26に配置された第2遮蔽物検知部118によって先に検知され、第2遮蔽物検知部118で模型車両30xが検知されてから模型車両30xが交差部22を通過するまでの第2進入路通過期間の経過中に第1遮蔽物検知部114が模型車両30cを遮蔽物として検知した時は、第2進入路通過期間の経過中は第1発光部112を非発光状態とする。そして、第2進入路通過期間が経過後に第1発光部112を発光状態とさせる。そして、第2進入路通過期間を経過すると第2発光部116が非発光状態となり模型車両30cが第1進入路24の走行を再開する。そこで、模型車両30cが交差部22を通過した後に、第1発光部112を非発光状態とさせる。
このように、先に交差部22に差し掛かった模型車両が交差部22を通過した後に、後から交差部22に差し掛かった他の模型車両が交差部22を通過する制御を行うことで、交差部22を有する走行路20cで、衝突を回避して、2台の模型車両を走行させることができる。
Then, the model vehicle 30x is first detected by the second obstruction detection unit 118 arranged on the second approach road 26, and after the model vehicle 30x is detected by the second obstruction detection unit 118, the model vehicle 30x intersects. When the first obstruction detection unit 114 detects the model vehicle 30c as a shield during the elapse of the second approach road passage period until passing through 22, the first light emitting unit during the elapse of the second approach road passage period. The 112 is in a non-luminous state. Then, after the second approach passage passage period has elapsed, the first light emitting unit 112 is put into a light emitting state. Then, when the second approach road passage period elapses, the second light emitting unit 116 goes into a non-light emitting state, and the model vehicle 30c resumes traveling on the first approach road 24. Therefore, after the model vehicle 30c has passed the intersection 22, the first light emitting unit 112 is put into a non-light emitting state.
In this way, after the model vehicle approaching the intersection 22 first passes through the intersection 22, another model vehicle approaching the intersection 22 later is controlled to pass through the intersection 22 to control the intersection 22. It is possible to run two model vehicles on the traveling path 20c having 22 while avoiding a collision.

[実施例4の変形例]
実施例4では、模型車両が遮蔽物検知部に検知されてから交差部を通過するまでの所要時間、及び、発光状態の発光部で停止している模型車両が、発光部が非発光状態となってから交差部を通過するまでの所要時間、に相当するパラメータを停止指示装置110の発光制御部120を制御するマイクロプログラムで設定して調整している。そこで、停止指示装置110にダイヤルを設けて、これらのパラメータを調整しても良い。
実施例4では停止指示装置の第1発光部及び第2発光部は可視光を発する構成としたが、赤外線を発する構成としても良い。このときは、模型車両の照度測定部を赤外線を測定する構成とする。
[Modification of Example 4]
In the fourth embodiment, the time required from the detection of the model vehicle by the shield detection unit to the passage through the intersection, and the model vehicle stopped at the light emitting portion in the light emitting state, the light emitting portion is in the non-light emitting state. A parameter corresponding to the time required to pass through the intersection is set and adjusted by a microprogram that controls the light emission control unit 120 of the stop instruction device 110. Therefore, the stop instruction device 110 may be provided with a dial to adjust these parameters.
In the fourth embodiment, the first light emitting unit and the second light emitting unit of the stop instruction device are configured to emit visible light, but may be configured to emit infrared light. At this time, the illuminance measuring unit of the model vehicle is configured to measure infrared rays.

実施例4では、模型車両の衝突を自動で回避させるため停止指示装置の2つの遮蔽物検知部を走行路に配置して模型車両の交差部への接近を検知しているが、遮蔽物検知部を走行路から外して模型車両の走行制御システムの利用者の手元に置き、利用者が遮蔽物検知部を手で覆うことで、対応する発光部を発光状態にさせて交差部での模型車両の衝突を防ぐこともできる。
この場合は、発光制御部は、第1遮蔽物検知部が遮蔽物を検知しない時は第1発光部を非発光状態とし、第1遮蔽物検知部が遮蔽物を検知している時は第1発光部を非発光状態とし、第2遮蔽物検知部と第2発光部についても同様の制御をする単純なものでよい。2つの模型車両が衝突しそうな状態で交差部に向かって走行してきた時は、使用者は停止させたい側の進入路に配置された発光部に対応する遮蔽物検知部を手などで覆って遮蔽物として検知させ、発光部を発光状態として一方の模型車両を停止させ、他方の模型車両が交差部を通過した後、遮蔽物検知部の覆いを外せば、同一の走行路で交差部での衝突を回避させて、2台の模型車両を走行させることができる。
In the fourth embodiment, in order to automatically avoid the collision of the model vehicle, two obstacle detection units of the stop instruction device are arranged on the traveling path to detect the approach of the model vehicle to the intersection. The part is removed from the driving path and placed in the hand of the user of the driving control system of the model vehicle, and the user covers the shield detection part with his / her hand to make the corresponding light emitting part emit light and model at the intersection. It can also prevent vehicle collisions.
In this case, the light emission control unit sets the first light emitting unit to a non-light emitting state when the first shield detecting unit does not detect a shield, and sets the first light emitting unit to a non-light emitting state when the first shield detecting unit detects a shield. 1 The light emitting unit may be in a non-light emitting state, and the second shield detecting unit and the second light emitting unit may be simply controlled in the same manner. When two model vehicles are about to collide and travel toward the intersection, the user covers the shield detection unit corresponding to the light emitting unit located on the approach road on the side to be stopped with a hand or the like. If one model vehicle is stopped by detecting it as a shield, the light emitting part is in a light emitting state, the other model vehicle passes through the intersection, and then the cover of the shield detection part is removed, the vehicle runs on the same road at the intersection. It is possible to run two model vehicles by avoiding the collision.

また、停止制御装置は1つの遮蔽物検知部と発光部を備える構成とし、遮蔽物検知部が遮蔽物を検知しない時は発光部を非発光状態とし、遮蔽物検知部が遮蔽物を検知した時は、一定期間は発光部を発光状態とし、一定期間の経過後は発光部を非発光状態としても良い。発光部の手前に模型車両が接近したとき、手などで短時間遮蔽物検知部を覆った後すぐに覆いを外すと、模型車両は発光部で停止した後に、一定期間の経過後に発光部が非発光状態となると、自動で走行を開始するので、走行路の発光部の脇に模型の駅を配置すれば、駅で停止させるような遊び方が出来る。 Further, the stop control device is configured to include one obstruction detection unit and a light emitting unit, and when the obstruction detection unit does not detect the obstruction, the light emitting unit is set to a non-light emitting state, and the obstruction detection unit detects the obstruction. At times, the light emitting unit may be in a light emitting state for a certain period of time, and the light emitting unit may be in a non-light emitting state after a certain period of time has elapsed. When the model vehicle approaches in front of the light emitting part, if the cover is removed immediately after covering the shield detection part with a hand for a short time, the model vehicle will stop at the light emitting part and then the light emitting part will be released after a certain period of time. When it is in the non-light emitting state, it starts running automatically, so if you place a model station beside the light emitting part of the running path, you can play like stopping at the station.

[実施例5の構成]
上述の各実施例では、電源を搭載する自走式の模型車両がプラスチック製の走行路を走行するシステムについて説明したが、本発明は、レールが敷設された走行路をレールから給電を受ける鉄道模型車両が走行するレール給電式鉄道模型車両システムに適用することができる。その時は、模型車両は走行停止制御装置の動作に必要な専用電源を搭載しても良く、専用電源と走行停止制御装置の間に電源スイッチを設けても良い。
図10に実施例5における模型車両の走行制御システム10dの全体構成図を示す。模型車両の走行制御システム10dは、2本のレール28が敷設されレール28に通電される走行路20dと、レール28に接触する車輪から電力の供給を受けてレール28上で走行路20dを走行する模型車両30dと、走行路20dの側に配置された走行許可装置60dを備えている。
走行路20dは、金属製のレール28が2本敷かれたレール部材を接続して1つの周回路を形成したもので、家庭用のコンセントから取った電気が、図示しないパワーユニットを経由して、プラスとマイナスの電気が2本のレール28に流される。なお、レール28に流される電気は低電圧なのでレールに触っても感電することはない。
[Structure of Example 5]
In each of the above-described embodiments, a system in which a self-propelled model vehicle equipped with a power source travels on a plastic track is described, but the present invention describes a railway that receives power from the rail on the track on which the rail is laid. It can be applied to a rail-powered model railroad vehicle system in which a model vehicle runs. At that time, the model vehicle may be equipped with a dedicated power supply necessary for the operation of the travel stop control device, or a power switch may be provided between the dedicated power supply and the travel stop control device.
FIG. 10 shows an overall configuration diagram of the travel control system 10d of the model vehicle according to the fifth embodiment. The travel control system 10d of the model vehicle travels on the travel path 20d on which two rails 28 are laid and the rail 28 is energized and power is supplied from the wheels in contact with the rail 28. The model vehicle 30d and the travel permission device 60d arranged on the side of the travel path 20d are provided.
The runway 20d is formed by connecting rail members in which two metal rails 28 are laid to form one peripheral circuit, and electricity taken from a household outlet is passed through a power unit (not shown). Positive and negative electricity is passed through the two rails 28. Since the electricity flowing through the rail 28 is a low voltage, there is no electric shock even if the rail is touched.

模型車両30dは、レール28から電力を取得する電力取得部36と走行停止制御装置40dと駆動モータ44と車輪46を備えており、電力取得部36でレール28に接触する車輪46を経由しレール28から電力を取得して走行する。
走行停止制御装置40dは、駆動モータ44に供給する電力を電力取得部36から取得する点と、走行停止制御装置40dの動作に必要な電力を専用の内蔵電池でまかなう点を除いて、実施例1で使用した走行停止制御装置40と同じなので、図3及び実施例1の走行停止制御装置40に関する記載を参照し、詳細な説明は省略する。なお、走行停止制御装置40dの動作に必要な電力は、電力取得部36から取得しても良い。
The model vehicle 30d includes a power acquisition unit 36 that acquires electric power from the rail 28, a travel stop control device 40d, a drive motor 44, and wheels 46, and the rail passes through the wheels 46 that come into contact with the rail 28 at the electric power acquisition unit 36. It acquires electric power from 28 and runs.
The traveling stop control device 40d is an embodiment except that the electric power supplied to the drive motor 44 is acquired from the power acquisition unit 36 and the electric power required for the operation of the traveling stop control device 40d is supplied by a dedicated built-in battery. Since it is the same as the travel stop control device 40 used in No. 1, the description regarding the travel stop control device 40 of FIG. 3 and the first embodiment will be referred to, and detailed description thereof will be omitted. The electric power required for the operation of the traveling stop control device 40d may be acquired from the electric power acquisition unit 36.

走行許可装置60dは、電源62dと可視光を発する発光部64dと遮蔽物検知部66dと発光制御部70dを備えており、発光部64dは走行路20dの2本のレール28の間に配置され、遮蔽物検知部66dは発光部64dから離れた位置で、走行路20dの2本のレール28の間に配置されている。そして、電源62dから、発光部64d、遮蔽物検知部66d及び発光制御部70dの動作に必要な電力が供給される。
走行許可装置60dの発光部64d、遮蔽物検知部66d及び発光制御部70dの構成は、実施例1の走行許可装置60の発光部64、遮蔽物検知部66及び発光制御部70の構成と同じなので、図2及び実施例1の走行許可装置60の説明を参照し、詳細な説明は省略する。
The travel permit device 60d includes a power supply 62d, a light emitting unit 64d that emits visible light, a shield detection unit 66d, and a light emission control unit 70d, and the light emitting unit 64d is arranged between two rails 28 of the travel path 20d. The shield detection unit 66d is arranged between the two rails 28 of the traveling path 20d at a position away from the light emitting unit 64d. Then, the power supply 62d supplies the electric power required for the operation of the light emitting unit 64d, the shield detecting unit 66d, and the light emitting control unit 70d.
The configuration of the light emitting unit 64d, the shield detection unit 66d, and the light emission control unit 70d of the travel permission device 60d is the same as the configuration of the light emitting unit 64, the shield detection unit 66, and the light emission control unit 70 of the travel permission device 60 of the first embodiment. Therefore, the description of the travel permit device 60 of FIG. 2 and the first embodiment will be referred to, and detailed description thereof will be omitted.

模型車両の走行制御システム10dは、模型車両30dへの電力の供給方式を除いて、実施例1の模型車両の走行制御システム10と構成が同じなので、実施例1と同様の効果が得られる。そして、実施例5には、実施例1の変形例の適用が可能である。
よって、実施例5によれば、簡易な構成で、模型車両の走行及び停止を制御することができ、同一の走行路で複数の模型車両を、衝突を回避して走行させることができる。
また、実施例2の形態をレール給電式鉄道模型車両システムに適用すれば、走行路を複数の区間を分割して区間毎にレールへの通電の制御をしなくても、複数の模型車両を衝突を回避して走行路上を走行させることができる。
また、実施例3の形態をレール給電式鉄道模型車両システムに適用すれば、走行路に速度制御装置を配置した区間で、鉄道模型車両を減速走行させることができる。
Since the travel control system 10d of the model vehicle has the same configuration as the travel control system 10 of the model vehicle of the first embodiment except for the method of supplying electric power to the model vehicle 30d, the same effect as that of the first embodiment can be obtained. Then, the modified example of the first embodiment can be applied to the fifth embodiment.
Therefore, according to the fifth embodiment, it is possible to control the running and stopping of the model vehicle with a simple configuration, and it is possible to run a plurality of model vehicles on the same running path while avoiding a collision.
Further, if the embodiment of the second embodiment is applied to the rail-powered model railroad vehicle system, a plurality of model vehicles can be used without dividing the traveling path into a plurality of sections and controlling the energization of the rails for each section. It is possible to avoid a collision and drive on the road.
Further, if the embodiment of the third embodiment is applied to the rail-powered model railroad vehicle system, the model railroad vehicle can be decelerated in the section where the speed control device is arranged on the traveling path.

その他、本発明に係る模型車両の走行制御システムはその発明の思想の範囲で、各種の形態で実施できるものである。 In addition, the travel control system for the model vehicle according to the present invention can be implemented in various forms within the scope of the idea of the present invention.

10、10a、10b、10c、10d 模型車両の走行制御システム
20、20a、20b、20c、20d 走行路
22 交差部
24 第1進入路
26 第2進入路
28 レール
30、30a、30b、30c、30d、30x、30y、30z 模型車両
32 電源
34 電源スイッチ
36 電力取得部
40、40d 走行停止制御装置
42 照度測定部
44 駆動モータ
46 車輪
50 動力源制御部
52 光電気変換部
54 照度判定部
56 電気制御部
60、60a、60b、60d 走行許可装置
62、62a、62b、62d 電源
64、64a、64b、64d 発光部
66、66a、66b、66d 遮蔽物検知部
68a、68b 制御区間
70、70a、70b、70d 発光制御部
72 光電気変換部
74 照度判定部
76 制御計算部
78 信号出力部
80 速度制御装置
82 電源
84 発光部
86 発光制御部
90 信号出力部
92 速度計算部
94 周期設定部
96 通電割合設定部
100 制御信号
102 駆動モータ電源
104 駆動モータ駆動力
106 走行速度
110 停止指示装置
111 電源
112 第1発光部
114 第1遮蔽物検知部
116 第2発光部
118 第2遮蔽物検知部
120 発光制御部
121 第1光電気変換部
122 第1照度判定部
123 第1信号出力部
124 第2光電気変換部
125 第2照度判定部
126 第2信号出力部
128 制御計算部
10, 10a, 10b, 10c, 10d Model vehicle travel control system 20, 20a, 20b, 20c, 20d Travel road 22 Crossing 24 First approach road 26 Second approach road 28 Rails 30, 30a, 30b, 30c, 30d , 30x, 30y, 30z Model vehicle 32 Power supply 34 Power switch 36 Power acquisition unit 40, 40d Travel stop control device 42 Illumination measurement unit 44 Drive motor 46 Wheel 50 Power source control unit 52 Photoelectric conversion unit 54 Illumination determination unit 56 Electrical control Units 60, 60a, 60b, 60d Travel permission devices 62, 62a, 62b, 62d Power supply 64, 64a, 64b, 64d Light emitting units 66, 66a, 66b, 66d Obstruction detection units 68a, 68b Control sections 70, 70a, 70b, 70d Light emission control unit 72 Photoelectric conversion unit 74 Illumination judgment unit 76 Control calculation unit 78 Signal output unit 80 Speed control device 82 Power supply 84 Light emission unit 86 Light emission control unit 90 Signal output unit 92 Speed calculation unit 94 Period setting unit 96 Energization ratio setting Unit 100 Control signal 102 Drive motor power supply 104 Drive motor driving force 106 Traveling speed 110 Stop instruction device 111 Power supply 112 First light emitting unit 114 First obstruction detection unit 116 Second light emitting unit 118 Second obstruction detection unit 120 Light emission control unit 121 1st opto-electric conversion unit 122 1st illuminance determination unit 123 1st signal output unit 124 2nd opto-electric conversion unit 125 2nd illuminance determination unit 126 2nd signal output unit 128 Control calculation unit

Claims (9)

模型車両の走行制御システムであって、
走行路と、走行路を走行する模型車両と、走行許可装置を備え、
前記模型車両は、電源と、電源スイッチと、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記走行許可装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、遮蔽物検知部と、発光制御部を備え、
前記走行許可装置の発光制御部は、前記遮蔽物検知部が遮蔽物を検知しない時は、前記発光部を発光状態とさせ、該遮蔽物検知部が遮蔽物を検知した時は、所定の期間は該発光部を非発光状態とさせた後に該発光部を発光状態とさせ、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電源スイッチと前記駆動モータの間を電気的な接続状態とし、該照度測定部が測定した照度が該基準照度よりも高い時は、該電源スイッチと該駆動モータの間を電気的な切断状態とし、
前記走行路の、前記走行許可装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が該基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システム。
It is a running control system for model vehicles.
Equipped with a driving path, a model vehicle traveling on the driving path, and a traveling permission device,
The model vehicle includes a power supply, a power switch, a traveling stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The travel permit device includes a power supply, a light emitting unit that is arranged on the travel path and emits visible light or infrared rays, a shield detection unit, and a light emission control unit.
The light emitting control unit of the travel permit device puts the light emitting unit into a light emitting state when the shield detecting unit does not detect a shield, and when the shield detecting unit detects a shield, a predetermined period of time. Puts the light emitting part into a non-light emitting state and then puts the light emitting part into a light emitting state.
When the illuminance measured by the illuminance measuring unit is lower than the predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power switch and the drive motor, and the illuminance. When the illuminance measured by the measuring unit is higher than the reference illuminance, the power switch and the drive motor are electrically disconnected.
When the model vehicle is placed at a position on the travel path where the light emitting unit of the travel permission device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the travel stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.
請求項1に記載の模型車両の走行制御システムであって、
前記走行許可装置の遮蔽物検知部が、前記発光部から離れた位置で、前記走行路に配置され、
前記発光部は、該発光部が発光状態を継続する時、前記模型車両が該発光部で停止することができる長さを有し、他の模型車両が前記遮蔽物検知部で遮蔽物として検知された時は、該発光部で停止した該模型車両が該発光部から離脱することを特徴とする、模型車両の走行制御システム。
The travel control system for a model vehicle according to claim 1.
The shield detection unit of the travel permit device is arranged on the travel path at a position away from the light emitting unit.
The light emitting unit has a length that allows the model vehicle to stop at the light emitting unit when the light emitting unit continues to emit light, and another model vehicle detects the light emitting unit as a shield by the shield detecting unit. A travel control system for a model vehicle, characterized in that the model vehicle stopped at the light emitting unit is separated from the light emitting unit when the light is generated.
請求項2に記載の模型車両の走行制御システムであって、
前記走行許可装置を2つ以上備え、
各走行許可装置の遮蔽物検知部と発光部は、前記模型車両の進行方向の後方に遮蔽物検知部が配置され、進行方向の前方に該発光部が配置され、
前記走行路の、1つの走行許可装置の遮蔽物検知部が配置された位置から前記模型車両の進行方向で見て発光部が配置された位置に至る区間には、他の走行許可装置の遮蔽物検知部及び発光部のいずれも配置されないことを特徴とする、模型車両の走行制御システム。
The travel control system for a model vehicle according to claim 2.
Equipped with two or more of the travel permit devices
As for the shield detection unit and the light emitting unit of each travel permission device, the shield detection unit is arranged behind the model vehicle in the traveling direction, and the light emitting unit is arranged in front of the traveling direction.
In the section of the travel path from the position where the shield detection unit of one travel permission device is arranged to the position where the light emitting unit is arranged when viewed in the traveling direction of the model vehicle, the other travel permission device is shielded. A travel control system for a model vehicle, characterized in that neither an object detection unit nor a light emitting unit is arranged.
模型車両の走行制御システムであって、
走行路と、走行路を走行する模型車両と、速度制御装置を備え、
前記模型車両は、電源と、電源スイッチと、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記速度制御装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、発光制御部を備え、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電源スイッチと前記駆動モータの間を電気的な接続状態とし、前記照度測定部が測定した照度が該基準照度よりも高い時は、該電源スイッチと該駆動モータの間を電気的な切断状態とし、
前記速度制御装置は、前記発光制御部に制御されて、前記発光部が発光状態と非発光状態を所定の時間間隔で繰り返し、
前記走行路の、前記速度制御装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が該基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システム。
It is a running control system for model vehicles.
Equipped with a running path, a model vehicle running on the running path, and a speed control device,
The model vehicle includes a power supply, a power switch, a traveling stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The speed control device includes a power supply, a light emitting unit arranged on a traveling path and emitting visible light or infrared light, and a light emitting control unit.
When the illuminance measured by the illuminance measuring unit is lower than a predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power switch and the drive motor, and the illuminance When the illuminance measured by the measuring unit is higher than the reference illuminance, the power switch and the drive motor are electrically disconnected.
The speed control device is controlled by the light emitting control unit, and the light emitting unit repeats a light emitting state and a non-light emitting state at predetermined time intervals.
When the model vehicle is placed at a position on the traveling path where the light emitting unit of the speed control device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the traveling stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.
模型車両の走行制御システムであって、
走行路と、走行路を走行する模型車両と、停止指示装置を備え、
前記模型車両は、電源と、電源スイッチと、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記停止指示装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、遮蔽物検知部と、発光制御部を備え、
前記停止指示装置の発光制御部は、前記遮蔽物検知部が遮蔽物を検知しない時は、前記発光部を非発光状態とさせ、前記遮蔽物検知部が遮蔽物を検知した時は、所定の期間は該発光部を発光状態とさせた後に該発光部を非発光状態とさせ、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電源スイッチと前記駆動モータの間を電気的な接続状態とし、該照度測定部が測定した照度が該基準照度よりも高い時は、該電源スイッチと該駆動モータの間を電気的な切断状態とし、
前記走行路の、前記停止指示装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が該基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システム。
It is a running control system for model vehicles.
Equipped with a driving path, a model vehicle traveling on the driving path, and a stop instruction device,
The model vehicle includes a power supply, a power switch, a traveling stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The stop instruction device includes a power supply, a light emitting unit that is arranged on a traveling path and emits visible light or infrared rays, a shield detection unit, and a light emission control unit.
The light emitting control unit of the stop instruction device puts the light emitting unit in a non-light emitting state when the shield detecting unit does not detect a shield, and determines a predetermined light when the shield detecting unit detects a shield. During the period, the light emitting part is put into a light emitting state, and then the light emitting part is made into a non-light emitting state.
When the illuminance measured by the illuminance measuring unit is lower than the predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power switch and the drive motor, and the illuminance. When the illuminance measured by the measuring unit is higher than the reference illuminance, the power switch and the drive motor are electrically disconnected.
When the model vehicle is placed at a position on the travel path where the light emitting unit of the stop instruction device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the traveling stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.
請求項5に記載の模型車両の走行制御システムであって、
前記停止指示装置は、電源と、第1発光部と、第1遮蔽物検知部と、第2発光部と、第2遮蔽物検知部と、発光制御部を備え、
前記走行路は第1進入路と第2進入路が交差する交差部を有しており、
前記第1進入路の前記交差部の手前に前記第2発光部が配置され、該第2発光部の模型車両の進行方向の後方に前記第1遮蔽物検知部が配置され、
前記第2進入路の前記交差部の手前に前記第1発光部が配置され、該第1発光部の模型車両の進行方向の後方に前記第2遮蔽物検知部が配置され、
前記発光制御部は、前記第1進入路に配置された前記第1遮蔽物検知部が前記模型車両を遮蔽物として検知した時は、該模型車両の検知から該模型車両が前記交差部を通過するまでの期間を第1進入路通過期間として前記第1発光部を発光状態とさせ、該第1進入路通過期間の経過後に該第1発光部を非発光状態とさせ、
前記発光制御部は、前記第1進入路通過期間の経過中に前記第2進入路に配置された前記第2遮蔽物検知部が他の模型車両を遮蔽物として検知した時は、前記第1進入路通過期間の経過後に前記第2発光部を発光状態とさせ、他の模型車両が前記交差部を通過後に該第2発光部を非発光状態とさせ、
前記発光制御部は、前記第2進入路に配置された前記第2遮蔽物検知部が前記模型車両を遮蔽物として検知した時は、該模型車両の検知から該模型車両が前記交差部を通過するまでの期間を第2進入路通過期間として前記第2発光部を発光状態とさせ、該第2進入路通過期間の経過後に該第2発光部を非発光状態とさせ、
前記発光制御部は、前記第2進入路通過期間の経過中に前記第1進入路に配置された前記第1遮蔽物検知部が他の模型車両を遮蔽物として検知した時は、前記第2進入路通過期間の経過後に前記第1発光部を発光状態とさせ、他の模型車両が前記交差部を通過後に該第1発光部を非発光状態とさせることを特徴とする、模型車両の走行制御システム。
The travel control system for a model vehicle according to claim 5.
The stop instruction device includes a power supply, a first light emitting unit, a first obstruction detection unit, a second light emitting unit, a second obstruction detection unit, and a light emission control unit.
The traveling road has an intersection where the first approach road and the second approach road intersect.
The second light emitting unit is arranged in front of the intersection of the first approach road, and the first shield detecting unit is arranged behind the model vehicle of the second light emitting unit in the traveling direction.
The first light emitting unit is arranged in front of the intersection of the second approach road, and the second shield detecting unit is arranged behind the model vehicle of the first light emitting unit in the traveling direction.
When the first shield detection unit arranged on the first approach path detects the model vehicle as a shield, the light emission control unit detects the model vehicle and the model vehicle passes through the intersection. The first light emitting unit is put into a light emitting state, and the first light emitting part is put into a non-light emitting state after the elapse of the first approach road passing period.
When the second obstacle detection unit arranged on the second approach road detects another model vehicle as a shield during the elapse of the first approach road passage period, the light emission control unit causes the first approach. After the passage period of the approach road has elapsed, the second light emitting unit is put into a light emitting state, and after another model vehicle has passed the intersection, the second light emitting part is put into a non-light emitting state.
When the second obstacle detection unit arranged on the second approach path detects the model vehicle as a shield, the light emission control unit detects the model vehicle and the model vehicle passes through the intersection. The second light emitting unit is put into a light emitting state, and the second light emitting part is put into a non-light emitting state after the elapse of the second approach road passing period.
When the first shield detection unit arranged on the first approach road detects another model vehicle as a shield during the elapse of the second approach road passage period, the light emission control unit performs the second. Traveling of the model vehicle, characterized in that the first light emitting portion is put into a light emitting state after the lapse of the approach road passage period, and the first light emitting portion is put into a non-light emitting state after the other model vehicle passes through the intersection. Control system.
模型車両の走行制御システムであって、
通電されるレールが敷設された走行路と、走行路を走行する模型車両と、走行許可装置を備え、
前記模型車両は、レールから電力を取得する電力取得部と、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記走行許可装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、遮蔽物検知部と、発光制御部を備え、
前記走行許可装置の発光制御部は、前記遮蔽物検知部が遮蔽物を検知しない時は、前記発光部を発光状態とさせ、該遮蔽物検知部が遮蔽物を検知した時は、所定の期間は該発光部を非発光状態とさせた後に該発光部を発光状態とさせ、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電力取得部と前記駆動モータの間を電気的な接続状態とし、該照度測定部が測定した照度が該基準照度よりも高い時は、該電力取得部と該駆動モータの間を電気的な切断状態とし、
前記走行路の、前記走行許可装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が該基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システム。
It is a running control system for model vehicles.
It is equipped with a running path on which rails to be energized are laid, a model vehicle running on the running path, and a running permit device.
The model vehicle includes a power acquisition unit that acquires electric power from a rail, a running stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The travel permit device includes a power supply, a light emitting unit that is arranged on the travel path and emits visible light or infrared rays, a shield detection unit, and a light emission control unit.
The light emitting control unit of the travel permit device puts the light emitting unit into a light emitting state when the shield detecting unit does not detect a shield, and when the shield detecting unit detects a shield, a predetermined period of time. Puts the light emitting part into a non-light emitting state and then puts the light emitting part into a light emitting state.
When the illuminance measured by the illuminance measuring unit is lower than a predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power acquisition unit and the drive motor. When the illuminance measured by the illuminance measuring unit is higher than the reference illuminance, the power acquisition unit and the drive motor are electrically disconnected.
When the model vehicle is placed at a position on the travel path where the light emitting unit of the travel permission device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the travel stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.
請求項7に記載の模型車両の走行制御システムであって、
前記走行許可装置の遮蔽物検知部が、前記発光部から離れた位置で、前記走行路に配置され、
前記発光部は、該発光部が発光状態を継続する時、前記模型車両が該発光部で停止することができる長さを有し、他の模型車両が前記遮蔽物検知部で遮蔽物として検知された時は、該発光部で停止した該模型車両が該発光部から離脱することを特徴とする、模型車両の走行制御システム。
The travel control system for a model vehicle according to claim 7.
The shield detection unit of the travel permit device is arranged on the travel path at a position away from the light emitting unit.
The light emitting unit has a length that allows the model vehicle to stop at the light emitting unit when the light emitting unit continues to emit light, and another model vehicle detects the light emitting unit as a shield by the shield detecting unit. A travel control system for a model vehicle, characterized in that the model vehicle stopped at the light emitting unit is separated from the light emitting unit when the light is generated.
模型車両の走行制御システムであって、
通電されるレールが敷設された走行路と、走行路を走行する模型車両と、速度制御装置を備え、
前記模型車両は、レールから電力を取得する電力取得部と、走行停止制御装置と、駆動モータと、駆動モータにより駆動する車輪を備え、
前記模型車両の走行停止制御装置は、照度測定部と、動力源制御部を備え、
前記速度制御装置は、電源と、走行路に配置され可視光又は赤外線を発する発光部と、発光制御部を備え、
前記走行停止制御装置の動力源制御部は、前記照度測定部が測定した照度が所定の基準照度よりも低い時は、前記電力取得部と前記駆動モータの間を電気的な接続状態とし、前記照度測定部が測定した照度が該基準照度よりも高い時は、該電力取得部と該駆動モータの間を電気的な切断状態とし、
前記速度制御装置は、前記発光制御部に制御されて、前記発光部が発光状態と非発光状態を所定の時間間隔で繰り返し、
前記走行路の、前記速度制御装置の発光部が配置された位置に、前記模型車両を置いたとき、該発光部が発光状態の時は、前記走行停止制御装置の照度測定部で測定される照度が前記基準照度よりも高く、該発光部が非発光状態の時は、該走行停止制御装置の照度測定部で測定される照度が該基準照度よりも低く、
前記発光部は前記走行路を前記模型車両が走行する方向に長さを有する、模型車両の走行制御システム。
It is a running control system for model vehicles.
It is equipped with a running path on which rails to be energized are laid, a model vehicle running on the running path, and a speed control device.
The model vehicle includes a power acquisition unit that acquires electric power from a rail, a running stop control device, a drive motor, and wheels driven by the drive motor.
The running stop control device of the model vehicle includes an illuminance measuring unit and a power source control unit.
The speed control device includes a power supply, a light emitting unit arranged on a traveling path and emitting visible light or infrared light, and a light emitting control unit.
When the illuminance measured by the illuminance measuring unit is lower than a predetermined reference illuminance, the power source control unit of the traveling stop control device establishes an electrical connection state between the power acquisition unit and the drive motor, and the above-mentioned When the illuminance measured by the illuminance measuring unit is higher than the reference illuminance, the power acquisition unit and the drive motor are electrically disconnected.
The speed control device is controlled by the light emitting control unit, and the light emitting unit repeats a light emitting state and a non-light emitting state at predetermined time intervals.
When the model vehicle is placed at a position on the traveling path where the light emitting unit of the speed control device is arranged, when the light emitting unit is in the light emitting state, it is measured by the illuminance measuring unit of the traveling stop control device. When the illuminance is higher than the reference illuminance and the light emitting unit is in the non-light emitting state, the illuminance measured by the illuminance measuring unit of the traveling stop control device is lower than the reference illuminance.
The light emitting unit is a travel control system for a model vehicle having a length in a direction in which the model vehicle travels on the travel path.
JP2021004717A 2021-01-15 2021-01-15 Model vehicle driving control system Active JP6927479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021004717A JP6927479B1 (en) 2021-01-15 2021-01-15 Model vehicle driving control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021004717A JP6927479B1 (en) 2021-01-15 2021-01-15 Model vehicle driving control system

Publications (2)

Publication Number Publication Date
JP6927479B1 true JP6927479B1 (en) 2021-09-01
JP2022109420A JP2022109420A (en) 2022-07-28

Family

ID=77456255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021004717A Active JP6927479B1 (en) 2021-01-15 2021-01-15 Model vehicle driving control system

Country Status (1)

Country Link
JP (1) JP6927479B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075191A1 (en) * 2001-04-05 2007-04-05 Zander Dennis R Combination model train proximity detector and signal
JP2012045186A (en) * 2010-08-27 2012-03-08 Tomy Co Ltd Action toy
JP3176707U (en) * 2012-04-19 2012-06-28 株式会社ノエルコーポレーション Levitation vehicle for toy and track running toy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075191A1 (en) * 2001-04-05 2007-04-05 Zander Dennis R Combination model train proximity detector and signal
JP2012045186A (en) * 2010-08-27 2012-03-08 Tomy Co Ltd Action toy
JP3176707U (en) * 2012-04-19 2012-06-28 株式会社ノエルコーポレーション Levitation vehicle for toy and track running toy

Also Published As

Publication number Publication date
JP2022109420A (en) 2022-07-28

Similar Documents

Publication Publication Date Title
US9403544B2 (en) Interactive speed control
CN109074072B (en) Automatic transport system
WO2018121513A1 (en) Train positioning system and train positioning method
CN105390003B (en) A kind of road surface guide for evading intersection predicament area
KR101939093B1 (en) Electric kickboard
CN107123288B (en) A kind of unsignalized intersection vehicle guidance device and bootstrap technique
CN104507544A (en) Track segment for a ride, method for driving through a track segment, and ride
JP2021114463A (en) Headlight intelligent control device
JP6927479B1 (en) Model vehicle driving control system
CN108163008A (en) A kind of rail system and its control method of public dynamic means of transportation
KR101659344B1 (en) Automatic control apparatus for driving miniature cars
KR100943782B1 (en) Automatic and guided system for transporting people and method for controlling transport modules running in such a system
JP2005289526A (en) Moving shelf device with obstacle detection device
CN110555995A (en) Smart city bad sight distance vehicle meeting early warning system based on Internet of vehicles
CN203228797U (en) Infrared stepped coding-decoding anti-collision device
JP2007055371A (en) Vehicle device
JP2553912B2 (en) Load transfer equipment
JPH06131039A (en) Game traveling vehicle
KR102445588B1 (en) System and method for controlling electric rail vehicle and platform
CN103264716B (en) Infrared ray ladder encoding and decoding collision avoidance system
JPH05134742A (en) Running control method for electric car for carrier
KR102445587B1 (en) Apparatus and method for controlling electric railway vehicle
JP7051164B1 (en) Self-driving tram
JP3122808U (en) Automatic DC power supply voltage adjustment device for running model railway vehicles
JPH0745767Y2 (en) Rail vehicle collision prevention device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210126

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210722

R150 Certificate of patent or registration of utility model

Ref document number: 6927479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250