JP6920792B2 - A method for manufacturing a three-layer polyolefin resin-coated steel pipe having an end shape with excellent peel resistance. - Google Patents

A method for manufacturing a three-layer polyolefin resin-coated steel pipe having an end shape with excellent peel resistance. Download PDF

Info

Publication number
JP6920792B2
JP6920792B2 JP2016130313A JP2016130313A JP6920792B2 JP 6920792 B2 JP6920792 B2 JP 6920792B2 JP 2016130313 A JP2016130313 A JP 2016130313A JP 2016130313 A JP2016130313 A JP 2016130313A JP 6920792 B2 JP6920792 B2 JP 6920792B2
Authority
JP
Japan
Prior art keywords
steel pipe
coating
layer
polyolefin
primer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016130313A
Other languages
Japanese (ja)
Other versions
JP2018001546A (en
Inventor
吉崎 信樹
信樹 吉崎
義洋 宮嶋
義洋 宮嶋
将人 福田
将人 福田
武英 相賀
武英 相賀
明宏 斎藤
明宏 斎藤
雄輔 浜辺
雄輔 浜辺
大祐 松枝
大祐 松枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016130313A priority Critical patent/JP6920792B2/en
Publication of JP2018001546A publication Critical patent/JP2018001546A/en
Application granted granted Critical
Publication of JP6920792B2 publication Critical patent/JP6920792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

石油・ガス等のエネルギー輸送に用いられるラインパイプの防食用外面被覆には通常ポリオレフィン樹脂被覆鋼管が使用されるが、本発明は、この耐剥離性に優れた端部形状を有する3層ポリオレフィン樹脂被覆鋼管に関する。 A polyolefin resin-coated steel pipe is usually used for the anticorrosion outer surface coating of line pipes used for energy transportation of oil, gas, etc., but the present invention presents a three-layer polyolefin resin having an end shape excellent in peeling resistance. Regarding coated steel pipes.

ラインパイプに用いられる外面ポリオレフィン樹脂被覆鋼管において、長期の防食性と施工時の耐疵性が要求される場合には3層被覆鋼管が用いられる。その構成は防食性の高いエポキシ樹脂プライマー層、接着剤層、ポリオレフィン樹脂層からなる3層構造である。被覆されるポリオレフィン樹脂には、ポリエチレン樹脂とポリプロピレン樹脂があるが、安価で信頼性が高いことから、一般的にはポリエチレン樹脂が、高温用や耐疵性が要求される場合にはポリプロピレン樹脂が使用される。これらの3層被覆鋼管は被覆工場で生産され、現地で溶接接合を行う。 In the outer surface polyolefin resin coated steel pipe used for the line pipe, a three-layer coated steel pipe is used when long-term corrosion resistance and flaw resistance during construction are required. Its structure is a three-layer structure consisting of an epoxy resin primer layer, an adhesive layer, and a polyolefin resin layer, which have high corrosion resistance. Polyolefin resins to be coated include polyethylene resin and polypropylene resin. Since they are inexpensive and highly reliable, polyethylene resin is generally used, and polypropylene resin is used for high temperature or when flaw resistance is required. used. These three-layer coated steel pipes are produced at the coating plant and welded and joined locally.

通常、外面被覆は、現地での溶接接合時の熱影響による被覆の劣化を考慮して、管端部の被覆を除去しておくため、管端部は鋼材が露出した状態で出荷される。ラインパイプで一般的な3層ポリオレフィン樹脂被覆に行われている鋼管端部の形状を図1に示す。鋼管被覆の一番弱い部分は、当該端部であり、ここから水分が侵入し被覆の剥離を発生させる場合がある。 Usually, the outer surface coating is shipped with the steel material exposed because the coating on the pipe end is removed in consideration of the deterioration of the coating due to the heat effect at the time of welding and joining in the field. FIG. 1 shows the shape of the end of the steel pipe, which is generally coated with a three-layer polyolefin resin in a line pipe. The weakest part of the steel pipe coating is the end portion, from which moisture may enter and cause peeling of the coating.

そこで、端部の応力を小さくするために、図1に示すように被覆端部を斜めの形状にする事が一般的に行われている。特許文献1では、この斜めの形状を形成するための加工装置が示されており、特許文献2では、斜めの形状をワイヤーブラシで形成するために曲面形状が示されている。
この斜めの形状は、現場溶接接合後に鋼材が露出した部分を架橋ポリエチレンスリーブ(収縮スリーブ)で防食する際に該スリーブと鋼管被覆端部とのなじみを良くし、埋設後の地中の水侵入を防止する働きがある。この関係を図2に示す。
Therefore, in order to reduce the stress at the end portion, it is common practice to shape the coated end portion into an oblique shape as shown in FIG. Patent Document 1 shows a processing device for forming this oblique shape, and Patent Document 2 shows a curved surface shape for forming the oblique shape with a wire brush.
This slanted shape improves the compatibility between the sleeve and the steel pipe coating end when the cross-linked polyethylene sleeve (shrink sleeve) protects the exposed part of the steel material after on-site welding, and allows water to enter the ground after burial. It works to prevent. This relationship is shown in FIG.

しかしながら、上記対策を持ってしても長期の埋設時には完全に水の侵入を防ぐことはできない。そこで、該スリーブと鋼管被覆端部の接着性をさらに向上させて水の侵入を防止する方法として、鋼管被覆端部にポリオレフィンプライマーを塗布することが特許文献3に提案されている。しかしこの方法は、現場での工程が増える問題がある。 However, even with the above measures, it is not possible to completely prevent the ingress of water during long-term burial. Therefore, Patent Document 3 proposes applying a polyolefin primer to the steel pipe coating end as a method for further improving the adhesiveness between the sleeve and the steel pipe coating end to prevent water from entering. However, this method has a problem that the number of on-site processes increases.

実開平3−7415号公報Jikkenhei 3-7415 特開平3−121770号公報Japanese Unexamined Patent Publication No. 3-121770 特開平2−255293号公報Japanese Unexamined Patent Publication No. 2-255293

鋼管被覆の最も弱い部分は端面であり、端面の部分に水が侵入し鋼面が腐食すると被覆が剥離していく。従って、水の侵入を完全に防止する手段があればこの問題は解決するが、水の分子は小さく、ラインパイプのように数十年間の長期に渡って供用されるインフラにあっては、水の侵入を完全に防ぐことは困難である。
従って、この水の侵入を出来るだけ小さくし、被覆の剥離に至らしめない技術の開発が要望されている。
The weakest part of the steel pipe coating is the end face, and when water invades the end face and the steel surface corrodes, the coating peels off. Therefore, this problem can be solved if there is a means to completely prevent the ingress of water, but water molecules are small, and in infrastructure that is in service for a long period of several decades such as line pipes, water It is difficult to completely prevent the invasion of water.
Therefore, there is a demand for the development of a technique that minimizes the intrusion of water and does not lead to peeling of the coating.

すなわち、本発明に関する要旨は次の通りである。
(1)鋼管表面からエポキシ樹脂プライマー層、ポリオレフィン接着剤層、ポリオレフィン層が順次積層されたポリオレフィン被覆鋼管において、当該被覆端部のポリオレフィン接着剤層、ポリオレフィン層が鋼管表面と角度45度以下に形成され、当該端部から外側にエポキシ樹脂プライマー層のみ5mm以上塗り残されていることを特徴とする耐剥離性に優れた端部形状を有するポリオレフィン被覆鋼管。
(2)エポキシ樹脂プライマー層が粉体塗料を用いて形成され、その厚みが150〜600μmであることを特徴とする上記(1)に記載の耐剥離性に優れた端部形状を有するポリオレフィン被覆鋼管。
(3)ポリオレフィン被覆が形成されたのち、その端部をまず切削刃によってポリオレフィン接着剤層、ポリオレフィン層を鋼管表面と角度45度以下に形成し、しかるのちにスチールブラシによってエポキシ樹脂プライマー層を5mm以上塗り残すように整えることを特徴とする上記(1)又は(2)に記載の耐剥離性に優れた端部形状を有するポリオレフィン被覆鋼管の製造方法。
That is, the gist of the present invention is as follows.
(1) In a polyolefin-coated steel pipe in which an epoxy resin primer layer, a polyolefin adhesive layer, and a polyolefin layer are sequentially laminated from the surface of the steel pipe, the polyolefin adhesive layer and the polyolefin layer at the coated end are formed at an angle of 45 degrees or less with the surface of the steel pipe. A polyolefin-coated steel tube having an end shape having excellent peel resistance, characterized in that only the epoxy resin primer layer is left uncoated on the outside from the end by 5 mm or more.
(2) The polyolefin coating having an end shape having excellent peel resistance according to the above (1), wherein the epoxy resin primer layer is formed by using a powder coating material and the thickness thereof is 150 to 600 μm. Steel pipe.
(3) After the polyolefin coating is formed, the edges thereof are first formed with a polyolefin adhesive layer and the polyolefin layer at an angle of 45 degrees or less with the steel pipe surface, and then the epoxy resin primer layer is formed with a steel brush to form an epoxy resin primer layer of 5 mm. The method for producing a polyolefin-coated steel pipe having an end shape having excellent peel resistance according to the above (1) or (2), which is prepared so as to be left uncoated.

次に、上記本発明の要旨について、その内容を記載する。
3層ポリオレフィン被覆鋼管の管端部の形状を検討した結果、ポリオレフィン被覆の端部よりプライマー部分をはみ出させて長くする事がもっとも簡便で効果が大きい事が分かった。概略を図3に示す。当該プライマー部をはみ出させて5mm上長くする(延長する)事によって、被覆の端部いわゆる鋼面と被覆の端部がプライマー部の端にまで移動する結果、鋼面に水が侵入したとしても剥離するのは当該プライマー部のみであり、被覆の剥離には至らないこととなり、長期の耐久性を有する3層ポリオレフィン被覆を得ることが出来る。
また、延長されたプライマー部には上層のポリオレフィン被覆層がないため、当該層の収縮応力が働かず剥離が起こりにくくなる。
さらに、副次的効果として、現場でポリオレフィン被覆鋼管を溶接後に防食の目的で溶接部分を収縮スリーブで被覆するが、該スリーブと延長されたプライマー部との接着性が向上し、供用中の鋼管被覆への水の侵入をなお一層防止することができる。(図4)
なお、現場でプライマーを塗布すれば一見同様の効果が得られるように考えられるが、ポリオレフィン被覆時に塗布されたプライマー層と現場で塗布したプライマー層とは完全には一体にならないため長年月の間に両層間が剥離し、ここに水が侵入することによって被覆の剥離が発生する可能性がある。
Next, the contents of the above gist of the present invention will be described.
As a result of examining the shape of the pipe end portion of the three-layer polyolefin-coated steel pipe, it was found that it is the simplest and most effective to extend the primer portion from the end portion of the polyolefin coating. The outline is shown in FIG. Even if water invades the steel surface as a result of the end of the coating, the so-called steel surface, and the end of the coating moving to the end of the primer by protruding (extending) the primer portion by 5 mm. Only the primer portion is peeled off, and the coating is not peeled off, so that a three-layer polyolefin coating having long-term durability can be obtained.
Further, since the extended primer portion does not have an upper polyolefin coating layer, the shrinkage stress of the layer does not work and peeling is less likely to occur.
Further, as a side effect, after welding the polyolefin-coated steel pipe on site, the welded portion is coated with a shrink sleeve for the purpose of corrosion protection, but the adhesiveness between the sleeve and the extended primer portion is improved, and the steel pipe in service is improved. It is possible to further prevent the ingress of water into the coating. (Fig. 4)
At first glance, it seems that the same effect can be obtained by applying the primer in the field, but for many years, the primer layer applied at the time of polyolefin coating and the primer layer applied in the field are not completely integrated. Both layers may be separated from each other, and water may enter the layers to cause the coating to be peeled off.

延長するプライマーのみの部分には高い防食性と耐加工性が要求されるため、無機顔料が20重量%以上添加され、加熱硬化後のガラス転移温度が95℃以上になるように樹脂成分を調整した粉体状のエポキシ樹脂を塗布して加熱硬化させ、150〜600μmの膜厚となるようにする。
なお、非晶質の固体(例えば、ポリオレフィン樹脂)を加熱した場合、低温では結晶なみに硬く(剛性が大きく)流動性がなかった固体が、ある狭い範囲で急速に剛性と粘度が低下し流動性が増す。このような温度をガラス転移温度という。従って、ガラス転移温度が高いポリオレフィン樹脂ほど、低温(常温)では硬い樹脂となる。
このようにして、無機顔料とガラス転移温度の高温化によって塗膜硬度が確保されることから、上層のポリオレフィン被覆のみを除去するのが容易となる。また、150μm以上の膜厚とすることで、加工後でもピンホールが発生しない膜厚を残存させることが可能で、防食性確保に有効となる。
Since high corrosion resistance and work resistance are required for the part containing only the primer to be extended, 20% by weight or more of an inorganic pigment is added, and the resin component is adjusted so that the glass transition temperature after heat curing becomes 95 ° C. or more. The powdery epoxy resin is applied and cured by heating so as to have a film thickness of 150 to 600 μm.
When an amorphous solid (for example, a polyolefin resin) is heated, the solid which is as hard as a crystal (high rigidity) and has no fluidity at a low temperature rapidly decreases in rigidity and viscosity in a narrow range and flows. Increases sex. Such a temperature is called a glass transition temperature. Therefore, the higher the glass transition temperature of the polyolefin resin, the harder the resin becomes at low temperature (normal temperature).
In this way, since the hardness of the coating film is secured by increasing the temperature of the inorganic pigment and the glass transition temperature, it becomes easy to remove only the polyolefin coating of the upper layer. Further, by setting the film thickness to 150 μm or more, it is possible to leave a film thickness at which pinholes do not occur even after processing, which is effective in ensuring corrosion resistance.

次に、本発明の被覆鋼管の端部の形成方法について説明する。通常、樹脂被覆鋼管の被覆端部は溶接の熱影響を避けるために、管端部から100mm以上カットし溶接熱影響が被覆に及ばない用に鋼材露出部を設ける。この時、管端被覆端部には在る程度の斜めの形状(テーパー)加工が行われる。 Next, a method for forming the end portion of the coated steel pipe of the present invention will be described. Normally, the coated end of the resin-coated steel pipe is cut by 100 mm or more from the pipe end in order to avoid the heat effect of welding, and an exposed steel material is provided so that the heat effect of welding does not affect the coating. At this time, a certain degree of oblique shape (tapering) processing is performed on the pipe end covering end portion.

本発明の3層被覆鋼管では管端部の被覆に切削あるいはブラシ加工を行って、45度以下のテーパー形状のポリオレフィン被覆部とそのテーパー端の延長に5〜50mmのエポキシ樹脂のプライマー層のみを残存させ、プライマー層から鋼管端部までは鋼材を露出させた加工を行う。3層の積層のうちプライマー1層のみを残す加工を行うため、最下層のエポキシ樹脂プライマーには厚みと耐切削・耐ブラシ加工性が必要となる。このため、加工に耐える厚み確保が容易な粉体エポキシ樹脂を塗装する。また、塗料としては、顔料を20重量%以上含有し、硬化後のガラス転移温度が95℃以上の粉体エポキシ樹脂を用いる。このときのプライマー層の厚みは150〜600μmとする。 In the three-layer coated steel pipe of the present invention, the coating of the pipe end is cut or brushed, and only a polyolefin coating having a taper shape of 45 degrees or less and an epoxy resin primer layer of 5 to 50 mm are applied to the extension of the tapered end. The steel material is exposed from the primer layer to the end of the steel pipe. Since only one primer layer is left out of the three layers, the epoxy resin primer on the bottom layer needs to have thickness and cutting / brushing resistance. Therefore, a powder epoxy resin that can easily secure a thickness that can withstand processing is applied. Further, as the paint, a powder epoxy resin containing 20% by weight or more of a pigment and having a glass transition temperature of 95 ° C. or higher after curing is used. The thickness of the primer layer at this time is 150 to 600 μm.

本発明の粉体エポキシ樹脂を用いた3層ポリオレフィン被覆鋼管において、鋼管の被覆両管端部に所定のテーパー加工とプライマー層のみを残存させる加工とを行う処理を行うことにより、現地溶接継ぎ手部の防食性を向上させる(図4)とともに、置き場保管中における被覆端部からの剥離を防止することが出来る。 In a three-layer polyolefin-coated steel pipe using the powdered epoxy resin of the present invention, a field-welded joint portion is subjected to a process of performing a predetermined taper process and a process of leaving only a primer layer on both end portions of the coated steel pipe. (FIG. 4), and it is possible to prevent peeling from the coated end portion during storage in the storage place.

図1は一般的な3層ポリオレフィン樹脂被覆鋼管の端部構造を示す断面図である。FIG. 1 is a cross-sectional view showing an end structure of a general three-layer polyolefin resin-coated steel pipe. 図2は一般的な3層ポリオレフィン樹脂被覆鋼管の被覆端部構造を用いた場合に現地溶接後の防食に接着剤付きの収縮スリーブを用いた場合の断面図の一例。FIG. 2 is an example of a cross-sectional view when a shrink sleeve with an adhesive is used for corrosion protection after on-site welding when a coated end structure of a general three-layer polyolefin resin-coated steel pipe is used. 図3は本発明の3層ポリオレフィン樹脂被覆鋼管の端部構造を示す断面図である。FIG. 3 is a cross-sectional view showing the end structure of the three-layer polyolefin resin-coated steel pipe of the present invention. 図4は本発明の3層ポリオレフィン樹脂被覆鋼管の被覆端部構造を用いた場合に現地溶接後の防食に接着剤付きの収縮スリーブを用いた場合の断面図の一例。FIG. 4 is an example of a cross-sectional view when a shrink sleeve with an adhesive is used for corrosion protection after on-site welding when the coated end structure of the three-layer polyolefin resin-coated steel pipe of the present invention is used. 図5は本発明の被覆端部形状を形成する方法の工程模式図で、切削工具を用いてプライマー以外の被覆を除去するとともにテーパー加工を行う方法。FIG. 5 is a schematic process diagram of a method for forming a coated end portion shape of the present invention, which is a method of removing a coating other than a primer and performing taper processing using a cutting tool. 図6は鋼管露出部を作成するために、回転ワイヤーブラシを用いて除去する方法の模式図。FIG. 6 is a schematic view of a method of removing an exposed steel pipe using a rotating wire brush.

以下、本発明につき詳細に説明を行なう。
本発明の3層ポリオレフィン樹脂被覆鋼管本体部分の被覆は既存の方法によって鋼管1の外面にプライマー層5、接着剤層3、ポリオレフィン樹脂層4の順に3層に形成される。
被覆に使用する鋼管に特に制限は無く、普通鋼、あるいは高合金鋼など、どのような鋼種でも適用可能である。また、サイズ、厚みの制約は設備に起因するのみである。鋼管は油等の付着がある場合は事前に除去した後に鋼管表面の錆や汚れを除去し、接着に必要な粗度を確保するためにブラスト処理を行う。ブラスト処理に用いる研掃材としては、一般的には鋼製グリッド・ショット粒を用いる。更に清浄な表面が要求される場合には、アルミナ等のセラミック素材を用いても良い。ブラスト処理後の表面に、鉄粉等の汚れが付着している場合、ブラシ、吸引、液体による洗浄等の処理を行うことができる。
Hereinafter, the present invention will be described in detail.
The coating of the main body of the three-layer polyolefin resin-coated steel pipe of the present invention is formed on the outer surface of the steel pipe 1 in the order of the primer layer 5, the adhesive layer 3, and the polyolefin resin layer 4 by an existing method.
The steel pipe used for coating is not particularly limited, and any steel type such as ordinary steel or high alloy steel can be applied. Moreover, the restrictions on size and thickness are only due to the equipment. If oil or the like adheres to the steel pipe, it is removed in advance, and then rust and dirt on the surface of the steel pipe are removed, and blasting is performed to secure the roughness required for adhesion. As the cleaning material used for the blasting treatment, steel grid shot grains are generally used. If a cleaner surface is required, a ceramic material such as alumina may be used. If dirt such as iron powder adheres to the surface after the blasting treatment, treatments such as brushing, suctioning, and cleaning with a liquid can be performed.

次に、洗浄処理、あるいは化成処理を行う。化成処理はリン酸やその他の処理を使用する事が出来るが、特に高い防食性能が要求される場合には、例えば日本パーカーライジング社製のパルクロム100などを用いて塗布型クロメート化成処理を行っても良い。 Next, a cleaning treatment or a chemical conversion treatment is performed. Phosphoric acid or other treatments can be used for the chemical conversion treatment, but when particularly high anticorrosion performance is required, a coating type chromate chemical conversion treatment is performed using, for example, Parchrome 100 manufactured by Nippon Parker Rising Co., Ltd. Is also good.

次に、エポキシ樹脂プライマー層について説明する。プライマー層5には本発明の管端被覆構造を得るのに必要な150μm以上の膜厚と加工に対する耐切削性・耐ブラシ加工性が必要である。従来使用されているような液体タイプでは耐切削性・耐ブラシ加工性向上のために無機顔料を多く入れた場合、沈降や粘度の問題が生じる。また、厚膜塗装が難しいこともあって、厚膜塗装が可能な粉体エポキシ樹脂を加熱した鋼管に静電粉体塗装して形成する。 Next, the epoxy resin primer layer will be described. The primer layer 5 is required to have a film thickness of 150 μm or more, which is necessary for obtaining the tube end coating structure of the present invention, and cutting resistance and brushing resistance for machining. In the liquid type as conventionally used, when a large amount of inorganic pigment is added in order to improve cutting resistance and brushing resistance, problems of sedimentation and viscosity occur. Further, since thick film coating is difficult, the powder epoxy resin capable of thick film coating is electrostatically powder coated on a heated steel pipe.

粉体エポキシ樹脂塗料はビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂を単独、もしくは混合し、更に多官能性のフェノールノボラック型エポキシ樹脂やハロゲン化エポキシ樹脂を組み合わせたものに、フェノール系、アミン系、イミダゾール化合物、ジシアンジアミドといった硬化剤を添加して調整されているものが用いられるが、本発明で必要とされる特性としては切削、あるいはブラシ加工時の膜の耐久性である。そのため、粉体エポキシ樹脂紛体塗料としては無機顔料を20〜50重量%配合する。 The powder epoxy resin paint is a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin alone or in combination, and a combination of polyfunctional phenol novolac type epoxy resin and halogenated epoxy resin, and phenol type and amine type. , The imidazole compound, and the one adjusted by adding a curing agent such as dicyandiamide are used, but the property required in the present invention is the durability of the film during cutting or brushing. Therefore, 20 to 50% by weight of an inorganic pigment is blended as the powder epoxy resin powder coating material.

無機顔料はシリカ、酸化チタン、ウォラストナイト、マイカ、タルク、カオリン、酸化クロム、ホウ酸亜鉛、燐酸亜鉛等の顔料、もしくは亜鉛、Al等の金属粉、あるいはセラミック粉等を適宜用いることができる。また、膜の硬度は耐切削性・耐ブラシ加工性には重要であるから、塗膜の硬度を上げるために高いガラス転移温度を持った材料を使用する。具体的にはガラス転移温度としては95℃以上になることが好ましい。 As the inorganic pigment, pigments such as silica, titanium oxide, wollastonite, mica, talc, kaolin, chromium oxide, zinc borate and zinc phosphate, metal powders such as zinc and Al, ceramic powders and the like can be appropriately used. .. Further, since the hardness of the film is important for cutting resistance and brushing resistance, a material having a high glass transition temperature is used in order to increase the hardness of the coating film. Specifically, the glass transition temperature is preferably 95 ° C. or higher.

粉体エポキシ樹脂塗料は、国内では日本ペイント株式会社、もしくは関西ペイント株式会社から入手可能で、本発明に該当するものを選択して用いる。プライマー層の厚みは150μm以上であれば良いが、厚みが厚くなりすぎると塗膜の内部応力が増加し、昼夜又は季節の移り変わりによる冷熱繰り返しで応力が加わる場合、特に屋外での曝露で剥離し易くなることから150〜600μmが適切である。 The powder epoxy resin paint can be obtained from Nippon Paint Co., Ltd. or Kansai Paint Co., Ltd. in Japan, and the one corresponding to the present invention is selected and used. The thickness of the primer layer may be 150 μm or more, but if the thickness becomes too thick, the internal stress of the coating film increases, and when stress is applied due to repeated cooling and heating during the day and night or due to the change of seasons, it peels off especially when exposed outdoors. 150 to 600 μm is appropriate because it facilitates.

粉体エポキシ樹脂プライマー層5を形成後に、変性ポリオレフィン樹脂接着剤層3を介してポリオレフィン樹脂層4を積層する。変性ポリオレフィン樹脂接着剤は、ポリオレフィン樹脂を無水マレイン酸で変性したもの、あるいはポリオレフィンと無水マレイン酸との共重合体、ポリオレフィンとアクリル酸エステルと、無水マレイン酸との共重合体を用いることができる。 After forming the powder epoxy resin primer layer 5, the polyolefin resin layer 4 is laminated via the modified polyolefin resin adhesive layer 3. As the modified polyolefin resin adhesive, a polyolefin resin modified with maleic anhydride, a copolymer of polyolefin and maleic anhydride, or a copolymer of polyolefin and acrylic acid ester and maleic anhydride can be used. ..

変性ポリオレフィン樹脂接着剤は、粉体あるいはペレットで供給される。ポリエチレン被覆に使用する接着剤としては、例えば三井化学社製のNE060,NE065,NE080、BOREALIS社製のBorcoat ME0420、Lyondell Basell社製のLucalen G3710E等が使用できる。ペレットの場合、接着剤押出機を用いて加熱溶融した樹脂を、Tダイスを用いてプライマー塗布後の鋼管外面に被覆する。中小径鋼管では丸ダイスを用いる場合もある。その他の方法としては、変性ポリオレフィン樹脂接着剤を粉砕して粉体化し、この粉体を塗布する方法もある。これらの方法により、0.1〜0.4mmの接着剤層を形成する。 The modified polyolefin resin adhesive is supplied as a powder or pellets. As the adhesive used for polyethylene coating, for example, NE060, NE065, NE080 manufactured by Mitsui Chemicals, Borcoat ME0420 manufactured by BOREALIS, Lucalen G3710E manufactured by Lyondell Basell and the like can be used. In the case of pellets, the resin heated and melted by using an adhesive extruder is coated on the outer surface of the steel pipe after applying the primer using a T-die. Round dies may be used for small and medium diameter steel pipes. As another method, there is also a method of crushing the modified polyolefin resin adhesive into powder and applying this powder. By these methods, an adhesive layer of 0.1 to 0.4 mm is formed.

変性ポリオレフィン接着剤層3の上に被覆するポリオレフィン樹脂は、鋼管被覆用として市販されているものを使用することができる。代表的なポリオレフィンはポリエチレンであり、その他には高温用にポリプロピレンが用いられる。ポリエチレン樹脂としては鋼管被覆用に用いられる銘柄を使用することができる。例えば、国内では日本ポリエチレン社製のNOVATEC ER002S、海外では BOREALIS社製のBorcoat HE3450、Lyondell Basell社製のLupolen 4552Dなどの、鋼管被覆に要求される長期耐久性を有し、カーボンブラックを添加したものが使用可能である。 As the polyolefin resin to be coated on the modified polyolefin adhesive layer 3, commercially available ones for coating steel pipes can be used. A typical polyolefin is polyethylene, and polypropylene is used for high temperature. As the polyethylene resin, a brand used for coating steel pipes can be used. For example, NOVATEC ER002S manufactured by Japan Polyethylene in Japan, Borcoat HE3450 manufactured by BOREALIS overseas, Lupolen 4552D manufactured by Lyondell Basell, etc., which have long-term durability required for steel pipe coating and have carbon black added. Can be used.

ポリプロピレン樹脂としては一般的にはホモポリマーよりも低温特性に優れる共重合体が使用され、耐熱性と耐候性対策として、着色顔料、充填強化剤、酸化防止剤、紫外線吸収剤、ヒンダードアミン系の耐候剤等が添加されたもので、低温靭性と高温使用での耐酸化劣化性を兼ね備えたものであることが好ましい。ポリプロピレン樹脂での着色顔料としてカーボンブラックを用いると、高温で酸化防止剤の効果が消失するため、高性能の被覆鋼管品では用いられない。このため、着色顔料の色としては白色が一般的である。ポリプロピレン樹脂は、例えば国内では日本ポリプロピレンのTX1843B、海外ではBOREALIS社製のBorcoat BB108E-1199、LyondellBasell社製のMoplen Coat EP60R/BIANCOといった鋼管被覆用の樹脂が使用出来る。 As a polypropylene resin, a copolymer having better low temperature characteristics than a homopolymer is generally used, and as heat resistance and weather resistance measures, a coloring pigment, a filling strengthening agent, an antioxidant, an ultraviolet absorber, and a hindered amine-based weather resistance are used. It is preferably one to which an agent or the like is added, which has both low-temperature toughness and oxidative deterioration resistance in high-temperature use. When carbon black is used as a coloring pigment in polypropylene resin, the effect of the antioxidant disappears at high temperatures, so that it is not used in high-performance coated steel pipe products. Therefore, white is generally used as the color of the coloring pigment. As the polypropylene resin, for example, a resin for coating steel pipes such as TX1843B of Japanese polypropylene in Japan, Borcoat BB108E-1199 manufactured by BOREALIS, and Moplen Coat EP60R / BIANCO manufactured by Lyondell Basell can be used overseas.

ポリオレフィン樹脂層4は取り扱い時の疵発生を抑制するため、通常2mm以上被覆される。ポリオレフィン樹脂層は厚い程、耐疵性と防食性に優れるが、厚膜になると内部応力が大きくなるため、6mm以下が望ましい。 The polyolefin resin layer 4 is usually coated with 2 mm or more in order to suppress the occurrence of flaws during handling. The thicker the polyolefin resin layer, the better the flaw resistance and corrosion resistance, but the thicker the film, the greater the internal stress, so 6 mm or less is desirable.

以下に図3に示す本発明のテーパー形状を有する管端被覆部と、その延長にプライマー層5を有する管端部構造の形成方法の一例を述べる。3層ポリオレフィン樹脂被覆鋼管を製造した後、図5に示すように鋼管を回転させながら、ポリオレフィン被覆部が斜め(テーパー)になるような角度を持ち、かつ、プライマーと接着剤の界面を切削可能とするために鋼管に対して平行な形状の切削刃8を、表面から内部に押し込んで切削加工を実施する。これにより、ポリオレフィン樹脂被覆部には45度以下の一定の角度を有するテーパー断面を形成し、且つプライマーのみを残す加工が可能である。 An example of a method for forming a tube end covering portion having a tapered shape of the present invention shown in FIG. 3 and a tube end portion structure having a primer layer 5 as an extension thereof will be described below. After manufacturing a three-layer polyolefin resin-coated steel tube, it is possible to cut the interface between the primer and the adhesive at an angle so that the polyolefin-coated portion becomes slanted (tapered) while rotating the steel tube as shown in FIG. A cutting blade 8 having a shape parallel to the steel pipe is pushed inward from the surface to perform cutting. As a result, it is possible to form a tapered cross section having a constant angle of 45 degrees or less on the polyolefin resin coating portion and to leave only the primer.

次いで、図6に示すように回転ワイヤーブラシ9によって被覆を完全に削りとって、管端部から100mm以上の鋼管露出部(カットバック)を形成する。一般的なカットバックの場合、150mmを確保する。最後に図3で形成した延長部のプライマー層の上に接着剤が残存していると現地防食との接着性を阻害するので、必要に応じて、プライマー面をワイヤーブラシ等で研磨して残存接着剤をはぎ取って仕上げる。 Next, as shown in FIG. 6, the coating is completely scraped off by the rotating wire brush 9 to form a steel pipe exposed portion (cutback) of 100 mm or more from the pipe end portion. In the case of a general cutback, secure 150 mm. Finally, if the adhesive remains on the primer layer of the extension portion formed in FIG. 3, the adhesiveness with the on-site anticorrosion is hindered. Therefore, if necessary, the primer surface is polished with a wire brush or the like and remains. Peel off the adhesive to finish.

プライマー単層部分はパイプラインの供用中に水の侵入がポリオレフィン被覆部まで到達しない距離があれば良く、最低でも5mmの延長が必要である。また最大長さに特に制約は無いが、長すぎると加工が困難であることと、カットバック距離との関係にもよるが被覆端部の鋼材露出部を標準の150mmとすると、プライマーを50mm以上延長すると現地溶接時に溶接の熱影響を受けやすい100mm以内(溶接部からの距離)となってしまうことから50mmまでとし、5〜50mmを適切な範囲とした。 The primer single layer portion may be extended at least 5 mm as long as there is a distance that water does not reach the polyolefin coating during the operation of the pipeline. There is no particular restriction on the maximum length, but if it is too long, it will be difficult to process, and depending on the relationship with the cutback distance, if the exposed steel material at the coated end is the standard 150 mm, the primer will be 50 mm or more. If it is extended, it will be within 100 mm (distance from the welded part), which is easily affected by the heat of welding during on-site welding, so the range was set to 50 mm, and 5 to 50 mm was set as an appropriate range.

〔実施例1〜5〕
以下、本発明のポリオレフィンにポリエチレンを使用し、テーパー角度、プライマーの塗装厚みを変えた実施例1〜5を具体的に説明する。
鋼管は200AのJIS G3452の配管用炭素鋼管5.5m長を用いた。鋼管外面にIKK社製のTGD−70番のグリッドブラスト処理を行って除錆したものを用意した。その後、鋼管の表面洗浄処理を行って汚れや鉄粉等を除去した。
鋼管を加熱装置で220℃に加熱後、粉体エポキシ樹脂プライマー(BASEPOX PE50-1081、Arsonsisi社製、顔料添加量27%、ガラス転移温度102℃)を、本発明の膜厚範囲である150〜600μmで静電粉体塗装を実施した後にポリエチレン接着剤として三井化学社製のNE065のペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。次いで、ポリエチレン被覆には日本ポリエチレン社製のNOVATEC ER002Sのペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。接着剤膜厚は0.2mm、ポリエチレン樹脂被覆は3mmになるように調整した。被覆後、水冷を行って3層ポリエチレン樹脂被覆鋼管を製造した。
[Examples 1 to 5]
Hereinafter, Examples 1 to 5 in which polyethylene is used as the polyolefin of the present invention and the taper angle and the coating thickness of the primer are changed will be specifically described.
As the steel pipe, a 200A JIS G3452 carbon steel pipe for piping with a length of 5.5 m was used. The outer surface of the steel pipe was prepared by performing grid blast treatment of TGD-70 manufactured by IKK to remove rust. After that, the surface of the steel pipe was cleaned to remove dirt, iron powder, and the like.
After heating the steel tube to 220 ° C with a heating device, a powder epoxy resin primer (BASEPOX PE50-1081, manufactured by Arsonsisi, pigment addition amount 27%, glass transition temperature 102 ° C) is applied to the film thickness range of the present invention from 150 to. After electrostatic powder coating was performed at 600 μm, NE065 pellets manufactured by Mitsui Chemicals Co., Ltd. were formed into a sheet-like semi-molten state using an extruder and a T-die as a polyethylene adhesive, and wound and coated. Next, for the polyethylene coating, pellets of NOVATEC ER002S manufactured by Japan Polyethylene Corporation were formed into a sheet-like semi-molten state using an extruder and a T-die, and wound and coated. The adhesive film thickness was adjusted to 0.2 mm, and the polyethylene resin coating was adjusted to 3 mm. After coating, water cooling was performed to produce a three-layer polyethylene resin-coated steel pipe.

作製した3層ポリエチレン樹脂被覆鋼管を回転させ、角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃によってテーパー加工と、延長プライマー層を形成するための接着剤とポリエチレン樹脂被覆の切削加工とを同時に行った。テーパー加工の角度は本発明の範囲となる30度と45度の角度を選定した。この時、ポリエチレン樹脂の被覆端部は鋼管の端部から150mmの位置になるように調整した。その後ワイヤーブラシを用いて鋼管端部から被覆を削り取って鋼面を露出させ、プライマー単層部分を20mmの長さで残存させた。プライマー単層部分についてはワイヤーブラシで表面のみを更に研削し、接着剤が表面に残存しないように仕上げ、実施例1〜5を製造した。 The produced 3-layer polyethylene resin-coated steel pipe is rotated and tapered by a cutting blade that has both an angled blade and a blade parallel to the steel pipe, and an adhesive and polyethylene resin-coated cutting process for forming an extension primer layer. And at the same time. For the taper processing angle, angles of 30 degrees and 45 degrees, which are within the scope of the present invention, were selected. At this time, the coated end portion of the polyethylene resin was adjusted so as to be at a position 150 mm from the end portion of the steel pipe. After that, the coating was scraped off from the end of the steel pipe using a wire brush to expose the steel surface, and the primer single layer portion remained with a length of 20 mm. Only the surface of the primer single layer portion was further ground with a wire brush and finished so that the adhesive did not remain on the surface, and Examples 1 to 5 were manufactured.

〔実施例6〜8〕
以下、本発明のポリオレフィンにポリプロピレンを使い、プライマー延長部の長さを変えた場合の実施例6〜8を具体的に説明する。
鋼管は200AのJIS G3452の配管用炭素鋼管5.5m長を用いた。鋼管外面にIKK社製のTGD−70番のグリッドブラスト処理を行って除錆したものを用意した。その後、鋼管の表面洗浄処理を行って汚れや鉄粉等を除去した。
鋼管を加熱装置で220℃に加熱後、粉体エポキシ樹脂プライマー(Scotchkote 226N+、3M社製、顔料添加量44%、ガラス転移温度106℃)を、本発明の膜厚範囲である300μmで静電粉体塗装を実施した後に接着剤として三菱化学のAP−P501のペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。次いで、ポリプロピレン被覆には日本ポリプロピレンのTX1843Bのペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。接着剤膜厚は0.2mm、ポリプロピレン樹脂被覆は3mmになるように調整した。被覆後、水冷を行って3層ポリプロピレン樹脂被覆鋼管を製造した。
[Examples 6 to 8]
Hereinafter, Examples 6 to 8 in the case where polypropylene is used as the polyolefin of the present invention and the length of the primer extension portion is changed will be specifically described.
As the steel pipe, a 200A JIS G3452 carbon steel pipe for piping with a length of 5.5 m was used. The outer surface of the steel pipe was prepared by performing grid blast treatment of TGD-70 manufactured by IKK to remove rust. After that, the surface of the steel pipe was cleaned to remove dirt, iron powder, and the like.
After heating the steel tube to 220 ° C with a heating device, a powder epoxy resin primer (Scotchkote 226N +, manufactured by 3M, pigment addition amount 44%, glass transition temperature 106 ° C) is electrostatically applied at 300 μm, which is the film thickness range of the present invention. After powder coating, pellets of AP-P501 of Mitsubishi Chemical Co., Ltd. were formed into a sheet-like semi-molten state using an extruder and a T-die as an adhesive, and wound and coated. Next, on the polypropylene coating, pellets of TX1843B of Japanese polypropylene were formed into a sheet-like semi-molten state using an extruder and a T-die, and wound and coated. The adhesive film thickness was adjusted to 0.2 mm, and the polypropylene resin coating was adjusted to 3 mm. After coating, water cooling was performed to produce a three-layer polypropylene resin-coated steel pipe.

作製した3層ポリプロピレン樹脂被覆鋼管を回転させ、角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃によってテーパー加工と、延長プライマー層を形成するための接着剤とポリエチレン樹脂被覆の切削加工とを同時に行った。テーパー加工の角度は本発明の範囲となる45度の角度を選定した。この時、ポリプロピレン樹脂の被覆端部は鋼管の端部から150mmの位置になるように調整した。その後ワイヤーブラシを用いて鋼管端部から被覆を削り取って鋼面を露出させ、プライマー単層部分を調整して本発明の範囲である5〜50mm長さで残存させた。プライマー単層部分についてはワイヤーブラシで表面のみを更に研削し、接着剤が表面に残存しないように仕上げ、実施例6〜8を製造した。 The produced 3-layer polypropylene resin-coated steel pipe is rotated and tapered by a cutting blade that has both an angled blade and a blade parallel to the steel pipe, and an adhesive and polyethylene resin-coated cutting process for forming an extension primer layer. And at the same time. For the taper processing angle, an angle of 45 degrees, which is within the range of the present invention, was selected. At this time, the coated end portion of the polypropylene resin was adjusted so as to be at a position 150 mm from the end portion of the steel pipe. After that, the coating was scraped off from the end of the steel pipe using a wire brush to expose the steel surface, and the primer single layer portion was adjusted to remain in a length of 5 to 50 mm, which is the range of the present invention. Only the surface of the primer single layer portion was further ground with a wire brush and finished so that the adhesive did not remain on the surface, and Examples 6 to 8 were manufactured.

〔比較例1〜3〕
以下、本発明のポリオレフィンにポリエチレンを使用し、テーパーの無い場合を比較例1、プライマー単層部が無いか又は小さい場合を比較例2及び3として具体的に説明する。
鋼管は200AのJIS G3452の配管用炭素鋼管5.5m長を用いた。鋼管外面にIKK社製のTGD−70番のグリッドブラスト処理を行って除錆したものを用意した。その後。鋼管の表面洗浄処理を行って汚れや鉄粉等を除去した。
鋼管を加熱装置で220℃に加熱後、粉体エポキシ樹脂プライマー(BASEPOX PE50-1081、Arsonsisi社製、顔料添加量27%、ガラス転移温度102℃)を、本発明の膜厚範囲である150μmで静電粉体塗装を実施した後にポリエチレン接着剤として三井化学社製のNE065のペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。次いで、ポリエチレン被覆には日本ポリエチレン社製のNOVATEC ER002Sのペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。接着剤膜厚は0.2mm、ポリエチレン樹脂被覆は3mmになるように調整した。被覆後、水冷を行って3層ポリエチレン樹脂被覆鋼管を製造した。
[Comparative Examples 1 to 3]
Hereinafter, the case where polyethylene is used as the polyolefin of the present invention and there is no taper will be specifically described as Comparative Example 1, and the case where the primer single layer portion is absent or small is referred to as Comparative Examples 2 and 3.
As the steel pipe, a 200A JIS G3452 carbon steel pipe for piping with a length of 5.5 m was used. The outer surface of the steel pipe was prepared by performing grid blast treatment of TGD-70 manufactured by IKK to remove rust. afterwards. The surface of the steel pipe was cleaned to remove dirt and iron powder.
After heating the steel pipe to 220 ° C with a heating device, a powder epoxy resin primer (BASEPOX PE50-1081, manufactured by Arsonsisi, pigment addition amount 27%, glass transition temperature 102 ° C) is applied at 150 μm, which is the film thickness range of the present invention. After performing electrostatic powder coating, NE065 pellets manufactured by Mitsui Chemicals Co., Ltd. were formed into a sheet-like semi-molten state using an extruder and a T-die as a polyethylene adhesive, and wound and coated. Next, for the polyethylene coating, pellets of NOVATEC ER002S manufactured by Japan Polyethylene Corporation were formed into a sheet-like semi-molten state using an extruder and a T-die, and wound and coated. The adhesive film thickness was adjusted to 0.2 mm, and the polyethylene resin coating was adjusted to 3 mm. After coating, water cooling was performed to produce a three-layer polyethylene resin-coated steel pipe.

〔比較例1〕
作製した3層ポリエチレン樹脂被覆鋼管を回転させ、90度の角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃による加工と、延長プライマー層を形成するための接着剤とポリエチレン樹脂被覆の切削加工とを同時に行った。この時、ポリエチレン樹脂の被覆端部は鋼管の端部から150mmの位置になるように調整した。その後ワイヤーブラシを用いて鋼管端部から被覆を削り取って鋼面を露出させ、プライマー単層部分を5mmの長さで残存させた。プライマー単層部分についてはワイヤーブラシで表面のみを更に研削し、接着剤が表面に残存しないように仕上げ、比較例1を製造した。
[Comparative Example 1]
The prepared 3-layer polyethylene resin-coated steel pipe is rotated and processed with a cutting blade that has a blade with an angle of 90 degrees and a blade parallel to the steel pipe, and an adhesive for forming an extension primer layer and a polyethylene resin coating. Cutting was performed at the same time. At this time, the coated end portion of the polyethylene resin was adjusted so as to be at a position 150 mm from the end portion of the steel pipe. After that, the coating was scraped off from the end of the steel pipe using a wire brush to expose the steel surface, and the primer single layer portion remained with a length of 5 mm. Only the surface of the primer single layer portion was further ground with a wire brush and finished so that the adhesive did not remain on the surface, and Comparative Example 1 was manufactured.

〔比較例2〕
作製した3層ポリエチレン樹脂被覆鋼管を回転させ、45度の角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃によってテーパー加工と、延長プライマー層を形成するための接着剤とポリエチレン樹脂被覆の切削加工とを同時に行った。テーパー加工の角度は本発明の範囲となる45度の角度を選定した。この時、ポリエチレン樹脂の被覆端部は鋼管の端部から150mmの位置になるように調整した。その後ワイヤーブラシを用いて鋼管端部から被覆を削り取って鋼面を露出させ、プライマー単層部分を残さない(0mm)ようにして比較例2を製造した。
[Comparative Example 2]
The produced 3-layer polyethylene resin-coated steel pipe is rotated and tapered by a cutting blade that has a blade with an angle of 45 degrees and a blade parallel to the steel pipe, and an adhesive and polyethylene resin coating for forming an extension primer layer. The cutting process of was performed at the same time. For the taper processing angle, an angle of 45 degrees, which is within the range of the present invention, was selected. At this time, the coated end portion of the polyethylene resin was adjusted so as to be at a position 150 mm from the end portion of the steel pipe. After that, the coating was scraped off from the end of the steel pipe using a wire brush to expose the steel surface, and Comparative Example 2 was manufactured so as not to leave the primer single layer portion (0 mm).

〔比較例3〕
作製した3層ポリエチレン樹脂被覆鋼管を回転させ、45度の角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃によってテーパー加工と、延長プライマー層を形成するための接着剤とポリエチレン樹脂被覆の切削加工とを同時に行った。この時、ポリエチレン樹脂の被覆端部は鋼管の端部から150mmの位置になるように調整した。その後ワイヤーブラシを用いて鋼管端部から被覆を削り取って鋼面を露出させ、プライマー単層部分を2mmの長さで残存させて比較例3を製造した。
[Comparative Example 3]
The produced 3-layer polyethylene resin-coated steel pipe is rotated and tapered by a cutting blade that has a blade with an angle of 45 degrees and a blade parallel to the steel pipe, and an adhesive and polyethylene resin coating for forming an extension primer layer. The cutting process of was performed at the same time. At this time, the coated end portion of the polyethylene resin was adjusted so as to be at a position 150 mm from the end portion of the steel pipe. After that, the coating was scraped off from the end of the steel pipe using a wire brush to expose the steel surface, and the primer single layer portion remained with a length of 2 mm to produce Comparative Example 3.

〔比較例4〕
以下、本発明のポリオレフィンにポリエチレンを使用し、プライマー部分の厚みが異なる場合として具体的に説明する。
鋼管は200AのJIS G3452の配管用炭素鋼管5.5m長を用いた。鋼管外面にIKK社製のTGD−70番のグリッドブラスト処理を行って除錆したものを用意した。その後、鋼管の表面洗浄処理を行って汚れや鉄粉等を除去した。
鋼管を加熱装置で220℃に加熱後、粉体エポキシ樹脂プライマー(BASEPOX PE50-1081、Arsonsisi社製、顔料添加量27%、ガラス転移温度102℃)を、本発明の膜厚範囲から外れる100μmで静電粉体塗装を実施した後にポリエチレン接着剤として三井化学社製のNE065のペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。次いで、ポリエチレン被覆には日本ポリエチレン社製のNOVATEC ER002Sのペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。接着剤膜厚は0.2mm、ポリエチレン樹脂被覆は3mmになるように調整した。被覆後、水冷を行って3層ポリエチレン樹脂被覆鋼管を製造した。
[Comparative Example 4]
Hereinafter, a case where polyethylene is used as the polyolefin of the present invention and the thickness of the primer portion is different will be specifically described.
As the steel pipe, a 200A JIS G3452 carbon steel pipe for piping with a length of 5.5 m was used. The outer surface of the steel pipe was prepared by performing grid blast treatment of TGD-70 manufactured by IKK to remove rust. After that, the surface of the steel pipe was cleaned to remove dirt, iron powder, and the like.
After heating the steel pipe to 220 ° C with a heating device, a powder epoxy resin primer (BASEPOX PE50-1081, manufactured by Arsonsisi, pigment addition amount 27%, glass transition temperature 102 ° C) is applied at 100 μm outside the film thickness range of the present invention. After performing electrostatic powder coating, NE065 pellets manufactured by Mitsui Chemicals Co., Ltd. were formed into a sheet-like semi-molten state using an extruder and a T-die as a polyethylene adhesive, and wound and coated. Next, for the polyethylene coating, pellets of NOVATEC ER002S manufactured by Japan Polyethylene Corporation were formed into a sheet-like semi-molten state using an extruder and a T-die, and wound and coated. The adhesive film thickness was adjusted to 0.2 mm, and the polyethylene resin coating was adjusted to 3 mm. After coating, water cooling was performed to produce a three-layer polyethylene resin-coated steel pipe.

作製した3層ポリエチレン樹脂被覆鋼管を回転させ、45度の角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃によってテーパー加工と、延長プライマー層を形成するための接着剤とポリエチレン樹脂被覆の切削加工とを同時に行った。この時、ポリオレフィン樹脂の被覆端部は鋼管の端部から150mmの位置になるように調整した。その後ワイヤーブラシを用いて鋼管端部から被覆を削り取って鋼面を露出させ、プライマー単層部分を4mmの長さで残存させて比較例4を製造した。 The produced 3-layer polyethylene resin-coated steel pipe is rotated and tapered by a cutting blade that has a blade with an angle of 45 degrees and a blade parallel to the steel pipe, and an adhesive and polyethylene resin coating for forming an extension primer layer. The cutting process of was performed at the same time. At this time, the coated end portion of the polyolefin resin was adjusted so as to be at a position 150 mm from the end portion of the steel pipe. After that, the coating was scraped off from the end of the steel pipe using a wire brush to expose the steel surface, and the primer single layer portion remained with a length of 4 mm to produce Comparative Example 4.

〔比較例5〕
以下、本発明のポリオレフィンにポリエチレンを使用し、プライマー部分のガラス転移温度が不足した場合として具体的に説明する。
鋼管は200AのJIS G3452の配管用炭素鋼管5.5m長を用いた。鋼管外面にIKK社製のTGD−70番のグリッドブラスト処理を行って除錆したものを用意した。その後、鋼管の表面洗浄処理を行って汚れや鉄粉等を除去した。
鋼管を加熱装置で220℃に加熱後、粉体エポキシ樹脂プライマー(国内試作品、顔料添加量25%、ガラス転移温度91℃)を、本発明の膜厚範囲の150μmで静電粉体塗装を実施した後にポリエチレン接着剤として三井化学社製のNE065のペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。次いで、ポリエチレン被覆には日本ポリエチレン社製のNOVATEC ER002Sのペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。接着剤膜厚は0.2mm、ポリエチレン樹脂被覆は3mmになるように調整した。被覆後、水冷を行って3層ポリエチエン樹脂被覆鋼管を製造した。
[Comparative Example 5]
Hereinafter, a case where polyethylene is used as the polyolefin of the present invention and the glass transition temperature of the primer portion is insufficient will be specifically described.
As the steel pipe, a 200A JIS G3452 carbon steel pipe for piping with a length of 5.5 m was used. The outer surface of the steel pipe was prepared by performing grid blast treatment of TGD-70 manufactured by IKK to remove rust. After that, the surface of the steel pipe was cleaned to remove dirt, iron powder, and the like.
After heating the steel pipe to 220 ° C with a heating device, electrostatic powder coating is applied with a powder epoxy resin primer (domestic prototype, pigment addition amount 25%, glass transition temperature 91 ° C) within the film thickness range of the present invention of 150 μm. After this, NE065 pellets manufactured by Mitsui Chemicals Co., Ltd. were formed into a sheet-like semi-molten state using an extruder and a T-die as a polyethylene adhesive, and wound and coated. Next, for the polyethylene coating, pellets of NOVATEC ER002S manufactured by Japan Polyethylene Corporation were formed into a sheet-like semi-molten state using an extruder and a T-die, and wound and coated. The adhesive film thickness was adjusted to 0.2 mm, and the polyethylene resin coating was adjusted to 3 mm. After coating, water cooling was performed to produce a three-layer polyethylene resin-coated steel pipe.

作製した3層ポリエチレン樹脂被覆鋼管を回転させ、45度の角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃によってテーパー加工と、延長プライマー層を形成するための接着剤とポリエチレン樹脂被覆の切削加工とを同時に行った。この時、ポリエチレン樹脂の被覆端部は鋼管の端部から150mmの位置になるように調整した。その後ワイヤーブラシを用いて鋼管端部から被覆を削り取って鋼面を露出させ、プライマー単層部分を4mmの長さで残存させて比較例5を製造した。 The produced 3-layer polyethylene resin-coated steel pipe is rotated and tapered by a cutting blade that has a blade with an angle of 45 degrees and a blade parallel to the steel pipe, and an adhesive and polyethylene resin coating for forming an extension primer layer. The cutting process of was performed at the same time. At this time, the coated end portion of the polyethylene resin was adjusted so as to be at a position 150 mm from the end portion of the steel pipe. After that, the coating was scraped off from the end of the steel pipe using a wire brush to expose the steel surface, and the primer single layer portion remained with a length of 4 mm to produce Comparative Example 5.

〔比較例6〕
以下、本発明のポリオレフィンにポリエチレンを使用し、プライマー部分の無機顔料の添加が不足した場合として具体的に説明する。
鋼管は200AのJIS G3452の配管用炭素鋼管5.5m長を用いた。鋼管外面にIKK社製のTGD−70番のグリッドブラスト処理を行って除錆したものを用意した。その後、鋼管の表面洗浄処理を行って汚れや鉄粉等を除去した。
鋼管を加熱装置で220℃に加熱後、粉体エポキシ樹脂プライマー(国内試作品、顔料添加量11%、ガラス転移温度101℃)を、本発明の膜厚範囲の150μmで静電粉体塗装を実施した後にポリエチレン接着剤として三井化学社製のNE065のペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。次いで、ポリエチレン被覆には日本ポリエチレン社製のNOVATEC ER002Sのペレットを押出機とTダイスを用いてシート状の半溶融状態に成形して巻き付け被覆を行った。接着剤膜厚は0.2mm、ポリエチレン樹脂被覆は3mmになるように調整した。被覆後、水冷を行って3層ポリエチレン樹脂被覆鋼管を製造した。
[Comparative Example 6]
Hereinafter, a case where polyethylene is used as the polyolefin of the present invention and the addition of the inorganic pigment in the primer portion is insufficient will be specifically described.
As the steel pipe, a 200A JIS G3452 carbon steel pipe for piping with a length of 5.5 m was used. The outer surface of the steel pipe was prepared by performing grid blast treatment of TGD-70 manufactured by IKK to remove rust. After that, the surface of the steel pipe was cleaned to remove dirt, iron powder, and the like.
After heating the steel pipe to 220 ° C with a heating device, electrostatic powder coating is applied with a powder epoxy resin primer (domestic prototype, pigment addition amount 11%, glass transition temperature 101 ° C) within the film thickness range of the present invention of 150 μm. After this, NE065 pellets manufactured by Mitsui Chemicals Co., Ltd. were formed into a sheet-like semi-molten state using an extruder and a T-die as a polyethylene adhesive, and wound and coated. Next, for the polyethylene coating, pellets of NOVATEC ER002S manufactured by Japan Polyethylene Corporation were formed into a sheet-like semi-molten state using an extruder and a T-die, and wound and coated. The adhesive film thickness was adjusted to 0.2 mm, and the polyethylene resin coating was adjusted to 3 mm. After coating, water cooling was performed to produce a three-layer polyethylene resin-coated steel pipe.

作製した3層ポリエチレン樹脂被覆鋼管を回転させ、45度の角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃によってテーパー加工と、延長プライマー層を形成するための接着剤とポリエチレン樹脂被覆の切削加工とを同時に行った。この時、ポリオレフィン樹脂の被覆端部は鋼管の端部から150mmの位置になるように調整した。その後ワイヤーブラシを用いて鋼管端部から被覆を削り取って鋼面を露出させ、プライマー単層部分を4mmの長さで残存させて比較例6を製造した。 The produced 3-layer polyethylene resin-coated steel pipe is rotated and tapered by a cutting blade that has a blade with an angle of 45 degrees and a blade parallel to the steel pipe, and an adhesive and polyethylene resin coating for forming an extension primer layer. The cutting process of was performed at the same time. At this time, the coated end portion of the polyolefin resin was adjusted so as to be at a position 150 mm from the end portion of the steel pipe. After that, the coating was scraped off from the end of the steel pipe using a wire brush to expose the steel surface, and the primer single layer portion remained with a length of 4 mm to produce Comparative Example 6.

〔実施例、比較例の性能試験結果〕
前記方法で製造した実施例及び比較例の、鋼管の端部仕様の違いと腐食による耐剥離性との関係を確認するため、管端部から500mm長さで切断して屋外に1年間曝露した後、ポリオレフィン被覆端部から被覆をはつって、円周上の8点の剥離長さを測定して平均剥離長さを求めた。
また、現地防食被覆における防食性を評価するため、同様に管端部から500mm長さに鋼管を切断後、これらの鋼管を円周溶接し接合した。その後、現地防食収縮スリーブの内層6、現地防食収縮スリーブの外層7からなるポリエチレン樹脂製収縮スリーブにて現地防食被覆を実施し、腐食評価用の模擬現地継ぎ手部を作製した。現地継ぎ手部の防食性については、促進試験として80℃の塩水に90日間試験体を浸漬した後、継ぎ手部の現地防食被覆を除去しさらに上記と同様にポリオレフィン被覆端部から被覆をはつって、円周上の8点の剥離長さを測定して平均剥離長さを求めた。
[Performance test results of Examples and Comparative Examples]
In order to confirm the relationship between the difference in the end specification of the steel pipe and the peeling resistance due to corrosion between the examples and the comparative examples manufactured by the above method, the pipe was cut to a length of 500 mm from the end and exposed to the outdoors for one year. After that, the coating was peeled off from the end of the polyolefin coating, and the peeling lengths at eight points on the circumference were measured to obtain the average peeling length.
Further, in order to evaluate the anticorrosion property of the on-site anticorrosion coating, the steel pipes were similarly cut to a length of 500 mm from the pipe end portion, and then these steel pipes were circumferentially welded and joined. Then, on-site anticorrosion coating was carried out with a polyethylene resin shrinkage sleeve composed of an inner layer 6 of the on-site anticorrosion shrinkage sleeve and an outer layer 7 of the on-site anticorrosion shrinkage sleeve to prepare a simulated on-site joint portion for corrosion evaluation. Regarding the anticorrosion property of the on-site joint, as an accelerated test, after immersing the test piece in salt water at 80 ° C. for 90 days, the on-site anticorrosion coating on the joint was removed, and the coating was further applied from the polyolefin coating end in the same manner as above. , The peeling length of 8 points on the circumference was measured to obtain the average peeling length.

上記試験結果について実施例、比較例を表1にまとめた。
表1の本発明の実施例の結果からも明らかな様に、ポリオレフィン被覆にテーパー形状加工を行い、その先端にプライマー層のみを残存させた本発明では、被覆の端部の剥離応力が小さいだけで無く、腐食剥離も残存プライマーによって抑制されることから、屋外に1年間曝露しても剥離を生じない。更に、現地防食が2層被覆であっても、プライマーが残存することによって3層となる部分が円周状の両端に出来ることから、腐食因子である水やイオンが鋼材と現地被覆の接着界面に到達しづらいため、促進試験においてもポリオレフィン被覆の端部剥離が発生しなかった。
Examples and comparative examples of the above test results are summarized in Table 1.
As is clear from the results of the examples of the present invention in Table 1, in the present invention in which the polyolefin coating is tapered and only the primer layer remains at the tip thereof, the peel stress at the end of the coating is small. In addition, since corrosion peeling is also suppressed by the residual primer, peeling does not occur even when exposed outdoors for one year. Furthermore, even if the on-site anticorrosion is a two-layer coating, the remaining primer creates three layers at both ends of the circumference, so that water and ions, which are corrosion factors, are the adhesive interface between the steel material and the on-site coating. Therefore, the edge peeling of the polyolefin coating did not occur even in the accelerated test.

一方、ポリオレフィン被覆端部がテーパー形状を有しない比較例1の場合には、剥離応力が端部に集中することと、現地防食が角部に十分になじまないといった問題から、防食性に問題が生じる。比較例2及び3のように、本発明に必要なプライマー残存長さが不十分であった場合、屋外曝露では腐食剥離、現地防食では管端シール効果が不十分となって剥離が生じる。
また比較例4〜6の様にプライマーに必要な膜厚や、加工による耐切削性・耐ブラシ加工性(ガラス転移温度及び無機顔料添加量)等が不足すると、プライマー残存部の防食性が低下し、結果としてポリオレフィン被覆の端部剥離が発生する。
On the other hand, in the case of Comparative Example 1 in which the polyolefin-coated end portion does not have a tapered shape, there is a problem in corrosion resistance due to the problems that the peeling stress is concentrated on the end portion and the on-site corrosion protection does not sufficiently adapt to the corner portion. Occurs. When the residual primer length required for the present invention is insufficient as in Comparative Examples 2 and 3, the corrosion peeling is caused by outdoor exposure, and the pipe end sealing effect is insufficient by the on-site anticorrosion, resulting in peeling.
Further, if the film thickness required for the primer and the cutting resistance / brushing resistance (glass transition temperature and amount of inorganic pigment added) due to processing are insufficient as in Comparative Examples 4 to 6, the corrosion resistance of the remaining primer portion is lowered. As a result, edge peeling of the polyolefin coating occurs.

以上の結果からも明らかなように、3層ポリオレフィン樹脂被覆鋼管において既存のカットバックとテーパーのみによる端部の被覆仕様では、置き場曝露と、現地被覆を行った後の防食性が十分では無かった。これに対して、本発明のプライマー部を残存させる加工を行う被覆の端部仕様では、屋外曝露で問題となる冷熱繰り返しによる剥離応力が小さく、防食性の高いプライマー部が延長被覆されていることから、曝露によってポリオレフィン被覆端部の剥離が開始する事が無く、更に現地防食においてはシール効果が高いために現地防食部の防食性を大きく向上させることが可能である。 As is clear from the above results, the existing cutback and taper-only end coating specifications for the three-layer polyolefin resin-coated steel pipe did not provide sufficient anticorrosion after storage exposure and on-site coating. .. On the other hand, in the end specification of the coating for which the primer portion of the present invention is left, the peeling stress due to repeated cooling and heating, which is a problem in outdoor exposure, is small, and the primer portion having high corrosion resistance is extendedly coated. Therefore, the peeling of the polyolefin-coated end portion does not start due to exposure, and the sealing effect is high in the on-site anticorrosion, so that the anticorrosion property of the on-site anticorrosion can be greatly improved.

Figure 0006920792
Figure 0006920792

1 鋼管
2 プライマー層
3 接着剤層
4 ポリオレフィン樹脂層
5 延長被覆された粉体エポキシ樹脂塗装によるプライマー層
6 現地防食収縮スリーブの内層
7 現地防食収縮スリーブの外層
8 被覆端部のテーパー加工とプライマー残存部上の被覆を切削除去する形状の切削刃
9 回転ワイヤーブラシ

1 Steel tube 2 Primer layer 3 Adhesive layer 4 Polyethylene resin layer 5 Primer layer with extension coating powder epoxy resin coating 6 Inner layer of local anticorrosion shrink sleeve 7 Outer layer of local anticorrosion shrink sleeve 8 Tapering of coating end and primer remaining Cutting blade with a shape that cuts and removes the coating on the part 9 Rotating wire brush

Claims (1)

鋼管表面から、厚みが150〜600μmの粉体エポキシ樹脂プライマー層、ポリオレフィン接着剤層、ポリオレフィン層が順次積層されたポリオレフィン被覆鋼管において、前記粉体エポキシ樹脂プライマー層にはプライマー(100重量%)中に無機顔料が20〜50重量%配合され、かつ粉体エポキシ樹脂の加熱硬化後のガラス転移温度が95℃以上であるポリオレフィン被覆鋼管において、ポリオレフィン被覆が形成されたのち、その端部を、角度を持った刃と鋼管に平行な刃を兼ね備えた切削刃によって、プライマー層をそのまま残して、ポリオレフィン接着剤層及びポリオレフィン層の2層を鋼管表面と角度45度以下に形成し、しかるのちに残った粉体エポキシ樹脂プライマー層をスチールブラシによって5mm以上の長さに整えることを特徴とする耐剥離性に優れた端部形状を有するポリオレフィン被覆鋼管の製造方法。 In a polyolefin-coated steel tube in which a powder epoxy resin primer layer, a polyolefin adhesive layer, and a polyolefin layer having a thickness of 150 to 600 μm are sequentially laminated from the surface of the steel tube, the powder epoxy resin primer layer is contained in a primer (100% by weight). In a polyolefin-coated steel tube in which 20 to 50% by weight of an inorganic pigment is blended in and the glass transition temperature of the powdered epoxy resin after heat curing is 95 ° C. or higher, after the polyolefin coating is formed, the end portion thereof is angled. With a cutting blade that combines a blade with a blade and a blade parallel to the steel pipe , the primer layer is left as it is, and two layers, a polyolefin adhesive layer and a polyolefin layer, are formed at an angle of 45 degrees or less with the surface of the steel pipe, and then remain. A method for producing a polyolefin-coated steel tube having an end shape having excellent peel resistance, which comprises adjusting a powder epoxy resin primer layer to a length of 5 mm or more with a steel brush.
JP2016130313A 2016-06-30 2016-06-30 A method for manufacturing a three-layer polyolefin resin-coated steel pipe having an end shape with excellent peel resistance. Active JP6920792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016130313A JP6920792B2 (en) 2016-06-30 2016-06-30 A method for manufacturing a three-layer polyolefin resin-coated steel pipe having an end shape with excellent peel resistance.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016130313A JP6920792B2 (en) 2016-06-30 2016-06-30 A method for manufacturing a three-layer polyolefin resin-coated steel pipe having an end shape with excellent peel resistance.

Publications (2)

Publication Number Publication Date
JP2018001546A JP2018001546A (en) 2018-01-11
JP6920792B2 true JP6920792B2 (en) 2021-08-18

Family

ID=60947262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130313A Active JP6920792B2 (en) 2016-06-30 2016-06-30 A method for manufacturing a three-layer polyolefin resin-coated steel pipe having an end shape with excellent peel resistance.

Country Status (1)

Country Link
JP (1) JP6920792B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773484B2 (en) * 2018-02-02 2020-09-15 The Boeing Company Hinged composite sandwich panels

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185076U (en) * 1974-12-27 1976-07-08
JPH072397B2 (en) * 1988-10-31 1995-01-18 日本鋼管株式会社 Method for manufacturing plastic coated steel sheet pile
JPH02255293A (en) * 1989-03-27 1990-10-16 Nippon Steel Corp Method for preventing corrosion of welded joint of polyolefin coated steel pipe
JPH037415U (en) * 1989-06-13 1991-01-24
JPH03121770A (en) * 1989-10-02 1991-05-23 Sumitomo Metal Ind Ltd Method and device for forming covered end of polyethylene covered steel pipe
JP3105088B2 (en) * 1991-09-06 2000-10-30 三井化学株式会社 Protection and corrosion protection method for iron products and steel pipes
GB9210984D0 (en) * 1992-05-22 1992-07-08 Raychem Sa Nv Protection of pipe joints
JP3310496B2 (en) * 1995-06-29 2002-08-05 日東電工株式会社 Corrosion protection method for steel pipe joints
JP3345321B2 (en) * 1997-10-17 2002-11-18 新日本製鐵株式会社 Polyester coated steel
JP2000191954A (en) * 1998-12-28 2000-07-11 Nippon Steel Corp Epoxy powder primer composition for steel material coated with polyolefin
BR112013005884A2 (en) * 2010-09-23 2016-05-10 Berry Plastics Corp heat-shrinkable reactive compatibilized multilayer coating
JP5764091B2 (en) * 2012-05-30 2015-08-12 新日鐵住金株式会社 Polyolefin-coated steel material having powder epoxy primer layer and powder epoxy primer used therefor

Also Published As

Publication number Publication date
JP2018001546A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
CN103925455B (en) A kind of water body joint coating on pipeline guard method and structure
JP6920792B2 (en) A method for manufacturing a three-layer polyolefin resin-coated steel pipe having an end shape with excellent peel resistance.
JPWO2007052683A1 (en) Steel pipe for automobile piping
JP6252400B2 (en) Repair base coating composition
JP4742950B2 (en) Inner coated steel pipe for water piping
RU2566786C2 (en) Reclamation of pipe coating
JP2018176053A (en) Method for producing polyolefin resin-coated steel pipe
JP6803799B2 (en) Manufacturing method of coated steel pipe
JP6692233B2 (en) Induction heating method for polyolefin coated steel pipe
ES2812853T3 (en) Tube product and procedure for its manufacture
JP6762781B2 (en) Polyolefin-coated steel pipe with excellent peel resistance and its manufacturing method
CN106885068A (en) A kind of joint coating on pipeline structure
JP6766404B2 (en) 4-layer polyolefin resin coated steel pipe
JP6607265B2 (en) Polyethylene-coated steel pipe and method for producing the same
JP6583012B2 (en) Polyolefin-coated steel pipe and method for producing the same
CN201041275Y (en) Drinking water conveyor pipe with erosion-proof coating
JP6774850B2 (en) Method for manufacturing polyolefin resin coated steel pipe
CN204176248U (en) A kind of steel pipe fitting with polyurea anti-corrosion coating
JP2007268795A (en) Inner surface coated steel pipe for water piping
KR101583657B1 (en) A method for coating of pipes and joints for preventing corrosion
CN212251524U (en) Steel pipe with zincizing layer at end
CN204176249U (en) A kind of steel conveyance conduit with polyurea anti-corrosion coating
CN103807564A (en) Epoxy glass fiber reinforced pipeline mouth repairing method
JP4293683B2 (en) How to complement resin coating
TWM549294U (en) Corrosion-resistant and anti-chemical fluid piping kit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6920792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250