JP6919629B2 - A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same. - Google Patents

A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same. Download PDF

Info

Publication number
JP6919629B2
JP6919629B2 JP2018123935A JP2018123935A JP6919629B2 JP 6919629 B2 JP6919629 B2 JP 6919629B2 JP 2018123935 A JP2018123935 A JP 2018123935A JP 2018123935 A JP2018123935 A JP 2018123935A JP 6919629 B2 JP6919629 B2 JP 6919629B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
oxygen
ratio
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018123935A
Other languages
Japanese (ja)
Other versions
JP2020001977A (en
Inventor
星 亮二
亮二 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2018123935A priority Critical patent/JP6919629B2/en
Publication of JP2020001977A publication Critical patent/JP2020001977A/en
Application granted granted Critical
Publication of JP6919629B2 publication Critical patent/JP6919629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、磁場印加チョクラルスキー法(MCZ法)によって育成され、結晶中に酸素が含まれるシリコン単結晶に関するものであり、その結晶を育成可能な製造条件を決定する方法及びそれを用いたシリコン単結晶の製造方法に関する。 The present invention relates to a silicon single crystal grown by a magnetic field applied Czochralski method (MCZ method) and containing oxygen in the crystal, and a method for determining production conditions capable of growing the crystal and a method using the same are used. The present invention relates to a method for producing a silicon single crystal.

メモリー、CPUや撮像素子などの半導体デバイスの基板として用いられるシリコン単結晶ウェーハを切り出すシリコン単結晶棒は、主にチョクラルスキー(CZ)法により製造されている。CZ法では、一般に、石英ルツボを用いるので、ルツボから酸素原子が溶出し、これがシリコン単結晶に取り込まれるので、CZ結晶(CZ法により製造されたシリコン単結晶)中には酸素原子が含まれている。 Silicon single crystal rods for cutting out silicon single crystal wafers used as substrates for semiconductor devices such as memories, CPUs, and image pickup devices are mainly manufactured by the Czochralski (CZ) method. In the CZ method, since a quartz rutsubo is generally used, oxygen atoms are eluted from the rutsubo and incorporated into a silicon single crystal, so that the CZ crystal (silicon single crystal produced by the CZ method) contains oxygen atoms. ing.

シリコン単結晶棒から切り出されるシリコン単結晶ウェーハは何段階ものデバイスプロセスを通過し、その際の熱処理過程を通して、シリコン原子と酸素原子とが結合し、ウェーハ中には酸素析出物が形成される。バルク中に形成される酸素析出物はBMD(Bulk Micro Defect)などと呼ばれる。このBMDはウェーハ内部の重金属などの汚染原子を捕獲してデバイス特性を向上させる能力があることが知られている。重金属汚染の影響が大きい撮像素子などの一部のデバイスではBMD密度が高くなるほど高性能かつ高信頼性のデバイスを得られる。一方でBMDが多すぎれば、それらを起因としたリーク電流など電気特性の劣化を招く場合もある。 A silicon single crystal wafer cut out from a silicon single crystal rod passes through a number of stages of device processes, and through the heat treatment process at that time, silicon atoms and oxygen atoms are bonded to each other, and oxygen precipitates are formed in the wafer. The oxygen precipitate formed in the bulk is called BMD (Bulk Micro Defect) or the like. This BMD is known to have the ability to capture contaminated atoms such as heavy metals inside the wafer to improve device characteristics. For some devices such as image sensors, which are greatly affected by heavy metal contamination, the higher the BMD density, the higher the performance and reliability of the device. On the other hand, if there are too many BMDs, deterioration of electrical characteristics such as leakage current due to them may occur.

従って、例えば撮像素子においては、BMDが少ないところでは重金属に起因する劣化、逆にBMDが多いところではBMDそのものに起因する劣化に起因して画像ムラが生じてしまう。このように、ウェーハ面内でBMDの多寡が生じるのは、もともとの結晶中に取り込まれている酸素濃度のムラに起因することが知られており、この酸素濃度のムラを酸素縞と呼んでいる。 Therefore, for example, in an image sensor, image unevenness occurs due to deterioration caused by heavy metals in a place where BMD is small, and conversely due to deterioration caused by BMD itself in a place where BMD is large. It is known that the amount of BMD generated in the wafer surface is due to the unevenness of the oxygen concentration originally incorporated in the crystal, and this unevenness of the oxygen concentration is called an oxygen fringe. There is.

従って、良好な撮像素子を得るためには、ウェーハ面内のBMD密度のミリメートルオーダーの周期的な変動、つまりは結晶中の酸素縞を精密に抑制する技術が望まれている。そのような技術は、撮像素子のみならず、メモリー、CPUや太陽電池向け材料の特性の向上に貢献するため、極めて応用範囲が広く、電気特性の向上や、プロセス中の反りあるいはスリップ転位の発生を防止するなどの効果もある。 Therefore, in order to obtain a good image sensor, a technique for precisely suppressing periodic fluctuations of the BMD density in the wafer surface on the order of millimeters, that is, oxygen fringes in the crystal is desired. Since such technology contributes to the improvement of the characteristics of materials for memory, CPU and solar cells as well as the image sensor, it has an extremely wide range of applications, and it has an extremely wide range of applications, such as improvement of electrical characteristics and occurrence of warpage or slip dislocation during the process. It also has the effect of preventing.

ところで、CZ法によるシリコン単結晶製造では、石英ルツボ内のシリコン溶融液は、対流により流動し、石英ルツボ中の酸素が溶出し、シリコン単結晶に高濃度で取り込まれる。そこで、石英ルツボ内のシリコン溶融液に磁場を印加し、対流を抑制するMCZ法が行われている。これにより、結晶中の酸素濃度を抑制したり、大直径の結晶を育成しやすくなったりすることが知られている。 By the way, in the production of a silicon single crystal by the CZ method, the silicon melt in the quartz crucible flows by convection, oxygen in the quartz crucible is eluted, and the silicon single crystal is incorporated into the silicon single crystal at a high concentration. Therefore, the MCZ method is performed in which a magnetic field is applied to the silicon melt in the quartz crucible to suppress convection. It is known that this suppresses the oxygen concentration in the crystal and facilitates the growth of crystals having a large diameter.

このMCZ法においては、酸素縞が低減されることが開示されている。例えば特許文献1では、シリコン溶融液の対流速度を7mm/sec以下に設定し成長縞をなくして酸素濃度を制御する技術が開示されている。もし仮に、対流を完全に抑えることが可能であれば、酸素縞はなくなるのかもしれない。しかし、実際には対流を完全に抑制することは現時点で不可能であり、例えば微視的に見れば、特許文献2などにあるようにミクロ酸素濃度が激しく変動している。特許文献2では、コイル中心位置を制御することでミクロな酸素濃度分布のムラを抑制することができている。しかし、例えば特許文献3に開示されているような近年の撮像素子向けに適した結晶の評価技術で見た場合に十分とは言えない場合がある。 In this MCZ method, it is disclosed that oxygen fringes are reduced. For example, Patent Document 1 discloses a technique in which the convection speed of a silicon melt is set to 7 mm / sec or less to eliminate growth fringes and control the oxygen concentration. If convection can be completely suppressed, oxygen fringes may disappear. However, in reality, it is impossible to completely suppress convection at this time. For example, microscopically, the micro oxygen concentration fluctuates drastically as described in Patent Document 2. In Patent Document 2, the unevenness of the micro oxygen concentration distribution can be suppressed by controlling the coil center position. However, it may not be sufficient when viewed with a crystal evaluation technique suitable for a recent image sensor as disclosed in Patent Document 3, for example.

そこで、それ以降も酸素濃度面内分布や酸素縞を改善する技術が開示されてきている。特許文献4では、シリコン溶融液表面の高温部と低温部のいずれかを常に固液界面に位置させる製法が開示されている。しかしこの方法では、操業中の温度測定技術とその制御が必要であるが、具体的な制御方法に関しての言及はない。また特許文献5では融液中の凝固フロント領域で回転対称でない温度分布を生じさせる製法が開示されている。具体的な方法としては、移動性磁場や磁場の回転対称を崩す遮閉部などの装置が必要であり、既存の装置にすぐ適用できる技術ではない。更に、特許文献6では固液界面下でシリコン溶融液を一方から他方に流動させる製法が開示されている。この特許文献には具体的なパラメータが記載されており、既存機にも適用できる可能性がある。しかし、液面高さがその条件に入っており、CZ法のように結晶成長に伴い融液の量が減少して行くなかで、その条件を満足させながら、結晶を育成することは容易ではなく、操業の自由度が小さい。さらに、巨視的な酸素面内分布に大きな影響を与える結晶回転が制約条件に含まれており、例え微視的な酸素分布が改善されたとしても、巨視的な分布に悪影響を及ぼす可能性がある。 Therefore, since then, techniques for improving the in-plane distribution of oxygen concentration and oxygen fringes have been disclosed. Patent Document 4 discloses a manufacturing method in which either the high temperature portion or the low temperature portion on the surface of the silicon melt is always located at the solid-liquid interface. However, this method requires temperature measurement technology during operation and its control, but there is no mention of a specific control method. Further, Patent Document 5 discloses a manufacturing method that causes a temperature distribution that is not rotationally symmetric in the solidification front region in the melt. As a specific method, a device such as a mobile magnetic field or a closed portion that breaks the rotational symmetry of the magnetic field is required, and it is not a technology that can be immediately applied to existing devices. Further, Patent Document 6 discloses a manufacturing method in which a silicon melt is allowed to flow from one side to the other under a solid-liquid interface. Specific parameters are described in this patent document, and there is a possibility that it can be applied to existing machines. However, the liquid level is within that condition, and as the amount of melt decreases with crystal growth as in the CZ method, it is not easy to grow crystals while satisfying that condition. There is little freedom of operation. Furthermore, crystal rotation, which has a large effect on the macroscopic in-plane oxygen distribution, is included in the constraints, and even if the microscopic oxygen distribution is improved, it may adversely affect the macroscopic distribution. be.

特開平6−92774号公報Japanese Unexamined Patent Publication No. 6-92774 特開平9−188590号公報Japanese Unexamined Patent Publication No. 9-188590 特開2014−148448号公報Japanese Unexamined Patent Publication No. 2014-148448 特開2000−264784号公報Japanese Unexamined Patent Publication No. 2000-264784 特開2004−196655号公報Japanese Unexamined Patent Publication No. 2004-196655 国際公開第2017/077701号International Publication No. 2017/077701

上記のように、MCZ法によるシリコン単結晶の製造において、シリコン単結晶の酸素縞をさらに低減することが望まれているが、従来の方法では、近年の撮像素子向けに適した結晶の評価技術で見た場合に十分とは言えないという問題があった。 As described above, in the production of a silicon single crystal by the MCZ method, it is desired to further reduce the oxygen fringes of the silicon single crystal, but in the conventional method, a crystal evaluation technique suitable for a recent image sensor. There was a problem that it was not enough when viewed in.

本発明は上記問題に鑑みてなされたものであり、MCZ法によるシリコン単結晶の製造において、シリコン単結晶の酸素縞を、従来よりも平坦化できる製造条件の決定方法及びそれを用いたシリコン単結晶の製造方法を提供することを目的とする。
また、撮像素子を作製しても画像ムラなどの不良が少なく、デバイスに適したシリコン単結晶ウェーハを提供することを目的とする。
The present invention has been made in view of the above problems, and in the production of a silicon single crystal by the MCZ method, a method for determining production conditions capable of flattening the oxygen fringes of the silicon single crystal and a silicon single crystal using the method. It is an object of the present invention to provide a method for producing a crystal.
Another object of the present invention is to provide a silicon single crystal wafer suitable for a device, which has few defects such as image unevenness even when an image pickup device is manufactured.

上記目的を達成するために、本発明は、
磁場印加チョクラルスキー法によるシリコン単結晶の製造におけるシリコン単結晶の酸素縞平坦化製造条件の決定方法であって、
シリコン溶融液の最高温度と最低温度との温度差をΔt、
磁場強度をMとして、
前記Δtと前記Mとの比Δt/Mを算出し、
該比Δt/Mと前記比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、該相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定することを特徴とする酸素縞平坦化製造条件の決定方法を提供する。
In order to achieve the above object, the present invention
It is a method for determining the oxygen fringe flattening production condition of a silicon single crystal in the production of a silicon single crystal by the magnetic field application Czochralski method.
The temperature difference between the maximum temperature and the minimum temperature of the silicon melt is Δt,
Let the magnetic field strength be M
The ratio Δt / M of the Δt and the M was calculated, and the ratio was calculated.
The correlation between the ratio Δt / M and the oxygen fringes in the silicon single crystal grown at the ratio Δt / M was obtained, and the condition of the ratio Δt / M from which the desired silicon single crystal was obtained was determined based on the correlation. Provided is a method for determining oxygen stripe flattening production conditions, which is set and characterized in that oxygen stripe flattening production conditions for a silicon single crystal are determined.

このような本発明の酸素縞平坦化製造条件の決定方法は、MCZ法によりシリコン単結晶を製造する際に、上記酸素縞平坦化製造条件を用いることで、酸素縞が低減されたシリコン単結晶を製造可能となる酸素縞平坦化製造条件を決定することができる。 Such a method for determining the oxygen fringe flattening production condition of the present invention is a silicon single crystal in which oxygen fringes are reduced by using the oxygen fringe flattening production condition when producing a silicon single crystal by the MCZ method. It is possible to determine the oxygen fringe flattening production conditions that enable the production.

また、このとき、前記比Δt/Mの算出を、シリコン単結晶の製造に用いる引上機構成において、初期融液量における石英ルツボの温度分布をシミュレーションにより求め、該求めた石英ルツボの温度分布の最高温度を前記シリコン溶融液の最高温度とし、固液界面での温度を前記シリコン溶融液の最低温度とし、その差分を前記Δt、前記シリコン溶融液の中心磁場強度を前記Mとして算出することが好ましい。 Further, at this time, the calculation of the ratio Δt / M was performed by simulating the temperature distribution of the quartz rubbish at the initial melt amount in the pulling machine configuration used for manufacturing the silicon single crystal, and the temperature distribution of the quartz rubbish obtained. The maximum temperature of the silicon melt is the maximum temperature of the silicon melt, the temperature at the solid-liquid interface is the minimum temperature of the silicon melt, the difference is Δt, and the central magnetic field strength of the silicon melt is M. Is preferable.

シリコン単結晶の製造に用いる引上機構成(引上機(シリコン単結晶育成装置)とその内部に装備される黒鉛部品や断熱材などのいわゆるHZ(Hot Zone)部品との組合せ)において、比Δt/Mをこのように算出すれば、シリコン単結晶の酸素縞平坦化製造条件を精度よく決定することができる。 In the pulling machine configuration used for manufacturing silicon single crystals (combination of the pulling machine (silicon single crystal growing device) and so-called HZ (Hot Zone) parts such as graphite parts and heat insulating materials installed inside the pulling machine), the ratio By calculating Δt / M in this way, it is possible to accurately determine the oxygen fringe flattening production conditions for a silicon single crystal.

また、前記比Δt/Mで育成されたシリコン単結晶中の酸素縞を、前記比Δt/Mで育成されたシリコン単結晶から切出したシリコン単結晶ウェーハサンプルをFT−IR法を用いて2mmピッチで酸素濃度を測定することで取得し、該測定した酸素濃度の6mm間隔の酸素濃度勾配値を求め、該求めた酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下となるように比Δt/Mの条件を設定することが好ましい。 Further, the oxygen fringes in the silicon single crystal grown at the ratio Δt / M are cut out from the silicon single crystal grown at the ratio Δt / M, and the silicon single crystal wafer sample is cut out at a pitch of 2 mm by the FT-IR method. Obtained by measuring the oxygen concentration in the above, the oxygen concentration gradient value of the measured oxygen concentration at 6 mm intervals was obtained, and the maximum in-plane value of the obtained oxygen concentration gradient value was 0.04 (ppma-JEIDA / mm). It is preferable to set the condition of the ratio Δt / M so as to be as follows.

比Δt/Mの条件をこのように設定すれば、より確実に酸素縞が低減されたシリコン単結晶を製造することができる酸素縞平坦化製造条件を決定することができる。 By setting the condition of the ratio Δt / M in this way, it is possible to determine the oxygen fringe flattening production condition capable of more reliably producing the silicon single crystal with reduced oxygen fringes.

また、前記比Δt/Mを、0.05(K/gauss)以下とすることが好ましい。 Further, the ratio Δt / M is preferably 0.05 (K / gauss) or less.

このような比Δt/Mとすれば、より確実に酸素縞が低減されたシリコン単結晶を製造することができる酸素縞平坦化製造条件を決定することができる。 With such a ratio Δt / M, it is possible to determine the oxygen fringe flattening production conditions capable of more reliably producing a silicon single crystal with reduced oxygen fringes.

また、本発明は、上記の酸素縞平坦化操業条件の決定方法を用いて前記比Δt/Mの条件を予め決定し、該決定した比Δt/Mの条件に基づいて、磁場印加チョクラルスキー法によりシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法を提供する。 Further, in the present invention, the condition of the ratio Δt / M is determined in advance by using the method for determining the oxygen fringe flattening operating condition, and the magnetic field applied Czochralski is based on the determined condition of the ratio Δt / M. Provided is a method for producing a silicon single crystal, which comprises growing a silicon single crystal by a method.

このようなシリコン単結晶の製造方法であれば、予め決定された比Δt/Mの条件を用いることで、酸素縞が低減されたシリコン単結晶を製造することができる。 With such a method for producing a silicon single crystal, a silicon single crystal with reduced oxygen fringes can be produced by using a condition of a predetermined ratio Δt / M.

また、本発明は、酸素を含むシリコン単結晶ウェーハであって、該シリコン単結晶ウェーハの6mm間隔の酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下であることを特徴とするシリコン単結晶ウェーハを提供する。 Further, the present invention is a silicon single crystal wafer containing oxygen, and the maximum in-plane oxygen concentration gradient value of the silicon single crystal wafer at 6 mm intervals is 0.04 (ppma-JEIDA / mm) or less. Provided is a silicon single crystal wafer characterized by.

このようなシリコン単結晶ウェーハであれば、酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下と小さく、酸素濃度のムラが十分に抑制されているため、撮像素子を作製しても画像ムラなどの不良が少なく、デバイスに適したものとなる。 In such a silicon single crystal wafer, the maximum in-plane oxygen concentration gradient value is as small as 0.04 (ppma-JEIDA / mm) or less, and the unevenness of the oxygen concentration is sufficiently suppressed. Even if it is manufactured, there are few defects such as image unevenness, and it is suitable for the device.

以上のように、本発明の酸素縞平坦化製造条件の決定方法は、比Δt/Mと比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、この相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定する。これにより、MCZ法によりシリコン単結晶を製造する際に、上記酸素縞平坦化製造条件を用いることで、酸素縞が低減されたシリコン単結晶を製造可能となる酸素縞平坦化製造条件を決定することができる。
また、本発明のシリコン単結晶ウェーハであれば、酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下であるため、撮像素子を作製しても画像ムラなどの不良が少なく、デバイスに適したものとなる。
As described above, in the method for determining the oxygen fringe flattening production condition of the present invention, the correlation between the ratio Δt / M and the oxygen fringe in the silicon single crystal grown at the ratio Δt / M is obtained, and this correlation is obtained. Based on this, the condition of the ratio Δt / M for obtaining the desired silicon single crystal is set, and the oxygen fringe flattening production condition of the silicon single crystal is determined. Thereby, when the silicon single crystal is produced by the MCZ method, the oxygen fringe flattening production condition that enables the production of the silicon single crystal with reduced oxygen fringes is determined by using the oxygen fringe flattening production condition. be able to.
Further, in the case of the silicon single crystal wafer of the present invention, the maximum in-plane oxygen concentration gradient value is 0.04 (ppma-JEIDA / mm) or less, so that even if an image sensor is manufactured, defects such as image unevenness occur. It is suitable for the device.

実験例1及び実験例2において、FT−IR法により2mmピッチで測定した酸素濃度面内分布を示す図である。It is a figure which shows the oxygen concentration in-plane distribution measured by the FT-IR method at a pitch of 2 mm in Experimental Example 1 and Experimental Example 2. 実験例1及び実験例2において、酸素濃度面内分布から得た6mm間隔の酸素濃度勾配値の面内分布を示す図である。It is a figure which shows the in-plane distribution of the oxygen concentration gradient value at 6mm intervals obtained from the in-plane distribution of oxygen concentration in Experimental Example 1 and Experimental Example 2. 一般的なシリコン単結晶育成装置の概略図である。It is a schematic diagram of a general silicon single crystal growth apparatus. 実験例で求めた酸素縞指標(酸素濃度勾配の最大値)を比Δt/Mに対してプロットした図である。It is a figure which plotted the oxygen fringe index (maximum value of the oxygen concentration gradient) obtained in the experimental example with respect to the ratio Δt / M.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings as an example of an embodiment, but the present invention is not limited thereto.

上述のように、MCZ法によるシリコン単結晶の製造において、シリコン単結晶の酸素縞をさらに低減することが望まれているが、従来の方法では、近年の撮像素子、メモリー、CPU、及び、太陽電池向け材料の特性の向上に十分と言えるようなシリコン単結晶を製造することは困難であった。 As described above, in the production of a silicon single crystal by the MCZ method, it is desired to further reduce the oxygen fringes of the silicon single crystal, but in the conventional method, a recent image sensor, memory, CPU, and solar cell are used. It has been difficult to produce a silicon single crystal that can be said to be sufficient for improving the characteristics of materials for batteries.

本発明者は、このような問題について鋭意検討を重ねたところ、予め、シリコン溶融液の最高温度と最低温度との温度差と磁場強度から酸素縞平坦化製造条件を決定し、その酸素縞平坦化製造条件を用いてシリコン単結晶を製造すれば、酸素縞が低減されたシリコン単結晶を製造することが可能となることに想到し、本発明を完成させた。 As a result of diligent studies on such problems, the present inventor has determined in advance the oxygen fringe flattening production conditions from the temperature difference between the maximum temperature and the minimum temperature of the silicon melt and the magnetic field strength, and the oxygen fringe flattening. The present invention was completed with the idea that if a silicon single crystal is produced using the chemical production conditions, it becomes possible to produce a silicon single crystal with reduced oxygen fringes.

即ち、本発明は、磁場印加チョクラルスキー法によるシリコン単結晶の製造におけるシリコン単結晶の酸素縞平坦化製造条件の決定方法であって、
シリコン溶融液の最高温度と最低温度との温度差をΔt、
磁場強度をMとして、
前記Δtと前記Mとの比Δt/Mを算出し、
該比Δt/Mと前記比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、該相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定することを特徴とする酸素縞平坦化製造条件の決定方法である。
That is, the present invention is a method for determining the oxygen fringe flattening production condition of a silicon single crystal in the production of a silicon single crystal by the magnetic field application Czochralski method.
The temperature difference between the maximum temperature and the minimum temperature of the silicon melt is Δt,
Let the magnetic field strength be M
The ratio Δt / M of the Δt and the M was calculated, and the ratio was calculated.
The correlation between the ratio Δt / M and the oxygen fringes in the silicon single crystal grown at the ratio Δt / M was obtained, and the condition of the ratio Δt / M from which the desired silicon single crystal was obtained was determined based on the correlation. It is a method for determining the oxygen fringe flattening production condition, which comprises setting and determining the oxygen fringe flattening production condition of a silicon single crystal.

このような本発明の酸素縞平坦化製造条件の決定方法は、比Δt/Mと比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、この相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定する。これにより、MCZ法によりシリコン単結晶を製造する際に、上記酸素縞平坦化製造条件を用いることで、酸素縞が低減されたシリコン単結晶を製造可能となる酸素縞平坦化製造条件を決定することができる。 In such a method for determining the oxygen fringe flattening production condition of the present invention, the correlation between the ratio Δt / M and the oxygen fringe in the silicon single crystal grown at the ratio Δt / M is obtained, and based on this correlation. The condition of the ratio Δt / M for obtaining the desired silicon single crystal is set, and the oxygen stripe flattening production condition of the silicon single crystal is determined. Thereby, when the silicon single crystal is produced by the MCZ method, the oxygen fringe flattening production condition that enables the production of the silicon single crystal with reduced oxygen fringes is determined by using the oxygen fringe flattening production condition. be able to.

特許文献1に記載されるように、酸素縞を抑制するためにはシリコン溶融液(メルト)の対流速度を抑制することが好ましい。流体においては、主に温度が原因となり不均一性が生ずるため流動が生ずる。従って、この対流の強さは温度差に依存する。つまり、メルトの最高温度と最低温度との差Δtが小さければ小さいほど、対流を抑制すると考えられる。一方MCZ法では磁場を印加することにより対流を抑制しているが、この磁場強度Mが強ければ強いほど対流を抑制することができると考えられる。 As described in Patent Document 1, it is preferable to suppress the convection velocity of the silicon melt (melt) in order to suppress the oxygen fringes. In a fluid, flow occurs because non-uniformity occurs mainly due to temperature. Therefore, the strength of this convection depends on the temperature difference. That is, it is considered that the smaller the difference Δt between the maximum temperature and the minimum temperature of the melt, the more the convection is suppressed. On the other hand, in the MCZ method, convection is suppressed by applying a magnetic field, but it is considered that the stronger the magnetic field strength M, the more convection can be suppressed.

従って、この2つのパラメータの比Δt/Mを取ることで、対流の強さを予想することが可能であると考えられる。つまり、比Δt/Mが小さい条件を選定すれば、対流が強くない操業が可能となり、ひいては酸素縞が抑制された製造条件を決定することが可能となる。 Therefore, it is considered possible to predict the strength of convection by taking the ratio Δt / M of these two parameters. That is, if the condition having a small ratio Δt / M is selected, the operation in which the convection is not strong becomes possible, and it becomes possible to determine the manufacturing condition in which the oxygen fringes are suppressed.

ここで、操業上の制約条件は、メルトの最高温度と最低温度との差Δtと磁場強度Mの2つだけである。結晶成長速度、結晶の回転速度、ルツボの回転速度、引上機内の炉内圧や結晶育成時に流される不活性ガス量など、微小な酸素濃度分布以外の、例えば巨視的な酸素分布や結晶欠陥などの結晶品質に大きく影響する操業パラメータへの制約はない。もちろん、これらの操業パラメータが微小な酸素濃度分布にも影響を与えることは否定しないが、より大きな影響を与える温度差Δtと磁場強度Mを規定しているので、これらの操業パラメータを用いて微小な酸素濃度分布以外の品質を制御することは基本的に自由に行なうことが可能である。 Here, there are only two operational constraints: the difference Δt between the maximum temperature and the minimum temperature of the melt and the magnetic field strength M. Crystal growth rate, crystal rotation speed, rutsubo rotation speed, furnace pressure in the puller, amount of inert gas flowing during crystal growth, etc., other than minute oxygen concentration distribution, such as macroscopic oxygen distribution and crystal defects, etc. There are no restrictions on the operating parameters that greatly affect the crystal quality of. Of course, it is not denied that these operating parameters also affect the minute oxygen concentration distribution, but since the temperature difference Δt and the magnetic field strength M, which have a greater effect, are specified, these operating parameters are used to make a minute amount. It is basically possible to freely control the quality other than the oxygen concentration distribution.

また、このとき、前記比Δt/Mの算出を、シリコン単結晶の製造に用いる引上機構成において、初期融液量における石英ルツボの温度分布をシミュレーションにより求め、該求めた石英ルツボの温度分布の最高温度を前記シリコン溶融液の最高温度とし、固液界面での温度を前記シリコン溶融液の最低温度とし、その差分を前記Δt、前記シリコン溶融液の中心磁場強度を前記Mとして算出することが好ましい。 Further, at this time, the calculation of the ratio Δt / M was performed by simulating the temperature distribution of the quartz rubbish at the initial melt amount in the pulling machine configuration used for manufacturing the silicon single crystal, and the temperature distribution of the quartz rubbish obtained. The maximum temperature of the silicon melt is the maximum temperature of the silicon melt, the temperature at the solid-liquid interface is the minimum temperature of the silicon melt, the difference is Δt, and the central magnetic field strength of the silicon melt is M. Is preferable.

比Δt/Mをこのように算出すれば、シリコン単結晶の酸素縞平坦化製造条件を精度よく決定することができる。 By calculating the ratio Δt / M in this way, it is possible to accurately determine the oxygen fringe flattening production conditions for the silicon single crystal.

対流の強さは、先に示したように、Δt/Mである程度予想される。ただし、単純にこの数値だけで対流の強さが決まるわけではなく、メルトの量にも依存する。つまりメルトの量が多ければ対流が強くなるし、メルトの量が少なければ対流が弱くなる。従って、対流が最も強いと考えられる初期融液量の状態でΔt/Mを計算することが好ましい。 The strength of convection is expected to some extent at Δt / M, as shown above. However, this value alone does not determine the strength of convection, it also depends on the amount of melt. That is, if the amount of melt is large, the convection becomes strong, and if the amount of melt is small, the convection becomes weak. Therefore, it is preferable to calculate Δt / M in the state of the initial melt amount in which convection is considered to be the strongest.

また、Δtを求めるために、温度を実測することができればそれに越したことはないが、一般的には、メルト中の最高温度の位置を探し出して温度を実測することはほぼ不可能である。従って、シミュレーションを用いて求めることが現実的である。 Further, it is better if the temperature can be actually measured in order to obtain Δt, but in general, it is almost impossible to find the position of the highest temperature in the melt and actually measure the temperature. Therefore, it is realistic to obtain it by using a simulation.

また、CZ法では、一般的に黒鉛ルツボに入れられた石英ルツボの中にメルトが入れられている。これを黒鉛ルツボの外側からヒーターで加熱している。従って、一般にメルト中の最高温度を示す点は石英ルツボと接触している点である。 Further, in the CZ method, the melt is generally put in a quartz crucible put in a graphite crucible. This is heated by a heater from the outside of the graphite crucible. Therefore, in general, the point indicating the maximum temperature in the melt is the point where it is in contact with the quartz crucible.

従って、ここではシミュレーションによる石英ルツボの最高温度をメルト最高温度として用いることが可能である。これは計算のための要素が多い(つまりは3次元シミュレーションであれば容積、2次元シミュレーションであれば断面積の大きい)メルトでの最高温度を求めるよりは、計算のための要素が少ない石英ルツボでの最高温度を求める方が簡単であるからである。もちろん、きちんとメルト最高温度を求めて、その温度を用いても良いことは明らかである。 Therefore, here, it is possible to use the maximum temperature of the quartz crucible by simulation as the maximum melt temperature. This is a quartz rutsubo with many elements for calculation (that is, volume for 3D simulation and large cross-sectional area for 2D simulation) rather than finding the maximum temperature in a melt. This is because it is easier to find the maximum temperature in. Of course, it is clear that the maximum melt temperature may be obtained and that temperature may be used.

一方、メルトの最低温度としては、固液界面の温度を用いることができる。一般に固液界面は液体と固体が接触している部分で、温度としては融点であり、メルト中で最も温度が低いと考えられる。従って、固液界面での温度、つまり融点をメルト最低温度として用い、メルト最高温度(ここではシミュレーションで求めた石英ルツボの最高温度で代用した温度)との差分をΔtとして用いることができる。もちろん、きちんとシミュレーションでメルト最低温度を求めて、その温度を用いても良いことは明らかである。 On the other hand, the temperature at the solid-liquid interface can be used as the minimum temperature of the melt. Generally, the solid-liquid interface is a portion where a liquid and a solid are in contact with each other, and the temperature is the melting point, which is considered to be the lowest temperature in the melt. Therefore, the temperature at the solid-liquid interface, that is, the melting point can be used as the melt minimum temperature, and the difference from the melt maximum temperature (here, the temperature substituted by the maximum temperature of the quartz crucible obtained in the simulation) can be used as Δt. Of course, it is clear that the minimum melt temperature can be obtained by simulation and used at that temperature.

更に、磁場強度Mとしてメルトの中心磁場強度を用いることができる。メルトにかけられる磁場強度は、一般に分布を持っている。従って、より正確に計算を行なうためには、メルトにかかる、しかも、対流の向きを考慮した磁場成分を、メルト全体に対して積分したような値を、対流を抑制する実効的な磁場強度として用いることが考えられる。しかし現実的にはそれを一々計算することは容易ではない。従って、ここではメルトの中心磁場強度を、対流を抑制する能力と仮定してΔt/Mの比を算出し、この値が小さい条件を酸素縞を平坦化する製造条件として求めることができる。 Further, the central magnetic field strength of the melt can be used as the magnetic field strength M. The magnetic field strength applied to the melt generally has a distribution. Therefore, in order to perform the calculation more accurately, the value obtained by integrating the magnetic field component applied to the melt and considering the direction of convection with respect to the entire melt is set as the effective magnetic field strength for suppressing convection. It is conceivable to use it. However, in reality, it is not easy to calculate it one by one. Therefore, here, the central magnetic field strength of the melt is assumed to be the ability to suppress convection, and the ratio of Δt / M can be calculated, and the condition where this value is small can be obtained as the production condition for flattening the oxygen fringes.

温度差Δtは基本的に引上機構成で決まるため、操業中に大きく変化することはない。もちろん、正確には、結晶育成に伴うメルトの減少によりΔtは変化するが、ここでは最も対流が強い初期融液量の条件でシミュレーションして決定するので、メルト量が減っていく分には、酸素縞が悪化する方向にはなりにくい。従って、例えば操業中に磁場強度を低下させることも可能である。 Since the temperature difference Δt is basically determined by the pull-up machine configuration, it does not change significantly during operation. Of course, to be precise, Δt changes due to the decrease in melt due to crystal growth, but here it is determined by simulation under the condition of the initial melt amount with the strongest convection. Oxygen fringes are unlikely to worsen. Therefore, for example, it is possible to reduce the magnetic field strength during operation.

また、前記比Δt/Mで育成されたシリコン単結晶中の酸素縞を、前記比Δt/Mで育成されたシリコン単結晶から切出したシリコン単結晶ウェーハサンプルをFT−IR法を用いて2mmピッチで酸素濃度を測定することで取得し、該測定した酸素濃度の6mm間隔の酸素濃度勾配値を求め、該求めた酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下となるように比Δt/Mの条件を設定することが好ましい。 Further, the oxygen fringes in the silicon single crystal grown at the ratio Δt / M are cut out from the silicon single crystal grown at the ratio Δt / M, and the silicon single crystal wafer sample is cut out at a pitch of 2 mm by the FT-IR method. Obtained by measuring the oxygen concentration in the above, the oxygen concentration gradient value of the measured oxygen concentration at 6 mm intervals was obtained, and the maximum in-plane value of the obtained oxygen concentration gradient value was 0.04 (ppma-JEIDA / mm). It is preferable to set the condition of the ratio Δt / M so as to be as follows.

比Δt/Mの条件をこのように設定すれば、より確実に酸素縞が低減されたシリコン単結晶を製造することができる酸素縞平坦化製造条件を決定することができる。
以下、実験例を用いて、そのことを説明する。
By setting the condition of the ratio Δt / M in this way, it is possible to determine the oxygen fringe flattening production condition capable of more reliably producing the silicon single crystal with reduced oxygen fringes.
This will be described below using an experimental example.

(実験例)
図3に概略図を示した引上機構成のシリコン単結晶育成装置を用い、内径が約780mm石英ルツボを用いて、MCZ法により、種々の最終製品直径が300mmであるシリコン単結晶を育成した。
(Experimental example)
Using a silicon single crystal growing device having a pull-up machine configuration shown in FIG. 3, and using a quartz crucible having an inner diameter of about 780 mm, various final product diameters of 300 mm were grown by the MCZ method. ..

図3に示すシリコン単結晶育成装置14の外観は、メインチャンバー1、トップチャンバー11、これに連通する引上げチャンバー2で構成されている。メインチャンバー1の内部には、黒鉛ルツボ6及び石英ルツボ5が設置されている。黒鉛ルツボ6及び石英ルツボ5を囲むように加熱ヒーター7が設けられており、加熱ヒーター7によって、石英ルツボ5内に収容された原料シリコン多結晶が溶融されて原料融液4とされる。また、断熱部材8が設けられており、ヒーター7からの輻射熱のメインチャンバー1等への影響を防いでいる。 The appearance of the silicon single crystal growing device 14 shown in FIG. 3 is composed of a main chamber 1, a top chamber 11, and a pulling chamber 2 communicating with the main chamber 11. A graphite crucible 6 and a quartz crucible 5 are installed inside the main chamber 1. A heating heater 7 is provided so as to surround the graphite crucible 6 and the quartz crucible 5, and the heating heater 7 melts the raw material silicon polycrystalline contained in the quartz crucible 5 to obtain the raw material melt 4. Further, a heat insulating member 8 is provided to prevent the influence of the radiant heat from the heater 7 on the main chamber 1 and the like.

また、MCZ法によって結晶を育成するに際し、不図示の磁場印加装置によって磁場を印加する。 Further, when growing a crystal by the MCZ method, a magnetic field is applied by a magnetic field application device (not shown).

原料融液4の融液面上では遮蔽部材13が、融液面に所定間隔で対向配置され、原料融液4の融液面からの輻射熱を遮断している。このルツボ中に種結晶を浸漬した後、本発明の酸素縞平坦化製造条件の決定方法により求めた条件下で、原料融液(メルト)4から棒状の単結晶棒3が引き上げられる。ルツボは結晶成長軸方向に昇降可能であり、単結晶の成長が進行して減少した原料融液4の液面下降分を補うように、成長中にルツボを上昇させることにより、原料融液4の融液面の高さはおおよそ一定に保たれる。 On the melt surface of the raw material melt 4, shield members 13 are arranged to face the melt surface at predetermined intervals to block radiant heat from the melt surface of the raw material melt 4. After immersing the seed crystal in the crucible, the rod-shaped single crystal rod 3 is pulled up from the raw material melt 4 under the conditions determined by the method for determining the oxygen stripe flattening production conditions of the present invention. The crucible can be raised and lowered in the direction of the crystal growth axis, and the crucible is raised during the growth so as to compensate for the decrease in the liquid level of the raw material melt 4 as the growth of the single crystal progresses, so that the raw material melt 4 The height of the melt surface is kept approximately constant.

さらに、単結晶育成時にパージガスとしてアルゴンガス等の不活性ガスが、ガス導入口10から導入され、引き上げ中の単結晶棒3とガスパージ筒12との間を通過した後、遮蔽部材13と原料融液4の融液面との間を通過し、ガス流出口9から排出している。導入するガスの流量と、不図示のポンプや弁によるガスの排出量を制御することにより、引上げ中のチャンバー内の圧力が制御される。 Further, an inert gas such as argon gas is introduced as a purge gas during single crystal growth, passes between the single crystal rod 3 being pulled up and the gas purge cylinder 12, and then the shielding member 13 and the raw material are fused. It passes between the melt surface of the liquid 4 and is discharged from the gas outlet 9. By controlling the flow rate of the gas to be introduced and the amount of gas discharged by a pump or valve (not shown), the pressure in the chamber during pulling is controlled.

シリコン単結晶育成装置の概略図としては図3の通りだが、実際には引上機の中にセットされるHZは種々のタイプがある。そこでシリコン単結晶製造に用いたそれぞれの引上機構成の初期融液量における温度分布を、FEMAG(総合伝熱解析ソフト:F.Dupret, P.Nicodeme, Y.Ryckmans, P.Wouters, and M.J.Crochet, Int. J. Heat Mass Transfer, 33, 1849(1990))を用いた総合伝熱解析により求めた。 The schematic diagram of the silicon single crystal growing apparatus is as shown in FIG. 3, but in reality, there are various types of HZ set in the pulling machine. Therefore, the temperature distribution in the initial melt amount of each pulling machine configuration used for silicon single crystal production is described in FEMAG (Comprehensive heat transfer analysis software: F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters, and M. It was determined by comprehensive heat transfer analysis using J. Crochet, Int. J. Heat Mass Transfer, 33, 1849 (1990)).

シミュレーションにより求められた石英ルツボの最高温度をシリコン溶融液の最高温度とし、シリコンの融点といわれる1685K(1412℃)との差分をΔtとして求めた。その結果、この実験例に用いた引上機構成での初期融液量におけるΔtは125〜185(K)の範囲で振れていた。またシリコン単結晶を育成した際の磁場強度Mはシリコン溶融液の中心磁場強度とし、中心磁場強度は2500−4000gaussの範囲で振った。なお、ここでは中心磁場強度を結晶育成中に変更せず、一定としてシリコン単結晶製造した。これらの結果を用いて、各結晶を育成した製造条件での比Δt/Mを算出した。 The maximum temperature of the quartz crucible determined by simulation was defined as the maximum temperature of the silicon melt, and the difference from 1685 K (1412 ° C.), which is the melting point of silicon, was determined as Δt. As a result, Δt in the initial melt volume in the pull-up machine configuration used in this experimental example fluctuated in the range of 125 to 185 (K). Further, the magnetic field strength M when the silicon single crystal was grown was defined as the central magnetic field strength of the silicon melt, and the central magnetic field strength was shaken in the range of 2500-4000 gauss. Here, the central magnetic field strength was not changed during crystal growth, and a silicon single crystal was produced as a constant. Using these results, the ratio Δt / M under the production conditions in which each crystal was grown was calculated.

これらのシリコン単結晶をFT−IR法を用いて評価した。その評価方法は以下の通りである。まず育成したシリコン単結晶から切出したおよそ1mm厚さのシリコン単結晶ウェーハサンプルに鏡面加工を施した後、1/4形状に分割した。次に、FT−IR法により、シリコン単結晶ウェーハサンプルの径方向に2mmピッチで走査させ、1107cm−1にある格子間酸素に起因するピークを用いて格子間酸素濃度を測定した。その際、空間分解能がmmオーダーである一般的なFT−IR法ではなく、所謂顕微FT−IR法やμFT−IR法などと呼ばれる方法で、空間分解能を100μm×100μmとし、酸素濃度の測定ばらつきを0.01ppma以下に抑えて測定した。これは、1つの測定点がmmオーダー領域の平均値となってしまう空間分解能がmmオーダーの測定法よりも、所謂顕微FT−IR法やμFT−IR法などと呼ばれる方法の方が、mmオーダーの酸素濃度勾配をより正確に求められるためである。 These silicon single crystals were evaluated using the FT-IR method. The evaluation method is as follows. First, a silicon single crystal wafer sample having a thickness of about 1 mm cut out from the grown silicon single crystal was mirror-finished, and then divided into 1/4 shapes. Next, the silicon single crystal wafer sample was scanned at a pitch of 2 mm in the radial direction by the FT-IR method, and the interstitial oxygen concentration was measured using the peak caused by the interstitial oxygen at 1107 cm-1. At that time, instead of the general FT-IR method in which the spatial resolution is on the order of mm, the so-called microscopic FT-IR method or μFT-IR method is used to set the spatial resolution to 100 μm × 100 μm and the measurement variation of the oxygen concentration. Was suppressed to 0.01 ppma or less and measured. This is because the so-called microscopic FT-IR method, μFT-IR method, etc. have a mm order rather than a measurement method in which one measurement point is the average value of the mm order region and the spatial resolution is on the mm order. This is because the oxygen concentration gradient of can be obtained more accurately.

このとき、シリコン単結晶ウェーハサンプルのサンプル端部ではエッジの影響等により値が不正確な場合があるので、公正を期すために、外周部、サンプル端部の十数mm程度の値は省いた。この測定方法で求められた酸素濃度値から6mm間隔の酸素濃度勾配を求め、その面内の最大値を酸素縞指標として求めた。 At this time, the value may be inaccurate at the sample end of the silicon single crystal wafer sample due to the influence of the edge, etc., so for the sake of fairness, the values of about 10 mm at the outer peripheral portion and the sample end are omitted. .. The oxygen concentration gradient at 6 mm intervals was obtained from the oxygen concentration value obtained by this measurement method, and the maximum value in the plane was obtained as an oxygen fringe index.

特許文献3にあるように酸素縞による撮像素子等のデバイスへの悪影響を抑えるため4−10mmの酸素濃度勾配を抑制することが重要である。図1には、実験例に記載した評価方法を用いて、FT−IR法により測定した2mmピッチの酸素濃度面内分布を示した。図2には、この測定値から求められた6mm間隔の酸素濃度勾配の面内分布を示した。 As described in Patent Document 3, it is important to suppress an oxygen concentration gradient of 4-10 mm in order to suppress an adverse effect of oxygen fringes on a device such as an image sensor. FIG. 1 shows the in-plane distribution of oxygen concentration at a pitch of 2 mm measured by the FT-IR method using the evaluation method described in the experimental example. FIG. 2 shows the in-plane distribution of the oxygen concentration gradient at 6 mm intervals obtained from this measured value.

上記実験例のそれぞれの引上機構成において、Δt及びMを振って引き上げたシリコン単結晶のうち、FT−IR法による評価で、小さな酸素濃度の面内変動を示す一例を実験例1、実験例1よりも大きな酸素濃度の面内変動を示す別の一例を実験例2として図1及び2に示した。 In each of the above experimental examples, among the silicon single crystals pulled up by shaking Δt and M, an example showing a small in-plane fluctuation of oxygen concentration by the FT-IR method is shown in Experimental Example 1 and Experiment. Another example showing an in-plane fluctuation of oxygen concentration larger than that of Example 1 is shown in FIGS. 1 and 2 as Experimental Example 2.

実験例1に示したシリコン単結晶は酸素濃度の面内変動が小さい結晶であり、このシリコン単結晶から切出されたシリコン単結晶ウェーハで撮像素子を作製したところ、酸素縞起因と思われる不良は発生しなかった。一方で実験例2に示したシリコン単結晶は酸素濃度の面内変動が大きい結晶であり、この結晶から切出されたシリコン単結晶ウェーハで撮像素子を作製したところ、酸素縞起因と思われる不良が発生した。しかし、実験例2のシリコン単結晶においても全量不良というわけではなく、部分的な不良であった。その不良分布と図2の分布との比較から、6mm間隔の酸素濃度勾配がおおよそ0.05(ppma−JEIDA/mm)以上の大きい部分で不良が発生しており、0.03(ppma−JEIDA/mm)以下の小さい部分では不良が発生していないように分析された。 The silicon single crystal shown in Experimental Example 1 is a crystal in which the in-plane fluctuation of the oxygen concentration is small. Did not occur. On the other hand, the silicon single crystal shown in Experimental Example 2 is a crystal in which the in-plane fluctuation of the oxygen concentration is large. There has occurred. However, even in the silicon single crystal of Experimental Example 2, not all of them were defective, but they were partially defective. From the comparison between the defect distribution and the distribution in FIG. 2, defects occur in a portion where the oxygen concentration gradient at 6 mm intervals is approximately 0.05 (ppma-JEIDA / mm) or more, and 0.03 (ppma-JEIDA). It was analyzed so that no defects occurred in the small part of / mm) or less.

従って、育成された結晶の酸素濃度勾配値の最大値(酸素縞指標)が0.04(ppma−JEIDA/mm)以下であるようなウェーハでは、酸素濃度勾配値が0.03(ppma−JEIDA/mm)以上になる箇所はほとんどなく、その平均値は十分に小さいので、撮像素子作製に適したウェーハであると考えられる。 Therefore, in a wafer in which the maximum value (oxygen fringe index) of the oxygen concentration gradient value of the grown crystal is 0.04 (ppma-JEIDA / mm) or less, the oxygen concentration gradient value is 0.03 (ppma-JEIDA). Since there are almost no places where the value exceeds / mm) and the average value is sufficiently small, it is considered that the wafer is suitable for manufacturing an image pickup element.

また、従来、酸素濃度勾配値を0.02(ppma−JEIDA/mm)以下まで低くすることは困難であったが、本発明の方法であれば、図2の実験例1に示されるように、酸素縞指標が0.02(ppma−JEIDA/mm)以下と極めて良好なシリコン単結晶ウェーハを作製することができる。 Further, conventionally, it has been difficult to reduce the oxygen concentration gradient value to 0.02 (ppma-JEIDA / mm) or less, but in the case of the method of the present invention, as shown in Experimental Example 1 of FIG. , An extremely good silicon single crystal wafer having an oxygen fringe index of 0.02 (ppma-JEIDA / mm) or less can be produced.

また、前記比Δt/Mを、0.05(K/gauss)以下とすることが好ましい。 Further, the ratio Δt / M is preferably 0.05 (K / gauss) or less.

このような比Δt/Mとすれば、より確実に酸素縞を低減されたシリコン単結晶を製造することができる酸素縞平坦化製造条件を決定することができる。 With such a ratio Δt / M, it is possible to determine the oxygen fringe flattening production conditions capable of more reliably producing a silicon single crystal with reduced oxygen fringes.

上記実験例の方法で求めたΔt及びMを振ったそれぞれの引上機構成での酸素縞指標を比Δt/Mに対してプロットした。図4に結果を示すように、シミュレーションに用いた総合伝熱解析ソフトFEMAGを用いて計算したΔtと、磁場強度Mとしての中心磁場強度との比のΔt/Mに対して、酸素縞指標をプロットすると、両者の間には良い相関があった。図4の点線で示される相関関係から、比Δt/Mが0.05(K/gauss)程度以下であれば、酸素濃度指標0.04(ppma−JEIDA/mm)以下であるシリコン単結晶を得られることがわかった。従ってΔt/Mが0.05(K/gauss)以下である製造条件とすることが好ましい。 The oxygen fringe index in each of the pull-up machine configurations obtained by shaking Δt and M obtained by the method of the above experimental example was plotted against the ratio Δt / M. As shown in FIG. 4, the oxygen fringe index is calculated for Δt / M, which is the ratio of Δt calculated using the comprehensive heat transfer analysis software FEMAG used in the simulation to the central magnetic field strength as the magnetic field strength M. When plotted, there was a good correlation between the two. From the correlation shown by the dotted line in FIG. 4, if the ratio Δt / M is about 0.05 (K / gauss) or less, a silicon single crystal having an oxygen concentration index of 0.04 (ppma-JEIDA / mm) or less can be obtained. It turned out to be obtained. Therefore, it is preferable to set the production conditions so that Δt / M is 0.05 (K / gauss) or less.

なお中心磁場強度は、対流抑制の効果を十分に得るため、最低でも500gauss以上あることが好ましい。一方で、中心磁場強度は6000gauss以下が好ましい。このような磁場強度であれば、対流が抑制されすぎてメルト内に酸素濃度の不均一が蓄積され、それが印加している磁場強度で抑えきれなくなったときに、一挙に開放されて逆に不均一性が増強される現象の発生を防止することができる。またΔtは、最低でも50K以上あることが望ましい。このようなΔtであれば、結晶育成中に固化が発生してしまうこともない。またメルト最高温度、つまりはルツボ最高温度を、ルツボ軟化点以下とすることが好ましい。これにより、ルツボの軟化も抑制できる。 The central magnetic field strength is preferably at least 500 gauss or more in order to sufficiently obtain the effect of suppressing convection. On the other hand, the central magnetic field strength is preferably 6000 gauss or less. With such a magnetic field strength, when convection is suppressed too much and non-uniformity of oxygen concentration is accumulated in the melt and it cannot be suppressed by the applied magnetic field strength, it is released at once and conversely. It is possible to prevent the occurrence of a phenomenon in which non-uniformity is enhanced. Further, it is desirable that Δt is at least 50K or more. With such Δt, solidification does not occur during crystal growth. Further, it is preferable that the maximum melt temperature, that is, the maximum crucible temperature is set to be equal to or lower than the crucible softening point. As a result, the softening of the crucible can be suppressed.

ただし、ここで示した温度は、本発明者が計算に用いた条件の下で計算値である。これらの値は計算条件によって、大きく変化するので、ここで示した値は絶対的なものではなく、あくまで参考値であり、このような考え方の操業条件決定法は、全てこの技術の範疇に入る。 However, the temperature shown here is a calculated value under the conditions used in the calculation by the present inventor. Since these values change greatly depending on the calculation conditions, the values shown here are not absolute but are reference values only, and all operating condition determination methods based on this concept fall into the category of this technology. ..

また、本発明は、上記の酸素縞平坦化操業条件の決定方法を用いて前記比Δt/Mの条件を予め決定し、該決定した比Δt/Mの条件に基づいて、磁場印加チョクラルスキー法によりシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法を提供する。 Further, in the present invention, the condition of the ratio Δt / M is determined in advance by using the method for determining the oxygen fringe flattening operating condition, and the magnetic field applied Czochralski is based on the determined condition of the ratio Δt / M. Provided is a method for producing a silicon single crystal, which comprises growing a silicon single crystal by a method.

このようなシリコン単結晶の製造方法であれば、予め決定された比Δt/Mの条件を用いることで、酸素縞が低減されたシリコン単結晶を製造することができる。 With such a method for producing a silicon single crystal, a silicon single crystal with reduced oxygen fringes can be produced by using a condition of a predetermined ratio Δt / M.

シリコン単結晶の製造方法で用いる製造装置は、例えば、上記した図3のシリコン単結晶育成装置14を用いることができる。 As the manufacturing apparatus used in the method for producing a silicon single crystal, for example, the silicon single crystal growing apparatus 14 of FIG. 3 described above can be used.

また、本発明は、酸素を含むシリコン単結晶ウェーハであって、該シリコン単結晶ウェーハの6mm間隔の酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下であることを特徴とするシリコン単結晶ウェーハを提供する。 Further, the present invention is a silicon single crystal wafer containing oxygen, and the maximum in-plane oxygen concentration gradient value of the silicon single crystal wafer at 6 mm intervals is 0.04 (ppma-JEIDA / mm) or less. Provided is a silicon single crystal wafer characterized by.

酸素縞指標が0.04(ppma−JEIDA/mm)以下であれば、撮像素子を作製しても画像ムラなどの不良が少なく、デバイスに適したウェーハであると言えるし、酸素縞指標が0.04(ppma−JEIDA/mm)を超えるウェーハは、撮像素子を作製すると画像ムラなどの不良が発生し、デバイスに適したウェーハではないと言える。 If the oxygen fringe index is 0.04 (ppma-JEIDA / mm) or less, it can be said that the wafer is suitable for the device because there are few defects such as image unevenness even if the image sensor is manufactured, and the oxygen fringe index is 0. It can be said that a wafer exceeding .04 (ppma-JEIDA / mm) is not a wafer suitable for a device because defects such as image unevenness occur when an image sensor is manufactured.

以下、実施例及び比較例を示して、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1)
図4の関係から、酸素縞が平坦化された良好な結晶を得ることを行なった。実験例に用いた引上機構成の中からFEMAGを用いて計算した初期融液量における温度差Δt=137.4(K)であるHZ(ホットゾーン)構成のものを用いて、中心磁場強度Mを4000(gauss)一定として結晶を育成することとした。この時の比Δt/Mは0.034(K/gauss)であり、0.05(K/gauss)を下回っているので、良好な酸素縞品質が期待される。
(Example 1)
From the relationship shown in FIG. 4, good crystals with flattened oxygen stripes were obtained. Central magnetic field strength using the HZ (hot zone) configuration with a temperature difference Δt = 137.4 (K) in the initial melt volume calculated using FEMAG from the puller configuration used in the experimental example. It was decided to grow crystals with M constant at 4000 (gauss). At this time, the ratio Δt / M is 0.034 (K / gauss), which is less than 0.05 (K / gauss), so that good oxygen fringe quality is expected.

この条件で育成したシリコン単結晶から実験例と同じ評価方法で酸素縞指標を求めたところ、0.022(ppma−JEIDA/mm)と0.04(ppma−JEIDA/mm)を下回る値が得られた。この結晶から切出されたウェーハを撮像素子のプロセスに投入したところ、不良品の少ない良好な結果を得ることができた。 When the oxygen fringe index was obtained from the silicon single crystal grown under these conditions by the same evaluation method as in the experimental example, values lower than 0.022 (ppma-JEIDA / mm) and 0.04 (ppma-JEIDA / mm) were obtained. Was done. When the wafer cut out from this crystal was put into the process of the image sensor, good results with few defective products could be obtained.

(比較例1)
図3に概略図を示した引上機構成のシリコン単結晶育成装置を用い、内径が約780mm石英ルツボを用いて最終製品直径300mm結晶を育成した。この時、比Δt/Mという指標を気にすることなく結晶を育成した。後から確認したところ、FEMAGを用いて計算した初期湯量における温度差Δt=183.6(K)であり、中心磁場強度Mは2500(gauss)一定であった。これらから計算される比Δt/Mは0.073(K/gauss)であり、0.05(K/gauss)を上回っていた。
(Comparative Example 1)
Using a silicon single crystal growing device having a pull-up machine configuration shown in FIG. 3, a crystal having a final product diameter of 300 mm was grown using a quartz crucible having an inner diameter of about 780 mm. At this time, the crystals were grown without worrying about the index of the ratio Δt / M. As confirmed later, the temperature difference Δt = 183.6 (K) in the initial amount of hot water calculated using FEMAG, and the central magnetic field strength M was constant at 2500 (gauss). The ratio Δt / M calculated from these was 0.073 (K / gauss), which was higher than 0.05 (K / gauss).

この条件で育成した結晶から、実験例と同じ評価方法で酸素縞指標を求めたところ、0.078(ppma−JEIDA/mm)と0.04(ppma−JEIDA/mm)を上回る値となってしまっていた。この結晶から切出されたシリコン単結晶ウェーハを撮像素子のプロセスに投入したところ、不良品が多く良好な結果を得ることができなかった。 When the oxygen fringe index was obtained from the crystals grown under these conditions by the same evaluation method as in the experimental example, the values exceeded 0.078 (ppma-JEIDA / mm) and 0.04 (ppma-JEIDA / mm). It was closed. When the silicon single crystal wafer cut out from this crystal was put into the process of the image sensor, there were many defective products and good results could not be obtained.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

1…メインチャンバー、 2…引上げチャンバー、 3…単結晶棒、
4…原料融液(メルト)、 5…石英ルツボ、 6…黒鉛ルツボ、
7…加熱ヒーター、 8…断熱部材、 9…ガス流出口、 10…ガス導入口、
11…トップチャンバー、 12…ガスパージ筒、 13…遮蔽部材、
14…シリコン単結晶育成装置(引上機)。
1 ... Main chamber, 2 ... Pull-up chamber, 3 ... Single crystal rod,
4 ... Raw material melt (melt), 5 ... Quartz crucible, 6 ... Graphite crucible,
7 ... Heater, 8 ... Insulation member, 9 ... Gas outlet, 10 ... Gas inlet,
11 ... Top chamber, 12 ... Gas purge cylinder, 13 ... Shielding member,
14 ... Silicon single crystal growing device (pulling machine).

Claims (5)

磁場印加チョクラルスキー法によるシリコン単結晶の製造におけるシリコン単結晶の酸素縞平坦化製造条件の決定方法であって、
シリコン溶融液の最高温度と最低温度との温度差をΔt、
磁場強度をMとして、
前記Δtと前記Mとの比Δt/Mを算出し、
該比Δt/Mと前記比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、該相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定することを特徴とする酸素縞平坦化製造条件の決定方法。
It is a method for determining the oxygen fringe flattening production condition of a silicon single crystal in the production of a silicon single crystal by the magnetic field application Czochralski method.
The temperature difference between the maximum temperature and the minimum temperature of the silicon melt is Δt,
Let the magnetic field strength be M
The ratio Δt / M of the Δt and the M was calculated, and the ratio was calculated.
The correlation between the ratio Δt / M and the oxygen fringes in the silicon single crystal grown at the ratio Δt / M was obtained, and the condition of the ratio Δt / M from which the desired silicon single crystal was obtained was determined based on the correlation. A method for determining oxygen stripe flattening production conditions, which comprises setting and determining oxygen stripe flattening production conditions for a silicon single crystal.
前記比Δt/Mの算出を、シリコン単結晶の製造に用いる引上機構成において、初期融液量における石英ルツボの温度分布をシミュレーションにより求め、該求めた石英ルツボの温度分布の最高温度を前記シリコン溶融液の最高温度とし、固液界面での温度を前記シリコン溶融液の最低温度とし、その差分を前記Δt、前記シリコン溶融液の中心磁場強度を前記Mとして算出することを特徴とする請求項1に記載の酸素縞平坦化製造条件の決定方法。 The calculation of the ratio Δt / M was performed by simulating the temperature distribution of the quartz ruts at the initial melt amount in the pulling machine configuration used for manufacturing the silicon single crystal, and the maximum temperature of the obtained quartz ruts was obtained as described above. A claim characterized in that the maximum temperature of the silicon melt is set, the temperature at the solid-liquid interface is set as the minimum temperature of the silicon melt, the difference is calculated as Δt, and the central magnetic field strength of the silicon melt is calculated as M. Item 2. The method for determining the oxygen fringe flattening production condition according to Item 1. 前記比Δt/Mで育成されたシリコン単結晶中の酸素縞を、前記比Δt/Mで育成されたシリコン単結晶から切出したシリコン単結晶ウェーハサンプルをFT−IR法を用いて2mmピッチで酸素濃度を測定することで取得し、該測定した酸素濃度の6mm間隔の酸素濃度勾配値を求め、該求めた酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下となるように比Δt/Mの条件を設定することを特徴とする請求項1又は請求項2に記載の酸素縞平坦化製造条件の決定方法。 Oxygen fringes in the silicon single crystal grown at the ratio Δt / M are cut out from the silicon single crystal grown at the ratio Δt / M, and oxygen is oxygenated at a pitch of 2 mm using the FT-IR method. Obtained by measuring the concentration, the oxygen concentration gradient value of the measured oxygen concentration at 6 mm intervals was obtained, and the maximum in-plane value of the obtained oxygen concentration gradient value was 0.04 (ppma-JEIDA / mm) or less. The method for determining the oxygen fringe flattening production condition according to claim 1 or 2, wherein the condition of the ratio Δt / M is set so as to be. 前記比Δt/Mを、0.05(K/gauss)以下とすることを特徴とする請求項1から請求項3のいずれか一項に記載の酸素縞平坦化製造条件の決定方法。 The method for determining oxygen stripe flattening production conditions according to any one of claims 1 to 3, wherein the ratio Δt / M is 0.05 (K / gauss) or less. 請求項1から請求項4のいずれか一項に記載の酸素縞平坦化操業条件の決定方法を用いて前記比Δt/Mの条件を予め決定し、該決定した比Δt/Mの条件に基づいて、磁場印加チョクラルスキー法によりシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法。 The condition of the ratio Δt / M is determined in advance using the method for determining the oxygen fringe flattening operating condition according to any one of claims 1 to 4 , and based on the determined condition of the ratio Δt / M. A method for producing a silicon single crystal, which comprises growing a silicon single crystal by a magnetic field applied Czochralski method.
JP2018123935A 2018-06-29 2018-06-29 A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same. Active JP6919629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123935A JP6919629B2 (en) 2018-06-29 2018-06-29 A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123935A JP6919629B2 (en) 2018-06-29 2018-06-29 A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.

Publications (2)

Publication Number Publication Date
JP2020001977A JP2020001977A (en) 2020-01-09
JP6919629B2 true JP6919629B2 (en) 2021-08-18

Family

ID=69098555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123935A Active JP6919629B2 (en) 2018-06-29 2018-06-29 A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.

Country Status (1)

Country Link
JP (1) JP6919629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111962140A (en) 2020-08-28 2020-11-20 晶科绿能(上海)管理有限公司 Continuous crystal pulling apparatus and method for continuously pulling crystal rod

Also Published As

Publication number Publication date
JP2020001977A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
KR100848435B1 (en) Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length
JP5167651B2 (en) Method for measuring distance between heat shield member lower end surface and raw material melt surface, and method for controlling the distance
JP4808917B2 (en) Method for producing single crystal composed of silicon doped with readily volatile impurities, single crystal of this kind and semiconductor wafer produced therefrom
JP5946001B2 (en) Method for producing silicon single crystal rod
KR100818677B1 (en) Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
JP4380537B2 (en) Method for producing silicon single crystal
JP5120337B2 (en) Silicon single crystal manufacturing method, silicon single crystal temperature estimation method
CN107109687A (en) The crystal growth system and method for ingot interface shape can be controlled
JP4930487B2 (en) Method for measuring distance between melt surface and lower end of in-furnace structure, method for controlling position of melt surface using the same, method for producing single crystal and single crystal production apparatus
KR20090069313A (en) Apparatus for producing single crystal and method for producing single crystal
JP6919629B2 (en) A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.
JP5145721B2 (en) Method and apparatus for producing silicon single crystal
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP6135611B2 (en) Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them
JP2020114802A (en) Method for manufacturing silicon single crystal
JP6256284B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface and method for producing silicon single crystal
KR100912345B1 (en) Prediction method of oxygen concentration by process parameter in single crystal growing and computer readable record medium on which a program therefor is recorded
WO2019167986A1 (en) Method of controlling convection patterns of silicon melt and method of manufacturing silicon single crystal
JP5928363B2 (en) Evaluation method of silicon single crystal wafer
TW202231945A (en) Method for estimating oxygen concentration in silicon single crystal, method for producing silicon single crystal, and apparataus for producing silicon single crystal
JP4715528B2 (en) Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof
JP2009269802A (en) Method and apparatus for manufacturing single crystal
KR100549260B1 (en) A method of producing silicon single crystal
JP5509636B2 (en) Defect analysis method of silicon single crystal
JP7052694B2 (en) Method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6919629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150