JP6925584B2 - A composition for producing a liquid crystal alignment film, a liquid crystal alignment film using the composition and a method for producing the same, and a liquid crystal display element having the liquid crystal alignment film and a method for producing the same. - Google Patents

A composition for producing a liquid crystal alignment film, a liquid crystal alignment film using the composition and a method for producing the same, and a liquid crystal display element having the liquid crystal alignment film and a method for producing the same. Download PDF

Info

Publication number
JP6925584B2
JP6925584B2 JP2017544219A JP2017544219A JP6925584B2 JP 6925584 B2 JP6925584 B2 JP 6925584B2 JP 2017544219 A JP2017544219 A JP 2017544219A JP 2017544219 A JP2017544219 A JP 2017544219A JP 6925584 B2 JP6925584 B2 JP 6925584B2
Authority
JP
Japan
Prior art keywords
group
ring
carbon atoms
liquid crystal
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017544219A
Other languages
Japanese (ja)
Other versions
JPWO2017061541A1 (en
Inventor
佳和 原田
佳和 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2017061541A1 publication Critical patent/JPWO2017061541A1/en
Application granted granted Critical
Publication of JP6925584B2 publication Critical patent/JP6925584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Crystal Substances (AREA)

Description

本発明は、液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物に関する。
また、本発明は、該組成物を用いて製造される液晶配向膜、特に横電界駆動型液晶表示素子用液晶配向膜及び該膜を有する基板、並びにその製造方法に関する。
さらに、本発明は、該液晶配向膜又は基板を有する液晶表示素子及びその製造方法に関する。
特に、本発明は、液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めた液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物、該組成物を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、並びに液晶配向膜、液晶配向膜を有する基板又は液晶表示素子の製造方法に関する。
The present invention relates to a composition for producing a liquid crystal alignment film, particularly a composition for producing a liquid crystal alignment film for a transverse electric field driven liquid crystal display element.
The present invention also relates to a liquid crystal alignment film produced using the composition, particularly a liquid crystal alignment film for a transverse electric field driven liquid crystal display element, a substrate having the film, and a method for producing the same.
Furthermore, the present invention relates to a liquid crystal display element having the liquid crystal alignment film or substrate and a method for manufacturing the same.
In particular, the present invention is a composition for producing a liquid crystal alignment film, particularly a transverse electric field drive type, in which the light irradiation amount range is expanded to improve the production efficiency of the liquid crystal alignment film in the photoalignment method used for the alignment treatment of the liquid crystal alignment film. A composition for producing a liquid crystal alignment film for a liquid crystal display element, a substrate having a liquid crystal alignment film or a liquid crystal alignment film manufactured using the composition, a liquid crystal display element having them, and a liquid crystal alignment film and a substrate having a liquid crystal alignment film. Alternatively, the present invention relates to a method for manufacturing a liquid crystal display element.

液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。 Liquid crystal display elements are known as lightweight, thin, and low power consumption display devices, and have made remarkable progress in recent years, such as being used in large-scale television applications. The liquid crystal display element is configured by sandwiching the liquid crystal layer between, for example, a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired orientation state between the substrates.

すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。 That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, is formed on the surface of the substrate that sandwiches the liquid crystal in contact with the liquid crystal, and plays a role of orienting the liquid crystal in a certain direction between the substrates. The liquid crystal alignment film may be required to have a role of controlling the pretilt angle of the liquid crystal in addition to the role of orienting the liquid crystal in a certain direction such as a direction parallel to the substrate. The ability to control the orientation of the liquid crystal in such a liquid crystal alignment film (hereinafter referred to as the orientation control ability) is given by performing an orientation treatment on the organic film constituting the liquid crystal alignment film.

配向制御能を付与するための液晶配向膜の配向処理方法として、従来からのラビング法の他に、光配向法が知られている。光配向法は、従来のラビング法と比較して、ラビングを不要とし、発塵や静電気の発生の懸念が無く、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができる、という利点がある。
光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。
As a method for orienting a liquid crystal alignment film for imparting an orientation control ability, a photo-alignment method is known in addition to the conventional rubbing method. Compared with the conventional rubbing method, the photo-alignment method does not require rubbing, there is no concern about dust generation and static electricity generation, and the alignment treatment can be applied to the substrate of the liquid crystal display element having an uneven surface. There is an advantage that it can be done.
There are various photo-alignment methods, but anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is oriented according to the anisotropy.

光配向法として、分解型の光配向法、光架橋型や光異性化型の光配向法などが知られている。
分解型の光配向法は、例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせ、分解せずに残されたポリイミドにより液晶を配向させる手法である(例えば、特許文献1を参照)。
As the photo-alignment method, a decomposition type photo-alignment method, a photocrosslinking type, a photoisomerization type photo-alignment method, and the like are known.
In the decomposition type photo-orientation method, for example, a polyimide film is irradiated with polarized ultraviolet rays, and anisotropic decomposition is caused by utilizing the polarization direction dependence of ultraviolet absorption of the molecular structure, and the polyimide left without decomposition is generated. (See, for example, Patent Document 1).

光架橋型や光異性化型の光配向法は、例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせ、偏光方向と直交した方向に液晶を配向させる手法である(例えば、非特許文献1を参照)。また、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献2を参照)。さらに、特許文献3は、光架橋、光異性化又は光フリース転位による光配向法を用いて得られる液晶配向膜を開示する。 In the photocrosslinking type and photoisomerization type photoalignment method, for example, polyvinyl synnamate is used to irradiate polarized ultraviolet rays, and a dimerization reaction (crosslinking reaction) is carried out at the double-bonded portion of two side chains parallel to polarized light. This is a method of causing the liquid crystal to be generated and orienting the liquid crystal in a direction orthogonal to the polarization direction (see, for example, Non-Patent Document 1). When a side-chain polymer having azobenzene in the side chain is used, polarized ultraviolet rays are irradiated to cause an isomerization reaction in the azobenzene portion of the side chain parallel to polarized light, and the liquid crystal is formed in a direction orthogonal to the polarization direction. Orientation (see, for example, Non-Patent Document 2). Further, Patent Document 3 discloses a liquid crystal alignment film obtained by using a photoalignment method by photocrosslinking, photoisomerization or photofries rearrangement.

特許第3893659号公報Japanese Patent No. 3893659 特開平2−37324号公報Japanese Unexamined Patent Publication No. 2-3724 WO2014/054785WO2014 / 054785

M. Shadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992).M. Shadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992). K. Ichimura et al., Chem. Rev. 100, 1847 (2000).K. Ichimura et al., Chem. Rev. 100, 1847 (2000).

以上のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に利用されてきたラビング法と比べてラビング工程そのものを不要とするため、大きな利点を備える。そして、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。
しかしながら、光配向法において用いる主成分の配向制御能が偏光した光の照射量に敏感すぎると、液晶配向膜の一部又は全体において配向が不完全になり、安定な液晶の配向が実現できない場合が生じる。
As described above, the photo-alignment method has a great advantage because it does not require the rubbing step itself as compared with the rubbing method which has been industrially used conventionally as a method for aligning a liquid crystal display element. Then, as compared with the rubbing method in which the orientation control ability is substantially constant by rubbing, in the photo-orientation method, the orientation control ability can be controlled by changing the irradiation amount of polarized light.
However, if the orientation control ability of the main component used in the photo-alignment method is too sensitive to the irradiation amount of polarized light, the orientation of a part or the whole of the liquid crystal alignment film becomes incomplete, and stable liquid crystal orientation cannot be realized. Occurs.

そこで、本発明の目的は、配向制御能が安定して生じる光照射量の範囲を拡大させて、品質のよい液晶配向膜を効率よく得られる、液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物を提供することにある。
また、本発明の目的は、上記目的以外に、又は上記目的に加えて、該組成物を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、特に横電界駆動型液晶表示素子を提供することにある。
さらに、本発明の目的は、上記目的以外に、又は上記目的に加えて、液晶配向膜、液晶配向膜を有する基板、又は液晶表示素子、特に横電界駆動型液晶表示素子の製造方法を提供することにある。
Therefore, an object of the present invention is a composition for producing a liquid crystal alignment film, particularly a transverse electric field drive, which can efficiently obtain a high-quality liquid crystal alignment film by expanding the range of the amount of light irradiation in which the orientation control ability is stably generated. An object of the present invention is to provide a composition for producing a liquid crystal alignment film for a type liquid crystal display element.
Further, an object of the present invention is a liquid crystal alignment film or a substrate having a liquid crystal alignment film produced by using the composition, a liquid crystal display element having them, particularly a transverse electric field, in addition to or in addition to the above object. It is an object of the present invention to provide a drive-type liquid crystal display element.
Furthermore, an object of the present invention provides a method for manufacturing a liquid crystal alignment film, a substrate having a liquid crystal alignment film, or a liquid crystal display element, particularly a transverse electric field drive type liquid crystal display element, in addition to or in addition to the above object. There is.

本発明者は、以下の発明を見出した。
<1> (A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
(B)有機溶媒、及び
(C)添加剤
を含有する液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用の液晶配向膜製造用組成物であって、
(C)添加剤の最低三重項エネルギーが、光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする、上記組成物。
The present inventor has found the following inventions.
<1> (A) A side chain polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive group that causes photocrosslinking, photoisomerization, or photofries rearrangement. ,
A composition for producing a liquid crystal alignment film containing (B) an organic solvent and (C) an additive, particularly a composition for producing a liquid crystal alignment film for a transverse electric field drive type liquid crystal display element.
(C) The composition, wherein the minimum triplet energy of the additive is lower than the minimum triplet energy of the compound derived from the photoreactive group.

本発明により、配向制御能が安定して生じる光照射量の範囲を拡大させて、品質のよい液晶配向膜を効率よく得られる、液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物を提供することができる。
また、本発明により、上記効果以外に、又は上記効果に加えて、該組成物を用いて製造される液晶配向膜又は液晶配向膜を有する基板、それらを有する液晶表示素子、特に横電界駆動型液晶表示素子を提供することができる。
さらに、本発明により、上記効果以外に、又は上記効果に加えて、液晶配向膜、液晶配向膜を有する基板、又は液晶表示素子、特に横電界駆動型液晶表示素子の製造方法を提供することができる。
According to the present invention, a composition for producing a liquid crystal alignment film, particularly a transverse electric field driven liquid crystal display element, capable of efficiently obtaining a high-quality liquid crystal alignment film by expanding the range of the amount of light irradiation in which the orientation control ability is stably generated. A composition for producing a liquid crystal alignment film for use can be provided.
Further, according to the present invention, in addition to or in addition to the above effects, a liquid crystal alignment film or a substrate having a liquid crystal alignment film produced by using the composition, a liquid crystal display element having them, particularly a transverse electric field drive type. A liquid crystal display element can be provided.
Further, according to the present invention, it is possible to provide a method for manufacturing a liquid crystal alignment film, a substrate having a liquid crystal alignment film, or a liquid crystal display element, particularly a transverse electric field drive type liquid crystal display element, in addition to the above effects or in addition to the above effects. can.

本願は、液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物、より特に液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めた組成物を提供する。
また、本願は、該組成物を用いて製造される液晶配向膜、特に横電界駆動型液晶表示素子用液晶配向膜及び該膜を有する基板、並びにその製造方法を提供する。
さらに、本願は、該液晶配向膜又は基板を有する液晶表示素子及びその製造方法を提供する。
The present application extends the range of light irradiation amount in a composition for producing a liquid crystal alignment film, particularly a composition for producing a liquid crystal alignment film for a liquid crystal display element driven by a transverse electric field, and more particularly in a photoalignment method used for an alignment treatment of the liquid crystal alignment film. Therefore, a composition having improved production efficiency of a liquid crystal alignment film is provided.
The present application also provides a liquid crystal alignment film produced using the composition, particularly a liquid crystal alignment film for a transverse electric field driven liquid crystal display element, a substrate having the film, and a method for producing the same.
Furthermore, the present application provides a liquid crystal display element having the liquid crystal alignment film or a substrate, and a method for manufacturing the same.

<液晶配向膜製造用組成物>
本願の液晶配向膜製造用組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物は、
(A)所定の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
(B)有機溶媒、及び
(C)添加剤
を含有する。
ここで、(C)添加剤は、その最低三重項エネルギーが、光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする。
本願の組成物を用いることにより、該組成物から得られる液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めることができる。
<Composition for manufacturing liquid crystal alignment film>
The composition for producing a liquid crystal alignment film of the present application, particularly the composition for producing a liquid crystal alignment film for a transverse electric field drive type liquid crystal display element, is
(A) A side chain polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive group that causes photocrosslinking, photoisomerization, or photofries rearrangement.
It contains (B) an organic solvent and (C) an additive.
Here, the additive (C) is characterized in that its minimum triplet energy is lower than the minimum triplet energy of the compound derived from the photoreactive group.
By using the composition of the present application, in the photo-alignment method used for the alignment treatment of the liquid crystal alignment film obtained from the composition, the light irradiation amount range can be expanded and the production efficiency of the liquid crystal alignment film can be improved.

<<(A)側鎖型高分子>>
(A)側鎖型高分子は、所定の温度範囲で液晶性を発現する側鎖を備えた側鎖型高分子である。また、該側鎖は、光架橋、光異性化、または光フリース転位を起こす光反応性基を有する。
(A)側鎖型高分子は、250nm〜400nmの波長範囲の光で反応し、かつ100℃〜300℃の温度範囲で液晶性を示すのがよい。
(A)側鎖型高分子は、250nm〜400nmの波長範囲の光に反応するのが好ましい。
(A)側鎖型高分子は、100℃〜300℃の温度範囲で液晶性を示すためにメソゲン基を有することが好ましい。
<< (A) Side chain polymer >>
The side chain type polymer (A) is a side chain type polymer having a side chain that exhibits liquid crystallinity in a predetermined temperature range. The side chain also has a photoreactive group that causes photocrosslinking, photoisomerization, or photofries rearrangement.
The side chain polymer (A) preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C. to 300 ° C.
The side chain polymer (A) preferably reacts with light in the wavelength range of 250 nm to 400 nm.
The side chain polymer (A) preferably has a mesogen group in order to exhibit liquid crystallinity in a temperature range of 100 ° C. to 300 ° C.

(A)側鎖型高分子は、主鎖に光反応性基を有する側鎖が結合しており、光に感応して架橋反応、異性化反応、または光フリース転位を起こすことができる。光反応性基を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、または光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る側鎖型高分子の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型高分子を液晶配向膜とした際に、安定な液晶配向を得ることができる。 The side chain type polymer (A) has a side chain having a photoreactive group bonded to the main chain, and can undergo a cross-linking reaction, an isomerization reaction, or a photo Fries rearrangement in response to light. The structure of the side chain having a photoreactive group is not particularly limited, but a structure that causes a cross-linking reaction or a photo-Fries rearrangement in response to light is desirable, and one that causes a cross-linking reaction is more desirable. In this case, even if it is exposed to external stress such as heat, the realized orientation control ability can be stably maintained for a long period of time. The structure of the side chain type polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogen component. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film.

該高分子の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする光反応性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。 The structure of the polymer has, for example, a main chain and a side chain bonded thereto, and the side chain contains a mesogen component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip thereof. It has a structure having a photoreactive group bonded to a portion and undergoing a cross-linking reaction or an isomerization reaction in response to light, or a main chain and a side chain bonded to the main chain, and the side chain also serves as a mesogen component. It can also have a structure having a phenylbenzoate group that undergoes a photofreeze rearrangement reaction.

液晶性を発現し得る、光反応性基を有する側鎖型高分子の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α−メチレン−γ−ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)から(6)の少なくとも1種からなる側鎖を有する構造であることが好ましい。 More specific examples of the structure of a side chain polymer having a photoreactive group capable of exhibiting liquidity include hydrocarbons, (meth) acrylates, itaconates, fumarates, maleates, α-methylene-γ-butyrolactone. , A main chain composed of at least one selected from the group consisting of radically polymerizable groups such as styrene, vinyl, maleimide, norbornene and siloxane, and a side composed of at least one of the following formulas (1) to (6). It is preferably a structure having a chain.

Figure 0006925584
Figure 0006925584

式中、A、B、Dはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
Sは、炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1〜6のアルコキシ基を表すか、又はYと同じ定義を表す;
Xは、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
Couは、クマリン−6−イル基またはクマリン−7−イル基を表し、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
q3は0または1である;
P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが−CH=CH−CO−O−、−O−CO−CH=CH−である場合、−CH=CH−が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
l1は0または1である;
l2は0〜2の整数である;
l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
l1が1であるときは、Tが単結合であるときはBも単結合を表す;
H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
In the formula, A, B, and D are independently single-bonded, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-. Represents O- or -O-CO-CH = CH-;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded to them may be replaced with a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded to them may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring and an alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents. It is a group consisting of 2 to 6 different rings bonded via a bonding group B, and the hydrogen atoms bonded to them are independently −COOR 0 (in the formula, R 0 is a hydrogen atom or 1 to 1 carbon atoms). (Representing an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof. The hydrogen atoms bonded to are independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen group, alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of;
R is hydroxy group, or an alkoxy group having 1 to 6 carbon atoms, or represents the same definition as Y 1;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = When CH-represents and the number of Xs is 2, the Xs may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded to them are independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-. It may be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
One of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are independently selected from the group consisting of a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof. It is a group; however, when X is -CH = CH-CO-O-, -O-CO-CH = CH-, P or Q on the side to which -CH = CH- is bonded is an aromatic ring. When the number of Ps is 2 or more, the Ps may be the same or different, and when the number of Qs is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
When both l1 and l2 are 0, A also represents a single bond when T is a single bond;
When l1 is 1, B also represents a single bond when T is a single bond;
H and I are groups independently selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a combination thereof.

側鎖は、下記式(7)〜(10)からなる群から選ばれるいずれか1種であるのがよい。
式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
lは1〜12の整数を表す;
mは、0〜2の整数を表し、m1、m2は1〜3の整数を表す;
nは0〜12の整数(ただしn=0のときBは単結合である)を表す。
The side chain is preferably any one selected from the group consisting of the following formulas (7) to (10).
In the formula, A, B, D, Y 1 , X, Y 2 , and R have the same definition as above;
l represents an integer from 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer from 0 to 12 (where B is a single bond when n = 0).

Figure 0006925584
Figure 0006925584

側鎖は、下記式(11)〜(13)からなる群から選ばれるいずれか1種であるのがよい。
式中、A、X、l、m、m2及びRは、上記と同じ定義を有する。
The side chain is preferably any one selected from the group consisting of the following formulas (11) to (13).
In the formula, A, X, l, m, m2 and R have the same definitions as above.

Figure 0006925584
Figure 0006925584

側鎖は、下記式(14)又は(15)で表される側鎖であるのがよい。
式中、A、Y、X、l、m1及びm2は上記と同じ定義を有する。
The side chain is preferably a side chain represented by the following formula (14) or (15).
In the formula, A, Y 1 , X, l, m1 and m2 have the same definitions as above.

Figure 0006925584
Figure 0006925584

側鎖は、下記式(16)又は(17)で表される側鎖であるのがよい。
式中、A、X、l及びmは、上記と同じ定義を有する。
The side chain is preferably a side chain represented by the following formula (16) or (17).
In the formula, A, X, l and m have the same definitions as above.

Figure 0006925584
Figure 0006925584

<<液晶性側鎖を有する側鎖型高分子>>
(A)側鎖型高分子は、光反応性基を有する側鎖以外の側鎖を有してもよい。例えば、(A)側鎖型高分子は、下記式(21)〜(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有してもよい。
式中、A、B、q1及びq2は上記と同じ定義を有する;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、水素原子、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5〜8の脂環式炭化水素、炭素数1〜12のアルキル基、又は炭素数1〜12のアルコキシ基を表す;
lは1〜12の整数を表し、mは0から2の整数を表し、但し、式(25)〜(26)において、全てのmの合計は2以上であり、式(27)〜(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1〜3の整数を表す;
は、水素原子、−NO、−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
、Zは単結合、−CO−、−CHO−、−CH=N−、−CF−を表す。
<< Side chain polymer with liquid crystal side chain >>
The side chain type polymer (A) may have a side chain other than the side chain having a photoreactive group. For example, the side chain polymer (A) may have any one liquid crystal side chain selected from the group consisting of the following formulas (21) to (31).
In the formula, A, B, q1 and q2 have the same definitions as above;
Y 3 is a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocycle, and alicyclic hydrocarbons having 5 to 8 carbon atoms, and, with a group selected from the group consisting of Yes, the hydrogen atoms attached to them may be independently substituted with -NO 2 , -CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 contains hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, and nitrogen. Represents a heterocycle, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, but in equations (25) to (26), the sum of all m is 2 or more, and equations (27) to (28). ), The sum of all m is 1 or more, and m1, m2, and m3 independently represent integers 1 to 3;
R 2 is a hydrogen atom, -NO 2 , -CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocycle, and an alicyclic hydrocarbon having 5 to 8 carbon atoms. And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 represent a single bond, -CO-, -CH 2 O-, -CH = N-, -CF 2- .

Figure 0006925584
Figure 0006925584

<<側鎖型高分子の製法>>
上記の側鎖型高分子は、上記の光反応性基を有する側鎖を有する光反応性側鎖モノマーを重合することによって、又は該光反応性側鎖モノマーとその他のモノマー、例えば液晶性側鎖モノマーとを重合することによって得ることができる。
<< Manufacturing method of side chain type polymer >>
The side chain type polymer can be obtained by polymerizing a photoreactive side chain monomer having a side chain having the above photoreactive group, or by polymerizing the photoreactive side chain monomer and other monomers, for example, a liquid crystal side. It can be obtained by polymerizing with a chain monomer.

[光反応性側鎖モノマー]
光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に光反応性基を有する側鎖を有する高分子を形成することができるモノマーのことである。
側鎖が有する光反応性基としては下記の構造およびその誘導体が好ましい。
[Photoreactive side chain monomer]
The photoreactive side chain monomer is a monomer capable of forming a polymer having a side chain having a photoreactive group at a side chain portion of the polymer when the polymer is formed.
As the photoreactive group of the side chain, the following structure and its derivative are preferable.

Figure 0006925584
Figure 0006925584

光反応性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α−メチレン−γ−ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(1)〜(6)の少なくとも1種からなる側鎖、好ましくは、例えば、上記式(7)〜(10)の少なくとも1種からなる側鎖、上記式(11)〜(13)の少なくとも1種からなる側鎖、上記式(14)又は(15)で表される側鎖、上記式(16)又は(17)で表される側鎖、を有する構造であることが好ましい。 More specific examples of photoreactive side chain monomers include radically polymerizable groups such as hydrocarbons, (meth) acrylates, itaconates, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene. A polymerizable group composed of at least one selected from the group consisting of and siloxane, and a side chain composed of at least one of the above formulas (1) to (6), preferably, for example, the above formulas (7) to (7) to A side chain consisting of at least one of the above formulas (10), a side chain consisting of at least one of the above formulas (11) to (13), a side chain consisting of the above formula (14) or (15), the above formula (16). ) Or the side chain represented by (17) is preferable.

[液晶性側鎖モノマー]
液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
側鎖が有するメソゲン基として、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖を有するメソゲン基としては下記の構造が好ましい。
[Liquid crystal side chain monomer]
The liquid crystal side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogen group at a side chain site.
As the mesogen group possessed by the side chain, even if it is a group having a mesogen structure by itself such as biphenyl or phenylbenzoate, or a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid. good. The following structure is preferable as the mesogen group having a side chain.

Figure 0006925584
Figure 0006925584

液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α−メチレン−γ−ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(21)〜(31)の少なくとも1種からなる側鎖を有する構造であることが好ましい。 More specific examples of liquid side chain monomers include hydrocarbons, (meth) acrylates, itaconates, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene and other radically polymerizable groups. It is preferable that the structure has a polymerizable group composed of at least one selected from the group consisting of siloxane and a side chain composed of at least one of the above formulas (21) to (31).

本願は、光反応性及び/又は液晶性側鎖モノマーとして、以下の式(A01)〜(A20)で表される化合物を挙げることができるが、これらに限定されない。
式中、Rは水素原子またはメチル基を示す;Sは炭素数2〜10のアルキレン基を表す;R10はBrまたはCNを示す;Sは炭素数2〜10のアルキレン基を表す;uは0または1を表す;及びPyは2−ピリジル基、3−ピリジル基または4−ピリジル基を表す。また、vは1または2を表す。
The present application includes, but is not limited to, compounds represented by the following formulas (A01) to (A20) as photoreactive and / or liquid crystal side chain monomers.
In the formula, R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; R 10 represents Br or CN; S represents an alkylene group having 2 to 10 carbon atoms; u represents an alkylene group having 2 to 10 carbon atoms. Represents 0 or 1; and Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group. Also, v represents 1 or 2.

Figure 0006925584
Figure 0006925584

Figure 0006925584
Figure 0006925584

Figure 0006925584
Figure 0006925584

(A)側鎖型高分子は、上述した光反応性基を有する側鎖を有する光反応性側鎖モノマーの重合反応により得ることができる。また、液晶性を発現しない光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合や、液晶性を発現する光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合によって得ることができる。
液晶性の発現能を損なわない範囲でその他のモノマーと共重合することもできる。
The side chain type polymer (A) can be obtained by the polymerization reaction of the photoreactive side chain monomer having a side chain having the above-mentioned photoreactive group. Further, it can be obtained by copolymerizing a photoreactive side chain monomer that does not exhibit liquidity and a liquid crystal side chain monomer, or by copolymerizing a photoreactive side chain monomer that exhibits liquidity and a liquid crystal side chain monomer. can.
It can also be copolymerized with other monomers as long as the liquid crystallinity is not impaired.

その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
Examples of other monomers include industrially available radical polymerization-reactive monomers.
Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds and vinyl compounds.

不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。
アクリル酸エステル化合物としては、例えば、WO2014/054785号公報の[0152]に記載されるものを挙げることができる。
Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
Examples of the acrylic acid ester compound include those described in [0152] of WO2014 / 054785A.

メタクリル酸エステル化合物としては、例えば、WO2014/054785号公報の[0153]に記載されるものを挙げることができる。 Examples of the methacrylic acid ester compound include those described in [0153] of WO2014 / 054785A.

ビニル化合物、スチレン化合物又はマレイミド化合物としては、例えば、WO2014/054785号公報の[0154]に記載されるものを挙げることができる。 Examples of the vinyl compound, styrene compound or maleimide compound include those described in [0154] of WO2014 / 054785A.

本実施の形態の側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。 The method for producing the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystal side chain monomer or a photoreactive side chain monomer. Of these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.

ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加−開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, known compounds such as a radical polymerization initiator and a reversible addition-fragmentation chain transfer (RAFT) polymerization reagent can be used.

ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、WO2014/054785号公報の[0157]に記載されるものを挙げることができる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。 The radical thermal polymerization initiator is a compound that generates radicals by heating to a temperature higher than the decomposition temperature. Examples of such a radical thermal polymerization initiator include those described in [0157] of WO2014 / 054785A. Such a radical thermal polymerization initiator may be used alone or in combination of two or more.

ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、WO2014/054785号公報の[0158]に記載されるものを挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such a radical photopolymerization initiator include those described in [0158] of WO2014 / 054785A. These compounds may be used alone or in admixture of two or more.

ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a massive polymerization method, a solution polymerization method and the like can be used.

側鎖型高分子を得るための重合反応に用いる有機溶媒としては、生成した高分子が溶解するものであれば特に限定されない。その具体例としてWO2014/054785号公報の[0161]に記載されるものを挙げることができる。 The organic solvent used in the polymerization reaction for obtaining the side chain type polymer is not particularly limited as long as the produced polymer dissolves. Specific examples thereof include those described in [0161] of WO2014 / 054785.

これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
These organic solvents may be used alone or in combination. Further, even if the solvent does not dissolve the produced polymer, it may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
Further, in radical polymerization, oxygen in an organic solvent causes an inhibition of the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.

ラジカル重合の際の重合温度は30℃〜150℃の任意の温度を選択することができるが、好ましくは50℃〜100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、モノマー濃度が、好ましくは1質量%〜50質量%、より好ましくは5質量%〜30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 ° C. to 150 ° C., but is preferably in the range of 50 ° C. to 100 ° C. The reaction can be carried out at an arbitrary concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high mass, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. The initial reaction can be carried out at a high concentration and then an organic solvent can be added.

上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1モル%〜10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。 In the above-mentioned radical polymerization reaction, when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio of the radical polymerization initiator is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 mol% to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.

[重合体の回収]
上述の反応により得られた、側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回〜10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
[Recovery of polymer]
When the produced polymer is recovered from the reaction solution of the side chain type polymer obtained by the above reaction, the reaction solution may be put into a poor solvent to precipitate the polymer. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water and the like. The polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure. Further, when the operation of redistributing the polymer recovered by precipitation in an organic solvent and repeating the operation of recovering the precipitation 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the purification efficiency is further improved.

本発明の(A)側鎖型高分子の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000〜1000000が好ましく、より好ましくは、5000〜200000である。 The molecular weight of the side chain polymer (A) of the present invention is measured by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, the workability at the time of forming the coating film, and the uniformity of the coating film. The weight average molecular weight obtained is preferably 2000 to 1000000, more preferably 5000 to 20000.

[組成物の調製]
本発明に用いられる組成物は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる組成物は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、1質量%〜20質量%が好ましく、より好ましくは3質量%〜15質量%、特に好ましくは3質量%〜10質量%である。
[Preparation of composition]
The composition used in the present invention is preferably prepared as a coating liquid so as to be suitable for forming a liquid crystal alignment film. That is, the composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the resin component is a resin component containing the side chain type polymer already described. At that time, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.

本実施形態の組成物において、前述の樹脂成分は、全てが上述した側鎖型高分子であってもよいが、液晶発現能および感光性能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5質量%〜80質量%、好ましくは1質量%〜50質量%である。
そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド、ポリアミック酸エステル、ポリウレア、ジイソシアネート化合物とテトラカルボン酸誘導体、ジアミン化合物とを重合することにより得られるポリアミック酸−ポリウレア、さらにイミド化することにより得られるポリイミド−ポリウレア等からなり、上述した側鎖型高分子ではない重合体等が挙げられる。
In the composition of the present embodiment, all of the above-mentioned resin components may be the above-mentioned side-chain type polymers, but other polymers other than these may be mixed as long as the liquid crystal expression ability and the photosensitive performance are not impaired. It may have been done. At that time, the content of the other polymer in the resin component is 0.5% by mass to 80% by mass, preferably 1% by mass to 50% by mass.
Such other polymers are, for example, polyamic acid-polyurea obtained by polymerizing poly (meth) acrylate, polyamic acid, polyimide, polyamic acid ester, polyurea, diisocyanate compound and tetracarboxylic acid derivative, diamine compound. In addition, a polymer composed of polyimide-polyurea or the like obtained by further imidization and not the above-mentioned side chain type polymer can be mentioned.

<<(B)有機溶媒>>
本発明の組成物に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、2−ピロリドン、N−エチルピロリドン、N−ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ−ブチロラクトン、3−メトキシ−N,N−ジメチルプロパンアミド、3−エトキシ−N,N−ジメチルプロパンアミド、3−ブトキシ−N,N−ジメチルプロパンアミド、1,3−ジメチル−イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4−ヒドロキシ−4−メチル−2−ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
<< (B) Organic Solvent >>
The organic solvent used in the composition of the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetramethylurea, pyridine, Dimethyl sulfoxide, hexamethyl sulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethylamyl ketone, methylnonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglime, 4-hydroxy-4-methyl-2-pentanone, propylene glycol mono Acetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, Examples thereof include dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, and tripropylene glycol methyl ether. These may be used alone or in combination.

<<(C)添加剤>>
本願の組成物は(C)添加剤を有し、該(C)添加剤は、その最低三重項エネルギーが、側鎖型高分子の側鎖に有する光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする。
上記特性を有する(C)添加剤、即ち特定の最低三重項エネルギーを有する(C)添加剤を用いることにより、該組成物から得られる液晶配向膜の配向処理に用いる光配向法において、光照射量範囲を拡大させて、液晶配向膜の製造効率を高めることができる。
<< (C) Additive >>
The composition of the present application has (C) an additive, which has a minimum triplet energy of a compound derived from a photoreactive group in the side chain of a side chain polymer. It is characterized by being lower than the term energy.
In the photo-alignment method used for the alignment treatment of the liquid crystal alignment film obtained from the composition by using the (C) additive having the above characteristics, that is, the (C) additive having a specific minimum triplet energy, light irradiation is performed. The amount range can be expanded to increase the production efficiency of the liquid crystal alignment film.

ここで、三重項エネルギーとは、光のエネルギーを受けた分子が励起し、三重項状態となっている分子が有しているエネルギーを表す。特に、最低励起三重項状態(T1)と基底状態にある分子のエネルギー差を最低三重項エネルギーという。
また、三重項とは、分子が光のエネルギーを受けて励起状態となった場合、2つの軌道に1個ずつの不対電子を持つが、このとき、2個の不対電子のスピンの方向が同じ状態を三重項状態といい、2つのスピンの方向が逆の状態を一重項状態という。一般に、三重項状態は対応する一重項状態よりエネルギーが低いが、励起三重項は寿命が長いことから反応の機会が多く、特色ある光反応の多くは励起三重項によるものである。
一般に最低励起状態(一重項状態ならS1、三重項状態ならT1)以外の高い励起状態の寿命は短く、速やかにS1、T1に落ち着く。それゆえ、短波長のエネルギーの高い光を用いてS2、S3へ励起しても発光や反応は最低励起状態であるS1,T1で起こることが多い。
Here, the triplet energy represents the energy possessed by a molecule in a triplet state in which a molecule that has received light energy is excited. In particular, the energy difference between the lowest excited triplet state (T1) and the molecule in the ground state is called the lowest triplet energy.
The triplet means that when a molecule receives the energy of light and is excited, it has one unpaired electron in each of the two orbitals. At this time, the spin direction of the two unpaired electrons. The same state is called the triplet state, and the state in which the directions of the two spins are opposite is called the singlet state. In general, the triplet state has lower energy than the corresponding singlet state, but the excited triplet has many reaction opportunities due to its long lifetime, and most of the characteristic photoreactions are due to the excited triplet.
Generally, the lifetimes of high excited states other than the lowest excited state (S1 for singlet state and T1 for triplet state) are short, and they quickly settle to S1 and T1. Therefore, even if light with high energy of short wavelength is used to excite S2 and S3, light emission and reaction often occur in S1 and T1 which are the lowest excited states.

最低三重項エネルギーは、次のように測定することができる。
測定の前提として、励起三重項状態にある分子は、様々な光反応を起こすほかに、燐光を発し基底一重項状態へと戻る放射遷移過程を取ることがある。ここで、最低三重項励起状態から発せられる燐光を分光光度計等で測定すれば最低三重項エネルギーが推測できることとなる。
即ち、最低三重項エネルギーは、測定した燐光スペクトルより算出できる。燐光スペクトルは市販の分光光度計を用いて測定できる。
一般的な燐光スペクトルの測定方法は、対象となる化合物を溶媒に溶解し、低温下励起光を照射して測定する方法(例えば、第4版実験化学講座7 p384−398(1992)日本化学会編 丸善、を参照のこと)、あるいは、シリコン基板上に対象となる化合物を蒸着して薄膜とし、低温下励起光を照射して燐光スペクトルを測定する方法などがある(例えば、特開2007−022986号公報を参照のこと)。
励起三重項レベルは、燐光スペクトルの短波長側の第1ピークの波長あるいは短波長側の立ち上がり位置の波長を読み取り、下記の式に従って1モルあたりの光のエネルギー値に換算することによって算出できる。なお、下記数式(E1)中、Nはアボガドロ定数、Eは最低三重項エネルギーの値、hはプランク定数(6.63×10-34Js)を、cは光速(3.00×10m/s)を、λは燐光スペクトルの短波長側の立ち上がり位置の波長(nm)を表す。
The minimum triplet energy can be measured as follows.
As a premise of measurement, a molecule in an excited triplet state may undergo various photoreactions and also undergo a radiation transition process that emits phosphorescence and returns to the basal singlet state. Here, the minimum triplet energy can be estimated by measuring the phosphorescence emitted from the minimum triplet excited state with a spectrophotometer or the like.
That is, the minimum triplet energy can be calculated from the measured phosphorescence spectrum. The phosphorescence spectrum can be measured using a commercially available spectrophotometer.
A general method for measuring a phosphorescent spectrum is a method in which a target compound is dissolved in a solvent and irradiated with excitation light at a low temperature for measurement (for example, 4th Edition Experimental Chemistry Course 7 p384-398 (1992) Japan Chemical Society. (See Maruzen), or a method of depositing a target compound on a silicon substrate to form a thin film, irradiating it with excitation light at low temperature, and measuring the phosphorescence spectrum (for example, Japanese Patent Application Laid-Open No. 2007-). 022986 (see).
The excited triplet level can be calculated by reading the wavelength of the first peak on the short wavelength side of the phosphorescence spectrum or the wavelength of the rising position on the short wavelength side and converting it into the energy value of light per mole according to the following formula. Incidentally, in the following equation (E1), N A is Avogadro constant, E is the lowest triplet energy value, h is Planck's constant (6.63 × 10 -34 Js), c is the speed of light (3.00 × 10 8 m / s) and λ represent the wavelength (nm) of the rising position on the short wavelength side of the phosphorescence spectrum.

Figure 0006925584
Figure 0006925584

例えば、(A)側鎖型高分子の側鎖が以下の式(A−1)(式中、Y、及びRは、上記と同じ定義を有する。*は、式(A−1)で表される基が側鎖型高分子の側鎖の一部であり、*で結合していることを表す。)で表される基を有する場合、光反応性基由来の化合物は、式(A−2)(式中、Y、及びRは上記と同じ定義を有する)で表される化合物であり、(C)添加剤の最低三重項エネルギーが、式(A−2)で表される化合物の最低三重項エネルギーよりも低いのがよい。
また、(A)側鎖型高分子の側鎖が以下の式(A−3)(式中、Yは、上記と同じ定義を有する。*は、式(A−3)で表される基が側鎖型高分子の側鎖の一部であり、*で結合していることを表す。)で表される基を有する場合、光反応性基由来の化合物は、式(A−4)(式中、Yは上記と同じ定義を有する)で表される化合物であり、(C)添加剤の最低三重項エネルギーが、式(A−4)で表される化合物の最低三重項エネルギーよりも低いのがよい。
For example, the side chain of the (A) side chain type polymer has the same definition as above in the following formula (A-1) (in the formula, Y 2 and R. * Is the formula (A-1). When the group represented is a part of the side chain of the side chain type polymer and has a group represented by *), the compound derived from the photoreactive group is of the formula (representing that it is bonded by *). a-2) (wherein, Y 2, and R is a compound represented by having the same definition as above), the lowest triplet energy of the (C) additive is represented by the formula (a-2) It should be lower than the minimum triple term energy of the compound.
Further, (A) represented by the side chain polymeric side chains following formula (A-3) (wherein, Y 1 is. * Is having the same definition as above, the formula (A-3) When the group is a part of the side chain of the side chain polymer and has a group represented by *), the compound derived from the photoreactive group is of the formula (A-4). ) (In the formula, Y 1 has the same definition as above), and the minimum triplet energy of the (C) additive is the lowest triplet energy of the compound represented by the formula (A-4). It should be lower than energy.

Figure 0006925584
Figure 0006925584

例えば、式(A−1)で表される基が下記式(A−1−1)で表される基であり、式(A−2)で表される化合物が下記式(A−2−1)で表される化合物である場合;
式(A−1)で表される基が下記式(A−1−2)で表される基であり、式(A−2)で表される化合物が下記式(A−2−2)で表される化合物である場合、などを挙げることができるがこれらに限定されない。なお、*は、上述と同じ定義を有する。
また、例えば、式(A−3)で表される基が下記式(A−3−1)で表される基であり、式(A−4)で表される化合物が下記式(A−4−1)で表される化合物である場合、などを挙げることができるがこれらに限定されない。なお、*は、上述と同じ定義を有する。
For example, the group represented by the formula (A-1) is the group represented by the following formula (A-1-1), and the compound represented by the formula (A-2) is the group represented by the following formula (A-2-1). When it is a compound represented by 1);
The group represented by the formula (A-1) is the group represented by the following formula (A-1-2), and the compound represented by the formula (A-2) is the compound represented by the following formula (A-2-2). In the case of the compound represented by, and the like can be mentioned, but the present invention is not limited thereto. Note that * has the same definition as described above.
Further, for example, the group represented by the formula (A-3) is the group represented by the following formula (A-3-1), and the compound represented by the formula (A-4) is the compound represented by the following formula (A--4). In the case of the compound represented by 4-1), and the like can be mentioned, but the present invention is not limited thereto. Note that * has the same definition as described above.

Figure 0006925584
Figure 0006925584

また、この場合、(C)添加剤として、下記式(C−1)〜(C−27)で表される化合物を挙げることができるが、これらに限定されない。 Further, in this case, as the additive (C), compounds represented by the following formulas (C-1) to (C-27) can be mentioned, but the additive is not limited thereto.

Figure 0006925584
Figure 0006925584

本発明において、(C)添加剤は、消光剤として作用するものと考えられる。以下、例として、(A)側鎖型高分子が、光反応性基として、式(A−1)又は(A−3)で表される基を有する場合、具体的にはケイ皮酸基を有する場合について考慮する。
(C)添加剤を添加しない状況では、配向制御のための光を(A)側鎖型高分子に照射すると、(A)側鎖型高分子における光反応性基であるケイ皮酸基を励起することとなり、(A)側鎖型高分子は、照射光に敏感に反応する。
一方、ケイ皮酸の励起三重項エネルギーよりも低い添加剤を導入することにより、(A)側鎖型高分子におけるケイ皮酸基での励起状態のエネルギーが、消光剤として作用する添加剤へと移動し、失活し消光する。このため、光反応性基であるケイ皮酸基を有する(A)側鎖型高分子の光反応率が低下し、照射光又は光照射量への感度が低下することにより、配向制御能が安定して生じる光照射量の範囲を拡大させることができる。
上記作用は、ケイ皮酸基を有する(A)側鎖型高分子に限らず、他の光反応性基、例えばカルコン骨格、クマリン骨格、スチルベン骨格、アゾベンゼン骨格などの光反応性基を有する(A)側鎖型高分子においても、同様に生じる。
ケイ皮酸基を含む光反応性基以外の光反応性基について、以降、説明する。
In the present invention, the additive (C) is considered to act as a quencher. Hereinafter, as an example, when the side chain polymer (A) has a group represented by the formula (A-1) or (A-3) as a photoreactive group, specifically, a cinnamic acid group. Consider the case of having.
In the situation where (C) no additive is added, when the (A) side chain polymer is irradiated with light for orientation control, the silicic acid group which is a photoreactive group in the (A) side chain polymer is generated. It will be excited, and the side chain polymer (A) will react sensitively to the irradiation light.
On the other hand, by introducing an additive lower than the excited triplet energy of silicic acid, the energy of the excited state at the silicic acid group in the side chain polymer (A) becomes an additive that acts as a quencher. Moves and deactivates and quenches. Therefore, the photoreactive rate of the side chain polymer (A) having a silicic acid group, which is a photoreactive group, is lowered, and the sensitivity to irradiation light or light irradiation amount is lowered, so that the orientation control ability is improved. It is possible to expand the range of the amount of light irradiation that is stably generated.
The above action is not limited to the (A) side chain polymer having a silicic acid group, and has other photoreactive groups such as a chalcone skeleton, a coumarin skeleton, a stilben skeleton, and an azobenzene skeleton ( A) The same occurs in the side chain type polymer.
Photoreactive groups other than photoreactive groups containing cinnamic acid groups will be described below.

(C)添加剤は、組成物中に1種または2種以上含んでいてもよい。
その際、組成物中における(C)添加剤の含有量は、組成物に含有される樹脂成分の100質量部に対して0.01質量部〜200質量部、好ましくは0.05質量部〜100質量部であるのがよい。
また、(C)添加剤は、用いる(C)添加剤が液体であれば、(B)有機溶媒として使用してもよい。その場合、オーブン等による加熱によって塗膜を得る際に、大部分が蒸発し消失してしまう。該消失分を考慮すると、(C)添加剤を(B)有機溶媒として用いる場合、該(C)添加剤の含有量は、(B)有機溶媒全体の2質量%〜80質量%、好ましくは5質量%〜50質量%であるのがよい。
(C) The additive may be contained in one kind or two or more kinds in the composition.
At that time, the content of the additive (C) in the composition is 0.01 part by mass to 200 parts by mass, preferably 0.05 part by mass to 100 parts by mass of the resin component contained in the composition. It is preferably 100 parts by mass.
Further, the (C) additive may be used as (B) an organic solvent as long as the (C) additive to be used is a liquid. In that case, when the coating film is obtained by heating with an oven or the like, most of it evaporates and disappears. Considering the disappearance, when the (C) additive is used as the (B) organic solvent, the content of the (C) additive is 2% by mass to 80% by mass, preferably 2% by mass, preferably the total amount of the (B) organic solvent. It is preferably 5% by mass to 50% by mass.

本発明に用いられる組成物は、上記(A)側鎖型高分子、(B)有機溶媒、及び(C)添加剤の他に、その他の成分を含有してもよい。その例としては、組成物を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等を挙げることができるが、これに限定されない。
膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、WO2014/054785号公報の[0171]に記載されるものを挙げることができる。
The composition used in the present invention may contain other components in addition to the above (A) side chain polymer, (B) organic solvent, and (C) additive. Examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when the composition is applied, compounds that improve the adhesion between the liquid crystal alignment film and the substrate, and the like. Not limited to.
Specific examples of the solvent (poor solvent) for improving the uniformity of the film thickness and the surface smoothness include those described in [0171] of WO2014 / 054785A.

これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5質量%〜80質量%であることが好ましく、より好ましくは20質量%〜60質量%である。 These poor solvents may be used alone or in admixture of a plurality of types. When the solvent as described above is used, it is preferably 5% by mass to 80% by mass, more preferably 20% by mass, so as not to significantly reduce the solubility of the whole solvent contained in the composition. It is from mass% to 60% by mass.

膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノ二オン系界面活性剤等が挙げられる。
より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R−30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S−382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部〜2質量部、より好ましくは0.01質量部〜1質量部である。
Examples of the compound for improving the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant.
More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), Megafuck (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431. (Sumitomo 3M), Asahi Guard (registered trademark) AG710 (Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (made by AGC Seimi Chemical), etc. Be done. The ratio of these surfactants used is preferably 0.01 parts by mass to 2 parts by mass, and more preferably 0.01 parts by mass to 1 part by mass with respect to 100 parts by mass of the resin component contained in the composition. Is.

液晶配向膜と基板との密着性を向上させる化合物の具体例としては、WO2014/054785号公報の[0174]に記載される官能性シラン含有化合物などが挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the functional silane-containing compound described in [0174] of WO2014 / 054785A.

さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、組成物中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。 Furthermore, in addition to improving the adhesion between the substrate and the liquid crystal alignment film, the following phenoplast-based or epoxy group-containing compounds are added for the purpose of preventing deterioration of electrical characteristics due to the backlight when the liquid crystal display element is configured. The agent may be included in the composition. Specific phenoplast-based additives are shown below, but are not limited to this structure.

Figure 0006925584
Figure 0006925584

具体的なエポキシ基含有化合物としては、WO2014/054785号公報の[0177]に記載されるものを挙げることができる。 Specific examples of the epoxy group-containing compound include those described in [0177] of WO2014 / 054785A.

基板との密着性を向上させる化合物を使用する場合、その使用量は、組成物に含有される樹脂成分の100質量部に対して0.1質量部〜30質量部であることが好ましく、より好ましくは1質量部〜20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When a compound that improves adhesion to a substrate is used, the amount used is preferably 0.1 part by mass to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the composition. It is preferably 1 part by mass to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it is more than 30 parts by mass, the orientation of the liquid crystal display may deteriorate.

本願の組成物には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In addition to the above-mentioned compositions, the compositions of the present application include dielectrics and conductive substances for the purpose of changing electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. Furthermore, a crosslinkable compound may be added for the purpose of increasing the hardness and density of the film when it is formed into a liquid crystal alignment film.

<上記組成物を用いた液晶配向膜及びその製造方法>、<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
上記組成物を用いた液晶配向膜は、WO2014/054785(この内容は本願に参照としてその全体が含まれる)と同様に、該組成物を用いて得られる塗膜に偏光照射による光配向法を用いることにより、得ることができる。
具体的には、
[I] 上述の組成物を、導電膜、特に横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有することによって、配向制御能が付与された液晶配向膜、特に特に横電界駆動型液晶表示素子用液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。
<Manufacturing method of liquid crystal alignment film and its manufacturing method using the above composition>, <Manufacturing method of substrate having liquid crystal alignment film> and <Manufacturing method of liquid crystal display element>
As for the liquid crystal alignment film using the above composition, the coating film obtained by using the composition is subjected to a photo-alignment method by polarization irradiation in the same manner as WO2014 / 054785 (this content is included in its entirety as a reference in the present application). It can be obtained by using it.
In particular,
[I] A step of applying the above-mentioned composition onto a conductive film, particularly a substrate having a conductive film for driving a transverse electric field, to form a coating film;
[II] A step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and a step of heating the coating film obtained in [III] [II];
A liquid crystal alignment film having an orientation control ability, particularly a liquid crystal alignment film for a transverse electric field drive type liquid crystal display element, can be obtained, and a substrate having the liquid crystal alignment film can be obtained.

また、上記で得られた基板(第1の基板)の他に、第2の基板を準備することにより、液晶表示素子、特に横電界駆動型液晶表示素子を得ることができる。
第2の基板は、第1の基板と同様に、導電膜、特に横電界駆動用の導電膜を有する基板を用いて、上記工程[I]〜[III]を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
また、第2の基板は、導電膜、特に横電界駆動用の導電膜を有する基板に代えて、該導電膜を有しない基板を用いる以外、上記工程[I]〜[III](導電膜を有しない基板を用いるため、便宜上、本願において、工程[I’]〜[III’]と略記する場合がある)を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
Further, by preparing a second substrate in addition to the substrate (first substrate) obtained above, a liquid crystal display element, particularly a transverse electric field drive type liquid crystal display element can be obtained.
Similar to the first substrate, the second substrate uses a conductive film, particularly a substrate having a conductive film for driving a transverse electric field, and by using the above steps [I] to [III], the orientation control ability can be improved. A second substrate having the imparted liquid crystal alignment film can be obtained.
Further, as the second substrate, the above steps [I] to [III] (conductive film are used, except that a substrate having no conductive film is used instead of the conductive film, particularly the substrate having the conductive film for driving the transverse electric field. In order to use a substrate that does not have the same, for convenience, it may be abbreviated as steps [I'] to [III'] in the present application) to provide a second substrate having a liquid crystal alignment film to which orientation control ability is imparted. Can be obtained.

液晶表示素子、特に横電界駆動型液晶表示素子の製造方法は、
[IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これにより、液晶表示素子、特に横電界駆動型液晶表示素子を得ることができる。
A method for manufacturing a liquid crystal display element, particularly a transverse electric field drive type liquid crystal display element, is
[IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so as to face each other so that the liquid crystal alignment films of the first and second substrates face each other via a liquid crystal display;
Have. This makes it possible to obtain a liquid crystal display element, particularly a transverse electric field drive type liquid crystal display element.

以下、本発明の製造方法の有する[I]〜[III]、および[IV]の各工程について説明する。
<工程[I]>
工程[I]では、導電膜、特に横電界駆動用の導電膜を有する基板上に、上述の組成物を塗布して塗膜を形成する。
Hereinafter, each of the steps [I] to [III] and [IV] included in the production method of the present invention will be described.
<Step [I]>
In step [I], the above composition is applied on a substrate having a conductive film, particularly a conductive film for driving a transverse electric field, to form a coating film.

<基板>
基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用できる。
<Board>
The substrate is not particularly limited, but when the liquid crystal display element to be manufactured is a transmissive type, it is preferable to use a highly transparent substrate. In that case, the present invention is not particularly limited, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
Further, in consideration of application to a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can also be used.

<導電膜>
基板は、導電膜、特に横電界駆動用の導電膜を有する。
該導電膜として、液晶表示素子が透過型である場合、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などを挙げることができるが、これらに限定されない。
また、反射型の液晶表示素子の場合、導電膜として、アルミなどの光を反射する材料などを挙げることができるがこれらに限定されない。
基板に導電膜を形成する方法は、従来公知の手法を用いることができる。
<Conducting film>
The substrate has a conductive film, particularly a conductive film for driving a transverse electric field.
Examples of the conductive film include, but are not limited to, ITO (Indium Tin Oxide: indium tin oxide) and IZO (Indium Zinc Oxide: indium zinc oxide) when the liquid crystal display element is a transmissive type.
Further, in the case of a reflective liquid crystal display element, examples of the conductive film include a material that reflects light such as aluminum, but the conductive film is not limited thereto.
As a method for forming a conductive film on a substrate, a conventionally known method can be used.

上述した組成物を導電膜を有する基板上に塗布する方法は特に限定されない。
塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
The method of applying the above-mentioned composition onto a substrate having a conductive film is not particularly limited.
Industrially, the coating method is generally performed by screen printing, offset printing, flexographic printing, inkjet method, or the like. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method (rotary coating method), a spray method, and the like, and these may be used depending on the purpose.

導電膜を有する基板上に組成物を塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50〜200℃、好ましくは50〜150℃で溶媒を蒸発させて塗膜を得ることができる。このときの乾燥温度は、側鎖型高分子の液晶相発現温度よりも低いことが好ましい。
塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm〜300nm、より好ましくは10nm〜150nmである。
尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
After the composition is applied onto the substrate having a conductive film, the solvent is evaporated at 50 to 200 ° C., preferably 50 to 150 ° C. by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. Can obtain a coating film. The drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer.
If the thickness of the coating film is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may decrease. Therefore, the thickness is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. Is.
It is also possible to provide a step of cooling the substrate on which the coating film is formed to room temperature after the step [I] and before the subsequent step [II].

<工程[II]>
工程[II]では、工程[I]で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm〜400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm〜400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
<Step [II]>
In step [II], the coating film obtained in step [I] is irradiated with polarized ultraviolet rays. When the film surface of the coating film is irradiated with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays from a certain direction via a polarizing plate. As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film used. Then, for example, ultraviolet rays having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet rays, for example, light emitted from a high-pressure mercury lamp can be used.

偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1%〜70%の範囲内とすることが好ましく、1%〜50%の範囲内とすることがより好ましい。 The irradiation amount of polarized ultraviolet rays depends on the coating film used. The irradiation amount is the polarized ultraviolet rays that realize the maximum value of ΔA (hereinafter, also referred to as ΔAmax), which is the difference between the ultraviolet absorptivity in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorptivity in the vertical direction in the coating film. The amount is preferably in the range of 1% to 70%, and more preferably in the range of 1% to 50%.

<工程[III]>
工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
<Step [III]>
In step [III], the coating film irradiated with ultraviolet rays polarized in step [II] is heated. Orientation control ability can be imparted to the coating film by heating.
For heating, a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used. The heating temperature can be determined in consideration of the temperature at which the liquid crystal property of the coating film to be used is exhibited.

加熱温度は、側鎖型高分子が液晶性を発現する温度(以下、液晶発現温度という)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、液晶性を発現し得る感光性の側鎖型高分子をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、使用する側鎖型高分子の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
なお、液晶発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。
The heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as the liquid crystal display temperature). In the case of a thin film surface such as a coating film, the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when a photosensitive side chain polymer capable of exhibiting liquid crystal properties is observed in bulk. NS. Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal display temperature on the surface of the coating film. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is set to a temperature 10 ° C. lower than the lower limit of the temperature range of the liquid crystal development temperature of the side chain polymer to be used, and is 10 ° C. lower than the upper limit of the liquid crystal temperature range. The temperature is preferably in the range up to. If the heating temperature is lower than the above temperature range, the effect of amplifying anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film is in a state. Tends to be close to an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
The liquid crystal development temperature is equal to or higher than the glass transition temperature (Tg) at which the side chain polymer or the coating surface undergoes a phase transition from the solid phase to the liquid crystal phase, and the liquid crystal phase changes to the isotropic phase (isotropic phase). The temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.

以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。 By having the above steps, the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. Then, a substrate with a liquid crystal alignment film can be manufactured with high efficiency.

<工程[IV]>
[IV]工程は、[III]で得られた、導電膜上に液晶配向膜を有する基板(第1の基板)と、同様に上記[I’]〜[III’]で得られた、導電膜を有しない液晶配向膜付基板(第2の基板)とを、液晶を介して、双方の液晶配向膜が相対するように対向配置して、公知の方法で液晶セルを作製し、横電界駆動型液晶表示素子を作製する工程である。なお、工程[I’]〜[III’]は、工程[I]において、導電膜を有する基板の代わりに、該導電膜を有しない基板を用いた以外、工程[I]〜[III]と同様に行うことができる。工程[I]〜[III]と工程[I’]〜[III’]との相違点は、上述した導電膜の有無だけであるため、工程[I’]〜[III’]の説明を省略する。
<Step [IV]>
In the [IV] step, the substrate having the liquid crystal alignment film on the conductive film (first substrate) obtained in [III] and the conductivity obtained in [I'] to [III'] above are similarly obtained. A substrate with a liquid crystal alignment film (second substrate) having no film is arranged so as to face each other with the liquid crystal alignment films facing each other via the liquid crystal, a liquid crystal cell is produced by a known method, and a transverse electric field is generated. This is a process of manufacturing a drive-type liquid crystal display element. In addition, the steps [I'] to [III'] are described in the steps [I] to [III] except that the substrate having no conductive film is used instead of the substrate having the conductive film in the step [I]. It can be done in the same way. Since the only difference between the steps [I] to [III] and the steps [I'] to [III'] is the presence or absence of the conductive film described above, the description of the steps [I'] to [III'] is omitted. do.

液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の第1及び第2の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このとき、片側の基板には横電界駆動用の櫛歯のような構造の電極を有する基板を用いることが好ましい。このときのスペーサの径は、好ましくは1μm〜30μm、より好ましくは2μm〜10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。 To give an example of manufacturing a liquid crystal cell or a liquid crystal display element, the above-mentioned first and second substrates are prepared, spacers are sprayed on the liquid crystal alignment film of one of the substrates, and the liquid crystal alignment film surface is on the inside. In this way, the other substrate is bonded and the liquid crystal is injected under reduced pressure to seal it, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacer is sprayed and then the substrate is bonded and sealed. , Etc. can be exemplified. At this time, it is preferable to use a substrate having an electrode having a structure like a comb tooth for driving a transverse electric field as the substrate on one side. The diameter of the spacer at this time is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.

本発明の塗膜付基板の製造方法は、組成物を基板上に塗布し塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
In the method for producing a substrate with a coating film of the present invention, the composition is applied onto the substrate to form a coating film, and then polarized ultraviolet rays are irradiated. Next, by heating, highly efficient anisotropy is introduced into the side chain type polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal orientation control ability is manufactured.
The coating film used in the present invention realizes highly efficient introduction of anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the photoreaction of side chains and self-assembly based on liquid crystallinity. .. In the production method of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group in the side chain polymer, after forming a coating film on the substrate using the side chain polymer, polarized ultraviolet rays are emitted. After irradiating and then heating, a liquid crystal display element is produced.

なお、光反応性基として光架橋性基、光フリース転位基又は異性化を起こす基を有する構造の側鎖型高分子を用いる光配向法については、WO2014/054785(この文献の内容はその全体を参照として本願に含まれる)に詳述されており、本願でも同様である。 Regarding the photo-orientation method using a side chain polymer having a structure having a photo-crosslinkable group, a photo-Fries rearrangement group, or a group that causes isomerization as a photo-reactive group, WO2014 / 054785 (the content of this document is the whole). Is included in the present application with reference to), and the same applies to the present application.

以上のようにして、本発明の組成物又は本発明の方法によって製造された液晶表示素子用基板、特に横電界駆動型液晶表示素子用基板又は該基板を有する液晶表示素子、特に横電界駆動型液晶表示素子は、信頼性に優れたものとなる。
また、本発明の組成物又は本発明の方法により、液晶配向膜の配向制御能が安定して生じる光照射量の範囲(いわゆる「照射量マージン」)を拡大させることができるため、液晶配向膜の製造工程において、偏光光照射の時間などが、制御値から多少ぶれたとしても、品質が変わらない液晶配向膜を得ることができ、液晶配向膜の製造効率を上げることができる。よって、本発明の組成物又は本発明の方法によって製造された液晶表示素子用基板、特に横電界駆動型液晶表示素子用基板又は該基板を有する液晶表示素子、特に横電界駆動型液晶表示素子は、大画面で高精細の液晶テレビなどに好適に利用できる。
以下、実施例を用いて本発明を説明するが、本発明は、該実施例に限定されるものではない。
As described above, a liquid crystal display element substrate produced by the composition of the present invention or the method of the present invention, particularly a transverse electric field drive type liquid crystal display element substrate or a liquid crystal display element having the substrate, particularly a transverse electric field drive type. The liquid crystal display element has excellent reliability.
Further, since the composition of the present invention or the method of the present invention can expand the range of the light irradiation amount (so-called "irradiation amount margin") in which the orientation control ability of the liquid crystal alignment film is stably generated, the liquid crystal alignment film can be expanded. In the manufacturing process of the above, a liquid crystal alignment film whose quality does not change can be obtained even if the time of irradiation with polarized light deviates slightly from the control value, and the production efficiency of the liquid crystal alignment film can be improved. Therefore, the liquid crystal display element substrate produced by the composition of the present invention or the method of the present invention, particularly the transverse electric field drive type liquid crystal display element substrate or the liquid crystal display element having the substrate, particularly the transverse electric field drive type liquid crystal display element , Can be suitably used for large-screen, high-definition LCD TVs and the like.
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.

実施例において使用した(メタ)アクリレート化合物及び添加剤の略号とその構造を以下に示す。
<(メタ)アクリレート化合物>
MA−1は特許文献(WO2011−084546)に記載の合成法にて合成した。
MA−2は特許文献(特開平9−118717)に記載の合成法にて合成した。
The abbreviations of the (meth) acrylate compounds and additives used in the examples and their structures are shown below.
<(Meta) acrylate compound>
MA-1 was synthesized by the synthetic method described in Patent Document (WO2011-084546).
MA-2 was synthesized by the synthetic method described in Patent Document (Japanese Patent Laid-Open No. 9-118717).

Figure 0006925584
Figure 0006925584

<添加剤>
T−1〜T−8は市販品(東京化成工業(株)製)を用いた。
T−1:ベンズアントロン
T−2:アクリジン
T−3:ピレン
T−4:9−フルオレノン
T−5:ベンジル
T−6:2−アセトナフトン
T−7:1,10−フェナントロリン
T−8:2−メチルベンゾフェノン
<Additives>
Commercially available products (manufactured by Tokyo Chemical Industry Co., Ltd.) were used as T-1 to T-8.
T-1: Benzanthrone T-2: Acridine T-3: Pyrene T-4: 9-fluorenone T-5: benzyl T-6: 2-acetonafton T-7: 1,10-phenanthroline T-8: 2- Methylbenzophenone

Figure 0006925584
Figure 0006925584

実施例等で使用した有機溶媒の略号は以下の通りである。
NEP: N−エチル−2−ピロリドン
PB: プロピレングリコールモノブチルエーテル
THF: テトラヒドロフラン
The abbreviations of the organic solvents used in the examples and the like are as follows.
NEP: N-Ethyl-2-pyrrolidone PB: Propylene glycol monobutyl ether THF: tetrahydrofuran

(重合例1)
MA−1(13.3g、40.0mmol)とMA−2(18.4g、60.0mmol)とをTHF(182.3g)中に溶解し、ダイアフラムポンプで脱気を行った後、2,2’−アゾビスイソブチロニトリル(0.82g、5.0mmol)を加え、再び脱気を行った。この後50℃で30時間反応させメタクリレートのポリマー溶液を得た。
このポリマー溶液をジエチルエーテル(1500ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末を得た。
得られた粉末10.0gにNEP(127g)を加え、室温で16時間攪拌して溶解させた。この溶液にPB(113g)を加え攪拌することによりメタクリレートポリマー溶液PMA−1を得た。
(Polymerization Example 1)
MA-1 (13.3 g, 40.0 mmol) and MA-2 (18.4 g, 60.0 mmol) were dissolved in THF (182.3 g), degassed with a diaphragm pump, and then 2, 2'-Azobisisobutyronitrile (0.82 g, 5.0 mmol) was added, and degassing was performed again. Then, the reaction was carried out at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate.
The polymer solution was added dropwise to diethyl ether (1500 ml) and the resulting precipitate was filtered. The precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain a methacrylate polymer powder.
NEP (127 g) was added to 10.0 g of the obtained powder, and the mixture was dissolved by stirring at room temperature for 16 hours. PB (113 g) was added to this solution and stirred to obtain a methacrylate polymer solution PMA-1.

(実施例1)
上記で得られたメタクリレートポリマー溶液PMA−1(5.00g)に添加剤T−1(0.010g)を加え、室温にて1時間撹拌することにより液晶配向剤A−1を得た。
(Example 1)
Additive T-1 (0.010 g) was added to the methacrylate polymer solution PMA-1 (5.00 g) obtained above, and the mixture was stirred at room temperature for 1 hour to obtain a liquid crystal alignment agent A-1.

(実施例2〜5、及び比較例1〜4)
表1に示す組成で、実施例1と同様の方法を用いて実施例2〜5の液晶配向剤A−2〜A−5を得た。
また、比較例1〜4も同様の方法で液晶配向剤B−1〜B−4を調製した。
(Examples 2 to 5 and Comparative Examples 1 to 4)
With the compositions shown in Table 1, the liquid crystal alignment agents A-2 to A-5 of Examples 2 to 5 were obtained by using the same method as in Example 1.
Further, in Comparative Examples 1 to 4, liquid crystal alignment agents B-1 to B-4 were prepared in the same manner.

Figure 0006925584
Figure 0006925584

<光反応率測定用基板の作成>
上記で得られた液晶配向剤A−1を用いて下記に示すような手順で光反応率測定用基板の作製を行った。基板は、40mm×40mmの大きさで、厚さが1.0mmの石英基板を用いた。
実施例1で得られた液晶配向剤A−1をフィルター孔径1.0μmのフィルターで濾過した後、石英基板上にスピンコートし、70℃のホットプレート上で90秒間乾燥後、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を30mJ/cmとなるよう照射し、光反応済みの液晶配向膜付き基板を得た。
<Creation of substrate for photoreactive rate measurement>
Using the liquid crystal alignment agent A-1 obtained above, a substrate for measuring the photoreaction rate was produced by the procedure as shown below. As the substrate, a quartz substrate having a size of 40 mm × 40 mm and a thickness of 1.0 mm was used.
The liquid crystal alignment agent A-1 obtained in Example 1 is filtered through a filter having a filter pore size of 1.0 μm, spin-coated on a quartz substrate, dried on a hot plate at 70 ° C. for 90 seconds, and then has a film thickness of 100 nm. A liquid crystal alignment film was formed. Next, the coating film surface was irradiated with ultraviolet rays of 313 nm at 30 mJ / cm 2 via a polarizing plate to obtain a substrate with a liquid crystal alignment film that had undergone a photoreaction.

実施例2〜5及び比較例1〜4で得られた液晶配向剤A−2〜A−5及びB−1〜B−4に関しても、液晶配向剤A−1と同様の方法を用いて光反応率測定用基板を作成した。 The liquid crystal alignment agents A-2 to A-5 and B-1 to B-4 obtained in Examples 2 to 5 and Comparative Examples 1 to 4 were also photochemically used in the same manner as the liquid crystal alignment agents A-1. A substrate for measuring the reaction rate was prepared.

<光反応率の測定>
上記の操作によって作製した光反応済みの液晶配向膜の光反応率を、吸光度と下式を用いて算出した。
なお、吸光度の測定には、島津製作所製の紫外線可視近赤外分析光度計U−3100PCを使用した。
<Measurement of photoreactive rate>
The photoreaction rate of the photoreacted liquid crystal alignment film prepared by the above operation was calculated using the absorbance and the following formula.
An ultraviolet visible near infrared analysis photometer U-3100PC manufactured by Shimadzu Corporation was used for the measurement of the absorbance.

Figure 0006925584
Figure 0006925584

ここで、A(initial)は、UV照射前の吸光度、A(exposed)は、UV照射後の吸光度を表す。このとき、光反応率は0に近い程、光反応が生じていないことを示す。 Here, A (initial) represents the absorbance before UV irradiation, and A (exposed) represents the absorbance after UV irradiation. At this time, the closer the photoreaction rate is to 0, the less the photoreaction has occurred.

<面内配向度(In-plane order parameter)測定用基板の作成>
さらに、液晶配向膜の光学的異方性の確認のため、上記で得られた液晶配向剤A−1を用いて、面内配向度測定用基板の作製を行った。基板は40mm×40mmの大きさで、厚さが1.0mmの石英基板を用いた。
実施例1で得られた液晶配向剤A−1を1.0μmのフィルターで濾過した後、石英基板上にスピンコートし、70℃のホットプレート上で90秒間乾燥後、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を30mJ/cmとなるよう照射した後に140℃のホットプレートで10分間加熱し、液晶配向膜付き基板を得た。
<Creation of substrate for in-plane order parameter measurement>
Further, in order to confirm the optical anisotropy of the liquid crystal alignment film, a substrate for measuring the degree of in-plane orientation was prepared using the liquid crystal alignment agent A-1 obtained above. The substrate used was a quartz substrate having a size of 40 mm × 40 mm and a thickness of 1.0 mm.
The liquid crystal alignment agent A-1 obtained in Example 1 is filtered through a 1.0 μm filter, spin-coated on a quartz substrate, dried on a hot plate at 70 ° C. for 90 seconds, and then liquid crystal alignment having a film thickness of 100 nm. A film was formed. Next, the coating film surface was irradiated with ultraviolet rays of 313 nm through a polarizing plate so as to be 30 mJ / cm 2, and then heated on a hot plate at 140 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.

実施例2〜5及び比較例1〜4で得られた液晶配向剤A−2〜A−5及びB−1〜B−4に関しても、液晶配向剤A−1と同様の方法を用いて面内配向度測定用基板を作成した。 The liquid crystal alignment agents A-2 to A-5 and B-1 to B-4 obtained in Examples 2 to 5 and Comparative Examples 1 to 4 are also surfaced using the same method as the liquid crystal alignment agent A-1. A substrate for measuring the degree of internal orientation was prepared.

<面内配向度の測定>
上記で作製した液晶配向膜付き基板を用い、液晶配向膜の光学的異方性を測定するために、偏光の吸光度から面内配向度であるSを下式より算出した。
なお、吸光度の測定には、島津製作所製の紫外線可視近赤外分析光度計U−3100PCを使用した。
<Measurement of in-plane orientation>
In order to measure the optical anisotropy of the liquid crystal alignment film using the substrate with the liquid crystal alignment film prepared above, S, which is the in-plane orientation degree, was calculated from the absorbance of polarized light from the following formula.
An ultraviolet visible near infrared analysis photometer U-3100PC manufactured by Shimadzu Corporation was used for the measurement of the absorbance.

Figure 0006925584
Figure 0006925584

ここで、Aparaは、照射した偏光UV方向に対して平行方向の吸光度、Aperは、照射した偏光UV方向に対して垂直方向の吸光度を表す。Alargeは、平行方向と垂直方向の吸光度を比較して値が大きい方の吸光度、Asmallは、平行方向と垂直方向の吸光度を比較して値が小さい方の吸光度を表す。面内配向度の絶対値が、1に近い程より一様な配向状態となっていることを示している。Here, A para represents the absorbance in the direction parallel to the irradiated polarized UV direction, and A per represents the absorbance in the direction perpendicular to the irradiated polarized UV direction. A large is parallel and vertical absorbance absorbance having a larger value than the, A small represents towards absorbance value is small compared to parallel and vertical directions of the absorbance. The closer the absolute value of the in-plane orientation is to 1, the more uniform the orientation is.

算出した光反応率と、面内配向度Sの絶対値を表2に示す。なお、面内配向度については下記の基準を用いて示した。
◎:Sの絶対値が0.6以上
○:Sの絶対値が0.5以上〜0.6未満
△:Sの絶対値が0.4以上〜0.5未満
Table 2 shows the calculated photoreaction rate and the absolute value of the in-plane orientation degree S. The degree of in-plane orientation is shown using the following criteria.
⊚: Absolute value of S is 0.6 or more ○: Absolute value of S is 0.5 or more and less than 0.6 Δ: Absolute value of S is 0.4 or more and less than 0.5

Figure 0006925584
Figure 0006925584

なお、表2中、最低三重項エネルギーの値は、化学新シリーズ 光化学(裳華房)、Handbook of Photochemistry, Third Edition(CRC Press)、Photochem. Photobiol. Sci., 2011,10, 1902-1909等に記載されている値である。
また、比較例1の最低三重項エネルギーの値は、ポリマー中の光反応性基であるケイ皮酸基に由来するケイ皮酸の最低三重項エネルギーを示す。
In Table 2, the minimum triplet energy values are the new series of chemistry, Photochemistry (Shokabo), Handbook of Photochemistry, Third Edition (CRC Press), Photochem. Photobiol. Sci., 2011,10, 1902-1909, etc. It is a value described in.
Further, the value of the minimum triplet energy of Comparative Example 1 indicates the minimum triplet energy of cinnamic acid derived from the cinnamic acid group which is a photoreactive group in the polymer.

表2に示すように、本発明の添加剤を添加した実施例1〜5の液晶配向剤は、何も添加をしていない比較例1の液晶配向剤と比べて、光反応率が低下していることが確認された。
また、光反応率が低下した条件では、光学的異方性を示す面内配向度Sの増大が確認された。
さらに、添加剤の最低三重項エネルギーの値が、ケイ皮酸の最低三重項エネルギー値である「240」よりも小さければ小さいほど、光反応率が低下し、且つ面内配向度Sが所望の値である1に近づくことがわかった。
すなわち、本発明の添加剤の存在下では光反応性基の光感度が鈍化するため、紫外線照射量が過剰な条件下にあっても、最適UV照射領域への調節が可能となることを示している。
As shown in Table 2, the liquid crystal alignment agents of Examples 1 to 5 to which the additive of the present invention was added had a lower photoreaction rate than the liquid crystal alignment agent of Comparative Example 1 to which nothing was added. It was confirmed that
Further, under the condition that the photoreactive rate decreased, it was confirmed that the degree of in-plane orientation S showing optical anisotropy increased.
Further, the smaller the value of the minimum triplet energy of the additive is smaller than the minimum triplet energy value of cinnamic acid "240", the lower the photoreaction rate and the desired degree of in-plane orientation S. It was found to approach the value of 1.
That is, since the photosensitivity of the photoreactive group is blunted in the presence of the additive of the present invention, it is possible to adjust to the optimum UV irradiation region even under the condition of excessive ultraviolet irradiation amount. ing.

紫外線照射が過剰な条件下にあっても最適UV照射領域への調節が可能となる結果、UV照射工程におけるプロセスマージンが拡大し、製造歩留まり性の向上に寄与することが期待できる。さらに、添加剤の種類と導入量を調節することで、光反応率を任意の割合に抑えることが可能となる。すなわち、最適UV照射量の微調節が可能となり、異方性が最大となる照射量に調節することで、より配向性が高い液晶配向膜を得ることが可能となる。 As a result of being able to adjust to the optimum UV irradiation region even under conditions of excessive ultraviolet irradiation, it is expected that the process margin in the UV irradiation process will be expanded and contribute to the improvement of manufacturing yield. Furthermore, by adjusting the type of additive and the amount introduced, the photoreaction rate can be suppressed to an arbitrary ratio. That is, the optimum UV irradiation amount can be finely adjusted, and by adjusting the irradiation amount to maximize the anisotropy, it is possible to obtain a liquid crystal alignment film having higher orientation.

ここで、実施例1〜5において、桂皮酸の励起三重項エネルギーよりも低い添加剤の導入は桂皮酸の光反応率を減少させる効果があったことから、すなわち、消光剤として働いたことが予想される。つまり、桂皮酸の励起状態のエネルギーが添加剤へのエネルギー移動により失活する消光過程を経たため、桂皮酸の光反応率が低下したものと考えられる。また、添加剤と桂皮酸の最低三重項エネルギー差が大きくなるほど、光反応率が低下する傾向にあったことから、添加剤の最低三重項エネルギーが小さいほど、より有利に消光過程を取ることが可能なものと示唆される。 Here, in Examples 1 to 5, the introduction of an additive lower than the excited triplet energy of cinnamic acid had the effect of reducing the photoreaction rate of cinnamic acid, that is, it acted as a quencher. is expected. That is, it is considered that the photoreactive rate of cinnamic acid decreased because the energy in the excited state of cinnamic acid went through a quenching process in which the energy was deactivated by the energy transfer to the additive. In addition, the larger the difference in the minimum triplet energy between the additive and cinnamic acid, the lower the photoreaction rate. Therefore, the smaller the minimum triplet energy of the additive, the more advantageous the quenching process can be taken. It is suggested that it is possible.

よって、桂皮酸に限らずとも、例えばカルコン骨格やクマリン骨格、スチルベン骨格、アゾベンゼン骨格においても、これらの光反応性基よりも低い最低三重項エネルギーを有する添加剤が存在する条件で紫外線照射による光反応を行った場合、光反応性基の一部が消光過程を経ることから、添加剤が存在しない状態よりも光反応率は同等、もしくは低下することが予想される。その結果、光反応性基が桂皮酸でない同様の液晶配向剤であっても、実施例1〜5と同様に、光反応率の制御が可能となりUV照射工程のプロセスマージン拡大に寄与し、異方性が最大となる照射量へ紫外線照射量を調節することが可能となるであろう。 Therefore, not only in katsura acid, but also in, for example, a chalcone skeleton, a coumarin skeleton, a stilbene skeleton, and an azobenzene skeleton, light from ultraviolet irradiation under the condition that an additive having a minimum triple term energy lower than these photoreactive groups is present. When the reaction is carried out, since a part of the photoreactive groups undergoes a stilbene process, it is expected that the photoreaction rate will be the same or lower than that in the absence of the additive. As a result, even if the photoreactive group is a similar liquid crystal aligning agent other than cinnamic acid, the photoreactive rate can be controlled as in Examples 1 to 5, which contributes to the expansion of the process margin of the UV irradiation step. It will be possible to adjust the UV irradiation dose to the irradiation dose that maximizes the anisotropy.

Claims (14)

(A)100℃〜300℃の温度範囲で液晶性を発現する側鎖であって光架橋、光異性化、または光フリース転位を起こす光反応性基を有する側鎖を備えた側鎖型高分子、
(B)有機溶媒、及び
(C)添加剤
を含有する液晶配向膜製造用組成物であって、
前記(C)添加剤の最低三重項エネルギーは、前記光反応性基に由来する化合物の最低三重項エネルギーよりも低いことを特徴とする、上記組成物。
(A) Side chain type height having a side chain that exhibits liquid crystallinity in a temperature range of 100 ° C. to 300 ° C. and has a photoreactive group that causes photocrosslinking, photoisomerization, or photofries rearrangement. molecule,
A composition for producing a liquid crystal alignment film containing (B) an organic solvent and (C) an additive.
The composition, wherein the minimum triplet energy of the additive (C) is lower than the minimum triplet energy of the compound derived from the photoreactive group.
前記(A)側鎖型高分子が、下記式(1)〜(6)
(式中、A、B、Dはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
Sは、炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1〜6のアルコキシ基を表すか、又はYと同じ定義を表す;
Xは、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
Couは、クマリン−6−イル基またはクマリン−7−イル基を表し、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
q3は0または1である;
P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが−CH=CH−CO−O−、−O−CO−CH=CH−である場合、−CH=CH−が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
l1は0または1である;
l2は0〜2の整数である;
l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
l1が1であるときは、Tが単結合であるときはBも単結合を表す;
H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。)
からなる群から選ばれる、光反応性基を有する側鎖を少なくとも1種有する請求項1記載の組成物。
Figure 0006925584
The side chain polymer (A) has the following formulas (1) to (6).
(In the formula, A, B, and D are independently single-bonded, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO. Represents -O- or -O-CO-CH = CH-;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded to them may be replaced with a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded to them may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring and an alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents. It is a group consisting of 2 to 6 different rings bonded via a bonding group B, and the hydrogen atoms bonded to them are independently −COOR 0 (in the formula, R 0 is a hydrogen atom or 1 to 1 carbon atoms). (Representing an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof. The hydrogen atoms bonded to are independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen group, alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of;
R is hydroxy group, or an alkoxy group having 1 to 6 carbon atoms, or represents the same definition as Y 1;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = When CH-represents and the number of Xs is 2, the Xs may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded to them are independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-. It may be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
One of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are independently selected from the group consisting of a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof. It is a group; however, when X is -CH = CH-CO-O-, -O-CO-CH = CH-, P or Q on the side to which -CH = CH- is bonded is an aromatic ring. When the number of Ps is 2 or more, the Ps may be the same or different, and when the number of Qs is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
When both l1 and l2 are 0, A also represents a single bond when T is a single bond;
When l1 is 1, B also represents a single bond when T is a single bond;
H and I are groups independently selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and a combination thereof. )
The composition according to claim 1, which is selected from the group consisting of, and has at least one side chain having a photoreactive group.
Figure 0006925584
前記(A)側鎖型高分子が、下記式(7)〜(10)
(式中、A、B、Dはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Xは、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
lは1〜12の整数を表す;
mは、0〜2の整数を表し、m1、m2は1〜3の整数を表す;
nは0〜12の整数(ただしn=0のときBは単結合である)を表す;
は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1〜6のアルコキシ基を表すか、又はYと同じ定義を表す)
からなる群から選ばれる、光反応性基を有する側鎖を少なくとも1種有する請求項1記載の組成物。
Figure 0006925584
The side chain polymer (A) has the following formulas (7) to (10).
(In the formula, A, B, and D are independently single-bonded, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO. Represents -O- or -O-CO-CH = CH-;
Y 1 represents a ring selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring and an alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents. It is a group consisting of 2 to 6 different rings bonded via a bonding group B, and the hydrogen atoms bonded to them are independently −COOR 0 (in the formula, R 0 is a hydrogen atom or 1 to 1 carbon atoms). (Representing an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. May be substituted with an alkyloxy group;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = When CH-represents and the number of Xs is 2, the Xs may be the same or different;
l represents an integer from 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer from 0 to 12 (where B is a single bond when n = 0);
Y 2 is a group selected from the group consisting of a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof. The hydrogen atoms bonded to are independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen group, alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of;
R is hydroxy group, or an alkoxy group having 1 to 6 carbon atoms, or represents the same definition as Y 1)
The composition according to claim 1, which is selected from the group consisting of, and has at least one side chain having a photoreactive group.
Figure 0006925584
前記(A)側鎖型高分子が、下記式(11)〜(13)
(式中、Aは、それぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
Xは、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
lは、1〜12の整数を表し、mは0〜2の整数を表し、mは1〜3の整数を表す;
Rは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良いか、又はヒドロキシ基もしくは炭素数1〜6のアルコキシ基を表す)
からなる群から選ばれる、光反応性基を有する側鎖を少なくとも1種有する請求項1記載の組成物。
Figure 0006925584
The side chain polymer (A) has the following formulas (11) to (13).
(In the equation, A is a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O-, respectively. , Or -O-CO-CH = CH-;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = When CH-represents and the number of Xs is 2, the Xs may be the same or different;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, and m 1 represents an integer of 1 to 3;
R represents a ring selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring and an alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or phase selected from their substituents. It is a group in which different 2 to 6 rings are bonded via a bonding group B, and the hydrogen atoms bonded to them are independently −COOR 0 (in the formula, R 0 is a hydrogen atom or 1 to 5 carbon atoms. (Representing an alkyl group of), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen group, alkyl group having 1 to 5 carbon atoms, or alkyl having 1 to 5 carbon atoms. It may be substituted with an oxy group, or represents a hydroxy group or an alkoxy group having 1 to 6 carbon atoms).
The composition according to claim 1, which is selected from the group consisting of, and has at least one side chain having a photoreactive group.
Figure 0006925584
前記(A)側鎖型高分子が、下記式(14)又は(15)
(式中、Aはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
lは1〜12の整数を表し、m1、m2は1〜3の整数を表す)
で表される、光反応性基を有する側鎖を有する請求項1記載の組成物。
Figure 0006925584
The side chain polymer (A) is represented by the following formula (14) or (15).
(In the equation, A is independently single-bonded, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O-, Or -O-CO-CH = CH-;
Y 1 represents a ring selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring and an alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from their substituents. It is a group consisting of 2 to 6 different rings bonded via a bonding group B, and the hydrogen atoms bonded to them are independently −COOR 0 (in the formula, R 0 is a hydrogen atom or 1 to 1 carbon atoms). (Representing an alkyl group of 5), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. May be substituted with an alkyloxy group;
l represents an integer of 1 to 12, m1 and m2 represent an integer of 1 to 3)
The composition according to claim 1, which has a side chain having a photoreactive group represented by.
Figure 0006925584
前記(A)側鎖型高分子が、下記式(16)又は(17)(式中、Aは単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
Xは、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
lは、1〜12の整数を表し、mは0〜2の整数を表す)
で表される、光反応性基を有する側鎖を有する請求項1記載の組成物。
Figure 0006925584
(A) the side chain type polymer, the following equation (16) or (17) (in the formula, A is a single bond, -O -, - CH 2 - , - COO -, - OCO -, - CONH-, Represents -NH-CO-, -CH = CH-CO-O-, or -O-CO-CH = CH-;
X is a single bond, -COO-, -OCO-, -N = N-, -CH = CH-, -C≡C-, -CH = CH-CO-O-, or -O-CO-CH = When CH-represents and the number of Xs is 2, the Xs may be the same or different;
l represents an integer of 1 to 12 and m represents an integer of 0 to 2)
The composition according to claim 1, which has a side chain having a photoreactive group represented by.
Figure 0006925584
前記(A)側鎖型高分子の前記側鎖が、
下記式(A−1)
(式中、Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1〜6のアルコキシ基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
*は、式(A−1)で表される基が前記(A)側鎖型高分子の前記側鎖の一部であり、*で結合していることを表す)
で表される基を有し、
光反応性基由来の化合物が式(A−2)(式中、R、Yは上述と同じ定義を有する)で表される化合物であり、
前記(C)添加剤の最低三重項エネルギーが、前記式(A−2)で表される化合物の最低三重項エネルギーよりも低い;又は
前記(A)側鎖型高分子の前記側鎖が、
下記式(A−3)
(式中、Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
*は、式(A−3)で表される基が前記(A)側鎖型高分子の前記側鎖の一部であり、*で結合していることを表す)
で表される基を有し、
光反応性基由来の化合物が式(A−4)(式中、Yは上述と同じ定義を有する)で表される化合物であり、
前記(C)添加剤の最低三重項エネルギーが、前記式(A−4)で表される化合物の最低三重項エネルギーよりも低い;
請求項1〜6のいずれか1項に記載の組成物。
Figure 0006925584
The side chain of the (A) side chain type polymer is
The following formula (A-1)
(In the formula, Y 2 is a group selected from the group consisting of a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof. The hydrogen atoms bonded to them are independently -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen group, alkyl group having 1 to 5 carbon atoms, or carbon. It may be substituted with an alkyloxy group of numbers 1-5;
R represents a ring selected from a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring and an alicyclic hydrocarbon having 5 to 8 carbon atoms. Or, it is a group formed by bonding the same or different 2 to 6 rings selected from those substituents via a bonding group B, and the hydrogen atoms bonded to them are independently −COOR 0 (in the formula). , R 0 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, 1 to 5 carbon atoms. May be substituted with an alkyl group of 1 or an alkyloxy group having 1 to 5 carbon atoms;
* Indicates that the group represented by the formula (A-1) is a part of the side chain of the (A) side chain polymer and is bonded by *).
Has a group represented by
The compound derived from the photoreactive group is a compound represented by the formula (A-2) (in the formula, R and Y 2 have the same definition as described above).
The minimum triplet energy of the additive (C) is lower than the minimum triplet energy of the compound represented by the formula (A-2); or the side chain of the side chain polymer (A)
The following formula (A-3)
(In the formula, Y 1 represents a ring selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring and an alicyclic hydrocarbon having 5 to 8 carbon atoms, or from a substituent thereof. The same or different 2 to 6 rings selected are groups formed by bonding via a bonding group B, and the hydrogen atoms bonded to them are independently −COOR 0 (in the formula, R 0 is a hydrogen atom or (Representing an alkyl group having 1 to 5 carbon atoms), -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. May be substituted with 1-5 alkyloxy groups;
* Indicates that the group represented by the formula (A-3) is a part of the side chain of the (A) side chain polymer and is bonded by *).
Has a group represented by
(Wherein, Y 1 has the same definition as described above) compounds derived from photoreactive group has the formula (A-4) a compound represented by,
The minimum triplet energy of the additive (C) is lower than the minimum triplet energy of the compound represented by the formula (A-4);
The composition according to any one of claims 1 to 6.
Figure 0006925584
前記(C)添加剤が、下記式(C−1)〜(C−27)で表される化合物からなる群から選ばれる少なくとも1種である請求項7記載の組成物。
Figure 0006925584
The composition according to claim 7, wherein the additive (C) is at least one selected from the group consisting of compounds represented by the following formulas (C-1) to (C-27).
Figure 0006925584
前記(A)側鎖型高分子が、下記式(21)〜(31)
(式中、A及びBはそれぞれ独立に、単結合、−O−、−CH −、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、水素原子、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5〜8の脂環式炭化水素、炭素数1〜12のアルキル基、又は炭素数1〜12のアルコキシ基を表す;
q1とq2は、一方が1で他方が0である;
lは1〜12の整数を表し、mは0から2の整数を表し、但し、式(25)〜(26)において、全てのmの合計は2以上であり、式(27)〜(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1〜3の整数を表す;
は、水素原子、−NO、−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
、Zは単結合、−CO−、−CHO−、−CH=N−、−CF−を表す)からなる群から選ばれるいずれか1種の液晶性側鎖を有する請求項1〜8のいずれか1項に記載の組成物。
Figure 0006925584
The side chain polymer (A) has the following formulas (21) to (31).
(In the equation, A and B are independently single-bonded, -O-, -CH 2- , -COO-, -OCO-, -CONH-, -NH-CO-, -CH = CH-CO-O. -Or -O-CO-CH = CH-represents ;
Y 3 is a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocycle, and alicyclic hydrocarbons having 5 to 8 carbon atoms, and, with a group selected from the group consisting of Yes, the hydrogen atoms attached to them may be independently substituted with -NO 2 , -CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 contains hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, and nitrogen. Represents a heterocycle, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
One of q1 and q2 is 1 and the other is 0;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, but in equations (25) to (26), the sum of all m is 2 or more, and equations (27) to (28). ), The sum of all m is 1 or more, and m1, m2, and m3 independently represent integers 1 to 3;
R 2 is a hydrogen atom, -NO 2 , -CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocycle, and an alicyclic hydrocarbon having 5 to 8 carbon atoms. And represents an alkyl group or an alkyloxy group;
Z 1, Z 2 is a single bond, -CO -, - CH 2 O -, - CH = N -, - CF 2 - wherein with any one liquid crystalline side chain selected from the group consisting of a representative) Item 8. The composition according to any one of Items 1 to 8.
Figure 0006925584
[I] 請求項1〜9のいずれか1項に記載の組成物を、導電膜を有する基板上に塗布して塗膜を形成する工程;
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
[I] A step of applying the composition according to any one of claims 1 to 9 onto a substrate having a conductive film to form a coating film;
[II] A step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and a step of heating the coating film obtained in [III] [II];
A method for producing a substrate having the liquid crystal alignment film, which obtains a liquid crystal alignment film to which the orientation control ability is imparted.
請求項1〜9のいずれか1項に記載の組成物から形成された液晶配向膜 A liquid crystal alignment film formed from the composition according to any one of claims 1 to 9 . 請求項11に記載の液晶配向膜を有する基板 The substrate having the liquid crystal alignment film according to claim 11 . 請求項12に記載の基板(第1の基板)を準備する工程;
[I’] 第2の基板上に 請求項1〜9のいずれか1項に記載の組成物を、塗布して塗膜を形成する工程;
[II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III’] [II’]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する第2の基板を得る工程;及び
[IV] 液晶を介して前記第1及び第2の基板の液晶配向膜が相対するように、前記第1及び第2の基板を対向配置して液晶表示素子を得る工程;
を有することにより、液晶表示素子を得る、該液晶表示素子の製造方法。
The step of preparing the substrate (first substrate) according to claim 12;
[I'] A step of applying the composition according to any one of claims 1 to 9 on a second substrate to form a coating film;
[II'] A step of irradiating the coating film obtained in [I'] with polarized ultraviolet rays; and a step of heating the coating film obtained in [III'] [II'];
A step of obtaining a second substrate having the liquid crystal alignment film, which obtains a liquid crystal alignment film to which the orientation control ability is imparted by having the liquid crystal alignment film; A step of arranging the first and second substrates so as to face each other so that the films face each other to obtain a liquid crystal display element;
A method for manufacturing a liquid crystal display element, which obtains a liquid crystal display element.
請求項12に記載の基板を有する液晶表示素子。
A liquid crystal display element having the substrate according to claim 12.
JP2017544219A 2015-10-07 2016-10-06 A composition for producing a liquid crystal alignment film, a liquid crystal alignment film using the composition and a method for producing the same, and a liquid crystal display element having the liquid crystal alignment film and a method for producing the same. Active JP6925584B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015199617 2015-10-07
JP2015199617 2015-10-07
PCT/JP2016/079784 WO2017061541A1 (en) 2015-10-07 2016-10-06 Composition for manufacturing liquid-crystal alignment film, liquid-crystal alignment film using same composition and method for manufacturing same, liquid-crystal display element having liquid-crystal alignment film and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2017061541A1 JPWO2017061541A1 (en) 2018-08-02
JP6925584B2 true JP6925584B2 (en) 2021-08-25

Family

ID=58487880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544219A Active JP6925584B2 (en) 2015-10-07 2016-10-06 A composition for producing a liquid crystal alignment film, a liquid crystal alignment film using the composition and a method for producing the same, and a liquid crystal display element having the liquid crystal alignment film and a method for producing the same.

Country Status (5)

Country Link
JP (1) JP6925584B2 (en)
KR (1) KR20180063269A (en)
CN (1) CN108369358B (en)
TW (1) TWI722026B (en)
WO (1) WO2017061541A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (en) 1988-07-27 1990-02-07 Sanyo Electric Co Ltd Production of polyimide oriented film
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JPH09281493A (en) * 1996-04-11 1997-10-31 Matsushita Electric Ind Co Ltd Production of orienting film for liquid crystal molecule
EP1229066A1 (en) * 2001-02-05 2002-08-07 Rolic AG Photoactive polymer
JP2003073562A (en) * 2001-09-03 2003-03-12 Rikogaku Shinkokai Photo-orientation resin composition for liquid crystal orientation, liquid crystal orientation resin film and liquid crystal optical element using liquid crystal orientation resin film
JP5454772B2 (en) * 2008-11-17 2014-03-26 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for forming the same, and liquid crystal display element
JP5522385B2 (en) * 2010-03-04 2014-06-18 Jnc株式会社 LIQUID CRYSTAL DISPLAY ELEMENT, LIQUID CRYSTAL ALIGNING AGENT USED IN THE PROCESS FOR PRODUCING THE LIQUID CRYSTAL DISPLAY ELEMENT, AND LIQUID CRYSTAL ALIGNING FILM FORMED BY USING THE LIQUID CRYSTAL Aligning Agent
JP5712856B2 (en) * 2010-09-22 2015-05-07 Jnc株式会社 Photosensitive compound and photosensitive polymer comprising the compound
JP5854205B2 (en) * 2011-11-21 2016-02-09 Jsr株式会社 Liquid crystal alignment agent
JP6146077B2 (en) * 2012-06-29 2017-06-14 Jsr株式会社 Method for producing liquid crystal alignment film
CN107473969B (en) * 2012-10-05 2020-10-16 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for horizontal electric field drive type liquid crystal display element
JP2014206715A (en) * 2013-03-19 2014-10-30 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal aligning film for in-plane switching liquid crystal display element
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
TWI628219B (en) * 2013-05-13 2018-07-01 日產化學工業股份有限公司 Manufacturing method of substrate with liquid crystal alignment film for lateral electric field drive type liquid crystal display element
JP2015152745A (en) * 2014-02-13 2015-08-24 大日本印刷株式会社 Thermosetting composition having photo-aligning property, alignment layer, substrate with alignment layer, retardation plate, and device
JPWO2016113930A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen bonding polymer liquid crystal, and liquid crystal alignment film

Also Published As

Publication number Publication date
JPWO2017061541A1 (en) 2018-08-02
CN108369358A (en) 2018-08-03
TW201727339A (en) 2017-08-01
TWI722026B (en) 2021-03-21
WO2017061541A1 (en) 2017-04-13
KR20180063269A (en) 2018-06-11
CN108369358B (en) 2022-02-25

Similar Documents

Publication Publication Date Title
KR102113892B1 (en) Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
TWI637044B (en) Polymer, polymer composition, and liquid crystal alignment film for horizontal electric field drive type liquid crystal display element
JP6823458B2 (en) A composition for producing a liquid crystal alignment film for a transverse electric field drive type liquid crystal display element, a liquid crystal alignment film using the composition and a method for producing the same, and a liquid crystal display element having a liquid crystal alignment film and a method for producing the same.
WO2015002292A1 (en) Polarized ultraviolet-anisotropic material
JP2022036952A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20160016915A (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
KR102540422B1 (en) Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
JP6872315B2 (en) Liquid crystal alignment film for polymer composition and transverse electric field drive type liquid crystal display element
TWI644931B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
TWI626269B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
TWI695847B (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
JP6753410B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6925584B2 (en) A composition for producing a liquid crystal alignment film, a liquid crystal alignment film using the composition and a method for producing the same, and a liquid crystal display element having the liquid crystal alignment film and a method for producing the same.
KR102254609B1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
TWI668491B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
CN107924092B (en) Composition for producing liquid crystal alignment film, liquid crystal alignment film using same, method for producing same, liquid crystal display element having liquid crystal alignment film, and method for producing same
KR102674353B1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6864251B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201012

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210718

R151 Written notification of patent or utility model registration

Ref document number: 6925584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151