JP6927014B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP6927014B2
JP6927014B2 JP2017241621A JP2017241621A JP6927014B2 JP 6927014 B2 JP6927014 B2 JP 6927014B2 JP 2017241621 A JP2017241621 A JP 2017241621A JP 2017241621 A JP2017241621 A JP 2017241621A JP 6927014 B2 JP6927014 B2 JP 6927014B2
Authority
JP
Japan
Prior art keywords
magnetic field
bias
bias magnetic
voltage
disturbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241621A
Other languages
Japanese (ja)
Other versions
JP2019109114A (en
Inventor
二口 尚樹
尚樹 二口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017241621A priority Critical patent/JP6927014B2/en
Publication of JP2019109114A publication Critical patent/JP2019109114A/en
Application granted granted Critical
Publication of JP6927014B2 publication Critical patent/JP6927014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、電流センサに関する。 The present invention relates to a current sensor.

従来、異方性磁気抵抗(AMR(Anisotropic Magneto Resistive)効果を用いたAMR素子や巨大磁気抵抗(GMR(Giant Magneto Resistive))効果を用いたGMR素子など磁気抵抗効果素子を用いた電流センサが知られている(例えば、特許文献1参照)。 Conventionally, current sensors using magnetoresistive elements such as AMR elements using the anisotropic magnetoresistive (AMR) effect and GMR elements using the giant magnetoresistive (GMR) effect have been known. (See, for example, Patent Document 1).

特許文献1では、固定層の磁化方向の向きがそれぞれ反対となるように直列に接続された第1及び第2の磁気検出素子からなるハーフブリッジ構造の電流センサが記載されている。この電流センサでは、両磁気検出素子に反対方向のバイアス磁界を印加することで、バイアス磁界と平行な方向の外部磁界(外乱)の影響を低減している。 Patent Document 1 describes a current sensor having a half-bridge structure composed of first and second magnetic detector elements connected in series so that the directions of the magnetization directions of the fixed layers are opposite to each other. In this current sensor, the influence of the external magnetic field (disturbance) in the direction parallel to the bias magnetic field is reduced by applying the bias magnetic fields in the opposite directions to both magnetic detector elements.

特開2016−99291号公報Japanese Unexamined Patent Publication No. 2016-99291

特許文献1に記載の電流センサでは、両磁気検出素子に逆方向のバイアス磁界を印加する必要があるため、バイアス磁界を印加する手段が復雑となりセンサ全体が大型化し易いという課題があり、更なる改良が望まれていた。 In the current sensor described in Patent Document 1, since it is necessary to apply a bias magnetic field in the opposite direction to both magnetic detector elements, there is a problem that the means for applying the bias magnetic field becomes complicated and the entire sensor tends to be large. Improvement was desired.

そこで、本発明は、小型で外乱の影響を受けにくい電流センサを提供することを目的とする。 Therefore, an object of the present invention is to provide a current sensor that is compact and less susceptible to disturbance.

本発明は、上記課題を解決することを目的として、固定層の磁化方向の向きがそれぞれ反対となるように直列に接続された第1及び第2の磁気検出素子と、直列に接続された前記第1及び第2磁気検出素子の両端間に直流電圧を印加する電圧源と、を有し、前記第1磁気検出素子と前記第2磁気検出素子との間の電圧を出力する電流センサであって、前記第1及び第2の磁気検出素子に、前記磁化方向と垂直方向のバイアス磁界を印加するバイアス磁界印加手段と、前記バイアス磁界印加手段で印加するバイアス磁界の方向を反転させるバイアス磁界反転手段と、前記バイアス磁界反転手段によるバイアス磁界の反転前後の出力の平均化処理を行う平均化処理部と、を備えた、電流センサを提供する。 The present invention aims to solve the above-mentioned problems, and the first and second magnetic detection elements connected in series so that the directions of the magnetization directions of the fixed layers are opposite to each other are connected in series. A current sensor that has a voltage source that applies a DC voltage between both ends of the first and second magnetic detection elements, and outputs a voltage between the first magnetic detection element and the second magnetic detection element. Then, the bias magnetic field applying means for applying the bias magnetic field in the direction perpendicular to the magnetization direction to the first and second magnetic detection elements and the bias magnetic field reversal for reversing the directions of the bias magnetic field applied by the bias magnetic field applying means. Provided is a current sensor including means and an averaging processing unit that performs an output averaging process before and after reversal of the bias magnetic field by the bias magnetic field reversing means.

本発明によれば、小型で外乱の影響を受けにくい電流センサを提供できる。 According to the present invention, it is possible to provide a current sensor that is compact and less susceptible to disturbance.

本発明の一実施の形態に係る電流センサの概略構成図である。It is a schematic block diagram of the current sensor which concerns on one Embodiment of this invention. センサ部とバスバとの位置関係を説明する図であり、(a)は、バスバを透視した平面図、(b)はその側面図である。It is a figure explaining the positional relationship between a sensor part and a bus bar, (a) is a plan view which see through the bus bar, and (b) is a side view. (a)は磁気検出素子の原理を説明する説明図であり、(b)は外乱がない状態での磁気検出素子の被測定磁界に対する抵抗値の関係を示すグラフ図である。(A) is an explanatory diagram for explaining the principle of the magnetic detector element, and (b) is a graph showing the relationship of the resistance value of the magnetic detector element with respect to the measured magnetic field in the absence of disturbance. (a)はバイアス磁界と外乱の方向が同じ方向であるときの固定層と自由層の磁化方向の角度の変化を説明する図であり、(b)は、バイアス磁界と同じ方向の外乱がある場合における磁気検出素子の被測定磁界に対する抵抗値の関係を示すグラフ図である。(A) is a diagram for explaining the change in the angle of the magnetization direction of the fixed layer and the free layer when the directions of the bias magnetic field and the disturbance are the same, and (b) is a diagram showing the disturbance in the same direction as the bias magnetic field. It is a graph which shows the relationship of the resistance value with respect to the magnetic field to be measured of the magnetic detector element in the case. (a)はバイアス磁界と外乱の方向が反対方向であるときの固定層と自由層の磁化方向の角度の変化を説明する図であり、(b)は、バイアス磁界と反対方向の外乱がある場合における磁気検出素子の被測定磁界に対する抵抗値の関係を示すグラフ図である。(A) is a diagram for explaining the change in the angle between the magnetization direction of the fixed layer and the free layer when the directions of the bias magnetic field and the disturbance are opposite, and (b) is a diagram in which there is a disturbance in the direction opposite to the bias magnetic field. It is a graph which shows the relationship of the resistance value with respect to the magnetic field to be measured of the magnetic detector element in the case. (a)はシミュレーションで供給するバイアス電流を示すグラフ図、(b)バイアス磁界の50%の外乱がある場合の、出力端子から出力される電圧Vmと、出力Voutとのシミュレーション結果を示すグラフ図である。(A) is a graph showing the bias current supplied in the simulation, and (b) is a graph showing the simulation results of the voltage Vm output from the output terminal and the output Vout when there is a disturbance of 50% of the bias magnetic field. Is.

[実施の形態]
以下、本発明の実施の形態を添付図面にしたがって説明する。
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本実施の形態に係る電流センサの概略構成図である。図2は、センサ部とバスバとの位置関係を説明する図であり、(a)は、バスバを透視した平面図、(b)はその側面図である。図1及び図2に示すように、電流センサ1は、センサ部2と、処理回路部3と、を有している。 FIG. 1 is a schematic configuration diagram of a current sensor according to the present embodiment. 2A and 2B are views for explaining the positional relationship between the sensor unit and the bus bar, where FIG. 2A is a plan view of the bus bar and FIG. 2B is a side view thereof. As shown in FIGS. 1 and 2, the current sensor 1 includes a sensor unit 2 and a processing circuit unit 3.

(センサ部2の説明)
まず、センサ部2について説明する。図2に示すように、センサ部2は、2つの磁気検出素子21を有するチップ20と、バイアス磁界印加手段4の一部であるバイアスコイル41と、を有している。
(Explanation of sensor unit 2)
First, the sensor unit 2 will be described. As shown in FIG. 2, the sensor unit 2 has a chip 20 having two magnetic detection elements 21 and a bias coil 41 which is a part of the bias magnetic field applying means 4.

ここでは、電流センサ1が、バスバ8を流れる電流を測定する場合を説明する。バスバ8は、銅やアルミニウム等の電気良導体からなる板状の導体である。センサ部2は、バスバ8の板厚方向において、バスバ8と対向するように配置される。 Here, a case where the current sensor 1 measures the current flowing through the bus bar 8 will be described. The bus bar 8 is a plate-shaped conductor made of a good electric conductor such as copper or aluminum. The sensor unit 2 is arranged so as to face the bus bar 8 in the plate thickness direction of the bus bar 8.

チップ20は、電源端子22a、出力端子22b、及びグランド端子22cの3つの端子を有している。電源端子22aと出力端子22bとは、チップ20内で第1磁気検出素子21aを介して電気的に接続されており、出力端子22bとグランド端子22cとは、チップ20内で第2磁気検出素子21bを介して電気的に接続されている。第1及び第2磁気検出素子21a,21bは、被測定磁界がない場合の磁気抵抗、および磁気抵抗変化率(被測定磁界の強度変化に対する抵抗の変化率)が略同等とされる。 The chip 20 has three terminals, a power supply terminal 22a, an output terminal 22b, and a ground terminal 22c. The power supply terminal 22a and the output terminal 22b are electrically connected to each other in the chip 20 via the first magnetic detector element 21a, and the output terminal 22b and the ground terminal 22c are connected to the second magnetic detector element in the chip 20. It is electrically connected via 21b. The first and second magnetic detector elements 21a and 21b have substantially the same magnetic resistance when there is no magnetic field to be measured and the reluctance rate of change (the rate of change of resistance with respect to the change in intensity of the magnetic field to be measured).

電源端子22aには、後述する駆動用定電圧回路31に電気的に接続され、電源電圧Vccが入力される。グランド端子22cは、処理回路部3のグランドパターンに電気的に接続される等して接地される。出力端子22bから出力される電圧Vmが、センサ部2の出力となる。つまり、センサ部2では、両磁気検出素子21a,21bに一括して電源電圧Vccが印加され、第1磁気検出素子21aと第2磁気検出素子21bとの間の電圧が出力される。換言すれば、センサ部2では、電源電圧Vccが両磁気検出素子21a,21bで抵抗分圧された電圧Vmが、センサ部2の出力とされる。 The power supply terminal 22a is electrically connected to a drive constant voltage circuit 31 described later, and a power supply voltage Vcc is input. The ground terminal 22c is grounded by being electrically connected to the ground pattern of the processing circuit unit 3. The voltage Vm output from the output terminal 22b becomes the output of the sensor unit 2. That is, in the sensor unit 2, the power supply voltage Vcc is collectively applied to both magnetic detection elements 21a and 21b, and the voltage between the first magnetic detection element 21a and the second magnetic detection element 21b is output. In other words, in the sensor unit 2, the voltage Vm obtained by dividing the power supply voltage Vcc by the resistances of the two magnetic detector elements 21a and 21b is taken as the output of the sensor unit 2.

図3に示すように、磁気検出素子21は、磁化方向が固定された固定層210と、磁化方向が変化する自由層211と、固定層210と自由層211とを分離する非磁性層(導電層)212とが積層されて構成されている。磁気検出素子21を用いて磁界強度を測定する際には、固定層210の磁化方向が被測定磁界の方向と一致するように(平行に)磁気検出素子21を配置し、かつ、固定層の磁化方向と垂直な方向にバイアス磁界を印加する。 As shown in FIG. 3, the magnetic detection element 21 is a non-magnetic layer (conductive) that separates the fixed layer 210 in which the magnetization direction is fixed, the free layer 211 in which the magnetization direction changes, and the fixed layer 210 and the free layer 211. Layer) 212 is laminated and configured. When measuring the magnetic field strength using the magnetic detection element 21, the magnetic detection element 21 is arranged (parallel) so that the magnetization direction of the fixed layer 210 coincides with the direction of the magnetic field to be measured, and the fixed layer A bias magnetic field is applied in the direction perpendicular to the magnetization direction.

すると、自由層211は、被測定磁界とバイアス磁界とを合成した合成磁界に沿った方向に磁化され、固定層210の磁化方向と、自由層211の磁化方向とが所定の角度θをなす。磁気検出素子21では、この角度θ、すなわち固定層210と自由層211の磁化方向の角度差に応じて、抵抗が変化する。外乱がない状態での磁気検出素子21の被測定磁界に対する抵抗値の関係は、図3(b)のようになる。 Then, the free layer 211 is magnetized in the direction along the combined magnetic field of the magnetic field to be measured and the bias magnetic field, and the magnetization direction of the fixed layer 210 and the magnetization direction of the free layer 211 form a predetermined angle θ. In the magnetic detection element 21, the resistance changes according to this angle θ, that is, the angle difference between the fixed layer 210 and the free layer 211 in the magnetization direction. The relationship between the resistance values of the magnetic detector 21 with respect to the magnetic field to be measured in the absence of disturbance is as shown in FIG. 3 (b).

図3(b)に示すように、被測定磁界の方向が固定層210の磁化方向と同じ(平行)、すなわち図3(b)の縦軸より右の領域の場合、その大きさが大きくなるにしたがって(θが0度に近づくにしたがって)磁気検出素子21の抵抗値はある値に漸近しつつ小さくなる。逆に、被測定磁界の方向が固定層210の磁化方向と反対(反平行)、すなわち図3(b)の縦軸より左の領域の場合、その大きさが大きくなるにしたがって(θが180度に近づくにしたがって)磁気検出素子21の抵抗値はある値に漸近しつつ大きくなる特性を示す。 As shown in FIG. 3 (b), when the direction of the magnetic field to be measured is the same (parallel) as the magnetization direction of the fixed layer 210, that is, the region to the right of the vertical axis of FIG. 3 (b), the size becomes large. (As θ approaches 0 degrees), the resistance value of the magnetic detector 21 gradually decreases while approaching a certain value. On the contrary, when the direction of the magnetic field to be measured is opposite to the magnetization direction of the fixed layer 210 (antiparallel), that is, in the region to the left of the vertical axis in FIG. 3 (b), as the magnitude increases (θ is 180). The resistance value of the magnetic detector 21 (as it approaches the degree) shows a characteristic that it gradually increases while approaching a certain value.

一方、磁気検出素子21の磁化方向を図3(a)とは反対方向になるように磁気検出素子21を配置し、かつ、固定層の磁化方向と垂直な方向にバイアス磁界を印加した場合、外乱がない状態での磁気検出素子21の被測定磁界に対する抵抗値の関係は、図3(b)の縦軸に対して反転した特性になる。すなわち、被測定磁界の方向が固定層210の磁化方向と同じ(平行)、すなわち図3(b)の縦軸より左の領域の場合、その大きさが大きくなるにしたがって(θが0度に近づくにしたがって)磁気検出素子21の抵抗値はある値に漸近しつつ大きくなる。逆に、被測定磁界の方向が固定層210の磁化方向と反対(反平行)、すなわち図3(b)の縦軸より右の領域の場合、その大きさが大きくなるにしたがって(θが180度に近づくにしたがって)磁気検出素子21の抵抗値はある値に漸近しつつ大きくなる特性を示す。 On the other hand, when the magnetic detection element 21 is arranged so that the magnetization direction of the magnetic detection element 21 is opposite to that in FIG. 3A and a bias magnetic field is applied in a direction perpendicular to the magnetization direction of the fixed layer. The relationship of the resistance value of the magnetic detector 21 with respect to the magnetic field to be measured in the absence of disturbance has a characteristic inverted with respect to the vertical axis of FIG. 3 (b). That is, when the direction of the magnetic field to be measured is the same as (parallel) to the magnetization direction of the fixed layer 210, that is, in the region to the left of the vertical axis in FIG. 3 (b), as the magnitude increases (θ becomes 0 degrees). (As it gets closer), the resistance value of the magnetic detector 21 gradually increases while approaching a certain value. On the contrary, when the direction of the magnetic field to be measured is opposite to the magnetization direction of the fixed layer 210 (antiparallel), that is, in the region to the right of the vertical axis in FIG. 3 (b), as the magnitude increases (θ is 180). The resistance value of the magnetic detector 21 (as it approaches the degree) shows a characteristic that it gradually increases while approaching a certain value.

図2に戻り、第1及び第2の磁気検出素子21a,21bは、固定層210の磁化方向の向き(黒塗り矢印にて示す)がそれぞれ反対となるようにチップ20内で配置されている。また、電流センサ1では、バスバ8を流れる電流により発生する磁界の方向に対して、両磁気検出素子21a,21bは、固定層210の磁化方向の向きが平行または反平行(平行でかつ同じ向きまたは反対向き)となるように、チップ20を配置する。 Returning to FIG. 2, the first and second magnetic detection elements 21a and 21b are arranged in the chip 20 so that the directions of the magnetization directions of the fixed layer 210 (indicated by black arrows) are opposite to each other. .. Further, in the current sensor 1, the directions of the magnetization directions of the fixed layer 210 are parallel or antiparallel (parallel and the same direction) to the direction of the magnetic field generated by the current flowing through the bus bar 8. The chip 20 is arranged so as to be in the opposite direction).

バスバ8を電流が流れておらず被測定磁界がゼロである場合には、両磁気検出素子21a,21bの抵抗値が同じ値となるため、出力端子22bから出力される電圧VmはVcc/2となる。他方、バスバ8に電流が流れ図2(a)内矢印で示す方向に被測定磁界が大きくなると、図2の例では、第1磁気検出素子21aの抵抗が小さく、第2磁気検出素子21bの抵抗が大きくなり、出力端子22bから出力される電圧VmはVcc/2よりも大きくなる。逆に、バスバ8に電流が流れ図2(a)で示す方向とは逆方向に被測定磁界の大きさが大きくなると、第1磁気検出素子21aの抵抗が大きく、第2磁気検出素子21bの抵抗が小さくなり、出力端子22bから出力される電圧VmはVcc/2より小さくなる。よって、この電圧Vmから、磁界を演算し、バスバ8を流れる電流の方向と大きさを求めることができる。磁界または電流の方向はVmがVcc/2より大きいか小さいかで判別でき、磁界または電流の大きさはVmとVcc/2の差の絶対値から算出できる。 When no current is flowing through the bus bar 8 and the magnetic field to be measured is zero, the resistance values of both magnetic detector elements 21a and 21b are the same, so that the voltage Vm output from the output terminal 22b is Vcc / 2. It becomes. On the other hand, when a current flows through the bus bar 8 and the magnetic field to be measured increases in the direction indicated by the arrow in FIG. 2A, the resistance of the first magnetic detector element 21a is small and the resistance of the second magnetic detector 21b in the example of FIG. Becomes larger, and the voltage Vm output from the output terminal 22b becomes larger than Vcc / 2. On the contrary, when a current flows through the bus bar 8 and the magnitude of the magnetic field to be measured increases in the direction opposite to the direction shown in FIG. 2A, the resistance of the first magnetic detector element 21a increases and the resistance of the second magnetic detector 21b increases. Is smaller, and the voltage Vm output from the output terminal 22b is smaller than Vcc / 2. Therefore, the magnetic field can be calculated from this voltage Vm, and the direction and magnitude of the current flowing through the bus bar 8 can be obtained. The direction of the magnetic field or current can be determined by whether Vm is larger or smaller than Vcc / 2, and the magnitude of the magnetic field or current can be calculated from the absolute value of the difference between Vm and Vcc / 2.

バイアスコイル41は、自身を流れる電流によりバイアス磁界を発生させ、発生させたバイアス磁界をチップ20の両磁気検出素子21a,21bに印加するためのものである。バイアスコイル41は、例えば、磁気検出素子21a,21bの製造工程と同じ薄膜プロセスによって形成される。ここでは、渦巻き状の導体パターンからなるバイアスコイル41を形成する場合を示しているが、バイアスコイル41の具体的な形状はこれに限定されない。バイアスコイル41の両端は、後述する極性切替部51を介して、バイアス用定電流源42に電気的に接続されている。 The bias coil 41 is for generating a bias magnetic field by a current flowing through itself and applying the generated bias magnetic field to both magnetic detector elements 21a and 21b of the chip 20. The bias coil 41 is formed, for example, by the same thin film process as in the manufacturing process of the magnetic detection elements 21a and 21b. Here, the case where the bias coil 41 having a spiral conductor pattern is formed is shown, but the specific shape of the bias coil 41 is not limited to this. Both ends of the bias coil 41 are electrically connected to the bias constant current source 42 via a polarity switching unit 51 described later.

(処理回路部3の説明)
処理回路部3は、両磁気検出素子21に直流電圧(電源電圧Vcc)を印加する電圧源としての駆動用定電圧回路31と、バイアスコイル41に電流を供給する電流源としてのバイアス用定電流源42と、を有している。駆動用定電圧回路31は、その出力がセンサ部2の電源端子22aに電気的に接続され、電源端子22aとグランド端子22c間、すなわち直列に接続された第1及び第2磁気検出素子21a,21bの両端間に、直流の電源電圧Vccを印加する。
(Explanation of processing circuit unit 3)
The processing circuit unit 3 includes a drive constant voltage circuit 31 as a voltage source for applying a DC voltage (power supply voltage Vcc) to both magnetic detection elements 21, and a bias constant current as a current source for supplying a current to the bias coil 41. It has a source 42 and. The output of the drive constant voltage circuit 31 is electrically connected to the power supply terminal 22a of the sensor unit 2, and the first and second magnetic detector elements 21a are connected between the power supply terminal 22a and the ground terminal 22c, that is, in series. A DC power supply voltage Vcc is applied between both ends of 21b.

バイアス用定電流源42は、バイアスコイル41に直流電流を供給するためのものである。本実施の形態では、このバイアス用定電流源42とバイアスコイル41とで、バイアス磁界印加手段4が構成されている。バイアス磁界印加手段4は、第1及び第2の磁気検出素子21a,21bに、固定層210の磁化方向と垂直方向のバイアス磁界を印加するものである。 The bias constant current source 42 is for supplying a direct current to the bias coil 41. In the present embodiment, the bias magnetic field applying means 4 is configured by the bias constant current source 42 and the bias coil 41. The bias magnetic field applying means 4 applies a bias magnetic field in the directions perpendicular to the magnetization direction of the fixed layer 210 to the first and second magnetic detection elements 21a and 21b.

また、処理回路部3は、バイアス磁界反転手段5としての極性切替部51を有している。バイアス磁界反転手段5は、バイアス磁界印加手段4で印加するバイアス磁界の方向を反転させるものである。本実施の形態では、バイアス磁界反転手段5は、バイアス用定電流源42からバイアスコイル41に供給される直流電流(以下、バイアス電流という)の向きを反転させる極性切替部51を有しており、この極性切替部51でバイアス電流の向きを反転させることで、バイアス磁界の方向を反転させるように構成されている。 Further, the processing circuit unit 3 has a polarity switching unit 51 as the bias magnetic field inversion means 5. The bias magnetic field reversing means 5 reverses the direction of the bias magnetic field applied by the bias magnetic field applying means 4. In the present embodiment, the bias magnetic field reversing means 5 has a polarity switching unit 51 that reverses the direction of the direct current (hereinafter referred to as the bias current) supplied from the bias constant current source 42 to the bias coil 41. The polarity switching unit 51 reverses the direction of the bias current so that the direction of the bias magnetic field is reversed.

また、本実施の形態では、バイアス磁界反転手段5は、所定の時間間隔ごとにバイアス磁界の方向を切り替えるように構成されている。具体的には、処理回路部3にクロック信号を生成するクロック生成部7を搭載し、このクロック生成部7から入力されるクロック信号を切り替え信号として、所定の時間間隔(つまり所定の周波数)で、バイアス電流の向きを反転させるように極性切替部51を構成した。バイアス電流を切り替える周波数は、例えば10kHz以上100kHz以下であるとよい。所定の時間間隔ごとにバイアス磁界の方向を切り替えることで、バスバ8を流れる電流の時間変化を検出可能となる。 Further, in the present embodiment, the bias magnetic field reversing means 5 is configured to switch the direction of the bias magnetic field at predetermined time intervals. Specifically, a clock generation unit 7 that generates a clock signal is mounted on the processing circuit unit 3, and a clock signal input from the clock generation unit 7 is used as a switching signal at a predetermined time interval (that is, a predetermined frequency). The polarity switching unit 51 is configured so as to reverse the direction of the bias current. The frequency for switching the bias current is, for example, preferably 10 kHz or more and 100 kHz or less. By switching the direction of the bias magnetic field at predetermined time intervals, it is possible to detect the time change of the current flowing through the bus bar 8.

極性切替部51は、例えば1つ以上のスイッチと、スイッチの開閉制御を行うスイッチ制御部と、から構成される。極性切替部51の具体的な構成は特に限定するものではない。極性切替部51は、バイアス用定電流源42とバイアスコイル41間に挿入される。換言すれば、バイアス用定電流源42とバイアスコイル41とが、極性切替部51を介して電気的に接続される。 The polarity switching unit 51 is composed of, for example, one or more switches and a switch control unit that controls opening / closing of the switches. The specific configuration of the polarity switching unit 51 is not particularly limited. The polarity switching unit 51 is inserted between the constant current source for bias 42 and the bias coil 41. In other words, the bias constant current source 42 and the bias coil 41 are electrically connected via the polarity switching unit 51.

さらに、処理回路部3は、バイアス磁界反転手段5によるバイアス磁界の反転前後の出力の平均化処理を行う平均化処理部6を有している。平均化処理部6は、センサ部2の出力端子22bに電気的に接続され、出力端子22bから出力される電圧Vmの平均化処理を行う。本実施の形態では、平均化処理部6は、クロック生成部7からのクロック信号を受信し、極性切替部51の切り替えと同期して電圧Vmのサンプリングを行う。平均化処理部6は、例えば、所定数のサンプルの総和(積分)をサンプル数で除することで、所定の期間における電圧Vmの平均値を演算し、演算した電圧Vmの平均値を、出力Voutとして出力する。出力Voutは、アナログ信号(電圧信号)であってもよいし、デジタル信号であってもよい。このVoutから、磁界を演算し、バスバ8を流れる電流の方向と大きさを求めることができる。磁界または電流の方向はVoutがVcc/2より大きいか小さいかで判別でき、磁界または電流の大きさはVoutとVcc/2の差の絶対値から算出できる。なお、平均化処理部6で平均化処理を行う具体的な構成はこれに限定されず、例えば平均化処理を積分回路等を用いたアナログ処理により行うように構成してもよい。 Further, the processing circuit unit 3 has an averaging processing unit 6 that performs an output averaging process before and after the inversion of the bias magnetic field by the bias magnetic field inversion means 5. The averaging processing unit 6 is electrically connected to the output terminal 22b of the sensor unit 2 and performs averaging processing of the voltage Vm output from the output terminal 22b. In the present embodiment, the averaging processing unit 6 receives the clock signal from the clock generation unit 7 and samples the voltage Vm in synchronization with the switching of the polarity switching unit 51. For example, the averaging processing unit 6 calculates the average value of the voltage Vm in a predetermined period by dividing the sum (integral) of a predetermined number of samples by the number of samples, and outputs the calculated average value of the voltage Vm. Output as Vout. The output Vout may be an analog signal (voltage signal) or a digital signal. From this Vout, the magnetic field can be calculated and the direction and magnitude of the current flowing through the bus bar 8 can be obtained. The direction of the magnetic field or current can be determined by whether Vout is larger or smaller than Vcc / 2, and the magnitude of the magnetic field or current can be calculated from the absolute value of the difference between Vout and Vcc / 2. The specific configuration in which the averaging processing unit 6 performs the averaging processing is not limited to this, and for example, the averaging processing may be performed by analog processing using an integrator circuit or the like.

(電流センサ1における外乱抑制の原理)
まず、図4(a)に示すように、バイアス磁界と外乱の方向が同じ方向である場合を考える。ここでは、両磁気検出素子21a,21bの固定層210の磁化方向は両磁気検出素子21a,21bの配列方向において外側に向かう方向とし、被測定磁界の向きが第2磁気検出素子21b側から第1磁気検出素子21aに向かう方向とする。なお、図4(a)では、固定層210の磁化方向を黒塗り矢印、バイアス磁界の方向を白抜き矢印、被測定磁界の方向をハッチング矢印にてそれぞれ示している。
(Principle of disturbance suppression in current sensor 1)
First, as shown in FIG. 4A, consider the case where the bias magnetic field and the disturbance are in the same direction. Here, the magnetization direction of the fixed layer 210 of both magnetic detection elements 21a and 21b is set to be outward in the arrangement direction of both magnetic detection elements 21a and 21b, and the direction of the magnetic field to be measured is the second from the second magnetic detection element 21b side. 1 The direction is toward the magnetic detector element 21a. In FIG. 4A, the magnetization direction of the fixed layer 210 is indicated by a black arrow, the direction of the bias magnetic field is indicated by a white arrow, and the direction of the magnetic field to be measured is indicated by a hatching arrow.

バイアス磁界と外乱の方向が同じ方向(平行)である場合、バイアス磁界と外乱が互いに強め合う。そのため、外乱が無い場合(図示破線矢印)と比較して、固定層210の磁化方向に対する合成磁界の傾きが大きくなる。このとき両磁気検出素子21a,21bの抵抗値は図4(b)のように変化する。すなわち、被測定磁界が正の場合、磁気検出素子21aの抵抗値は外乱がない場合(破線で表示)に比べ大きくなり、磁気検出素子21bの抵抗値は外乱がない場合に比べ小さくなる。その結果、両磁気検出素子21a,21bの抵抗の差は外乱がない場合と比べて小さくなり、出力端子22bから出力される電圧Vmは外乱がない場合と比べて小さくなる。逆に、被測定磁界が負の場合、磁気検出素子21aの抵抗値は外乱がない場合に比べ小さくなり、磁気検出素子21bの抵抗値は外乱がない場合に比べ大きくなる。その結果、両磁気検出素子21a,21bの抵抗の差は外乱がない場合と比べて小さくなり、出力端子22bから出力される電圧Vmは外乱がない場合と比べて大きくなる。したがって、被測定磁界が負から正まで全体を見ると、被測定磁界の変化に対する出力変化(つまり感度)は、外乱がない場合と比べ小さくなる。 When the directions of the bias magnetic field and the disturbance are the same (parallel), the bias magnetic field and the disturbance strengthen each other. Therefore, the inclination of the combined magnetic field with respect to the magnetization direction of the fixed layer 210 is larger than that in the case where there is no disturbance (dashed line arrow in the figure). At this time, the resistance values of both magnetic detector elements 21a and 21b change as shown in FIG. 4B. That is, when the magnetic field to be measured is positive, the resistance value of the magnetic detection element 21a is larger than when there is no disturbance (indicated by a broken line), and the resistance value of the magnetic detection element 21b is smaller than when there is no disturbance. As a result, the difference in resistance between the two magnetic detector elements 21a and 21b is smaller than when there is no disturbance, and the voltage Vm output from the output terminal 22b is smaller than when there is no disturbance. On the contrary, when the magnetic field to be measured is negative, the resistance value of the magnetic detection element 21a is smaller than that when there is no disturbance, and the resistance value of the magnetic detection element 21b is larger than when there is no disturbance. As a result, the difference in resistance between the two magnetic detector elements 21a and 21b is smaller than when there is no disturbance, and the voltage Vm output from the output terminal 22b is larger than when there is no disturbance. Therefore, when the measured magnetic field is viewed as a whole from negative to positive, the output change (that is, sensitivity) with respect to the change in the measured magnetic field is smaller than that when there is no disturbance.

他方、図5(a)に示すように、バイアス磁界と外乱の方向が反対方向(反平行)である場合、バイアス磁界が外乱の影響を受けて弱められる。そのため、外乱が無い場合(図示破線矢印)と比較して、固定層210の磁化方向に対する合成磁界の傾きが小さくなる。このとき両磁気検出素子21a,21bの抵抗値は抵抗変化量の関係が図5(b)のように変化する。すなわち、被測定磁界が正の場合、磁気検出素子21aの抵抗値は外乱がない場合(破線で表示)に比べ小さくなり、磁気検出素子21bの抵抗値は外乱がない場合に比べ大きくなる。その結果、両磁気検出素子21a,21bの抵抗の差は外乱がない場合と比べて大きくなり、出力端子22bから出力される電圧Vmは外乱がない場合と比べて大きくなる。逆に、被測定磁界が負の場合、磁気検出素子21aの抵抗値は外乱がない場合に比べ大きくなり、磁気検出素子21bの抵抗値は外乱がない場合に比べ小さくなる。その結果、両磁気検出素子21a,21bの抵抗の差は外乱がない場合と比べて大きくなり、出力端子22bから出力される電圧Vmは外乱がない場合と比べて小さくなる。したがって、被測定磁界が負から正まで全体を見ると、被測定磁界の変化に対する出力変化(つまり感度)は、外乱がない場合と比べ大きくなる。 On the other hand, as shown in FIG. 5A, when the directions of the bias magnetic field and the disturbance are opposite (antiparallel), the bias magnetic field is weakened by the influence of the disturbance. Therefore, the inclination of the combined magnetic field with respect to the magnetization direction of the fixed layer 210 is smaller than that in the case where there is no disturbance (dashed line arrow in the figure). At this time, the resistance values of the two magnetic detector elements 21a and 21b change in the relationship of the amount of resistance change as shown in FIG. 5 (b). That is, when the magnetic field to be measured is positive, the resistance value of the magnetic detection element 21a is smaller than when there is no disturbance (indicated by a broken line), and the resistance value of the magnetic detection element 21b is larger than when there is no disturbance. As a result, the difference in resistance between the two magnetic detector elements 21a and 21b is larger than when there is no disturbance, and the voltage Vm output from the output terminal 22b is larger than when there is no disturbance. On the contrary, when the magnetic field to be measured is negative, the resistance value of the magnetic detection element 21a is larger than that when there is no disturbance, and the resistance value of the magnetic detection element 21b is smaller than when there is no disturbance. As a result, the difference in resistance between the two magnetic detector elements 21a and 21b is larger than when there is no disturbance, and the voltage Vm output from the output terminal 22b is smaller than when there is no disturbance. Therefore, when the measured magnetic field is viewed from negative to positive as a whole, the output change (that is, sensitivity) with respect to the change in the measured magnetic field is larger than that in the case where there is no disturbance.

このように、バイアス磁界と平行な方向の外乱が存在すると、バイアス磁界と外乱の方向が同じか否かによって、出力される電圧Vmが変動する。本実施の形態では、これらを平均した値を出力Voutとすることによって、外乱の影響を低減している。 As described above, when a disturbance in a direction parallel to the bias magnetic field exists, the output voltage Vm fluctuates depending on whether or not the direction of the bias magnetic field and the disturbance is the same. In the present embodiment, the influence of disturbance is reduced by setting the average value of these as the output Vout.

バイアス磁界と平行な方向にバイアス磁界の50%の大きさの外乱が存在するとし、図6(a)に示すようにバイアス電流を所定の時間間隔で反転させた場合に、バイアス磁界の2倍の大きさの被測定磁界を計測する際の出力端子22bから出力される電圧Vmと、電圧Vmの平均化処理を行った出力Voutとをシミュレーションにより求めた。結果を図6(b)に示す。 Assuming that a disturbance having a magnitude of 50% of the bias magnetic field exists in a direction parallel to the bias magnetic field, when the bias current is inverted at a predetermined time interval as shown in FIG. 6A, the bias magnetic field is twice as large. The voltage Vm output from the output terminal 22b when measuring the magnetic field to be measured having the magnitude of Vm and the output Vout obtained by averaging the voltage Vm were obtained by simulation. The results are shown in FIG. 6 (b).

図6(b)に示すように、外乱があると、バイアス磁界と外乱の方向が同じか否かによって、感度の変動を介して出力される電圧Vmが変動するが、電圧Vmの平均をとることで、外乱の影響を抑制した出力Voutが得られる。なお、図6(b)では、外乱が存在しない場合の出力Voutが任意単位で0.50となるように縦軸が設定されている。本実施の形態で得られる出力Voutは、外乱が存在しない場合に比べてわずかに小さい値になっているものの、精度が高い検出結果が得られている。具体的には、シミュレーションの結果、本実施の形態によれば、バイアス磁界の反転及び平均化処理を行わない場合と比較して、検出誤差を1/10程度に抑制できることが確認された。 As shown in FIG. 6B, when there is a disturbance, the voltage Vm output via the fluctuation of the sensitivity fluctuates depending on whether the bias magnetic field and the direction of the disturbance are the same, but the average of the voltage Vm is taken. As a result, an output Vout that suppresses the influence of disturbance can be obtained. In FIG. 6B, the vertical axis is set so that the output Vout in the absence of disturbance is 0.50 in an arbitrary unit. Although the output Vout obtained in the present embodiment has a slightly smaller value than that in the case where no disturbance is present, a highly accurate detection result is obtained. Specifically, as a result of the simulation, it was confirmed that according to the present embodiment, the detection error can be suppressed to about 1/10 as compared with the case where the bias magnetic field inversion and averaging processing is not performed.

(実施の形態の作用及び効果)
以上説明したように、本実施の形態に係る電流センサ1では、バイアス磁界印加手段4で印加するバイアス磁界の方向を反転させるバイアス磁界反転手段5と、バイアス磁界反転手段5によるバイアス磁界の反転前後の出力の平均化処理を行う平均化処理部6と、を備えている。
(Actions and effects of embodiments)
As described above, in the current sensor 1 according to the present embodiment, the bias magnetic field reversing means 5 for reversing the direction of the bias magnetic field applied by the bias magnetic field applying means 4 and the bias magnetic field reversing means 5 before and after the reversing of the bias magnetic field by the bias magnetic field reversing means 5. It is provided with an averaging processing unit 6 that performs averaging processing of the output of the above.

これにより、バイアス磁界と平行な方向の外乱が存在する場合であっても、外乱の影響を抑制し、出力誤差を大幅に低減し検出精度の向上を図ることが可能になる。また、電流センサ1では、従来技術のようにバイアス磁界の向きが異なる2つのバイアスコイル等を用いる必要がなく、1つのバイアスコイル41で供給する電流の向きを変えるのみでよいため、センサ部2を小型化することが可能になる。つまり、本実施の形態によれば、小型で外乱の影響を受けにくい電流センサ1を実現できる。 As a result, even when a disturbance in a direction parallel to the bias magnetic field exists, it is possible to suppress the influence of the disturbance, significantly reduce the output error, and improve the detection accuracy. Further, in the current sensor 1, it is not necessary to use two bias coils or the like having different directions of the bias magnetic field as in the prior art, and it is only necessary to change the direction of the current supplied by one bias coil 41. Therefore, the sensor unit 2 Can be miniaturized. That is, according to the present embodiment, it is possible to realize a current sensor 1 that is compact and less susceptible to disturbance.

さらに、センサ部2を小型化できるので、チップ20のチップサイズを小さくすることができ、低コスト化を図ることも可能になる。さらにまた、チップ20のチップサイズを小さくすることで、製造時の薄膜プロセスで生じる2つの磁気検出素子21の特性の差を小さくすることが可能になり、2つの磁気検出素子21の特性の差による誤差(オフセット等)を抑制することが可能になる。なお、チップ20のチップサイズが大きくなると製造上のばらつきが大きくなり、2つの磁気検出素子21間の距離が離れていると、特性の差が大きくなりやすい。 Further, since the sensor unit 2 can be miniaturized, the chip size of the chip 20 can be reduced, and the cost can be reduced. Furthermore, by reducing the chip size of the chip 20, it is possible to reduce the difference in characteristics between the two magnetic detectors 21 that occurs in the thin film process during manufacturing, and the difference in characteristics between the two magnetic detectors 21. It becomes possible to suppress the error (offset, etc.) due to the above. As the chip size of the chip 20 increases, the manufacturing variation increases, and when the distance between the two magnetic detectors 21 is large, the difference in characteristics tends to increase.

また、電流センサ1では、バイアス磁界を印加する構造が従来と比べて簡単になるので、コストの低減が図れる。なお、本実施の形態ではバイアス磁界印加手段4としてバイアスコイル41を用いたが、バイアス磁界を印加する構造はこれに限定されない。例えば、チップ20の近傍にバイアス磁界印加用の電流路(バスバ等)を通し、その電流路を流れる電流により発生する磁界をバイアス磁界として用いることもできる。この場合、電流路を流れる電流の向きを反転させることで、バイアス磁界の方向を反転させることができる。また、チップ20の近傍に配置された永久磁石によって、バイアス磁界を印加してもよい。この場合永久磁石を回転あるいは移動させること等によって、バイアス磁界を反転させることができる。 Further, in the current sensor 1, the structure for applying the bias magnetic field is simpler than that in the conventional case, so that the cost can be reduced. In the present embodiment, the bias coil 41 is used as the bias magnetic field applying means 4, but the structure for applying the bias magnetic field is not limited to this. For example, a current path (such as a bus bar) for applying a bias magnetic field is passed in the vicinity of the chip 20, and a magnetic field generated by a current flowing through the current path can be used as the bias magnetic field. In this case, the direction of the bias magnetic field can be reversed by reversing the direction of the current flowing through the current path. Further, a bias magnetic field may be applied by a permanent magnet arranged in the vicinity of the chip 20. In this case, the bias magnetic field can be reversed by rotating or moving the permanent magnet.

(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiments)
Next, the technical idea grasped from the above-described embodiment will be described with reference to the reference numerals and the like in the embodiment. However, the respective reference numerals and the like in the following description are not limited to the members and the like in which the components in the claims are specifically shown in the embodiment.

[1]固定層の磁化方向の向きがそれぞれ反対となるように直列に接続された第1及び第2の磁気検出素子(21a,21b)と、直列に接続された前記第1及び第2磁気検出素子(21a,21b)の両端間に直流電圧を印加する電圧源(31)と、を有し、前記第1磁気検出素子(21a)と前記第2磁気検出素子(21b)との間の電圧を出力する電流センサ(1)であって、前記第1及び第2の磁気検出素子(21a,21b)に、前記磁化方向と垂直方向のバイアス磁界を印加するバイアス磁界印加手段(4)と、前記バイアス磁界印加手段(4)で印加するバイアス磁界の方向を反転させるバイアス磁界反転手段(5)と、前記バイアス磁界反転手段(5)によるバイアス磁界の反転前後の出力の平均化処理を行う平均化処理部(6)と、を備えた、電流センサ(1)。 [1] The first and second magnetic detection elements (21a, 21b) connected in series so that the directions of the magnetization directions of the fixed layers are opposite to each other, and the first and second magnetic fields connected in series. It has a voltage source (31) for applying a DC voltage between both ends of the detection elements (21a, 21b), and is between the first magnetic detection element (21a) and the second magnetic detection element (21b). A current sensor (1) that outputs a voltage, and a bias magnetic field applying means (4) that applies a bias magnetic field in a direction perpendicular to the magnetization direction to the first and second magnetic detection elements (21a, 21b). The bias magnetic field reversing means (5) for reversing the direction of the bias magnetic field applied by the bias magnetic field applying means (4) and the output averaging process before and after the reversal of the bias magnetic field by the bias magnetic field reversing means (5) are performed. A current sensor (1) including an averaging processing unit (6).

[2]前記バイアス磁界反転手段(5)は、所定の時間間隔ごとにバイアス磁界の方向を切り替えるように構成されている、[1]に記載の電流センサ(1)。 [2] The current sensor (1) according to [1], wherein the bias magnetic field reversing means (5) is configured to switch the direction of the bias magnetic field at predetermined time intervals.

[3]前記バイアス磁界印加手段(4)は、前記第1及び第2磁気検出素子(21a,21b)の近傍に設けられた1つのバイアスコイル(41)と、前記バイアスコイル(41)に直流電流を供給する電流源(42)と、を有し、前記バイアス磁界反転手段(5)は、前記電流源(42)からバイアスコイル(41)に供給される直流電流の向きを反転させることで、バイアス磁界の方向を反転させる、[1]または[2]に記載の電流センサ(1)。 [3] The bias magnetic field applying means (4) directs a DC to one bias coil (41) provided in the vicinity of the first and second magnetic detection elements (21a, 21b) and the bias coil (41). The bias magnetic field reversing means (5) has a current source (42) for supplying a current, and the bias magnetic field reversing means (5) reverses the direction of the DC current supplied from the current source (42) to the bias coil (41). , The current sensor (1) according to [1] or [2], which reverses the direction of the bias magnetic field.

[4]前記第1及び第2磁気検出素子(21a,21b)の磁気抵抗変化率が同じである、[1]乃至[3]の何れか1項に記載の電流センサ(1)。 [4] The current sensor (1) according to any one of [1] to [3], wherein the first and second magnetic detector elements (21a, 21b) have the same reluctance rate of change.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。また、本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。 Although the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. It should also be noted that not all combinations of features described in the embodiments are essential to the means for solving the problems of the invention. In addition, the present invention can be appropriately modified and implemented without departing from the spirit of the present invention.

1…電流センサ
2…センサ部
20…チップ
21…磁気検出素子
210…固定層
211…自由層
21a…第1磁気検出素子
21b…第2磁気検出素子
3…処理回路部
31…駆動用定電圧回路(電圧源)
4…バイアス磁界印加手段
41…バイアスコイル
42…バイアス用定電流源(電流源)
5…バイアス磁界反転手段
51…極性切替部
6…平均化処理部
7…クロック生成部
8…バスバ
1 ... Current sensor 2 ... Sensor unit 20 ... Chip 21 ... Magnetic detection element 210 ... Fixed layer 211 ... Free layer 21a ... First magnetic detection element 21b ... Second magnetic detection element 3 ... Processing circuit unit 31 ... Constant voltage circuit for driving (Voltage source)
4 ... Bias magnetic field applying means 41 ... Bias coil 42 ... Constant current source for bias (current source)
5 ... Bias magnetic field inversion means 51 ... Polarity switching unit 6 ... Average processing unit 7 ... Clock generation unit 8 ... Bus bar

Claims (4)

固定層の磁化方向の向きがそれぞれ反対となるように直列に接続された第1及び第2の磁気検出素子と、直列に接続された前記第1及び第2磁気検出素子の両端間に直流電圧を印加する電圧源と、を有し、前記第1磁気検出素子と前記第2磁気検出素子との間の電圧を出力する電流センサであって、
前記第1及び第2の磁気検出素子に、前記磁化方向と垂直方向のバイアス磁界を印加するバイアス磁界印加手段と、
前記バイアス磁界印加手段で印加するバイアス磁界の方向を反転させるバイアス磁界反転手段と、
前記バイアス磁界反転手段によるバイアス磁界の反転前後の出力の平均化処理を行う平均化処理部と、を備えた、
電流センサ。
A DC voltage between the first and second magnetic detector elements connected in series so that the directions of the magnetization directions of the fixed layer are opposite to each other and the first and second magnetic detector elements connected in series. A current sensor that has a voltage source to which the voltage is applied and outputs a voltage between the first magnetic detector element and the second magnetic detector element.
A bias magnetic field applying means for applying a bias magnetic field in the direction perpendicular to the magnetization direction to the first and second magnetic detection elements, and
A bias magnetic field reversing means for reversing the direction of the bias magnetic field applied by the bias magnetic field applying means, and a bias magnetic field reversing means.
An averaging processing unit that performs an output averaging process before and after inversion of the bias magnetic field by the bias magnetic field inversion means is provided.
Current sensor.
前記バイアス磁界反転手段は、所定の時間間隔ごとにバイアス磁界の方向を切り替えるように構成されている、
請求項1に記載の電流センサ。
The bias magnetic field reversing means is configured to switch the direction of the bias magnetic field at predetermined time intervals.
The current sensor according to claim 1.
前記バイアス磁界印加手段は、前記第1及び第2磁気検出素子の近傍に設けられた1つのバイアスコイルと、前記バイアスコイルに直流電流を供給する電流源と、を有し、
前記バイアス磁界反転手段は、前記電流源からバイアスコイルに供給される直流電流の向きを反転させることで、バイアス磁界の方向を反転させる、
請求項1または2に記載の電流センサ。
The bias magnetic field applying means includes one bias coil provided in the vicinity of the first and second magnetic detector elements, and a current source for supplying a direct current to the bias coil.
The bias magnetic field reversing means reverses the direction of the bias magnetic field by reversing the direction of the direct current supplied from the current source to the bias coil.
The current sensor according to claim 1 or 2.
前記第1及び第2磁気検出素子の磁気抵抗変化率が同じである、
請求項1乃至3の何れか1項に記載の電流センサ。
The reluctance rate of change of the first and second magnetic detector elements is the same.
The current sensor according to any one of claims 1 to 3.
JP2017241621A 2017-12-18 2017-12-18 Current sensor Active JP6927014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017241621A JP6927014B2 (en) 2017-12-18 2017-12-18 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241621A JP6927014B2 (en) 2017-12-18 2017-12-18 Current sensor

Publications (2)

Publication Number Publication Date
JP2019109114A JP2019109114A (en) 2019-07-04
JP6927014B2 true JP6927014B2 (en) 2021-08-25

Family

ID=67179475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241621A Active JP6927014B2 (en) 2017-12-18 2017-12-18 Current sensor

Country Status (1)

Country Link
JP (1) JP6927014B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239828A (en) * 2003-02-07 2004-08-26 Fukuoka Prefecture Flux gate magnetic field sensor
JP2007240202A (en) * 2006-03-06 2007-09-20 Alps Electric Co Ltd Magnetic detector and electronic compass using it
EP2330432B1 (en) * 2009-11-19 2013-01-09 Nxp B.V. Magnetic field sensor
JP5540882B2 (en) * 2010-05-19 2014-07-02 株式会社デンソー Current sensor
JP2012132889A (en) * 2010-12-21 2012-07-12 Kohshin Electric Corp Magnetic detector and current detector
JP6520075B2 (en) * 2014-11-25 2019-05-29 日立金属株式会社 Current detection device

Also Published As

Publication number Publication date
JP2019109114A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6107942B2 (en) Magnetic current sensor and current measuring method
US7786725B2 (en) Magnetic field detection apparatus for detecting an external magnetic field applied to a magnetoresistance effect element, and method of adjusting the same
KR101891956B1 (en) Bipolar chopping for i/f noise and offset reduction in magnetic field sensors
CN110260770B (en) Magnetic sensor and position detection device
JP3588044B2 (en) Magnetic detector
JP6049570B2 (en) Rotation detector
US10338105B2 (en) Current detector that prevents fluctuatons in detection sensitivity
JP2015049184A (en) Inverter device
US10006972B2 (en) Magnetic field sensor having primary and secondary magnetic field transducers with different magnetic field saturation characteristics
JP2004069546A (en) Magnetic detector
KR101524560B1 (en) Apparatus of compensating offset of current sensor and control method thereof
US10337891B2 (en) Magnetic detection apparatus with a tunnel magnetoresistive element
JP2012063203A (en) Magnetic sensor
JP2000055997A (en) Magnetic sensor device and current sensor device
JP6927014B2 (en) Current sensor
JP6877958B2 (en) Magnetic sensor
US11181555B2 (en) Current sensing method and current sensor
JPH116744A (en) Encoder device
JP2019007935A (en) Current sensor
TW201719189A (en) Magnetic field sensing apparatus and detection method thereof
JP5497621B2 (en) Rotation angle detector
JP3064292B2 (en) Rotation sensor
JP7046721B2 (en) Speed detector
RU2307427C2 (en) Magnetoresistive field sensor
JPH10227807A (en) Rotation sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R150 Certificate of patent or registration of utility model

Ref document number: 6927014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350