JP6925245B2 - Resin composition for fire-resistant heat insulation structure of assembled battery and fire-resistant heat insulating member of assembled battery - Google Patents

Resin composition for fire-resistant heat insulation structure of assembled battery and fire-resistant heat insulating member of assembled battery Download PDF

Info

Publication number
JP6925245B2
JP6925245B2 JP2017231415A JP2017231415A JP6925245B2 JP 6925245 B2 JP6925245 B2 JP 6925245B2 JP 2017231415 A JP2017231415 A JP 2017231415A JP 2017231415 A JP2017231415 A JP 2017231415A JP 6925245 B2 JP6925245 B2 JP 6925245B2
Authority
JP
Japan
Prior art keywords
resin composition
heat insulating
assembled battery
fire
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017231415A
Other languages
Japanese (ja)
Other versions
JP2019102253A (en
Inventor
嗣典 島
嗣典 島
史典 江草
史典 江草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tigers Polymer Corp
Original Assignee
Tigers Polymer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tigers Polymer Corp filed Critical Tigers Polymer Corp
Priority to JP2017231415A priority Critical patent/JP6925245B2/en
Publication of JP2019102253A publication Critical patent/JP2019102253A/en
Application granted granted Critical
Publication of JP6925245B2 publication Critical patent/JP6925245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、複数の2次電池セルを含む組電池の耐火断熱構造に用いられる樹脂組成物に関する。また、本発明は、組電池に用いられる耐火断熱部材に関する。 The present invention relates to a resin composition used for a fireproof heat insulating structure of an assembled battery including a plurality of secondary battery cells. The present invention also relates to a refractory heat insulating member used in an assembled battery.

2次電池などの電池セルを複数組み合わせた組電池が、多様な用途、例えば、携帯型の電子機器や、電動自転車、ハイブリッド自動車や電気自動車等に使用されている。2次電池セルは電気エネルギを高密度で蓄えているため、破損等により短絡したりすると異常発熱して発火し、火災となることがある。また、組電池において2次電池セルの1つが発火すると、発生する高熱により隣接する2次電池セルが加熱されて、連鎖的に発火し類焼することが起こりうる。 Assembled batteries in which a plurality of battery cells such as secondary batteries are combined are used in various applications such as portable electronic devices, electric bicycles, hybrid vehicles, electric vehicles, and the like. Since the secondary battery cell stores electrical energy at a high density, if it is short-circuited due to damage or the like, it may generate abnormal heat and ignite, resulting in a fire. Further, when one of the secondary battery cells in the assembled battery ignites, the adjacent secondary battery cells are heated by the generated high heat, and it may ignite in a chain reaction and burn.

組電池における類焼を防止するために、2次電池セルの間に耐火性の隔壁を設ける技術が知られている。たとえば、特許文献1では、マイカ等の耐火材料により2次電池セルの間に耐火壁を設けた隔壁構造が開示されており、かかる隔壁構造により他の電池セルに対する類焼を防ぎうることが開示されている。 A technique of providing a fire-resistant partition wall between secondary battery cells is known in order to prevent burning in an assembled battery. For example, Patent Document 1 discloses a partition structure in which a refractory wall is provided between secondary battery cells using a refractory material such as mica, and it is disclosed that such a partition structure can prevent burning to other battery cells. ing.

特開2008−218210号公報Japanese Unexamined Patent Publication No. 2008-218210

しかしながら、特許文献1に開示されるマイカやセラミクス等による耐火壁は、加工性や成形性に劣り、組電池への適用が難しい場面も多い。そこで、成形性等に優れる樹脂組成物により特許文献1のような耐火壁が構成できないかどうかが検討されるに至った。 However, the refractory wall made of mica, ceramics, etc. disclosed in Patent Document 1 is inferior in processability and moldability, and is often difficult to apply to an assembled battery. Therefore, it has been examined whether or not a refractory wall as in Patent Document 1 can be formed by a resin composition having excellent moldability and the like.

しかしながら、組電池に使用する耐火構造部材は、短時間ではあるが500℃を越える高温のガスや炎にさられることもあり、樹脂組成物によりこのような高温に耐えて部材の形状を維持することは難しいと考えられていた。 However, the fireproof structural member used for the assembled battery may be exposed to a high temperature gas or flame exceeding 500 ° C. for a short time, and the resin composition can withstand such a high temperature and maintain the shape of the member. Things were thought to be difficult.

また、建物の耐火構造等においては、樹脂組成物に熱膨張性黒鉛を含有させることにより、耐火性及び断熱性が高められることが知られているが、熱膨張性黒鉛を含有する樹脂組成物は火炎に曝されて膨張すると導電性を示すため、絶縁性が要求される組電池への適用ははばかられる。 Further, in the fire-resistant structure of a building or the like, it is known that the fire resistance and the heat insulating property can be improved by adding the heat-expandable graphite to the resin composition, but the resin composition containing the heat-expandable graphite Since graphite exhibits conductivity when exposed to flames and expands, it is difficult to apply it to assembled batteries that require insulation.

本発明の目的は、絶縁性であり、かつ、2次電池セルの一つが発火した際に、部材の形状を維持しながら耐火性と断熱性を発揮し、周囲への火炎や熱の到達を抑制可能な、組電池の耐火断熱構造用の樹脂組成物や耐火断熱部材を提供することにある。
An object of the present invention is to provide heat resistance and heat insulation while maintaining the shape of a member when one of the secondary battery cells ignites, and to prevent flames and heat from reaching the surroundings. It is an object of the present invention to provide a resin composition and a fireproof heat insulating member for a fireproof heat insulating structure of an assembled battery, which can be suppressed.

発明者は、鋭意検討の結果、ポリフェニレンスルフィド樹脂に亜リン酸アルミニウムを特定割合で配合すると、電池火災時の火炎や熱の到達を抑制可能な樹脂組成物となりうることを知見し、本発明を完成させた。 As a result of diligent studies, the inventor has found that when aluminum phosphite is mixed with a polyphenylene sulfide resin in a specific ratio, it can be a resin composition capable of suppressing the arrival of flames and heat in the event of a battery fire. Completed.

本発明は、複数の2次電池セルを含む組電池において、2次電池セルの一つが発火した際に周囲への火炎や熱の到達を抑制するための耐火断熱構造に使用される樹脂組成物であって、樹脂組成物は、ポリフェニレンスルフィド樹脂を含むと共に、ポリフェニレンスルフィド樹脂100重量部に対し、亜リン酸アルミニウムを50〜300重量部含み、かつ、樹脂組成物が絶縁性である、組電池の耐火断熱構造用の樹脂組成物である(第1発明)。 The present invention is a resin composition used for a fireproof heat insulating structure for suppressing the arrival of flames and heat to the surroundings when one of the secondary battery cells ignites in an assembled battery including a plurality of secondary battery cells. The resin composition contains a polyphenylene sulfide resin, 50 to 300 parts by weight of aluminum phosphite with respect to 100 parts by weight of the polyphenylene sulfide resin, and the resin composition is insulating. This is a resin composition for a fire-resistant heat insulating structure (first invention).

第1発明において、好ましくは、樹脂組成物は、さらに、臭素系難燃剤もしくはフッ素系樹脂を含む(第2発明)。また、第1発明において、好ましくは、樹脂組成物は、さらに、補強繊維を含む(第3発明)。 In the first invention, preferably, the resin composition further contains a brominated flame retardant or a fluorine-based resin (second invention). Further, in the first invention, preferably, the resin composition further contains reinforcing fibers (third invention).

また、本発明は、第1発明ないし第3発明のいずれかに記載の組電池の耐火断熱構造用の樹脂組成物により形成された、組電池の耐火断熱部材である(第4発明)。 Further, the present invention is a fire-resistant heat-insulating member of the assembled battery formed by the resin composition for the fire-resistant heat-insulating structure of the assembled battery according to any one of the first invention to the third invention (fourth invention).

本発明の組電池の耐火断熱構造用の樹脂組成物(第1発明)によれば、2次電池セルの一つが発火した際には高温にさらされた樹脂組成物が膨張しながら固化し、耐火性と断熱性を備える層を形成する。また、部材等の形状もおおむね維持される。したがって、樹脂組成物により周囲への火炎や熱の到達を抑制することができる。また、本発明の樹脂組成物は、成形性に優れると共に絶縁性であり、組電池周辺への使用に適している。 According to the resin composition for the refractory heat insulating structure of the assembled battery of the present invention (first invention), when one of the secondary battery cells ignites, the resin composition exposed to high temperature solidifies while expanding. Form a layer with fire resistance and heat insulation. In addition, the shapes of the members and the like are generally maintained. Therefore, the resin composition can suppress the arrival of flames and heat to the surroundings. Further, the resin composition of the present invention has excellent moldability and insulating properties, and is suitable for use around an assembled battery.

さらに、第2発明のように、臭素系難燃剤もしくはフッ素系樹脂を含むようにした場合には、加熱された樹脂組成物から発生するガスを不燃化もしくは難燃化することができ、周囲への火炎の到達をより確実に予防できる。
また、第3発明のように、補強繊維を含むようにした場合には、加熱された際にも元の形状が特に維持されやすくなり、火炎や熱の伝達がより確実に抑制できる。
Further, when a bromine-based flame retardant or a fluorine-based resin is contained as in the second invention, the gas generated from the heated resin composition can be made incombustible or flame-retardant, and the gas can be made flame-retardant to the surroundings. The arrival of flames can be prevented more reliably.
Further, when the reinforcing fibers are included as in the third invention, the original shape is particularly easily maintained even when heated, and flame and heat transfer can be suppressed more reliably.

また、第4発明のように、上記樹脂組成物により形成した耐火断熱部材は、組電池に適した絶縁性や耐火断熱性を備え、効率的に製造できる。
Further, as in the fourth invention, the fire-resistant heat insulating member formed of the resin composition has insulating properties and fire-resistant heat insulating properties suitable for an assembled battery, and can be efficiently manufactured.

第1実施形態の樹脂組成物により形成された耐火断熱部材を、組電池のカバーに適用した使用例を示す断面図。FIG. 5 is a cross-sectional view showing an example of use in which a refractory heat insulating member formed of the resin composition of the first embodiment is applied to a cover of an assembled battery. 第1実施形態の樹脂組成物により形成された筒状の耐火断熱部材により、組電池を構成する2次電池セルを取り囲むようにした使用例を示す断面図。FIG. 5 is a cross-sectional view showing a usage example in which a tubular fireproof heat insulating member formed of the resin composition of the first embodiment surrounds a secondary battery cell constituting an assembled battery. 第1実施形態の樹脂組成物により形成された波板状の耐火断熱部材を、2次電池セルが挟持するセパレータとして使用した例を示す断面図。FIG. 5 is a cross-sectional view showing an example in which a corrugated plate-shaped refractory heat insulating member formed of the resin composition of the first embodiment is used as a separator sandwiched by a secondary battery cell. 耐火断熱部材の評価試験の概要を示す模式図である。It is a schematic diagram which shows the outline of the evaluation test of a refractory heat insulating member.

以下図面を参照しながら、複数の2次電池セルを含む組電池に使用される樹脂組成物や耐火断熱部材の例として、発明の実施形態について説明する。発明は以下に示す個別の実施形態に限定されるものではなく、その形態を変更して実施することもできる。 Hereinafter, embodiments of the present invention will be described as examples of a resin composition and a refractory heat insulating member used in an assembled battery including a plurality of secondary battery cells with reference to the drawings. The invention is not limited to the individual embodiments shown below, and the embodiments can be modified and implemented.

第1実施形態の樹脂組成物は、樹脂成分としてポリフェニレンスルフィド樹脂を含む。また樹脂組成物は、亜リン酸アルミニウムを含む。 The resin composition of the first embodiment contains a polyphenylene sulfide resin as a resin component. The resin composition also contains aluminum phosphite.

樹脂組成物の樹脂成分としては、ポリフェニレンスルフィド樹脂以外の樹脂が含まれていてもよいが、耐火性を向上させる観点からは、ポリフェニレンスルフィド樹脂が主体とされることが好ましい。 The resin component of the resin composition may contain a resin other than the polyphenylene sulfide resin, but from the viewpoint of improving fire resistance, it is preferable that the polyphenylene sulfide resin is the main component.

樹脂組成物に含まれる亜リン酸アルミニウムの配合量は、ポリフェニレンスルフィド樹脂100重量部に対し、亜リン酸アルミニウムを50〜300重量部である。亜リン酸アルミニウムが100〜280重量部であることが好ましく、150〜250重量部であることが特に好ましい。亜リン酸アルミニウムが所定量配合されることにより、樹脂組成物が加熱された際に、樹脂組成物が膨張して耐火性と断熱性を有する層が形成されうる。亜リン酸アルミニウムとしては、例えば、太平化学産業株式会社の「APA−100」等が使用できる。亜リン酸アルミニウムの膨張温度が380℃〜480℃であり、10倍以上の膨張率を有するものが好ましい。 The blending amount of aluminum phosphate contained in the resin composition is 50 to 300 parts by weight of aluminum phosphate with respect to 100 parts by weight of the polyphenylene sulfide resin. The amount of aluminum phosphite is preferably 100 to 280 parts by weight, particularly preferably 150 to 250 parts by weight. By blending a predetermined amount of aluminum phosphite, when the resin composition is heated, the resin composition can be expanded to form a layer having fire resistance and heat insulating properties. As the aluminum phosphite, for example, "APA-100" of Taihei Kagaku Sangyo Co., Ltd. can be used. It is preferable that the expansion temperature of aluminum phosphite is 380 ° C. to 480 ° C. and the expansion coefficient is 10 times or more.

樹脂組成物は絶縁性である。ポリフェニレンスルフィド樹脂に亜リン酸アルミニウムを配合した樹脂組成物は絶縁性であり、加熱されて膨張しても絶縁性を維持する。したがって、樹脂組成物に導電性を有する他の物質を配合しなければ、樹脂組成物は絶縁性になる。樹脂組成物を絶縁性にするため、樹脂組成物は熱膨張性黒鉛や金属粉、金属繊維を含まないことが好ましい。 The resin composition is insulating. The resin composition in which aluminum phosphite is blended with the polyphenylene sulfide resin has an insulating property, and maintains the insulating property even when heated and expanded. Therefore, if the resin composition is not blended with another conductive substance, the resin composition becomes insulating. In order to make the resin composition insulating, it is preferable that the resin composition does not contain heat-expandable graphite, metal powder, or metal fiber.

樹脂組成物は、さらに、臭素系難燃剤もしくはフッ素系樹脂を含むことが好ましい。これらの好ましい配合量は、ポリフェニレンスルフィド樹脂100重量部に対し、5重量部〜50重量部である。 The resin composition preferably further contains a brominated flame retardant or a fluorine-based resin. The preferable blending amount of these is 5 parts by weight to 50 parts by weight with respect to 100 parts by weight of the polyphenylene sulfide resin.

また、樹脂組成物は、さらに、補強繊維を含むことが好ましい。補強繊維としては難燃性の繊維が好ましく、例えば、ガラス繊維やアラミド繊維、シリカ繊維、バサルト繊維などが例示される。補強繊維は、導電性を有さない繊維、例えばガラス繊維やアラミド繊維であることが特に好ましい。補強繊維の好ましい配合量は、ポリフェニレンスルフィド樹脂100重量部に対し、10重量部〜80重量部である。 Further, the resin composition preferably further contains reinforcing fibers. Flame-retardant fibers are preferable as the reinforcing fibers, and examples thereof include glass fibers, aramid fibers, silica fibers, and basalt fibers. The reinforcing fibers are particularly preferably fibers having no conductivity, for example, glass fibers or aramid fibers. The preferable blending amount of the reinforcing fiber is 10 parts by weight to 80 parts by weight with respect to 100 parts by weight of the polyphenylene sulfide resin.

上記実施形態の樹脂組成物は、溶融させたポリフェニレンスルフィド樹脂に所定量の亜リン酸アルミニウムや他の配合材料等を混練することにより製造することができる。 The resin composition of the above embodiment can be produced by kneading a predetermined amount of aluminum phosphate, other compounding materials, or the like with the molten polyphenylene sulfide resin.

上記実施形態の樹脂組成物は、複数の2次電池セルを含む組電池において、2次電池セルの一つが発火した際に周囲への火炎や熱の到達を抑制するための耐火断熱構造に使用することができる。たとえば、上記実施形態の樹脂組成物を射出成形して、組電池用の耐火断熱部材を製造し、組電池周りの耐火断熱部材として使用できる。あるいは、上記実施形態の樹脂組成物を板状もしくは棒状に押出成型して、組電池用の耐火断熱部材を製造し、組電池周りの耐火断熱部材として使用できる。成形の具体的方法は特に限定されない。 The resin composition of the above embodiment is used for a refractory heat insulating structure for suppressing the arrival of flames and heat to the surroundings when one of the secondary battery cells ignites in an assembled battery including a plurality of secondary battery cells. can do. For example, the resin composition of the above embodiment can be injection-molded to produce a refractory heat insulating member for an assembled battery, which can be used as a refractory heat insulating member around the assembled battery. Alternatively, the resin composition of the above embodiment can be extruded into a plate shape or a rod shape to manufacture a refractory heat insulating member for an assembled battery, which can be used as a fire resistant heat insulating member around the assembled battery. The specific method of molding is not particularly limited.

上記実施形態の樹脂組成物により形成された組電池用の耐火断熱部材は、火炎等に曝されて加熱された際に、所期の形状をあまり崩すことなく、配合された亜リン酸アルミニウムが膨張し、耐火性と断熱性を示す。特に、2次電池セルが複数組み込まれた組電池において、短絡等により2次電池セルの一つが異常発熱して発火した場合などに、火災が他の2次電池セルに類焼したり、組電池のケースなどが溶損・発火したりすることを抑制する。 The refractory heat insulating member for an assembled battery formed of the resin composition of the above embodiment contains aluminum phosphate compounded without significantly deteriorating the desired shape when heated by being exposed to a flame or the like. It expands and exhibits fire resistance and heat insulation. In particular, in an assembled battery in which a plurality of secondary battery cells are incorporated, if one of the secondary battery cells abnormally generates heat and ignites due to a short circuit or the like, the fire may burn to other secondary battery cells or the assembled battery. Prevents the case from melting and igniting.

上記実施形態の樹脂組成物により形成された組電池用の耐火断熱部材の組電池における使用形態の例について、以下に具体的に説明する。 An example of the usage embodiment of the refractory heat insulating member for the assembled battery formed by the resin composition of the above embodiment in the assembled battery will be specifically described below.

図1は、第1実施形態の樹脂組成物により形成された組電池用の耐火断熱部材1を組電池のカバーに適用した使用例を示す断面図である。図1の例では、略直方体状の形状を有する電池集合体40が、金属製(鉄製やアルミニウム製)のケース32の中に配置されて組電池が構成されている。電池集合体40は複数の2次電池セルを含んでいる。ケース32の開口部を覆うように合成樹脂製のカバー31が設けられ、ケース32とカバー31の中に、電池集合体40が収容されている。上記第1実施形態の樹脂組成物により形成された組電池用の耐火断熱部材1は、平板状に形成されていて、カバー31の内側を覆うように、カバー31に一体化されている。耐火断熱部材1の成形は、射出成形や押出成型により行うことができる。 FIG. 1 is a cross-sectional view showing a usage example in which the fireproof heat insulating member 1 for an assembled battery formed of the resin composition of the first embodiment is applied to the cover of the assembled battery. In the example of FIG. 1, a battery assembly 40 having a substantially rectangular parallelepiped shape is arranged in a metal (iron or aluminum) case 32 to form an assembled battery. The battery assembly 40 includes a plurality of secondary battery cells. A cover 31 made of synthetic resin is provided so as to cover the opening of the case 32, and the battery assembly 40 is housed in the case 32 and the cover 31. The refractory heat insulating member 1 for an assembled battery formed of the resin composition of the first embodiment is formed in a flat plate shape and is integrated with the cover 31 so as to cover the inside of the cover 31. The refractory heat insulating member 1 can be molded by injection molding or extrusion molding.

電池集合体40に火災が発生し、火炎や熱が樹脂製のカバー31に達すると、カバー31が溶損したり発火するおそれがあるが、耐火断熱部材1が設けられることにより、カバーに伝わる熱を耐火断熱部材1により抑制し、カバー31の溶損や発火を抑制できる。
この場合、図示しないが、耐火断熱部材1を覆うように、ポリイミド樹脂フィルムを組電池に面するように積層して設けてもよく、火炎の遮蔽をより確実に行う上で好ましい。ポリイミドフィルム等は、火炎等に曝されても、連続した面を維持するので、火炎の透過の抑制に貢献する。
If a fire breaks out in the battery assembly 40 and the flame or heat reaches the resin cover 31, the cover 31 may be melted or ignited. However, the heat transmitted to the cover by providing the refractory heat insulating member 1 Can be suppressed by the fireproof heat insulating member 1 to suppress melting damage and ignition of the cover 31.
In this case, although not shown, a polyimide resin film may be laminated so as to cover the refractory heat insulating member 1 so as to face the assembled battery, which is preferable for more reliable shielding of the flame. A polyimide film or the like maintains a continuous surface even when exposed to a flame or the like, and thus contributes to suppressing the transmission of the flame.

耐火断熱部材1は、樹脂製のカバー31の内面全体を覆うように設けられることが好ましいが、電池集合体において異常発熱する箇所や発火する箇所、火炎が生ずる箇所が特定の箇所に限定できるのであれば、そうした箇所のみを覆うように耐火断熱部材1を設けてもよい。また、平板状の耐火断熱部材1の厚みは一定である必要はなく、火炎の噴出が予測される箇所や、過熱して膨張する電池集合体40に直接接触しやすい箇所を比較的厚く形成し、他の箇所を比較的薄く形成するようにしてもよい。 The refractory heat insulating member 1 is preferably provided so as to cover the entire inner surface of the resin cover 31, but the location where abnormal heat generation, ignition, or flame is generated in the battery assembly can be limited to a specific location. If so, the fireproof heat insulating member 1 may be provided so as to cover only such a portion. Further, the thickness of the flat plate-shaped refractory heat insulating member 1 does not have to be constant, and a portion where flame ejection is predicted and a portion where it easily comes into direct contact with the overheated and expanding battery assembly 40 are formed to be relatively thick. , Other parts may be formed relatively thinly.

なお、この実施形態のように、ケース31が金属製とされていて火災や伝熱等の問題が生じないのであれば、ケース31と電池集合体40の間には、耐火断熱部材1を設ける必要はない。ケース31の外周面に近接して電子機器などが配置されるような場合には、そうした部位では、ケース31と電池集合体40の間にも耐火断熱部材1を設けて、熱の伝達を抑制することが好ましい。要するに、電池集合体40とケース32もしくはカバー31の間で、断熱や火炎の遮断が必要な部位に、耐火断熱部材1を設ければよい。 If the case 31 is made of metal and problems such as fire and heat transfer do not occur as in this embodiment, a fireproof heat insulating member 1 is provided between the case 31 and the battery assembly 40. No need. When an electronic device or the like is arranged close to the outer peripheral surface of the case 31, a fireproof heat insulating member 1 is also provided between the case 31 and the battery assembly 40 at such a portion to suppress heat transfer. It is preferable to do so. In short, the refractory heat insulating member 1 may be provided between the battery assembly 40 and the case 32 or the cover 31 at a portion where heat insulation or flame blocking is required.

図2は、第1実施形態の樹脂組成物により形成された組電池用の耐火断熱部材11、11を2次電池セルの間の断熱に適用した使用例を示す断面図である。この実施形態の例では、円筒状の2次電池セル41,41が並んで配置され、これら複数の2次電池セル41,41が対をなすカバー部材51,52により収容されている。 FIG. 2 is a cross-sectional view showing a usage example in which the refractory heat insulating members 11 and 11 for an assembled battery formed of the resin composition of the first embodiment are applied to heat insulation between secondary battery cells. In the example of this embodiment, cylindrical secondary battery cells 41 and 41 are arranged side by side, and the plurality of secondary battery cells 41 and 41 are housed by a pair of cover members 51 and 52.

この実施形態においては、上記実施形態の樹脂組成物を円筒状に押出成形して、耐火断熱部材11、11が製造され、使用に供される。なお、このような耐火断熱部材を射出成形を利用して製造してもよい。耐火断熱部材11、11の内側に2次電池セル41,41のそれぞれが収容された状態で、これら2次電池セルがカバー部材51,52の中に配置されている。 In this embodiment, the resin composition of the above embodiment is extruded into a cylindrical shape to manufacture the refractory heat insulating members 11 and 11 for use. In addition, such a refractory heat insulating member may be manufactured by using injection molding. The secondary battery cells 41 and 41 are housed inside the fireproof heat insulating members 11 and 11, and these secondary battery cells are arranged in the cover members 51 and 52.

このような構成であれば、2次電池セル41の1つが異常発熱したり発火したりしても、その2次電池セルの周囲に設けられた筒状の耐火断熱部材11、11が膨張して耐火断熱層となることにより、火炎や熱が隣接する他の2次電池に伝達されることが抑制されて、組電池中の2次電池セルの類焼を抑制できる。
耐火断熱部材11,11は、2次電池セル41,41が互いに近接する部分で比較的厚く、他の箇所で比較的薄く形成されていることが好ましい。
With such a configuration, even if one of the secondary battery cells 41 overheats or ignites abnormally, the tubular fireproof heat insulating members 11 and 11 provided around the secondary battery cells expand. By forming the fireproof heat insulating layer, it is possible to suppress the transmission of flames and heat to other adjacent secondary batteries, and to suppress the burning of the secondary battery cells in the assembled battery.
It is preferable that the fireproof heat insulating members 11 and 11 are formed relatively thick in the portion where the secondary battery cells 41 and 41 are close to each other and relatively thin in other portions.

また、電池から吹き出す火炎を遮断すると共に、酸素の供給を断って火炎の発生を抑制するとの観点からは、本実施形態のように、耐火断熱部材11が、2次電池セル41の外周面に密着するように配置されることが好ましい。 Further, from the viewpoint of blocking the flame blown out from the battery and cutting off the supply of oxygen to suppress the generation of the flame, the refractory heat insulating member 11 is provided on the outer peripheral surface of the secondary battery cell 41 as in the present embodiment. It is preferable that they are arranged so as to be in close contact with each other.

なお、この実施形態では、耐火断熱部材11,11を、それぞれの2次電池セル41の周囲を取り囲むように円筒状に形成しているが、これは必須ではなく、類焼や異常発熱の連鎖が予防できるのであれば、耐火断熱部材11,11は、互いに隣接する2次電池セル41,41の間を遮断するように設けられていれば良く、例えば、特許文献1における耐火材63と同様の形状や配置で板状に設けられていてもよい。 In this embodiment, the refractory heat insulating members 11 and 11 are formed in a cylindrical shape so as to surround the periphery of each of the secondary battery cells 41, but this is not essential, and a chain of burning and abnormal heat generation occurs. If it can be prevented, the refractory heat insulating members 11 and 11 may be provided so as to block between the secondary battery cells 41 and 41 adjacent to each other. For example, the same as the refractory material 63 in Patent Document 1. It may be provided in a plate shape depending on the shape and arrangement.

図3には、第1実施形態の樹脂組成物により形成された組電池用の耐火断熱部材13,13を、2次電池セル42,42の間に配置されるセパレータ部材として用いた例を示す。図3の例において、耐火断熱部材13,13は、全体が折れ曲がった波板状に形成されている。このような耐火断熱部材は、射出成形を利用して成形することができる。この凹凸折り曲げ構造により、電池の間に冷却風を流すことができる。2次電池セル42の一つに火災等が生じた場合には、耐火断熱部材13,13が膨張して、隣接する他の2次電池セルへの火炎や熱の伝播を抑制し、2次電池セルの類焼が抑制される。 FIG. 3 shows an example in which the refractory heat insulating members 13 and 13 for an assembled battery formed of the resin composition of the first embodiment are used as separator members arranged between the secondary battery cells 42 and 42. .. In the example of FIG. 3, the refractory heat insulating members 13 and 13 are formed in a corrugated plate shape as a whole. Such a refractory heat insulating member can be molded by using injection molding. Due to this uneven bending structure, cooling air can flow between the batteries. When a fire or the like occurs in one of the secondary battery cells 42, the refractory heat insulating members 13 and 13 expand to suppress the propagation of flames and heat to other adjacent secondary battery cells, and the secondary battery cells are secondary. Burning of battery cells is suppressed.

上記実施形態の樹脂組成物の作用及び効果について説明する。
組電池中の2次電池の一つが発火したような場合のように、樹脂組成物が炎や高温の物質に接触するなどして、樹脂組成物が加熱されると、ポリフェニレンスルフィド樹脂と亜リン酸アルミニウムを含む樹脂組成物が膨張して、耐火性と断熱性を発揮する。樹脂組成物に含まれる亜リン酸アルミニウムは加熱により分解し、新たなリン酸塩となって結晶化することにより膨張する。また、ポリフェニレンスルフィド樹脂に亜リン酸アルミニウムが所定量配合されることにより、樹脂組成物が高温にさらされても、引火や発火をしにくくなると共に、所期の形状が維持される。この作用により、加熱された樹脂組成物は形状があまり崩れることなく、耐火性を有する断熱層として機能する。樹脂組成物が十分に耐火断熱性や形状維持性を発揮するよう、樹脂組成物は、ポリフェニレンスルフィド樹脂100重量部に対し亜リン酸アルミニウムを50重量部以上含む。この観点から、ポリフェニレンスルフィド樹脂100重量部に対する亜リン酸アルミニウムの配合量は150重量部以上であることが特に好ましい。
The action and effect of the resin composition of the above embodiment will be described.
When the resin composition is heated due to contact with a flame or a high-temperature substance, such as when one of the secondary batteries in the assembled battery ignites, the polyphenylene sulfide resin and subphosphorus are added. The resin composition containing aluminum phosphate expands to exhibit fire resistance and heat insulating properties. Aluminum phosphate contained in the resin composition is decomposed by heating to become a new phosphate and crystallized to expand. Further, by blending a predetermined amount of aluminum phosphite with the polyphenylene sulfide resin, even if the resin composition is exposed to a high temperature, it becomes difficult to ignite or ignite, and the desired shape is maintained. Due to this action, the heated resin composition does not lose its shape so much and functions as a heat insulating layer having fire resistance. The resin composition contains 50 parts by weight or more of aluminum phosphite with respect to 100 parts by weight of the polyphenylene sulfide resin so that the resin composition sufficiently exhibits fire insulation and shape retention. From this viewpoint, the blending amount of aluminum phosphate with respect to 100 parts by weight of the polyphenylene sulfide resin is particularly preferably 150 parts by weight or more.

また、上記実施形態の樹脂組成物は絶縁性であり、加熱され、膨張した後においても、絶縁性が維持され、2次電池セルを含む組電池の火災の発生や拡大の抑制に特に適している。また、上記実施形態の樹脂組成物は、樹脂の成型方法、例えば射出成形や押出成形などを利用して、所望の形状に成形することができ、上記樹脂組成物により、所望の形状の耐火断熱部材を効率的に製造することができる。樹脂組成物が良好な成形性を有するとの観点から、樹脂組成物におけるポリフェニレンスルフィド樹脂100重量部に対する亜リン酸アルミニウムの配合量は300重量部以下である。同様の観点から、ポリフェニレンスルフィド樹脂100重量部に対する亜リン酸アルミニウムの配合量は250重量部以下であることが好ましい。 Further, the resin composition of the above-described embodiment has an insulating property, and the insulating property is maintained even after being heated and expanded, and is particularly suitable for suppressing the occurrence and expansion of a fire of the assembled battery including the secondary battery cell. There is. Further, the resin composition of the above embodiment can be molded into a desired shape by using a resin molding method such as injection molding or extrusion molding, and the resin composition can be used for fireproof heat insulation of a desired shape. The member can be manufactured efficiently. From the viewpoint that the resin composition has good moldability, the blending amount of aluminum phosphate with respect to 100 parts by weight of the polyphenylene sulfide resin in the resin composition is 300 parts by weight or less. From the same viewpoint, the blending amount of aluminum phosphate with respect to 100 parts by weight of the polyphenylene sulfide resin is preferably 250 parts by weight or less.

発火した2次電池から周囲への火炎の到達をより確実に抑制するとの観点からは、樹脂組成物が臭素系難燃剤もしくはフッ素系樹脂を含むことが好ましい。これらを配合した場合には、加熱された樹脂組成物から発生するガスを不燃化もしくは難燃化することができ、樹脂組成物に由来して火炎が発生することが未然に抑制されるからである。 From the viewpoint of more reliably suppressing the arrival of the flame from the ignited secondary battery to the surroundings, it is preferable that the resin composition contains a brominated flame retardant or a fluorine-based resin. When these are blended, the gas generated from the heated resin composition can be made incombustible or flame-retardant, and the generation of flames derived from the resin composition can be suppressed in advance. be.

好ましい臭素系難燃剤としては、例えば、ポリ臭素化ビフェニル(PBB)、ポリ臭素化ジフェニルエーテル(PBDE)、ヘキサブロモシクロドデカン(HBCD)、テトラブロモビスフェノールA(TBBPA)、; 2,4,6-トリブロモフェノール(TBP)などが例示される。
好ましいフッ素系樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ペルフルオロアルコキシフッ素樹脂(PFA)などが例示される。
Preferred brominated flame retardants include, for example, polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE), hexabromocyclododecane (HBCD), tetrabromobisphenol A (TBBPA); 2,4,6-tri Bromophenol (TBP) and the like are exemplified.
Examples of preferable fluororesins include polytetrafluoroethylene (PTFE) and perfluoroalkoxy alkane resin (PFA).

また、樹脂組成物が補強繊維を含むようにした場合には、樹脂組成物が加熱されて膨張する際に、樹脂組成物や耐火断熱部材の形状が崩れずに、所期の形状、例えば、板状や筒状の形状が確実に維持され、火炎や熱の遮断がより確実なものとなる。この観点から、補強繊維は、亜リン酸アルミニウムの膨張温度を越える500℃程度まで、繊維が焼損や溶損しない繊維、例えば、ガラス繊維やアラミド繊維、バサルト繊維などであることが好ましい。 Further, when the resin composition contains reinforcing fibers, when the resin composition is heated and expanded, the shapes of the resin composition and the refractory heat insulating member are not deformed, and the desired shape, for example, is used. The plate-like or tubular shape is reliably maintained, and the flame and heat are more reliably blocked. From this viewpoint, the reinforcing fiber is preferably a fiber whose fiber does not burn or melt down to about 500 ° C., which exceeds the expansion temperature of aluminum phosphite, such as glass fiber, aramid fiber, and basalt fiber.

また、上記実施形態の樹脂組成物により形成した耐火断熱部材は、効率的に製造できると共に、組電池における2次電池の類焼防止に適している。 Further, the refractory heat insulating member formed of the resin composition of the above embodiment can be efficiently manufactured and is suitable for preventing the secondary battery from burning in the assembled battery.

類焼の予防効果を高めるためには、耐火断熱部材(1,11,13)の厚みを厚くすれば良い。2次電池セルの発火事象における火炎の発生時間は、10秒程度であることが多いので、このような用途であれば、典型的には、耐火断熱部材(1,11,13)の厚みが1mm程度であっても、類焼や隣接する2次電池の異常発熱を抑制できることが多い。 In order to enhance the preventive effect of burning, the thickness of the refractory heat insulating member (1, 11, 13) may be increased. Since the flame generation time in the ignition event of the secondary battery cell is often about 10 seconds, the thickness of the refractory heat insulating member (1, 11, 13) is typically thick for such an application. Even if it is about 1 mm, it is often possible to suppress burning and abnormal heat generation of an adjacent secondary battery.

また、上記実施形態の耐火断熱部材(1,11,13)は、複数の2次電池セルを含む電池集合体がケースとカバーの中に配置された組電池において、電池集合体とケースもしくはカバーの間を遮蔽するよう配置されることで、ケースもしくはカバーの類焼を予防でき、組電池の火災の発生や拡大が抑制される。 Further, the fireproof heat insulating member (1,11,13) of the above embodiment is a battery assembly in which a battery assembly including a plurality of secondary battery cells is arranged in a case and a cover, and the battery assembly and the case or cover. By arranging so as to shield between them, it is possible to prevent the case or cover from burning, and the occurrence and spread of the fire of the assembled battery can be suppressed.

発明は、上記実施形態に限定されるものではなく、種々の改変をして実施することができる。以下に発明の他の実施形態について説明するが、以下の説明においては、上記実施形態と異なる部分を中心に説明し、同様である部分についてはその詳細な説明を省略する。また、これら実施形態は、その一部を互いに組み合わせて、あるいは、その一部を置き換えて実施できる。 The invention is not limited to the above embodiment, and can be implemented with various modifications. Other embodiments of the invention will be described below, but in the following description, parts different from the above-described embodiments will be mainly described, and detailed description of similar parts will be omitted. Moreover, these embodiments can be carried out by combining some of them with each other or replacing some of them.

上記実施形態の樹脂組成物は、他の成分、例えば、添加剤として、酸化防止剤や安定剤、充填材などを含んでいてもよい。充填材は、繊維状、板状もしくは粉粒状であってもよい。また、必要に応じて、他の添加剤として、離型剤や滑剤、着色剤、可塑剤、帯電防止剤などを含んでいてもよい。 The resin composition of the above embodiment may contain other components, for example, an antioxidant, a stabilizer, a filler, and the like as additives. The filler may be fibrous, plate-like or powdery. If necessary, other additives may include a release agent, a lubricant, a colorant, a plasticizer, an antistatic agent, and the like.

実施形態の樹脂組成物により形成される耐火断熱部材の形状は、上記実施形態で説明したように、平板状や筒状など、面状に広がる形態であることが好ましい。このような面状の形態は、火炎や高温のガスの遮断性に優れている。なお、耐火断熱部材の形状は、面状を呈する形態に限定されず、棒状や粒状(ペレット状)であってもよい。このような形態の耐火断熱部材は、押出成型を利用して簡単に製造することができる。また、このような形態の耐火断熱部材は、所定の空間に並べて配置したり、所定の空間に詰め込んで配置することにより、組電池の耐火・断熱用途に利用できる。 As described in the above embodiment, the shape of the refractory heat insulating member formed by the resin composition of the embodiment is preferably a shape that spreads in a plane shape such as a flat plate shape or a tubular shape. Such a planar form is excellent in blocking flames and high-temperature gases. The shape of the refractory heat insulating member is not limited to a planar shape, and may be rod-shaped or granular (pellet-shaped). Such a form of refractory heat insulating member can be easily manufactured by utilizing extrusion molding. Further, the fireproof and heat insulating members having such a form can be used for fireproofing and heat insulating use of the assembled battery by arranging them side by side in a predetermined space or by arranging them packed in a predetermined space.

また、上記樹脂組成物により形成された耐火断熱部材が使用される組電池の2次電池セルの種類は、特に限定されず、リチウムイオン電池、ニッケル水素電池、リチウムイオンポリマー電池等であってもよい。 The type of secondary battery cell of the assembled battery in which the fireproof heat insulating member formed of the above resin composition is used is not particularly limited, and may be a lithium ion battery, a nickel hydrogen battery, a lithium ion polymer battery, or the like. good.

以下、実施例により、上記実施形態の樹脂組成物の断熱効果等を示す。表1に、各実施例、比較例の配合、並びに試験結果を示す。 Hereinafter, the heat insulating effect of the resin composition of the above embodiment will be shown according to Examples. Table 1 shows the formulations of each Example and Comparative Example, as well as the test results.

(樹脂組成物の調整及び成形)
ポリフェニレンスルフィド樹脂(PPS:DIC株式会社製 FZ−2100)に対し、所定量の亜リン酸アルミニウム(APA:太平化学産業株式会社製 APA−100)、及びフッ素系樹脂やガラス繊維、アラミド繊維等の添加材を混練し、各実施例の樹脂組成物を得た。各成分の配合(重量部)を表1に示す。得られた樹脂組成物を射出成形して、厚み2mmの短冊状に成形して各実施例の試験サンプルとした。
同様に、ポリカーボネート樹脂(PC:三菱ケミカル株式会社製 ユーピロン(登録商標))に対し、フッ素系樹脂や亜リン酸アルミニウムを配合し、同様に試験サンプルを作成して各比較例とした。
(Adjustment and molding of resin composition)
For polyphenylene sulfide resin (PPS: FZ-2100 manufactured by DIC Corporation), a predetermined amount of aluminum phosphite (APA: APA-100 manufactured by Taihei Kagaku Sangyo Co., Ltd.), fluororesin, glass fiber, aramid fiber, etc. The additive material was kneaded to obtain the resin composition of each example. Table 1 shows the composition (part by weight) of each component. The obtained resin composition was injection-molded and molded into a strip having a thickness of 2 mm to prepare a test sample of each example.
Similarly, a fluorine-based resin and aluminum phosphite were blended with a polycarbonate resin (PC: Upiron (registered trademark) manufactured by Mitsubishi Chemical Co., Ltd.), and test samples were prepared in the same manner and used as comparative examples.

(実施例1及び実施例2)
実施例1は、ポリフェニレンスルフィド樹脂100重量部に対し亜リン酸アルミニウムを150重量部配合した実施例であり、実施例2は、ポリフェニレンスルフィド樹脂100重量部に対し亜リン酸アルミニウムを250重量部配合した実施例である。
(Example 1 and Example 2)
Example 1 is an example in which 150 parts by weight of aluminum phosphate is blended with 100 parts by weight of the polyphenylene sulfide resin, and Example 2 is a blend of 250 parts by weight of aluminum phosphate with respect to 100 parts by weight of the polyphenylene sulfide resin. This is an example of the above.

(実施例3)
実施例3は、ポリフェニレンスルフィド樹脂80重量部に対し、フッ素系樹脂(PTFE:ポリテトラフルオロエチレン粉末)を20重量部、亜リン酸アルミニウムを150重量部配合した実施例である。
(Example 3)
Example 3 is an example in which 20 parts by weight of a fluorine-based resin (PTFE: polytetrafluoroethylene powder) and 150 parts by weight of aluminum phosphite are mixed with 80 parts by weight of a polyphenylene sulfide resin.

(比較例1)
比較例1は、ポリフェニレンスルフィド樹脂80重量部に対し、フッ素系樹脂を20重量部配合した比較例である。
(Comparative Example 1)
Comparative Example 1 is a comparative example in which 20 parts by weight of a fluorine-based resin is blended with 80 parts by weight of a polyphenylene sulfide resin.

(実施例4及び実施例5)
実施例4は、ポリフェニレンスルフィド樹脂100重量部に対し亜リン酸アルミニウムを150重量部配合し、さらに、ガラス繊維(繊維径11μm、繊維長3mm)を30重量部配合した実施例である。また、実施例5は、ポリフェニレンスルフィド樹脂100重量部に対し亜リン酸アルミニウムを150重量部配合し、さらに、アラミド繊維(繊維径7μm、繊維長3mm)を30重量部配合した実施例である。
(Example 4 and Example 5)
Example 4 is an example in which 150 parts by weight of aluminum phosphate is blended with 100 parts by weight of the polyphenylene sulfide resin, and 30 parts by weight of glass fibers (fiber diameter 11 μm, fiber length 3 mm) are further blended. Further, Example 5 is an example in which 150 parts by weight of aluminum phosphate is blended with 100 parts by weight of the polyphenylene sulfide resin, and 30 parts by weight of aramid fibers (fiber diameter 7 μm, fiber length 3 mm) are further blended.

(実施例6)
実施例6は、ポリフェニレンスルフィド樹脂80重量部に対し、フッ素系樹脂を20重量部、亜リン酸アルミニウムを150重量部配合し、さらに、ガラス繊維(繊維径11μm、繊維長3mm)を30重量部配合した実施例である。
(Example 6)
In Example 6, 20 parts by weight of a fluororesin and 150 parts by weight of aluminum phosphite are blended with respect to 80 parts by weight of a polyphenylene sulfide resin, and 30 parts by weight of glass fibers (fiber diameter 11 μm, fiber length 3 mm) are further mixed. This is a compounded example.

(比較例2)
比較例2は、ポリカーボネート樹脂100重量部に対し亜リン酸アルミニウムを150重量部配合した比較例である。
(Comparative Example 2)
Comparative Example 2 is a comparative example in which 150 parts by weight of aluminum phosphate is blended with 100 parts by weight of the polycarbonate resin.

Figure 0006925245
Figure 0006925245

(耐火断熱試験)
各実施例、比較例のサンプルに対し、以下のような試験を行い、耐火性と形状保持性及び断熱性を評価した。
図4に示すように、難燃性材料で構成された試験台の上に、短冊状の各試験サンプルSを、円柱形状の2次電池セルを模した金属管(直径20mm)B1,B2で挟むようにして静置した。図4は円柱状金属管の中心軸に沿って見た断面模式図である。試験サンプルSは、試験台に対し、立った状態で保持される。なお、金属管B1,B2が転がらないように、金属管の外側にウェート(図示せず)を置き、金属管の間に試験サンプルが挟まれた状態が維持されるようにした。
一方の金属管B1の中には、ヒーターHが設けられている。常温から試験を開始し、ヒーターの温度が800℃に達するまで一方の金属管B1を加熱し、試験サンプルの状況を観察した。
(Fireproof insulation test)
The following tests were performed on the samples of each Example and Comparative Example to evaluate fire resistance, shape retention and heat insulation.
As shown in FIG. 4, on a test table made of a flame-retardant material, each strip-shaped test sample S is provided with metal tubes (diameter 20 mm) B1 and B2 imitating a cylindrical secondary battery cell. It was allowed to stand by sandwiching it. FIG. 4 is a schematic cross-sectional view taken along the central axis of the columnar metal tube. The test sample S is held in a standing position with respect to the test table. A weight (not shown) was placed on the outside of the metal tube so that the metal tubes B1 and B2 would not roll, so that the test sample was sandwiched between the metal tubes.
A heater H is provided in one of the metal tubes B1. The test was started from room temperature, one of the metal tubes B1 was heated until the temperature of the heater reached 800 ° C., and the state of the test sample was observed.

(耐火性評価)
上記試験を行った際に、試験サンプルが発火するか、燃焼するかを観察して、耐火性の評価を行った。発火も燃焼もしないものを◎とし、加熱により発生するガスが一瞬発火するが持続して燃焼しないものを○とし、樹脂組成物が発火し、燃焼してしまうものを×とした。評価◎が耐火性が最も高く、評価×が耐火性が最も低い。組電池に使用する耐火断熱部材では、評価は◎もしくは○であることが求められる。
(Fire resistance evaluation)
When the above test was performed, the fire resistance was evaluated by observing whether the test sample ignited or burned. Those that do not ignite or burn are marked with ⊚, those that ignite the gas generated by heating for a moment but do not burn continuously are marked with ◯, and those that ignite and burn the resin composition are marked with x. Evaluation ◎ has the highest fire resistance, and evaluation × has the lowest fire resistance. The fire-resistant heat insulating member used for the assembled battery is required to have a rating of ⊚ or ◯.

(形状保持性評価)
上記試験を行った際に、試験サンプルが試験台に対し立った状態を維持できるかどうかを観察して、形状保持性の評価を行った。試験サンプルがまっすぐに立った状態が維持されるものを◎とし、試験サンプルがやや反るものの、倒れないものを○とし、試験サンプルが溶け落ちたり、倒れたりするものを×とした。評価◎が形状保持性が最も高く、評価×が形状保持性が最も低い。組電池に使用する耐火断熱部材では、評価は◎もしくは○であることが求められる。
(Evaluation of shape retention)
When the above test was performed, the shape retention was evaluated by observing whether the test sample could be maintained in a standing state against the test table. Those in which the test sample was maintained in a straight standing state were marked with ⊚, those in which the test sample was slightly warped but did not fall were marked with ◯, and those in which the test sample melted down or fell were marked with x. Evaluation ◎ has the highest shape retention, and evaluation × has the lowest shape retention. The fire-resistant heat insulating member used for the assembled battery is required to have a rating of ⊚ or ◯.

(断熱性評価)
上記試験を行った際に、金属管と金属管の間の部分で高温にさらされた試験サンプルがどのように残っているかを観察して、断熱性の評価を行った。樹脂組成物が高温にさらされて変化した耐火断熱層が厚く残っているほど断熱性が高い。試験サンプルが加熱された部分が2倍以上に膨張したものを◎とし、試験サンプルの肉厚減少がなく、厚みの膨張度合いが2倍未満のものを○とし、試験サンプルが溶け落ちたり、燃焼したりして、試験サンプルの肉厚が減少したものを×とした。評価◎が断熱性が最も高く、評価×が断熱性が最も低い。組電池に使用する耐火断熱部材では、評価は◎もしくは○であることが求められる。
(Insulation evaluation)
When the above test was performed, the heat insulating property was evaluated by observing how the test sample exposed to high temperature remained in the portion between the metal tubes. The thicker the refractory heat insulating layer that has changed when the resin composition is exposed to high temperature remains, the higher the heat insulating property. When the heated part of the test sample expands more than twice, it is marked with ⊚, and when the wall thickness of the test sample does not decrease and the degree of expansion of the thickness is less than double, it is marked with ○, and the test sample melts down or burns. The one in which the wall thickness of the test sample was reduced was marked with x. Evaluation ◎ has the highest heat insulating property, and evaluation × has the lowest heat insulating property. The fire-resistant heat insulating member used for the assembled battery is required to have a rating of ⊚ or ◯.

各試験サンプルでの試験結果を表1に示す。 The test results for each test sample are shown in Table 1.

実施例1、実施例2と比較例1、比較例2を比較する。実施例1、2では、耐火性、形状保持性、断熱性共に、組電池用の耐火断熱部材として必要な性能評価(○もしくは◎)が得られ、これら性能を両立できている。実施例1,2では、試験後には、金属管により加熱された部分が膨張して、耐火断熱性の物質になっていた。一方、亜リン酸アルミニウムが配合されていない比較例1では、一方の金属管B1の温度が高まるに従い、試験サンプルが溶けて流れ落ちてしまい、形状保持性、断熱性の評価が×となった。また、ポリフェニレンスルフィド樹脂を用いない比較例2では、一方の金属管B1の温度が高まると、試験サンプルが発火して燃焼してしまい、耐火性、形状保持性の評価が×となった。なお、比較例2では、亜リン酸アルミニウムの残滓が所定の厚みで残ったので断熱性評価は○となっているが、耐火断熱部材自体が発火し、燃焼してしまっているので、隣接する部材に直接火炎や熱が伝わってしまうため、実質的には、断熱性評価は×である。 Example 1 and Example 2 are compared with Comparative Example 1 and Comparative Example 2. In Examples 1 and 2, performance evaluation (○ or ◎) required as a fireproof heat insulating member for an assembled battery was obtained in terms of fire resistance, shape retention, and heat insulating property, and these performances can be compatible with each other. In Examples 1 and 2, after the test, the portion heated by the metal tube expanded to become a refractory heat insulating substance. On the other hand, in Comparative Example 1 in which aluminum phosphite was not blended, as the temperature of one of the metal tubes B1 increased, the test sample melted and flowed down, and the evaluation of shape retention and heat insulating property became x. Further, in Comparative Example 2 in which the polyphenylene sulfide resin was not used, when the temperature of one of the metal tubes B1 increased, the test sample ignited and burned, and the evaluation of fire resistance and shape retention was x. In Comparative Example 2, since the residue of aluminum phosphate remained at a predetermined thickness, the heat insulating property evaluation was ○, but the refractory heat insulating member itself ignited and burned, so that it is adjacent. Since flame and heat are directly transmitted to the member, the heat insulating property evaluation is practically ×.

この試験結果から、ポリフェニレンスルフィド樹脂と亜リン酸アルミニウムとを組み合わせ、両者を所定の配合比で混練した樹脂組成物とすることにより、耐火性、形状保持性、断熱性という、組電池の耐火断熱部材に求められる性能が両立できることが示された。また、実施例2のように、亜リン酸アルミニウムの配合が多い方が、樹脂組成物により形成される耐火断熱部材がよく膨張して耐火断熱層を形成し、断熱性が高められる。 From this test result, by combining polyphenylene sulfide resin and aluminum phosphite and kneading both in a predetermined compounding ratio to obtain a resin composition, fire resistance, shape retention, and heat insulation of the assembled battery are obtained. It was shown that the performance required for the members can be compatible. Further, as in Example 2, when the amount of aluminum phosphite is increased, the refractory heat insulating member formed by the resin composition expands well to form a refractory heat insulating layer, and the heat insulating property is enhanced.

また、実施例3や実施例6のように、樹脂組成物にフッ素系樹脂を配合すると、樹脂組成物の樹脂成分が熱分解して発生するガスが不燃化、難燃化され、樹脂組成物が高温にさらされても、発火しにくくなり、耐火性の評価が◎になった。 Further, when a fluororesin is blended with the resin composition as in Examples 3 and 6, the gas generated by thermal decomposition of the resin component of the resin composition is made incombustible and flame-retardant, and the resin composition is made. Even if it was exposed to high temperature, it became difficult to ignite, and the evaluation of fire resistance became ◎.

また、実施例4や実施例5、実施例6のように、樹脂組成物に補強繊維を配合すると、樹脂組成物の樹脂成分が軟化、分解する過程でも、補強繊維により、耐火断熱部材としての形状維持が助けられる。すなわち、これら実施例においては、一方の金属管が加熱されても、試験サンプルは試験台に対しほぼ直立した形状を維持したまま、耐火断熱性の物質になり、形状保持性の評価が◎になった。補強繊維が配合されていない実施例1,実施例2,実施例3では、試験サンプルにやや反りが生じ、評価は○となった。すなわち、補強繊維が配合されることにより、耐火断熱部材の所定の形状がより正確に維持されることになり、火炎や熱の遮断がより確実なものとなりうる。 Further, when reinforcing fibers are blended in the resin composition as in Example 4, Example 5, and Example 6, even in the process of softening and decomposing the resin component of the resin composition, the reinforcing fibers can be used as a refractory heat insulating member. Shape maintenance is helped. That is, in these examples, even if one of the metal tubes is heated, the test sample becomes a refractory and heat-insulating substance while maintaining a shape that is almost upright with respect to the test table, and the evaluation of shape retention is ◎. became. In Example 1, Example 2, and Example 3 in which the reinforcing fibers were not blended, the test sample was slightly warped, and the evaluation was ◯. That is, by blending the reinforcing fibers, the predetermined shape of the refractory heat insulating member can be maintained more accurately, and the flame and heat can be more reliably blocked.

組電池の耐火断熱構造用の樹脂組成物は、2次電池を含む組電池の耐火断熱構造に使用でき、産業上の利用価値が高い。 The resin composition for the fire-resistant heat insulating structure of the assembled battery can be used for the fire-resistant heat insulating structure of the assembled battery including the secondary battery, and has high industrial utility value.

1 耐火断熱部材
31 カバー
32 ケース
40 組電池
1 Fireproof heat insulating member 31 Cover 32 Case 40 battery pack

Claims (4)

複数の2次電池セルを含む組電池において、2次電池セルの一つが発火した際に周囲への火炎や熱の到達を抑制するための耐火断熱構造に使用される樹脂組成物であって、
樹脂組成物は、ポリフェニレンスルフィド樹脂を含むと共に、
ポリフェニレンスルフィド樹脂100重量部に対し、亜リン酸アルミニウムを50〜300重量部含み、
かつ、樹脂組成物が絶縁性である、
組電池の耐火断熱構造用の樹脂組成物。
A resin composition used for a fire-resistant heat insulating structure for suppressing the arrival of flames and heat to the surroundings when one of the secondary battery cells ignites in an assembled battery including a plurality of secondary battery cells.
The resin composition contains a polyphenylene sulfide resin and
50 to 300 parts by weight of aluminum phosphite is contained in 100 parts by weight of polyphenylene sulfide resin.
And the resin composition is insulating,
A resin composition for a fireproof and heat insulating structure of an assembled battery.
樹脂組成物は、さらに、臭素系難燃剤もしくはフッ素系樹脂を含む、
請求項1に記載の組電池の耐火断熱構造用の樹脂組成物。
The resin composition further comprises a brominated flame retardant or a fluororesin.
The resin composition for a fireproof heat insulating structure of an assembled battery according to claim 1.
樹脂組成物は、さらに、補強繊維を含む、
請求項1もしくは請求項2に記載の組電池の耐火断熱構造用の樹脂組成物。
The resin composition further comprises reinforcing fibers,
The resin composition for the fireproof heat insulating structure of the assembled battery according to claim 1 or 2.
請求項1ないし請求項3のいずれかに記載の組電池の耐火断熱構造用の樹脂組成物により形成された、
組電池の耐火断熱部材。
The resin composition for the refractory heat insulating structure of the assembled battery according to any one of claims 1 to 3.
Fireproof insulation member for assembled batteries.
JP2017231415A 2017-12-01 2017-12-01 Resin composition for fire-resistant heat insulation structure of assembled battery and fire-resistant heat insulating member of assembled battery Active JP6925245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017231415A JP6925245B2 (en) 2017-12-01 2017-12-01 Resin composition for fire-resistant heat insulation structure of assembled battery and fire-resistant heat insulating member of assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017231415A JP6925245B2 (en) 2017-12-01 2017-12-01 Resin composition for fire-resistant heat insulation structure of assembled battery and fire-resistant heat insulating member of assembled battery

Publications (2)

Publication Number Publication Date
JP2019102253A JP2019102253A (en) 2019-06-24
JP6925245B2 true JP6925245B2 (en) 2021-08-25

Family

ID=66973935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017231415A Active JP6925245B2 (en) 2017-12-01 2017-12-01 Resin composition for fire-resistant heat insulation structure of assembled battery and fire-resistant heat insulating member of assembled battery

Country Status (1)

Country Link
JP (1) JP6925245B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241843A1 (en) * 2019-05-31 2020-12-03 積水化学工業株式会社 Thermally expansive fire-resistant material for battery
WO2021100813A1 (en) * 2019-11-20 2021-05-27 積水化学工業株式会社 Thermally expandable fireproof material for battery pack, fireproof sheet for battery pack, and on-vehicle battery pack
CN115152084B (en) * 2020-04-24 2023-09-12 帝人株式会社 Component of battery case provided with flame retardant layer for fiber reinforced plastic and method for manufacturing component of battery case
JPWO2022085681A1 (en) * 2020-10-20 2022-04-28
GB2617826A (en) * 2022-04-12 2023-10-25 Advanced Innergy Ltd Protection of battery enclosures

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275158A (en) * 1986-05-22 1987-11-30 Dainippon Ink & Chem Inc Polyphenylene sulfide resin composition and molded product obtained therefrom
CN101128541B (en) * 2005-02-23 2010-08-11 宝理塑料株式会社 Flame retardant resin composition
JP2006257118A (en) * 2005-03-15 2006-09-28 Denki Kagaku Kogyo Kk Spongy molding
JP4277029B2 (en) * 2005-06-23 2009-06-10 電気化学工業株式会社 Foam molding
TWI428394B (en) * 2008-01-31 2014-03-01 Dainippon Ink & Chemicals Polyarylene sulfide resin composition, manufacturing method thereof and surface-mount electronic element
JP2009211907A (en) * 2008-03-04 2009-09-17 Panasonic Corp Battery module and battery pack using the same
JP5594519B2 (en) * 2010-05-06 2014-09-24 株式会社デンソー Assembled battery
CA2905614A1 (en) * 2013-03-15 2014-12-11 Gordon Holdings, Inc. High performance thermoplastic composite laminates and composite structures made therefrom
JP2017179194A (en) * 2016-03-31 2017-10-05 アイカ工業株式会社 Flame retardant composition

Also Published As

Publication number Publication date
JP2019102253A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6925245B2 (en) Resin composition for fire-resistant heat insulation structure of assembled battery and fire-resistant heat insulating member of assembled battery
JP6902986B2 (en) Laminated body and assembled battery using the laminated body
JP6991839B2 (en) Refractory laminate, tubular laminate using it, and battery isolation structure
JP7410635B2 (en) Heat-expandable fire-resistant resin composition, heat-expandable fire-resistant sheet, and battery cell equipped with the heat-expandable fire-resistant sheet
JP7120783B2 (en) Thermally conductive thermal expansion member
JP6247368B2 (en) Fireproof resin composition
JP7168323B2 (en) Heat-expandable fire-resistant sheet and use of the heat-expandable fire-resistant sheet in battery
US11956865B2 (en) Low smoke, zero halogen self-regulating heating cable
WO2007060201A1 (en) Perfluoropolymer composition
KR20190040624A (en) Flame Retardant Cable Tray for Fire Spreading Prevention
JP2017182898A (en) Battery
JP7355351B2 (en) Fire-resistant resin molded product, fire-resistant structure of structural member, construction method of fire-resistant structural member, and manufacturing method of fire-resistant resin molded product
JP2021024903A (en) Fire-resistant resin molded article
JP6467692B1 (en) Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same
EP3664575A1 (en) Improving flammability of heating cable
JP2015189975A (en) Thermally expandable fire-resistant resin composition and method for manufacturing molded product of the same
JP2019143139A (en) Fire-resistant resin composition, fire-resistant sheet, and battery
JP2014179392A (en) Nonflammable sheet for solar cell and refractory solar cell module fitted with the same
TW201430048A (en) Polybutylene terephthalate resin composition
JP2019143146A (en) Fire-resistant resin composition, fire-resistant sheet, and battery
JPH09227716A (en) Fire-resistant resin composition
JP2019213629A (en) Thermally expandable fireproof material and fireproof compact
JP5195570B2 (en) Plastic molded product
JP7449827B2 (en) Method for manufacturing extruded polystyrene foam board, and extruded polystyrene foam board
KR20230140855A (en) Flame-retardant resin composition and insulating fire extinguishing film for cell and module of lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210803

R150 Certificate of patent or registration of utility model

Ref document number: 6925245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150