JP6923478B2 - レーダセンサ - Google Patents

レーダセンサ Download PDF

Info

Publication number
JP6923478B2
JP6923478B2 JP2018061778A JP2018061778A JP6923478B2 JP 6923478 B2 JP6923478 B2 JP 6923478B2 JP 2018061778 A JP2018061778 A JP 2018061778A JP 2018061778 A JP2018061778 A JP 2018061778A JP 6923478 B2 JP6923478 B2 JP 6923478B2
Authority
JP
Japan
Prior art keywords
signal
phase
difference
transmission
radar sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018061778A
Other languages
English (en)
Other versions
JP2019174244A (ja
Inventor
永石 英幸
英幸 永石
晃 北山
晃 北山
黒田 浩司
浩司 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2018061778A priority Critical patent/JP6923478B2/ja
Priority to PCT/JP2018/042400 priority patent/WO2019187317A1/ja
Priority to US16/959,026 priority patent/US11509051B2/en
Publication of JP2019174244A publication Critical patent/JP2019174244A/ja
Application granted granted Critical
Publication of JP6923478B2 publication Critical patent/JP6923478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は狭角ビームを生成するレーダセンサに関する。
自動車、鉄道、インフラ機器等には、周辺状況検知センサとして、電波を用いたドップラーセンサやレーダセンサが設置されている。例えば自動車には、安全運転支援や自動運転の実現に向けて、自動車の全周囲をカバーするため、検知距離と検知角度範囲が異なる複数のレーダセンサが用いられる。
レーダセンサのアンテナには、アンテナそのものやアンテナから放射された電波を反射させる反射板を機械的に向ける方法、アンテナを構成するアンテナ素子間の位相を電気的にずらし放射電波の同相面の方位を走査する方法がある。このうち、アンテナ素子間の位相差を用いて走査するアンテナとして、例えば、以下の特許公報1〜4が開示されている。
特許文献1では、パッチアンテナと給電配線、上部誘電体から構成され、パッチ素子間の配線長に応じた位相遅延量を制御することで、ビーム走査が実現される。パッチ素子間の配線長で生ずる遅延量は、上部誘電体との相対位置によりアンテナ基板に形成された配線の実効誘電率を変化させる方法や、放射する電波の周波数(波長)を変える方法により制御される。特許文献1のアンテナでは、これらの各々もしくは両方の方法を用いて放射方位を走査することができる。
特許文献2には、複数のアンテナと搭載方向を判定する判断手段と位相を調整する位相調整部とを備え、レーダの搭載方向の判断手段に応じて位相調整部の位相パラメータを選択的に制御するアンテナが開示されている。
特許文献3のアンテナは、送信アンテナの終端部を、補正線路とスイッチを介して受信点に接続する構成である。特許文献3のアンテナは、送信信号の位相変化量を受信点で検出し、送信信号の誘電位相を補正する。特許文献4には、垂直方向に導波管スロットアンテナを積層配置し、ロータリージョイントと移相器により構成され、水平方位をロータリージョイントで、水平方位を導波管に給電する電波の位相を移相器で方位を走査するアンテナが開示されている。
特表2006−516370号公報 特開2015−152335号公報 特開2012−52928号公報 特開2003−66134号公報
例えば、時速200km/hでの高速走行時においても安全に停止できるようにするためには、レーダセンサは、少なくとも200m以上の最大検知距離を有することが望ましい。この場合、レーダセンサのアンテナは、水平方位における検知範囲を±8deg以上確保する必要がある。また、高利得特性を得るため、アンテナは、例えば、垂直方位におけるアンテナ半値幅が±2deg以下の狭角ビームを生成する必要がある。
しかしながら、乗車する人数や荷物の搭載位置によって加重バランスが変化し、車両が傾くことにより水平度が維持できない場合があり、ビームの放射方位が傾いてしまう。例えば、垂直方位の半値幅が±2degのアンテナを用いた場合、車両が3deg傾くと、アンテナ利得が約5dB程度減少するため、最大検知距離は0.75倍となり、検知距離200mのレーダセンサでは150m程度までしか検知することができない。
また、レーダセンサの放射方位は、車両の傾きの影響を受けるが、レーダセンサの温度特性やレーダセンサのアンテナを覆うレドームや車両カバーおよびバンパー等の影響を受けることもある。さらに、送信信号は、RF回路の発信器から複数のアンテナに供給されるまでに、電力増幅器や移相器、配線などを経由するので、放射方位は、これらの影響をうけることもある。
レーダセンサの狭角ビームを所望のビーム方位に向けるためには、各々のアンテナ素子間のアンテナ開口面での位相差を制御する必要がある。このため、アンテナ開口面から放射される電波の位相を検知することが重要である。
例えば特許文献2では、アンテナ放射方位を制御するために校正パラメータを用意しておき、その校正パラメータを用いて放射方位が制御される。
しかしながら、電力増幅器や移相器、配線は温度によって電気特性が変化し、また能動素子から構成される電力増幅器などは設定増幅度によっても位相が変化するため、温度特性と能動素子の設定値に準ずる複数の校正パラメータが必要となる。さらに、レーダを車両に搭載した際には、レーダの周りにカバーやバンパーが設置されるため、車両へ設置後の補正データも必要となる。ただし、車両重量バランスや、温度およびレーダ動作設定値に応じたすべての校正パラメータを記憶させることは困難であるし、検査コストも増大する。また、従来のレーダセンサでは、送信アンテナの放射方位を校正することができない。送信アンテナの放射方位は、ターゲットからの反射波信号強度によりある程度推測可能であるが、車などの散乱体では信号強度が不安定であるため、精度は十分でない。
特許文献1に開示されたアンテナには、上部誘電体の位置変動による移相器が設けられているが、放射方位の位相差を検出する手段がなく、放射方位の校正を行うことができない。このため、車両搭載時にレーダ放射方位を高精度に制御することは困難である。
特許文献2に開示されたアンテナは、設置方位に応じた校正パラメータを用いて位相設定が可能である。しかし、車両搭載後においても、この校正パラメータが高精度なビーム方位制御に利用可能であるか判断する手段がない。また、温度特性等の各種校正パラメータを取得するための検査費用が膨大となる。
特許文献3は、受信点で送信信号の位相変化量を検出することは可能であるが、移相器の変わりに送信電波の周波数を変えて、ビーム方位を走査する構成であるため、複数の送信アンテナ間の位相差を検出する手段ではない。また、複数の送信を構成した場合、補正線路も複数配置する必要があり、補正線路の配線長の違いや基板温度特性も考慮する必要がある。また、スイッチが受信側にあり、送信側のアンテナ素子からは常時電波が放射されるため、各々の送信アンテナの開口面での位相差検出はできない。
特許文献4は、導波管スロットアンテナと移相器により構成されるが、個々のアンテナを有効化するスイッチがなく、アンテナ開口面の位相差は検出できない。
このように、従来のレーダセンサでは、アンテナ開口面から放射される電波の位相を検知することができず、放射方位を制御することができない。
そこで、本発明は、ビーム放射方位を高精度に制御可能なレーダセンサを提供することを目的とする。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
本発明の代表的な実施の形態によるレーダセンサは、基準信号を供給する信号処理回路と、基準信号に基づいた電波を送信する複数の送信用給電部と、電波を受信し、受信した電波に基づいて受信信号を生成する受信用給電部と、位相差検出器と、位相差検出器の制御により信号処理回路と接続する送信用給電部の切り替え操作を行う切替器と、位相差検出器から供給される位相シフト量に基づいて基準信号の位相を制御する移相器と、を備えている。受信用給電部は、切り替え操作の前後におけるそれぞれの受信信号を生成する。信号処理回路は、受信信号及び基準信号に基づいた、切り替え操作の前後におけるそれぞれの差分信号を取得する。位相差検出器は、切り替え操作の前後におけるそれぞれの差分信号に基づいて、複数の送信用給電部間における送信位相差を検出し、送信位相差及び設定位相差に基づいて位相シフト量を調整する。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
すなわち、本発明の代表的な実施の形態によれば、ビーム放射方位を高精度に制御可能なレーダセンサを提供することが可能となる。
本発明の実施の形態1に係るレーダセンサの構成の一例を示す回路図である。 本発明の実施の形態1に係るビーム放射方向の調整方法の一例を示すフローチャート図である。 本実施の形態による効果を説明する図である。 本発明の実施の形態2に係るレーダセンサの構成の一例を示す回路図である。 本発明の実施の形態2に係るビーム放射方向の調整方法の一例を示すフローチャート図である。 本発明の実施の形態3に係るレーダセンサの構成の一例を示す回路図である。 本発明の実施の形態3に係るビーム放射方向の調整方法の一例を示すフローチャート図である。 本発明の実施の形態4に係るレーダセンサの構成の一例を示す回路図である。 本発明の実施の形態5に係るレーダセンサの構成の一例を示す回路図である。
以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明する。なお、発明を実施するための最良の形態を説明するための各図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
<レーダセンサの構成>
図1は、本発明の実施の形態1に係るレーダセンサの構成の一例を示す回路図である。レーダセンサ1は、例えば、車両前部に設置され、ビームを放射して車両前方のターゲットの検出等を行う。また、レーダセンサ1は、車両後部に設置されてもよい。
図1に示すように、レーダセンサ1は、送信用給電部(他の送信用給電部)11、送信用給電部(1の送信用給電部)12、受信用給電部13、切替器20、移相器30、信号処理回路40、位相差検出器50を備えている。切替器20は、切替器(第2の切替器)21、切替器(第1の切替器)22を備えている。なお、切替器21をSW1、切替器22をSW2と表記する場合もある。
送信用給電部11は、信号処理回路40から供給される基準信号に基づいて、ミリ波信号等の所定の電波を放射する送信用アンテナである。一方、送信用給電部12は、移相器30により位相シフトされた基準信号に基づいて、ミリ波信号等の所定の電波を放射する送信用アンテナである。送信用給電部11,12から同時に放射される電波は、空間合成され、互いのアンテナ開口部間における位相差(送信位相差)に基づく所定の方向に向けて放射されるビームとなる。
切替器21,22は、送信用給電部11,12と信号処理回路40との接続状態を切り換える回路である。切替器21,22は、スイッチで構成される。スイッチとして、例えば、MOSFET等の電界効果トランジスタや、リレー回路等のスイッチング素子が挙げられる。切替器21,22のオン・オフは、位相差検出器50により制御される。
送信用給電部11と信号処理回路40との間には、図1に示すように、切替器21が設けられている。切替器21がオンのとき、送信用給電部11は、信号処理回路40と接続される。これにより、送信用給電部11に基準信号が供給され、送信用給電部11は、基準信号に基づく所定の電波を放射する。
一方、送信用給電部12と信号処理回路40との間には、切替器22及び移相器30が設けられている。なお、切替器22は、図1に示すように、送信用給電部11と移相器30との間に配置されてもよいし、移相器30と信号処理回路40との間に配置設けられてもよい。切替器22がオンのとき、送信用給電部12は、信号処理回路40と接続される。これにより、送信用給電部12には、移相器30により位相シフトされた基準信号が供給され、送信用給電部12は、位相シフトされた基準信号に基づく所定の電波を放射する。なお、移相器30については後述する。
受信用給電部13は、ミリ波信号等の電波を受信する受信用アンテナである。受信用給電部13は、信号処理回路40と接続されている。受信用給電部13は、受信した電波に基づく所定の受信信号を生成し、生成した受信信号を信号処理回路40へ供給する。なお、受信用給電部13が受信する電波は、送信用給電部11,12から直接伝播する到来波であってもよいし、レーダ走査により得られたターゲットからの反射波であってもよい。
送信用給電部11,12、及び受信用給電部13は、例えば、パッチアンテナやホーンアンテナ等である。
移相器30は、基準信号の位相をシフトさせる回路である。例えば、移相器30は、位相差検出器50で設定された位相シフト量に基づいて基準信号の位相をシフトさせる。移相器30に設定される位相シフト量により、送信用給電部11,12のアンテナ開口部間の送信位相差が設定される。これにより、ビーム放射方向が設定される。
信号処理回路40は、各種信号処理を行う回路である。例えば、信号処理回路40は、電波放射用の基準信号としてのミリ波信号を生成する。また、信号処理回路40は、生成した基準信号を所望の電力に増幅し、増幅した基準信号を送信用給電部11,12へ供給する。また、信号処理回路40は、受信用給電部13から供給される受信信号に基づいた信号処理も行う。受信信号に基づいた信号処理の詳細については後述する。
位相差検出器50は、ビーム放射方位の調整を行う回路である。例えば、位相差検出器50は、複数の送信用給電部間における位相差(送信位相差)を算出し、送信位相差等に基づいてビーム放射方向の調整を行う。
なお、送信用給電部は、3個以上設けられてもよい。また、送信用給電部ごとに移相器が設けられ、送信用給電部ごとに基準信号の位相が制御されてもよい。
<ビーム放射方向の調整方法>
次に、ビーム放射方向の調整方法について説明する。本実施の形態では、送信用給電部11,12を介するそれぞれの経路における位相情報に基づいて、送信用給電部11,12間の送信位相差が算出される。そして、送信位相差及び予め設定された設定位相差に基づいて送信位相差の調整が行われることで、ビーム放射方向の調整が行われる。
図2は、本発明の実施の形態1に係るビーム放射方向の調整方法の一例を示すフローチャート図である。図2に示すステップS10〜S80により、ビーム放射方向の調整が行われる。
[ステップS10]
ステップS10は、レーダセンサ1を起動させるステップである。電源がオンされると、レーダセンサ1が起動し、位相差検出器50は、前回の動作終了時、移相器30に設定されている位相シフト量をリセットする。
[ステップS20]
ステップS20は、送信用給電部11から電波を放射させるステップである。位相差検出器50は、切替器21をオンし、切替器22をオフする(第1の状態)。これにより、送信用給電部11は、信号処理回路40と接続される。これにより、送信用給電部11に、基準信号が供給され、送信用給電部11は、基準信号に基づく電波を放射する。
受信用給電部13は、送信用給電部11から放射された電波の到来波や、ターゲットからの反射波を受信し、受信した電波に基づく切り替え操作前の受信信号(第1の受信信号)を生成する。受信用給電部13は、生成した受信信号を信号処理回路40へ供給する。
[ステップS30]
ステップS30は、送信用給電部11を介する経路(第1の経路)における位相情報(第1の位相情報:φ1)を検出するステップである。信号処理回路40は、受信用給電部13から供給された切り替え操作前の受信信号(第1の受信信号)及び基準信号に基づいて、切り替え操作前の差分信号(第1の差分信号)を生成する。差分信号は、受信信号と基準信号との差分で規定される信号である。ここで生成される差分信号には、切替器20(切替器21)、配線、送信用給電部11を含む経路全体の位相情報が含まれている。
そして、信号処理回路40は、生成した差分信号を所定の中間周波数の信号(IF信号)に変換する。なお、以下では、中間周波数の信号に変換された差分信号を変換差分信号と呼ぶことがある。そして、信号処理回路40は、変換差分信号を位相差検出器50へ供給する。
位相差検出器50は、変換差分信号から、変換差分信号の振幅情報(A1)及び位相情報(φ1)を検出する。検出された位相情報(φ1)は、送信用給電部11を介する経路における位相情報である。また、振幅情報(A1)は、受信した電波の強度を示している。位相差検出器50は、検出した位相情報(φ1)を、デフォルトの位相シフト量として移相器30へ供給する。また、位相差検出器50は、検出した振幅情報(A1)及び位相情報(φ1)をバッファリングしてもよいし、記憶装置に格納してもよい。
[ステップS40]
ステップS40は、送信用給電部12から電波を放射させるステップである。位相差検出器50は、切替器21をオフし、切替器22をオンし(第2の状態)、接続状態の切り替え操作を行う。そうすると、送信用給電部11は、信号処理回路40と電気的に切断される。これにより、送信用給電部12には、移相器30においてデフォルトの位相シフト量に基づいて位相シフトされた基準信号が供給される。そして、送信用給電部12は、位相シフトされた基準信号に基づいた電波を放射する。
受信用給電部13は、送信用給電部12から放射された電波の到来波や、ターゲットからの反射波を受信し、受信した電波に基づいた、切り替え操作後の受信信号(第2の受信信号)を生成する。受信用給電部13は、生成した受信信号を信号処理回路40へ供給する。
[ステップS50]
ステップS50は、送信用給電部12を介する経路(第2の経路)における位相情報(第2の位相情報)を検出するステップである。信号処理回路40は、受信用給電部13から供給された切り替え操作後の受信信号(第2の受信信号)及び基準信号に基づいて、切り替え操作後の差分信号(第2の差分信号)を生成する。ここで生成される差分信号には、切替器20(切替器22)、配線、送信用給電部12を含む経路全体の位相情報が含まれている。
そして、信号処理回路40は、生成した差分信号を所定の中間周波数の信号に変換する。そして、信号処理回路40は、変換差分信号を位相差検出器50へ供給する。
位相差検出器50は、変換差分信号から、変換差分信号の振幅情報(A2)及び位相情報(φ2)を検出する。検出された位相情報(φ2)は、送信用給電部12を介する経路における位相情報である。また、検出された振幅(A2)は、受信した電波の強度を示す情報である。位相差検出器50は、検出した位相情報(φ2)をバッファリングしてもよいし、記憶装置に格納させてもよい。
[ステップS60]
ステップS60は、送信用給電部11,12のアンテナ開口面における位相差(送信位相差)を算出するステップである。位相差検出器50は、切り替え操作後の位相情報(第2の位相情報:φ2)と、切り替え操作前の位相情報φ1との差分(φ2−φ1)を送信位相差(Δφ)として算出する。
それぞれの位相情報(φ1,φ2)は、共通の受信用給電部13で受信された電波に基づいて検出されているので、経路間の位相差(φ2−φ1)は、アンテナ開口面での位相差に準ずるものである。したがって、位相差検出器50は、位相差(φ2−φ1)を算出することにより、アンテナ開口面における送信位相差(Δφ)を算出する。
なお、送信用給電部11,12の配置により、受信用給電部13までの距離がそれぞれ異なる。このため、位相差検出器50は、それぞれの送信用給電部11,12から受信用給電部13までの距離の差に応じて、送信位相差Δφを補正してもよい。
[ステップS70]
ステップS70は、ビームの放射方向が予め設定された所定の放射方向と一致しているかどうかを判定するステップである。位相差検出器50は、ステップS60において算出された送信位相差と設定位相差とを比較する。なお、設定位相差とは、設定された方向にビームを放射させるときの送信用給電部間(送信用給電部11,12のアンテナ開口部間)の位相差をいう。
送信位相差が設定位相差と一致する場合(Yes)、位相差検出器50は、ビーム放射方向が事前に設定された方向と一致しているものと判定し、ビーム放射方向の調整を終了する。その後は、例えば、切替器21,22がともにオンされ、調整された方向(設定された方向)にビームが放射される。
一方、送信位相差が設定位相差と異なる場合(No)、位相差検出器50は、ビーム放射方向が設定された方向とは異なっていると判定する。この場合、後述するステップS80において、ビーム放射方向の調整が行われる。
なお、送信位相差が、設定位相差を含む所定の許容範囲内に収まっていれば、位相差検出器50は、これらの位相差が一致しているものと判定してもよい。なお、許容範囲は、例えば、振幅情報(A1,A2)等の情報に基づき、ターゲットからの反射波を検出可能な範囲で規定されてもよい。このように、送信位相差の誤差を許容することにより、レーダ放射方向の調整時間が短縮される。
[ステップS80]
ステップS80は、送信位相差及び設定位相差に基づいて、ビーム放射方向の調整を行うステップである。例えば、位相差検出器50は、送信位相差と設定位相差との差分を算出し、算出した差分の値に応じて、位相シフト量をインクリメント又はデクリメントする。位相差検出器50は、調整後の位相シフト量を移相器30へ供給し、移相器30における位相シフト量の情報が更新される。
これにより、送信用給電部12には、調整後の位相シフト量に基づいて位相シフトされた基準信号が供給され、送信用給電部12は、位相シフト量調整後の基準信号に基づく電波を放射する。
[ビーム放射方向の調整が行われた後の処理]
ステップS80の処理が行われると、すでに述べたステップS50〜S70の処理が再度行われる。再度のステップS50では、基準信号及び方向調整後に受信した電波に基づいて生成された受信信号に基づいて、送信用給電部12を介する経路における振幅情報(A2’)や位相情報(φ2’)が再度検出される。
再度のステップS60では、方向調整後の送信位相差(Δφ’=φ2’−φ1)が算出され、再度のステップS70では、方向調整後の送信位相差(Δφ’)と設定位相差との比較が行われる。
ビーム放射方向調整後の送信位相差(Δφ’)と設定位相差とが一致していればビーム放射方向の調整は終了するが、これらの位相差が一致しなければ、ステップS80の処理によりビーム放射方向の再調整が行われる。このように、送信位相差と設定位相差とが一致するまで、ビーム放射方向の調整が繰り返し行われる。
なお、ここでは、ステップS50〜S80の処理を繰り返してビーム放射方向の調整を行う場合について説明したが、これ以外の方法により調整が行われてもよい。例えば、ステップS50において、送信用給電部12から放射された電波を受信した後、切替器22がオフされてもよい。この場合、ステップS40に戻り、ビーム放射方向の調整が行われる。また、ステップS20〜S80の処理を繰り返してビーム放射方向の調整が行われもよい。
また、ビーム放射方向の調整が終了した後、ターゲットへの追従等のため、さらに再調整を行ってもよい。その際、位相差検出器50は、ステップS20〜S80の処理を再度実行してもよいし、ステップS40〜S80の処理のみ再度実行しても構わない。ステップS20から再度実行されれば、レーダセンサ1の起動後における、送信用給電部11を介する経路における、例えば温度変化等の環境変化を反映させることができ、ビーム放射方向の調整を正確に行うことが可能となる。また、ステップS40〜S80のみであれば、ビーム放射方向の再調整に係る工程が短縮され、短時間での再調整が可能となる。
<本実施の形態による主な効果>
本実施の形態によれば、切替器20による切り替え操作の前後におけるそれぞれの差分信号に基づいて送信用給電部11,12のアンテナ開口部間の送信位相差を算出することができるので、ビームの放射方位を高精度に制御することが可能となる。
図3は、本実施の形態による効果を説明する図である。図3は、ビーム放射方向の調整前のゲイン及び調整後のアンテナゲインが示されている。図3の横軸は、車両の進行方向に対する方向[deg]を示している。横軸の正側は進行方向(0[deg])に対して右側を示し、負側は進行方向に対して左側を示している。図3の縦軸は、アンテナゲイン[dBi]を示している。破線は、ビーム放射方向の調整前(elevation angle 0deg)のアンテナゲインを示している。実線は、ビーム放射方向の調整後(elevation angle 2.5deg)のアンテナゲインを示している。
例えば、ビーム放射方向=3[deg]におけるアンテナゲインについて検討する。ビーム放射方向調整前のアンテナゲインは、約17〜18[dBi]程度であるが、ビーム放射方向調整後のアンテナゲインは、約21〜22[dBi]程度となっている。このように、ビーム放射方向がターゲットに向くように調整されることにより、アンテナゲインが約4[dBi]向上している。
また、本実施の形態によれば、送信用給電部11,12を介するそれぞれの経路における位相情報(φ1,φ2)に基づいて送信位相差が算出されている。この構成によれば、経路ごとの位相情報(φ1,φ2)を把握することができるので、送信位相差を正確に調整することが可能となる。
また、本実施の形態によれば、第1の状態から第2の状態に切り替わる前に、位相差検出器50は、位相情報(φ1)をデフォルトの位相シフト量として移相器30へ供給する。この構成によれば、送信用給電部11を介する経路の位相情報(φ1)を反映させた上で、送信用給電部12を介する経路の位相情報(φ2)を検出することができる。これにより、最初に算出される送信位相差と設定位相差との差を小さくすることができ、ビーム放射方向の調整が容易に行われる。
また、本実施の形態によれば、信号処理回路40は、差分信号を所定の中間周波数の信号に変換し、位相差検出器50は、変換後の差分信号からそれぞれの経路における位相情報(φ1,φ2)を検出する。この構成によれば、信号の減衰を抑えつつ信号処理を行うことが可能となる。よって、振幅情報及び位相情報の検出精度を確保することが可能となる。
また、本実施の形態によれば、位相差検出器50は、送信用給電部11,12から受信用給電部13までの距離の差、または、送信用給電部11,12間の距離に応じて、送信位相差を補正する。この構成によれば、送信位相差がより正確に算出されるので、ビーム放射方向の調整をより正確に行うことが可能となる。
(実施の形態2)
次に、実施の形態2について説明する。実施の形態2では、接続状態の切り換え操作前後のそれぞれに対応する波動方程式に基づきアンテナ開口面における送信位相差を検出し、ビーム放射方向の調整が行われる。なお、以下では、前述の実施の形態と重複する箇所については、原則としてその説明を省略する。
<レーダセンサの構成>
図4は、本発明の実施の形態2に係るレーダセンサの構成の一例を示す回路図である。レーダセンサ101は、図4に示すように、図1の切替器20が切替器120に置き換えられている。切替器120は、送信用給電部12と信号処理回路40との間に設けられている。切替器120は、図1に示す切替器21,22と同様の構成となっている。なお、切替器120をSW2と表記する場合もある。
一方、送信用給電部11は、切替器120を介さずに信号処理回路40と接続されている。したがって、レーダセンサ101の動作中、送信用給電部11には、常に基準信号が供給される。
<ビーム放射方向の調整方法>
次に、本実施の形態におけるビーム放射方向の調整方法について説明する。図5は、本発明の実施の形態2に係るビーム放射方向の調整方法の一例を示すフローチャート図である。ビーム放射方向の調整は、図5のステップS110〜S180により行われる。
[ステップS110]
ステップS110は、レーダセンサ101を起動させるステップである。ステップS110では、すでに述べた図2のステップS10と同様の処理が行われる。
[ステップS120]
ステップS120は、送信用給電部11から電波を放射させるステップである。位相差検出器50は、切替器120をオフする(第3の状態)。これにより、送信用給電部11にのみ基準信号が供給され、送信用給電部11は、基準信号に基づく電波を放射する。
[ステップS130]
ステップS130は、送信用給電部11を介する経路(第3の経路)における振幅情報(第1の振幅情報:A11)及び位相情報(第3の位相情報:φ3)を検出するステップである。信号処理回路40は、受信用給電部13から供給された切り替え操作前の受信信号(第3の受信信号)及び基準信号に基づいて、切り替え操作前の差分信号(第3の差分信号)を生成する。ここで生成される差分信号には、配線、送信用給電部11を含む経路全体の位相情報が含まれている。
そして、信号処理回路40は、生成した差分信号を所定の中間周波数の信号に変換し、変換差分信号を位相差検出器50へ供給する。
位相差検出器50は、変換差分信号から、変換差分信号の振幅情報(A11)及び位相情報(φ3)を検出する。検出された位相情報(φ3)は、送信用給電部11を介する経路における位相情報である。位相差検出器50は、検出した位相情報(φ3)を、デフォルトの位相シフト量として移相器30へ供給する。また、位相差検出器50は、検出した振幅情報(A11)及び位相情報(φ3)をバッファリングしてもよいし、記憶装置に格納してもよい。その他の処理は、すでに述べたステップS30と同様である。
[ステップS140]
ステップS140は、送信用給電部11,12から電波を放射させるステップである。位相差検出器50は、切替器120をオンし(第4の状態)、接続状態の切り替え操作を行う。これにより、送信用給電部12には、移相器30においてデフォルトの位相シフト量に基づいて位相シフトされた基準信号が供給される。そして、送信用給電部12は、位相シフトされた基準信号に基づいた電波を放射する。また、送信用給電部11は、基準信号に基づいた電波を放射する。送信用給電部11,12から放射される電波は、空間合成される。
受信用給電部13は、空間合成された電波の到来波や、ターゲットからの反射波を受信し、受信した電波に基づいた、切り替え操作後の受信信号(第4の受信信号)を生成する。受信用給電部13は、生成した受信信号を信号処理回路40へ供給する。
[ステップS150]
ステップS150は、送信用給電部11を介する経路(第3の経路)及び送信用給電部12を介する経路(第4の経路)を組み合わせた経路(第5の経路)における振幅情報(第2の振幅情報:A12)及び位相情報(第4の位相情報:φ4)を検出するステップである。
信号処理回路40は、受信用給電部13から供給された切り替え操作後の受信信号(第4の受信信号)及び基準信号に基づいて、切り替え操作後の差分信号(第4の差分信号)を生成する。ここで生成される差分信号には、切替器120、配線、送信用給電部11,12を含む経路全体の位相情報が含まれている。
そして、信号処理回路40は、生成した差分信号を所定の中間周波数の信号(IF信号)に変換し、変換差分信号を位相差検出器50へ供給する。
位相差検出器50は、変換差分信号から、変換差分信号の振幅情報(A12)及び位相情報(φ4)を検出する。検出された位相情報(φ4)は、送信用給電部11を介する経路及び送信用給電部12を介する経路を組み合わせた経路における位相情報である。検出した振幅情報(A12)及び位相情報(φ4)をバッファリングしてもよいし、記憶装置に格納してもよい。その他の処理は、すでに述べたステップS50と同様である。
[ステップS160]
ステップS160は、送信用給電部11,12のアンテナ開口面における位相差を算出するステップである。
例えば、位相差検出器50は、送信用給電部11を介する経路、振幅情報(A11)及び位相情報(φ3)の組み合わせに対応する波動方程式(第1の波動方程式)、並びに、送信用給電部11を介する経路及び送信用給電部12を介する経路を組み合わせた経路(第5の経路)、振幅情報(A12)及び位相情報(φ4)の組み合わせに対応する波動方程式(第1の波動方程式)を連立させて解くことにより、送信位相差を算出する。
これらの波動方程式を連立させた連立波動方程式を解くと送信用給電部11,12のアンテナ開口部間における送信位相差(Δφ)が1つの解として得られる。このように、本実施の形態では、連立波動方程式から送信位相差(Δφ)が直接算出される。
なお、ここでは、送信用給電部が2個の場合について説明したが、3個以上であってもよい。この場合、位相差検出器50は、3つ以上の波動方程式を連立させることにより、それぞれのアンテナ開口部間の位相差を検出することも可能である。
[ステップS170〜S180]
ステップS170〜S180は、すでに述べた図2のステップS70〜S80とそれぞれ同様であるので、説明は省略する。
<本実施の形態による主な効果>
本実施の形態によれば、前述の実施の形態による効果に加え以下の効果が得られる。本実施の形態によれば、送信用給電部12と信号処理回路40との間にのみ切替器が設けられている。この構成によれば、送信用給電部11,12のそれぞれから放射され空間合成された電波の振幅情報及び位相情報が得られるので、送信用給電部11,12を介するそれぞれの経路における情報を取得することなく、送信位相差(Δφ)を算出することが可能となる。
(実施の形態3)
次に、実施の形態3について説明する。本実施の形態では、レーダ反射断面積(RCS:Radar Cross Section)に基づいてビーム放射方向を調整しながらターゲットを追尾する方法について説明する。
図6は、本発明の実施の形態3に係るレーダセンサの構成の一例を示す回路図である。図6に示すように、レーダセンサ201は、図1に示すレーダセンサ1に、レーダ反射断面積算出器260が追加された構成となっている。
レーダ反射断面積算出器260は、ターゲットのレーダ反射断面積を算出する装置である。例えば、レーダ反射断面積算出器260は、信号処理回路40から供給される後述のターゲット検出用差分信号(差分信号)に基づいてターゲットのレーダ反射断面積を算出し、算出したレーダ反射断面積を位相差検出器50へ供給する。
<ビーム放射方向の調整方法>
次に、本実施の形態におけるビーム放射方向の調整方法について説明する。図7は、本発明の実施の形態3に係るビーム放射方向の調整方法の一例を示すフローチャート図である。ビーム放射方向の調整は、図7のステップS210〜S260により行われる。
[ステップS210]
ステップS210は、レーダセンサ201を起動させるステップである。ステップS210では、すでに述べた図2のステップS10,図5のステップS110と同様の処理が行われる。
[ステップS220]
ステップS220は、位相シフト量と送信位相差とを対応させたテーブルを作成するステップである。位相差検出器50は、移相器30に設定される位相シフト量を切り替えながら、それぞれの位相シフト量における送信位相差を算出する。そして、位相差検出器50は、位相シフト量と送信位相差とを対応させたテーブルを作成する。なお、送信位相差の算出方法は、実施の形態1と同様であるので、ここではその説明は省略する。
[ステップS230]
ステップS230は、送信位相差がゼロとなるときの位相シフト量を移相器30に設定するステップである。位相差検出器50は、作成したテーブルに基づいて、送信位相差がゼロとなるときの位相シフト量を抽出し、抽出した位相シフト量を基準位相シフト量として移相器30に設定する。
そして、位相差検出器50は、切替器21,22をオンする。これにより、送信用給電日21,22から放射される電波は、空間合成され、車両の進行方向(0deg)にビームが放射される。
[ステップS240]
ステップS240は、ターゲットの相対距離、相対速度、相対角度、及びレーダ反射断面積を算出するステップである。
送信用給電部11,12から放射された電波はターゲットで反射し、受信用給電部13は、ターゲットからの反射波を受信する。受信用給電部13は、受信した反射波に基づいて、移相器30に基準位相シフト量が設定されたときのターゲット検出用受信信号を受信信号として生成し、生成したターゲット検出用受信信号を信号処理回路40へ供給する。
信号処理回路40は、ターゲット検出用受信信号及び基準信号に基づいて、ターゲット検出用差分信号を差分信号として生成する。そして、信号処理回路40は、生成したターゲット検出用差分信号を、レーダ反射断面積算出器260及び位相差検出器50へそれぞれ供給する。
レーダ反射断面積算出器260は、信号処理回路40から供給されるターゲット検出用差分信号に基づいてレーダ反射断面積を算出する。そして、レーダ反射断面積算出器260は、算出したレーダ反射断面積を位相差検出器50へ供給する。
一方、位相差検出器50は、信号処理回路40から供給されるターゲット検出用差分信号に基づいて、ターゲットとの相対距離、相対速度、及び相対角度を算出する。レーダ反射断面積算出器260によるレーダ反射断面積の算出、並びに、位相差検出器50による相対距離、相対速度、及び相対角度の算出は、並行して行われてもよい。
なお、信号処理回路40は、ターゲット検出用差分信号を所定の中間周波数の信号(IF信号)に変換し、変換後のターゲット検出用差分信号を、レーダ反射断面積算出器260及び位相差検出器50へそれぞれ供給してもよい。この場合、レーダ反射断面積算出器260は、変換後のターゲット検出用差分信号に基づいてレーダ反射断面積を算出する。また位相差検出器50は、変換後のターゲット検出用差分信号に基づいて、ターゲットの相対距離、相対角度、及び相対速度を算出する。
算出された相対距離、相対速度、相対角度、及びレーダ反射断面積は、例えば、位相差検出器50内でバッファリングされてもよいし、図示しない記憶装置に格納されてもよい。
[ステップS250〜S260]
ステップS250〜S260は、レーダ反射断面積が最大値となるよう、ターゲットの特性に応じてビーム放射方向を調整するステップである。具体的には、ステップS250は、ステップS240で算出されたレーダ反射断面積が最大値であるかどうかを判定するステップである。また、ステップS260は、ステップS250における判定結果に基づいて、位相シフト量を調整するステップである。
ターゲットには、例えば、スポーツカー等の背丈の低い車両もあれば、大型トラック等の背丈の高い車両もある。また、タンクローリー車等の反射波が散乱しやすい車両もある。このように車両形状が異なると、車両ごとに、最適なビーム放射方向が異なる場合がある。
ビーム放射方向が最適な方向に設定されていないと、ターゲットからの反射波の反射強度が弱くなり、受信する反射波の信号SN比が不足する。そうすると、レーダによるターゲットの追尾が困難となるおそれがある。そこで、本実施の形態では、ステップS250〜S260により、車両ごとのビーム放射方向を調整し、追尾不能にならないようにしている。以下、ステップS250〜S260について詳しく説明する。
〈1回目のレーダ反射断面積算出後の処理〉
まず、1回目のレーダ反射断面積算出後の処理について説明する。この場合、レーダ反射断面積は1回しか算出されていないので、レーダ反射断面積の比較対象となる情報が存在しない。このため、1回目のステップS250では、位相差検出器50によるレーダ反射断面積の判定処理は行われず、ステップS260の処理が行われる。
ステップS260において、位相差検出器50は、位相シフト量の調整を行う。ただし、1回目のステップS260では、ステップS250における判定結果が存在していないので、位相を増減させるための判断基準が存在しない。そこで、位相差検出器50は、1回目のステップS260において、位相を増減させるのか、あるいは減少させるのかを予め規定しておくことが好ましい。これにより、1回目の位相シフト量の調整をスムーズに行うことが可能となる。
位相シフト量の調整後は、ステップS240の処理が再度実行され、ターゲットとの相対距離、相対速度、相対角度、及びレーダ反射断面積が再度算出される。
〈2回目以降のレーダ反射断面積算出後の処理〉
次に、2回目以降にレーダ反射断面積が算出された後の処理について説明する。2回目以降のステップS250では、今回算出されたレーダ反射断面積と、前回までのレーダ反射断面積との比較を行う。その結果、今回算出されたレーダ反射断面積が最大値であれば(Yes)、位相差検出器50は、位相シフト量の調整を行わない。そして、再度ステップS240の処理が行われる。
一方、今回算出されたレーダ反射断面積が最大値でなければ(No)、ステップS260に移行し、位相差検出器50は、位相シフト量の調整を行う。例えば、今回のレーダ反射断面積が前回より小さければ、位相差検出器50は、次回の位相シフト量を、前回の位相シフト量程度の値に戻してもよい。そして、再度ステップS240の処理が行われる。このように、位相差検出器50は、ターゲット情報を随時更新する。
なお、ステップS250において、位相差検出器50は、前回を含む所定の期間内に算出された複数のビーム反射断面積を比較対象として判定処理を行ってもよいし、前回のビーム反射断面積のみを比較対象として判定処理を行ってもよい。これにより、比較対象が少なくなるので、判定処理が簡略化され、処理時間が短縮される。
また、ここでは、レーダ反射断面積算出器260が、図1のレーダセンサ1に設けられた場合について説明したが、図4のレーダセンサ101に設けられてもよい。
<本実施の形態による主な効果>
本実施の形態によれば、前述の各実施の形態における効果に加え、以下の効果が得られる。本実施の形態によれば、ターゲットのレーダ反射断面積が最大値となるようにビーム放射方向が調整されるので、ターゲットからの反射波の反射強度の低下が抑えられる。これにより、ターゲットの形状にかかわらず、レーダによるターゲットの追尾が可能となる。
(実施の形態4)
次に、実施の形態4について説明する。重量バランスの偏りにより車両に傾きが生じると、レーダセンサにも傾きが生じる。しかし、これまでの実施の形態では、レーダセンサそのものの傾きを検出することができなかった。そこで、本実施の形態では、レーダセンサの傾きを検出することが可能な構成について説明する。
図8は、本発明の実施の形態4に係るレーダセンサの構成の一例を示す回路図である。図8に示すように、レーダセンサ301は、図6に示すレーダセンサ201に、傾斜角度検出器370が追加された構成となっている。
位相差検出器50は、同一のターゲットについて算出した、複数の相対距離と、それぞれの相対距離に対応するレーダ反射断面積が最大になるときの相対角度と、を傾斜角度検出器370へ供給する。例えば、位相差検出器50は、算出するごとに、ターゲットの相対距離及び対応する相対角度を傾斜角度検出器370へ供給してもよい。あるいは、位相差検出器50は、所定の期間ごとにまとめて相対距離及び相対角度を傾斜角度検出器370へ供給してもよい。その際、位相差検出器50は、それぞれの相対距離及び対応する相対角度を、電波の受信時刻や識別番号等の付加情報とともに、傾斜角度検出器370へ供給してもよい。
傾斜角度検出器370は、レーダ放射方向のずれを検出する装置である。具体的には、傾斜角度検出器370は、ターゲットの複数の相対距離と、それぞれに対応する相対角度と、に基づいて、ビーム放射方向の角度ずれを検出する。例えば、傾斜角度検出器370は、相対距離ごとの相対角度を比較することにより、装置が傾いていない場合の相対角度を推定し、推定した相対角度と、算出された相対角度とを比較することにより、ビーム放射方向の角度ずれを検出する。そして、傾斜角度検出器370は、検出した角度ずれに基づいてレーダセンサ301の傾きを検出する。
ところで、ターゲットの追尾開始時のビーム放射方向が概ね水平方向であれば、その後の追尾において、位相差検出器50は、左右方向にビーム放射方向を調整すればよいはずである。この場合、傾斜角度検出器370は、算出された相対角度のみでビーム放射方向の角度ずれ、及びレーダセンサ301の傾きを検出することも可能である。
また、レーダセンサ301は、傾斜角度検出器370で検出されたレーダセンサ301の傾きを車両傾き情報として車両に供給してもよい。車両は、レーダセンサ301から供給される車両傾き情報に基づいて、フロントライトの光軸レベリング調整を自動的に行ってもよい。
また、傾斜角度検出器370は、図示しない記憶装置等に、検出したレーダセンサ301の傾き情報に格納してもよい。そして、傾斜角度検出器370は、レーダセンサ301の傾き情報を時系列に沿って比較することにより、レーダセンサ301における故障発生有無等の各種状態を監視してもよい。
なお、傾斜角度検出器370は、レーダ反射断面積算出器260とともに、図4のレーダセンサ101に設けられてもよい。
<本実施の形態による主な効果>
本実施の形態によれば、前述の各実施の形態における効果に加え、以下の効果が得られる。本実施の形態によれば、傾斜角度検出器370によりビーム放射方向の角度ずれが検出されるので、検出した角度ずれに基づいてレーダセンサ301の傾きを検出することが可能となる。
また、本実施の形態によれば、レーダセンサ301から供給される車両傾き情報に基づいて、フロントライトの光軸レベリング調整が自動的に行われる。この構成によれば、フロントライトの光軸が適正な方向に設定され、車両走行時の安全性が向上する。
また、本実施の形態によれば、レーダセンサ301の傾き情報を時系列に比較することにより、特異な角度ずれが継続的に検出された場合に、レーダセンサ301は、破損等の故障発生を運転者等のユーザに通知することが可能である。また、レーダセンサ301は、同様の場合に、装置の設置角度の再調整をユーザに通知することも可能である。
(実施の形態5)
次に、本発明の実施の形態5について説明する。本実施の形態では、切替器の構成がこれまでの実施の形態とは異なっている。
図9は、本発明の実施の形態5に係るレーダセンサの構成の一例を示す回路図である。図9のレーダセンサ401は、前述の実施の形態1で説明した図1の切替器20が切替器420に置き換えられた構成となっている。切替器420は、図9に示すように、切替器421,422を備えている。切替器421,522は、電力増幅器で構成される。位相差検出器50は、例えば、電力増幅器のオン・オフにより切替器421,422のオン・オフを切り替える。
なお、切替器421,422には、送信用給電部11,12から放射される電波の振幅比が位相差算出の際における角度検出精度未満となるよう、利得変動幅が大きい電力増幅器が用いられてもよい。
なお、ここで説明した切替器の構成は、前述の実施の形態2〜4においても適用可能である。切替器がスイッチから電力増幅器に置き換えられても、これまでに説明した各実施の形態に係る各処理は実行可能である。
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。また、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる場合がある。
1,101,201,301,401…レーダセンサ、11,12…送信用給電部、13…受信用給電部、20,21,22,122,420,421,422…切替器、30…移相器、40…信号処理回路、50…位相差検出器、260…レーダ反射断面積算出器、370…傾斜角度検出器

Claims (15)

  1. 信号処理を行う信号処理回路と、
    前記信号処理回路から供給される基準信号に基づいて電波を放射する複数の送信用給電部と、
    前記電波を受信し、受信した前記電波に基づいて受信信号を生成する受信用給電部と、
    切り替え操作により前記信号処理回路と前記送信用給電部との接続状態を切り替える切替器と、
    前記基準信号の位相シフト量を調整する位相差検出器と、
    前記信号処理回路と前記送信用給電部との間に設けられ、前記位相シフト量に基づいて前記基準信号の位相をシフトさせる移相器と、
    を備え、
    前記受信用給電部は、前記切り替え操作の前後におけるそれぞれの前記受信信号を生成し、
    前記信号処理回路は、前記受信信号及び前記基準信号に基づいて、前記切り替え操作の前後におけるそれぞれの差分信号を生成し、
    前記位相差検出器は、それぞれの前記差分信号に基づいて、前記送信用給電部間における位相差を送信位相差として算出し、前記送信位相差及び予め設定された設定位相差に基づいて前記位相シフト量を調整する、
    レーダセンサ。
  2. 請求項1に記載のレーダセンサにおいて、
    前記切替器は、第1の切替器と第2の切替器とを有し、
    1の前記送信用給電部と前記信号処理回路との間に、前記移相器及び前記第1の切替器が設けられ、
    他の前記送信用給電部と前記信号処理回路との間に、前記第2の切替器が設けられ、
    前記第1の切替器がオフ、前記第2の切替器がオンである第1の状態において、
    前記受信用給電部は、他の前記送信用給電部から放射された前記電波を受信し、前記切り替え操作前の第1の受信信号を生成し、
    前記信号処理回路は、前記第1の受信信号及び前記基準信号に基づいて、前記切り替え操作前の第1の差分信号を生成し、
    前記位相差検出器は、前記第1の差分信号に基づいて、他の前記送信用給電部を介する第1の経路における第1の位相情報を検出し、
    前記第1の切替器がオン、前記第2の切替器がオフである第2の状態に切り換えられると、
    前記受信用給電部は、前記1の送信用給電部から放射された前記電波を受信し、前記切り替え操作後の第2の受信信号を生成し、
    前記信号処理回路は、前記第2の受信信号及び前記基準信号に基づいて、前記切り替え操作後の第2の差分信号を生成し、
    前記位相差検出器は、前記第2の差分信号に基づいて、前記1の送信用給電部を介する第2の経路における第2の位相情報を検出し、前記第1の位相情報及び前記第2の位相情報に基づいて前記送信位相差を算出する、
    レーダセンサ。
  3. 請求項2に記載のレーダセンサにおいて、
    前記第1の状態から前記第2の状態に切り替わる前に、
    前記位相差検出器は、前記第1の位相情報を前記位相シフト量として前記移相器へ供給する、
    レーダセンサ。
  4. 請求項2に記載のレーダセンサにおいて、
    前記信号処理回路は、前記第1の差分信号及び前記第2の差分信号を所定の中間周波数の信号に変換し、
    前記位相差検出器は、変換後の前記第1の差分信号から前記第1の位相情報を検出し、変換後の前記第2の差分信号から前記第2の位相情報を検出する、
    レーダセンサ。
  5. 請求項1に記載のレーダセンサにおいて、
    前記位相差検出器は、前記複数の送信用給電部から前記受信用給電部までの距離の差に応じて、前記送信位相差を補正する、
    レーダセンサ。
  6. 請求項1に記載のレーダセンサにおいて、
    1の前記送信用給電部と前記信号処理回路との間に、前記移相器及び前記切替器が設けられ、
    他の前記送信用給電部と前記信号処理回路とが接続され、
    前記切替器がオフである第3の状態において、
    前記受信用給電部は、他の前記送信用給電部から放射された前記電波を受信し、前記切り替え操作前の第3の受信信号を生成し、
    前記信号処理回路は、前記第3の受信信号及び前記基準信号に基づいて、前記切り替え操作前の第3の差分信号を生成し、
    前記位相差検出器は、前記第3の差分信号に基づいて、他の前記送信用給電部を介する第3の経路における第1の振幅情報及び第3の位相情報を検出し、
    前記切替器がオンである第4の状態に切り換えられると、
    前記受信用給電部は、他の前記送信用給電部及び前記1の送信用給電部から放射され、空間合成された前記電波を受信し、前記切り替え操作後の第4の受信信号を生成し、
    前記信号処理回路は、前記第4の受信信号及び前記基準信号に基づいて、前記切り替え操作後の第4の差分信号を生成し、
    前記位相差検出器は、前記第4の差分信号に基づいて、前記第3の経路と他の前記送信用給電部を介する第4の経路とを組み合わせた第5の経路における第2の振幅情報及び第4の位相情報を検出し、前記第3の経路、前記第1の振幅情報及び前記第3の位相情報の組み合わせに対応する第1の波動方程式、並びに、前記第5の経路、前記第2の振幅情報及び前記第4の位相情報の組み合わせに対応する第2の波動方程式を連立させて解くことにより、前記送信位相差を算出する、
    レーダセンサ。
  7. 請求項6に記載のレーダセンサにおいて、
    前記第3の状態から前記第4の状態に切り替わる前に、
    前記位相差検出器は、前記第3の位相情報を前記位相シフト量として前記移相器へ供給する、
    レーダセンサ。
  8. 請求項6に記載のレーダセンサにおいて、
    前記信号処理回路は、前記第3の差分信号及び前記第4の差分信号を所定の中間周波数の信号に変換し、
    前記位相差検出器は、変換後の前記第3の差分信号から前記第1の振幅情報及び前記第3の位相情報を検出し、変換後の前記第4の差分信号から前記第2の振幅情報及び前記第4の位相情報を検出する、
    レーダセンサ。
  9. 請求項1に記載のレーダセンサにおいて、
    ターゲットのレーダ反射断面積を算出するレーダ反射断面積算出器を備え、
    前記位相差検出器は、前記移相器に設定される前記位相シフト量を切り替えながら、それぞれの前記位相シフト量に対応する前記送信位相差を算出し、前記位相シフト量と前記送信位相差とを対応させたテーブルを作成し、前記テーブルに基づいて、前記送信位相差がゼロとなるときの前記位相シフト量を基準位相シフト量として前記移相器に設定し、
    前記切替器は、前記信号処理回路と前記複数の送信用給電部とを接続し、
    前記受信用給電部は、前記基準位相シフト量が設定されたときのターゲット検出用受信信号を前記受信信号として生成し、
    前記信号処理回路は、前記ターゲット検出用受信信号及び前記基準信号に基づいて、ターゲット検出用差分信号を前記差分信号として生成し、前記ターゲット検出用差分信号を前記レーダ反射断面積算出器へ供給し、
    前記レーダ反射断面積算出器は、前記ターゲット検出用差分信号に基づいて前記レーダ反射断面積を算出し、算出した前記レーダ反射断面積を前記位相差検出器へ供給し、
    前記位相差検出器は、前記ターゲット検出用差分信号に基づいて、前記ターゲットとの相対距離、相対速度、及び相対角度を算出し、前記相対距離、前記相対角度、前記相対速度、前記相対角度、及び前記レーダ反射断面積に基づいて、前記レーダ反射断面積が最大になるように前記位相シフト量を調整する、
    レーダセンサ。
  10. 請求項9に記載のレーダセンサにおいて、
    前記信号処理回路は、前記ターゲット検出用差分信号を所定の中間周波数の信号に変換し、
    前記レーダ反射断面積算出器は、変換後の前記ターゲット検出用差分信号に基づいて前記レーダ反射断面積を算出し、
    前記位相差検出器は、変換後の前記ターゲット検出用差分信号に基づいて、前記ターゲットの前記相対距離、前記相対角度、及び前記相対速度を算出する、
    レーダセンサ。
  11. 請求項9に記載のレーダセンサにおいて、
    前記位相差検出器は、前記複数の送信用給電部から前記受信用給電部までの距離の差に応じて、前記送信位相差を補正する、
    レーダセンサ。
  12. 請求項9に記載のレーダセンサにおいて、
    ビーム放射方向のずれを検出する傾斜角度検出器を備え、
    前記位相差検出器は、同一の前記ターゲットについて算出した、複数の相対距離と、それぞれの前記相対距離に対応する前記レーダ反射断面積が最大になるときの前記相対角度と、を前記傾斜角度検出器へ供給し、
    前記傾斜角度検出器は、前記複数の相対距離と、それぞれの前記相対距離に対応する前記相対角度と、に基づいて、ビーム放射方向のずれを検出する、
    レーダセンサ。
  13. 請求項1に記載のレーダセンサにおいて、
    前記切替器は、スイッチである、
    レーダセンサ。
  14. 請求項1に記載のレーダセンサにおいて、
    前記切替器は、電力増幅器である、
    レーダセンサ。
  15. 請求項1に記載のレーダセンサにおいて、
    前記基準信号が、ミリ波信号である、
    レーダセンサ。
JP2018061778A 2018-03-28 2018-03-28 レーダセンサ Active JP6923478B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018061778A JP6923478B2 (ja) 2018-03-28 2018-03-28 レーダセンサ
PCT/JP2018/042400 WO2019187317A1 (ja) 2018-03-28 2018-11-16 レーダセンサ
US16/959,026 US11509051B2 (en) 2018-03-28 2018-11-16 Radar sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061778A JP6923478B2 (ja) 2018-03-28 2018-03-28 レーダセンサ

Publications (2)

Publication Number Publication Date
JP2019174244A JP2019174244A (ja) 2019-10-10
JP6923478B2 true JP6923478B2 (ja) 2021-08-18

Family

ID=68061035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061778A Active JP6923478B2 (ja) 2018-03-28 2018-03-28 レーダセンサ

Country Status (3)

Country Link
US (1) US11509051B2 (ja)
JP (1) JP6923478B2 (ja)
WO (1) WO2019187317A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486993B2 (en) * 2019-01-31 2022-11-01 Honda Motor Co., Ltd. Resonance based distance estimation and identification
US11846700B2 (en) * 2020-10-01 2023-12-19 Texas Instruments Incorporated On-field phase calibration

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412414A (en) 1988-04-08 1995-05-02 Martin Marietta Corporation Self monitoring/calibrating phased array radar and an interchangeable, adjustable transmit/receive sub-assembly
US5809087A (en) * 1996-10-25 1998-09-15 General Electric Company Coherent detection architecture for remote calibration of coherent systems
JPH11225014A (ja) 1998-02-05 1999-08-17 Nec Corp フェーズドアレイレーダ装置及びその位相校正方法
EP2139069B1 (en) * 1999-12-15 2011-04-13 Nippon Telegraph And Telephone Corporation Adaptive array antenna transceiver apparatus
JP2003066134A (ja) 2001-08-21 2003-03-05 Furuno Electric Co Ltd レーダアンテナ
JP3646184B2 (ja) 2002-04-24 2005-05-11 株式会社ホンダエレシス 走査型車載レーダの方位補正方法及び走査型車載レーダ
DE10345314A1 (de) 2003-09-30 2005-04-14 Robert Bosch Gmbh Vorrichtung sowie Verfahren zum Abstrahlen und/oder zum Empfangen von elektromagnetischer Strahlung
US8730111B2 (en) * 2009-05-11 2014-05-20 Panasonic Corporation Antenna evaluation apparatus for evaluating multiple wave of radio waves transmitted from scatterer antennas with function of calibration for the same apparatus
JP5620757B2 (ja) 2010-09-01 2014-11-05 株式会社豊田中央研究所 レーダ装置
US8791854B2 (en) * 2011-10-10 2014-07-29 Infineon Technologies Ag Automotive radar transmitter architecture
JP5619061B2 (ja) 2012-03-27 2014-11-05 三菱電機株式会社 レ−ダ装置
DE102013212079A1 (de) * 2013-06-25 2015-01-08 Robert Bosch Gmbh Winkelauflösender Radarsensor
JP6176079B2 (ja) * 2013-11-26 2017-08-09 株式会社デンソー レーダ装置
JP6371534B2 (ja) * 2014-02-12 2018-08-08 株式会社デンソーテン レーダ装置、車両制御システム、および、信号処理方法
US9835715B2 (en) * 2014-10-17 2017-12-05 Nxp Usa, Inc. Integrated circuit, radar device and method of calibrating a receiver
KR102459683B1 (ko) 2015-07-09 2022-10-28 삼성전자주식회사 무선 주파수 모듈에서의 교정장치 및 방법
JP6561867B2 (ja) * 2016-02-15 2019-08-21 株式会社デンソー 複数の送信アンテナの位相校正装置
JP6860777B2 (ja) * 2016-08-22 2021-04-21 富士通株式会社 無線通信装置、及び位相調整方法
US10917228B2 (en) * 2017-03-31 2021-02-09 Mitsubishi Electric Corporation Phase adjustment control device, array antenna device, antenna measuring device, and method for adjusting phase of phased array antenna
WO2018211948A1 (ja) * 2017-05-17 2018-11-22 日本電気株式会社 物体検知装置、車載レーダシステム、監視レーダシステム、物体検知装置の物体検知方法及びプログラム
EP3483622B1 (en) * 2017-11-10 2020-08-05 Nxp B.V. Radar unit having a built-in self-test
EP3499264B1 (en) * 2017-12-13 2020-07-01 Nxp B.V. Radar unit and method for cascading integrated circuits in a radar unit
US20190235050A1 (en) * 2018-01-29 2019-08-01 Uhnder, Inc. Millimeter wave automotive radar systems
DE102020121978B4 (de) * 2020-08-21 2022-03-31 Infineon Technologies Ag Kalibrierung eines radarsystem

Also Published As

Publication number Publication date
JP2019174244A (ja) 2019-10-10
US11509051B2 (en) 2022-11-22
US20200358178A1 (en) 2020-11-12
WO2019187317A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
US8405541B2 (en) Multi-range radar system
KR101053855B1 (ko) 센서 수직 얼라이먼트 조절 장치 및 센서
JP4156307B2 (ja) レーダ装置、プログラム
JP2014182023A (ja) 車載用のレーダ装置
EP1026515A1 (en) Radar apparatus for preventing erroneous detection by comparing sensitivities of each combination of transmitting and receiving units
US20060158369A1 (en) Automotive radar
WO2020021812A1 (ja) レーダセンサ
JP2007093480A (ja) レーダ装置、レーダ信号処理器およびレーダ装置動作方法
JP6125673B2 (ja) 可変な指向性特性を有するアンテナ装置
JP2010074781A (ja) アンテナ装置
JP6923478B2 (ja) レーダセンサ
US20180164430A1 (en) Sensor with flat-beam generation antenna
KR102545536B1 (ko) 안테나 장치 및 이를 포함하는 레이더
US20130271310A1 (en) On-board radar apparatus, detection method, and detection program
JP2015190809A (ja) レーダ装置およびレーダ方法
US20080088497A1 (en) Radar apparatus
JP5173473B2 (ja) エンブレム及びレーダ波のビーム方向補正方法
JPH04276582A (ja) 車載レーダ装置
JPH09284035A (ja) 車載レーダ用アンテナ装置
JP2006242622A (ja) 車載用レーダ装置および車両搭載方法
JPH05273340A (ja) 車載レーダ装置
JP2000162310A (ja) レーダ装置
US20200411980A1 (en) Patch antenna and radar apparatus having different beam tilts with respect to frequencies
JP3357585B2 (ja) 車載レーダ装置
JPH11183608A (ja) 物***置検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210729

R150 Certificate of patent or registration of utility model

Ref document number: 6923478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250