JP6915778B2 - Method for manufacturing microorganism-containing purifying material and method for purifying water to be treated - Google Patents

Method for manufacturing microorganism-containing purifying material and method for purifying water to be treated Download PDF

Info

Publication number
JP6915778B2
JP6915778B2 JP2017125870A JP2017125870A JP6915778B2 JP 6915778 B2 JP6915778 B2 JP 6915778B2 JP 2017125870 A JP2017125870 A JP 2017125870A JP 2017125870 A JP2017125870 A JP 2017125870A JP 6915778 B2 JP6915778 B2 JP 6915778B2
Authority
JP
Japan
Prior art keywords
microorganism
oligosaccharide
purifying
mixture
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017125870A
Other languages
Japanese (ja)
Other versions
JP2019005723A (en
Inventor
高島 伴治
伴治 高島
優 水沢
優 水沢
良 上岡
良 上岡
松本 聰
聰 松本
Original Assignee
高島 伴治
伴治 高島
株式会社エコまるくん
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高島 伴治, 伴治 高島, 株式会社エコまるくん filed Critical 高島 伴治
Priority to JP2017125870A priority Critical patent/JP6915778B2/en
Publication of JP2019005723A publication Critical patent/JP2019005723A/en
Application granted granted Critical
Publication of JP6915778B2 publication Critical patent/JP6915778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、微生物の作用により被処理水をそのCOD濃度が所定値以下となるように浄化する微生物含有浄化材の製造方法と、この製造方法により製造された微生物含有浄化材を用いて被処理水の浄化を行う被処理水の浄化方法とに関する。 The present invention uses a method for producing a microorganism-containing purifying material that purifies water to be treated by the action of microorganisms so that its COD concentration becomes a predetermined value or less, and a microorganism-containing purifying material produced by this manufacturing method. It relates to a method of purifying water to be treated for purifying water.

山岳地帯の避難小屋は、電気や上下水道が整備されていない場所に建てられるため、それに設置されるトイレ(いわゆる山岳トイレ)には、電力を要しないタイプの浄化施設が併設されることが多い。しかし、この種の避難小屋は、山の稜線部に建てられることも多く、その周辺には、浄化施設を設置するのに十分なスペースがないこともある。この点、これまでには、大便と小便とを予め分離できるようにした特殊便器(例えば特許文献1を参照)も提案されている。このように、大便と小便とを***直後の便器にある段階で分離することによって、大便と小便とを分離する設備を省略することが可能になる。この特殊便器は、山岳トイレとしての施工実績もある。この特殊便器を用いた山岳トイレでは、大便は、大鋸屑等が充填されたタンク内に導入してコンポスト化を行って堆肥等として利用できるようにし、小便は、濾過材を通過させた後、周辺に流すという方法が採用されていた。 Since evacuation sheds in mountainous areas are built in places where electricity and water and sewage systems are not maintained, the toilets installed in them (so-called mountain toilets) are often equipped with purification facilities that do not require electricity. .. However, shelters of this type are often built on mountain ridges, and there may not be enough space around them to set up purification facilities. In this regard, so far, a special toilet bowl (see, for example, Patent Document 1) in which stool and urine can be separated in advance has also been proposed. In this way, by separating the stool and the urine at a certain stage in the toilet bowl immediately after excretion, it is possible to omit the equipment for separating the stool and the urine. This special toilet has a track record of construction as a mountain toilet. In mountain toilets using this special toilet, stool is introduced into a tank filled with sawdust and composted so that it can be used as compost, and urine is passed through a filter medium and then around. The method of flushing the toilet was adopted.

ところが、上記の山岳トイレは、それが設置される場所が標高の高い寒冷地であることから、大便のコンポスト化が進まずに悪臭がして不快であるという問題のほか、小便のCOD濃度を環境省が目標とする400mg/L(以下、「環境省目標値」と呼ぶことがある。)以下で維持できない(濾過材を設置した当初は環境省目標値以下に抑えることができても、使用を重ねるうちに環境省目標値以下に抑えることができなくなる)という問題があった。このため、上記の山岳トイレにおいては、コンポストの回収や濾過材の交換を頻繁に行う必要が生じていた。山岳トイレのコンポストの回収や濾過材の交換は、ヘリコプターを用いて行われ、コストが嵩むところ、これに要するコストを抑えたいとの声が出ていた。避難小屋そのものは、既に施工済みである等、その設計が仕上がっているため、大便処理と小便処理とのいずれにおいても、浄化設備自体には大きな変更を施さなくて済むように、浄化材の切り替えのみで対応できるようにして欲しいとの条件も出されていた。 However, since the above-mentioned mountain toilet is installed in a cold region with a high altitude, the composting of stool does not progress and it is unpleasant due to a bad smell, and the COD concentration of urine is increased. It cannot be maintained below the target value of 400 mg / L (hereinafter sometimes referred to as the "target value of the Ministry of the Environment") set by the Ministry of the Environment. As it is used repeatedly, it cannot be kept below the target value of the Ministry of the Environment). For this reason, in the above-mentioned mountain toilets, it has become necessary to frequently collect compost and replace the filter medium. The collection of compost in mountain toilets and the replacement of filter media are carried out using helicopters, and there are voices saying that they want to reduce the cost required for this, where the cost is high. Since the evacuation shed itself has already been constructed and the design has been completed, the purification material is switched so that the purification equipment itself does not have to be significantly changed in both stool treatment and urine treatment. There was also a condition that I wanted them to be able to respond only by themselves.

特開2006−288564号公報Japanese Unexamined Patent Publication No. 2006-288564

従来の山岳トイレで問題となった上記の課題のうち、本発明者は、小便(尿)のCOD濃度を環境省目標値である400mg/L以下にし、複数回の使用を経ても400mg/L以下で維持することのできる浄化材の開発に着手するに至った。 Among the above-mentioned problems that have become a problem in the conventional mountain toilet, the present inventor has set the COD concentration of urine (urine) to 400 mg / L or less, which is the target value of the Ministry of the Environment, and 400 mg / L even after multiple uses. We have begun to develop a purifying material that can be maintained below.

その開発の初期段階においては、尿に含まれるアンモニアの除去に着目し、ゼオライトや鹿沼土等の化学的吸着材を浄化材として用いることを試してみた。しかし、水で希釈されていない生の尿を、これらの化学的吸着材でCOD濃度が400mg/L以下となるまで浄化することは容易ではなかった。その原因を検討したところ、実際の尿(人間の尿)には、微量ながら殆どの元素が含まれていることが分かり、それらの成分が複雑に反応又は結合するために、化学反応による処理では限界があることが判明した。 In the early stage of its development, we focused on the removal of ammonia contained in urine and tried to use chemical adsorbents such as zeolite and Kanuma soil as purification materials. However, it has not been easy to purify raw urine that has not been diluted with water with these chemical adsorbents until the COD concentration is 400 mg / L or less. When the cause was examined, it was found that the actual urine (human urine) contains most of the elements, albeit in trace amounts, and these components react or combine in a complicated manner. It turned out that there was a limit.

このため、本発明者は、微生物を利用する浄化材に開発対象をシフトした。まず、浅い水路から採取した汚泥を水分率40%程度に乾燥させたものを試してみた。しかし、芳しい結果は得られなかった。その一方で、バーク堆肥等の炭素源についても試してみた。バーク堆肥等の炭素源では、使用回数の少ない初期段階は良好な結果が得られたものの、使用回数を重ねると破過してしまい、初期段階で得られたような良好な結果が得られなくなることが確認された。 Therefore, the present inventor has shifted the development target to a purifying material that utilizes microorganisms. First, we tried sludge collected from a shallow waterway and dried to a water content of about 40%. However, good results were not obtained. On the other hand, I also tried carbon sources such as bark compost. With carbon sources such as bark compost, good results were obtained in the initial stage when the number of uses is small, but they break down after repeated use, and the good results obtained in the initial stage cannot be obtained. It was confirmed that.

そこで、本発明者は、オリゴ糖の善玉菌増殖作用に着目し、バーク堆肥等の炭素源にオリゴ糖を混ぜたものを浄化材として使用することに思い至った。具体的には、ボトル入りの状態で市販されているオリゴ糖をバーク堆肥等の炭素源に混ぜ、1週間放置したもので試してみた。しかし、この場合においては、オリゴ糖を混ぜなかった場合(炭素源のみを用いた場合)以上の結果を得ることができなかった。 Therefore, the present inventor paid attention to the beneficial bacterial growth action of oligosaccharides, and came up with the idea of using a mixture of oligosaccharides with a carbon source such as bark compost as a purifying material. Specifically, a bottled oligosaccharide was mixed with a carbon source such as bark compost and left for one week for trial. However, in this case, it was not possible to obtain more results than when the oligosaccharide was not mixed (when only the carbon source was used).

本発明は、上記課題を解決するために為されたものであり、希釈化等の前処理が特に施されていない生の尿等の被処理水を、COD濃度が環境省目標値である400mg/L以下となるまで浄化できるだけでなく、使用回数を重ねても良好な浄化作用を維持し続けることのできる生物含有浄化材の製造方法を提供するものである。また、この製造方法により製造された微生物含有浄化材を用いて被処理水の浄化を行う被処理水の浄化方法を提供することも本発明の目的である。 The present invention has been made to solve the above-mentioned problems, and the COD concentration of 400 mg of water to be treated such as raw urine which has not been particularly pretreated such as dilution has a COD concentration of 400 mg, which is a target value of the Ministry of the Environment. It provides a method for producing a biologically-containing purifying material, which can not only purify until it becomes / L or less, but also can maintain a good purifying action even after repeated use. It is also an object of the present invention to provide a method for purifying water to be treated by using a microorganism-containing purifying material produced by this production method.

上記課題は、
被処理水中のCOD濃度が所定値以下となるように被処理水を浄化するための微生物含有浄化材の製造方法であって、
オリゴ糖を1重量%以上含むオリゴ糖含有農作物を細化してオリゴ糖含有資材を得るオリゴ糖含有資材製造工程と、
炭素源に対して、オリゴ糖含有資材製造工程で得られたオリゴ糖含有資材を混合し、その混合物のC/N比が20〜50の範囲となるように調整する炭素源混合工程と、
炭素源混合工程で得られた混合物にカビが生えてくると混合物を撹拌し、以下、その混合物にカビが生えてこなくなるまで、この撹拌を繰り返す混合物撹拌工程と、
を経ることを特徴とする微生物含有浄化材の製造方法
を提供することによって解決される。
The above issues are
A method for producing a microorganism-containing purifying material for purifying water to be treated so that the COD concentration in the water to be treated is equal to or less than a predetermined value.
An oligosaccharide-containing material manufacturing process for obtaining an oligosaccharide-containing material by refining an oligosaccharide-containing crop containing 1% by weight or more of oligosaccharide.
A carbon source mixing step of mixing the oligosaccharide-containing material obtained in the oligosaccharide-containing material manufacturing step with the carbon source and adjusting the C / N ratio of the mixture so as to be in the range of 20 to 50.
When mold grows on the mixture obtained in the carbon source mixing step, the mixture is stirred, and thereafter, this stirring is repeated until mold does not grow on the mixture, and a mixture stirring step.
This is solved by providing a method for producing a microorganism-containing purifying material, which is characterized by the above.

というのも、ボルト入りの状態で市販されているオリゴ糖では上手くいかなかったことについては、既に述べた通りであるが、これに対し、本発明者は、天然の農作物(ゴボウやダイズやもやしやアスパラガス等、オリゴ糖を多く含んでいると言われている農作物)
に含まれるオリゴ糖を使用した場合についても試してみた。すると、この種の農作物を細化した物質(オリゴ糖含有資材)を、バーク堆肥等の炭素源に混ぜ、その混合物を放置(静置)していたところ、4日目前後でカビが生えることが分かった。そこでそのカビが見えなくなる状態までこの混合物を撹拌し、再度、カビが生えると撹拌するという工程を繰り返し行ったところ、20日前後でカビが生えなくなった。この状態の混合物(微生物含有浄化材)を用いて実験を行ったところ、後述するように、生の尿のCOD濃度を環境省目標値である400mg/L以下に低減できるだけでなく、使用を重ねてもその結果を維持することができるという、非常に良好な結果が得られることが判明したからである。
This is because, as already mentioned, the oligosaccharides that are commercially available in the bolted state did not work, whereas the inventor of the present invention considers natural crops (burdock, soybean, and bean sprouts). Agricultural products that are said to contain a large amount of oligosaccharides such as bean sprouts and asparagus)
I also tried using the oligosaccharides contained in. Then, when a substance (oligosaccharide-containing material) obtained by refining this kind of crop was mixed with a carbon source such as bark compost and the mixture was left (standing), mold grew around the 4th day. I found out. Therefore, when the process of stirring the mixture until the mold disappeared and then stirring again when the mold grew was repeated, the mold did not grow in about 20 days. When an experiment was conducted using a mixture (microorganism-containing purifying material) in this state, not only was it possible to reduce the COD concentration of raw urine to 400 mg / L or less, which is the target value of the Ministry of the Environment, but also repeated use. However, it turned out that a very good result can be obtained that the result can be maintained.

このように、オリゴ糖の添加によってカビが生え、そのカビが生えなくなるまで撹拌し続けた混合物(微生物含有浄化材)を使用した場合において、非常に良好な結果が得られた理由は定かではないものの、その間に、微生物含有浄化材に含まれる微生物相が変化し、微生物含有浄化材に含まれる善玉菌が凝縮されて活性化された状態となり、微生物含有浄化材の処理能力が高まったためと推測される。 In this way, it is not clear why very good results were obtained when using a mixture (microorganism-containing purifying material) in which mold grew due to the addition of oligosaccharides and the mixture was continuously stirred until the mold did not grow. However, during that time, the microbial phase contained in the microbial-containing purifying material changed, and the good bacteria contained in the microbial-containing purifying material were condensed and activated, and it is presumed that the processing capacity of the microbial-containing purifying material increased. Will be done.

本発明の微生物含有浄化材の製造方法において、オリゴ糖含有資材製造工程で用いるオリゴ糖含有農作物は、オリゴ糖を1重量%以上含む農作物であれば特に限定されない。この種の農作物としては、ゴボウ(オリゴ糖を3.6重量%程度含有)や、ダイズ(オリゴ糖を4.0〜5.0重量%程度含有)等が例示される。また、もやしやアスパラガス等もオリゴ糖を多く含んでいることが知られており、これらのいずれの農作物を用いた場合においても、良好な結果が得られることを確認している。特に、ゴボウは、その端材が廃棄物として出やすく、その端材を大量且つ安価に入手することができるため、上記のオリゴ糖含有農作物として好適に用いることができる。 In the method for producing a microorganism-containing purifying material of the present invention, the oligosaccharide-containing crop used in the oligosaccharide-containing material manufacturing step is not particularly limited as long as it is a crop containing 1% by weight or more of oligosaccharide. Examples of this type of crop include burdock (containing about 3.6% by weight of oligosaccharide) and soybean (containing about 4.0 to 5.0% by weight of oligosaccharide). In addition, it is known that bean sprouts, asparagus, etc. also contain a large amount of oligosaccharides, and it has been confirmed that good results can be obtained when any of these crops is used. In particular, burdock can be suitably used as the above-mentioned oligosaccharide-containing agricultural product because its offcuts are easily generated as waste and the offcuts can be obtained in large quantities and at low cost.

本発明の微生物含有浄化材の製造方法において、炭素源混合工程で用いる炭素源は、炭素を所定量以上(例えばC/N比で20以上)のものであれば、特に限定されない。重要なのは、炭素源を混合した混合物のC/N比が20〜50の範囲に調整されることである。混合物のC/N比が20未満であると、窒素過多になって微生物の活性が鈍化する虞があり、混合物のC/N比が50を超えると炭素過多になってやはり微生物の活性が鈍化する虞があるからである。このような調整を行うことができる炭素源としては、バーク堆肥や腐葉土等が例示される。 In the method for producing a microorganism-containing purifying material of the present invention, the carbon source used in the carbon source mixing step is not particularly limited as long as it contains a predetermined amount or more of carbon (for example, 20 or more in C / N ratio). Importantly, the C / N ratio of the mixture of carbon sources is adjusted to the range of 20-50. If the C / N ratio of the mixture is less than 20, there is a risk that the activity of microorganisms will be slowed down due to excess nitrogen, and if the C / N ratio of the mixture exceeds 50, there will be excess carbon and the activity of microorganisms will also be slowed down. This is because there is a risk of doing so. Examples of carbon sources capable of such adjustment include bark compost and leaf mold.

また、上記課題は、上記の製造方法で製造された微生物含有浄化材を用いて被処理水の浄化を行う被処理水の浄化方法を提供することによっても解決される。本発明の被処理水の浄化方法では、上記のように、生の尿のCOD濃度を環境省目標値である400mg/L以下にまで低減できるだけでなく、使用回数を重ねてもその効果を維持できる微生物含有浄化材を使用するものであるため、上下水道や電気が整備されていない場所に設置されるトイレから出た尿を浄化する際に好適に用いることができる。このようなトイレとしては、上記の山岳トイレ等が例示される。 Further, the above problem is also solved by providing a method for purifying the water to be treated, which purifies the water to be treated by using the microorganism-containing purifying material produced by the above-mentioned production method. As described above, the method for purifying water to be treated of the present invention can not only reduce the COD concentration of raw urine to 400 mg / L or less, which is the target value of the Ministry of the Environment, but also maintain the effect even after repeated use. Since it uses a microbial-containing purifying material that can be produced, it can be suitably used when purifying urine from a toilet installed in a place where water and sewage or electricity is not maintained. Examples of such a toilet include the above-mentioned mountain toilets and the like.

本発明の被処理水の浄化方法において、被処理水(尿等)の浄化は、上記の微生物含有浄化材のみを用いて行ってもよいが、その微生物含有浄化材と併せて物理的吸着材も使用することが好ましい。物理的吸着材としては、木炭や黒ボク土等が例示される。このような物理的吸着材を併用することによって、被処理水のCOD濃度をさらに低下させることが可能になる。 In the method for purifying water to be treated of the present invention, the water to be treated (urine, etc.) may be purified using only the above-mentioned microorganism-containing purifying material, but it may be combined with the microorganism-containing purifying material as a physical adsorbent. It is also preferable to use. Examples of the physical adsorbent include charcoal and Andosols. By using such a physical adsorbent in combination, it becomes possible to further reduce the COD concentration of the water to be treated.

本発明の被処理水の浄化方法において、微生物含有浄化材と併せて物理的吸着材も使用する場合には、微生物含有浄化材と物理的吸着材は、完全に混ぜ合わせてもよいが、層状に配すると好ましい。この場合、微生物含有浄化材を、物理的吸着材における被処理水導入側である上側に層状に配置すると好ましい。これにより、生の尿に含まれる除去が難しい成分を、微生物含有浄化材で除去した後、物理的吸着材による濾過を行うことが可能になり、被処理水の浄化を効率的に行うことが可能になる。また、上記の製造方法により得られた本発明の微生物含有浄化材は、破過しにくいといっても、尿等の被処理水を大量にかけ続けると、上側が嫌気性になり、そのうち破過を生じる虞がある。この点、微生物含有浄化材を、物理的吸着材の上側に層状に配しておけば、破過した微生物含有浄化材を新しい微生物含有浄化材と交換する際に、破過した微生物含有浄化材を容易に回収することも可能になる。 When a physical adsorbent is used in addition to the microorganism-containing purifying material in the method for purifying water to be treated of the present invention, the microorganism-containing purifying material and the physical adsorbent may be completely mixed, but are layered. It is preferable to arrange it in. In this case, it is preferable to arrange the microorganism-containing purifying material in a layer on the upper side of the physical adsorbent on the side where the water to be treated is introduced. This makes it possible to remove difficult-to-remove components contained in raw urine with a microbial-containing purifying material and then filter with a physical adsorbent, effectively purifying the water to be treated. It will be possible. Further, even though the microorganism-containing purifying material of the present invention obtained by the above production method is difficult to break through, if a large amount of water to be treated such as urine is continuously applied, the upper side becomes anaerobic, and the upper side becomes anaerobic. May occur. In this regard, if the microbial-containing purifying material is arranged in a layer on the upper side of the physical adsorbent, the ruptured microbial-containing purifying material is replaced with a new microbial-containing purifying material. Can be easily recovered.

以上のように、本発明によって、希釈化等の前処理が特に施されていない生の尿等の被処理水を、そのCOD濃度が400mg/L以下となるまで浄化できるだけでなく、使用回数を重ねても良好な浄化作用を維持し続けることのできる生物含有浄化材の製造方法を提供することが可能になる。また、この製造方法により製造された微生物含有浄化材を用いて被処理水の浄化を行う被処理水の浄化方法を提供することも可能になる。 As described above, according to the present invention, not only can water to be treated such as raw urine that has not been particularly pretreated such as dilution be purified until its COD concentration becomes 400 mg / L or less, but also the number of times of use can be reduced. It becomes possible to provide a method for producing a biologically-containing purifying material that can continue to maintain a good purifying effect even after repeated use. Further, it is also possible to provide a method for purifying water to be treated by using a microorganism-containing purifying material produced by this manufacturing method to purify water to be treated.

本発明の微生物含有浄化材の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the microorganism-containing purification material of this invention. 本発明の微生物含有浄化材のCOD濃度低下能を確認する実験を説明する図である。It is a figure explaining the experiment for confirming the COD concentration lowering ability of the microorganism-containing purification material of this invention.

1.微生物含有浄化材の製造方法
本発明の微生物含有浄化材の製造方法の好適な実施態様について、図面を用いてより具体的に説明する。図1は、本発明の微生物含有浄化材の製造方法を説明するフローチャートである。
1. 1. Method for Producing Microorganism-Containing Purifying Material A preferred embodiment of the method for producing a microorganism-containing purifying material of the present invention will be described more specifically with reference to the drawings. FIG. 1 is a flowchart illustrating a method for producing a microorganism-containing purifying material of the present invention.

本発明の微生物含有浄化材の製造方法は、被処理水中のCOD濃度が所定値以下となるように被処理水を浄化するための微生物含有浄化材を製造するためのものであり、図1に示すように、オリゴ糖含有資材製造工程と、炭素源混合工程と、混合物撹拌工程とで構成される。以下、本発明の微生物含有浄化材の各工程について、順番に説明する。 The method for producing a microorganism-containing purifying material of the present invention is for producing a microorganism-containing purifying material for purifying the water to be treated so that the COD concentration in the water to be treated is equal to or less than a predetermined value. As shown, it is composed of an oligosaccharide-containing material manufacturing step, a carbon source mixing step, and a mixture stirring step. Hereinafter, each step of the microorganism-containing purifying material of the present invention will be described in order.

1.1 オリゴ糖含有資材製造工程
オリゴ糖含有資材製造工程は、図1に示すように、オリゴ糖含有農作物を細化してオリゴ糖含有資材を得る工程となっている。細化するオリゴ糖含有農作物は、既に述べたように、オリゴ糖を1重量%以上含むものであれば特に限定されない。オリゴ糖を1重量%以上含む農作物(オリゴ糖含有農作物)としては、ゴボウや、ダイズや、もやしや、アスパラガス等が例示される。オリゴ糖含有農作物は、食品加工工場やレストラン等において、廃棄物として出るものを使用すると、入手コストを抑えることができるだけでなく、廃棄物の有効利用にも繋がるため、好ましい。特に、ゴボウは、その端材が廃棄物として出やすく、その端材を大量且つ安価に入手することができるため、好適に用いることができる。
1.1 Oligosaccharide-containing material manufacturing process As shown in FIG. 1, the oligosaccharide-containing material manufacturing process is a step of refining oligosaccharide-containing crops to obtain oligosaccharide-containing materials. As described above, the oligosaccharide-containing crop to be refined is not particularly limited as long as it contains 1% by weight or more of oligosaccharide. Examples of crops containing 1% by weight or more of oligosaccharides (oligosaccharide-containing crops) include burdock, soybean, bean sprout, and asparagus. It is preferable to use oligosaccharide-containing agricultural products as waste in food processing factories, restaurants, etc., because not only the acquisition cost can be suppressed but also the effective use of the waste is achieved. In particular, burdock can be preferably used because its scraps are easily generated as waste and the scraps can be obtained in large quantities and at low cost.

オリゴ糖含有資材製造工程において、オリゴ糖含有農作物をどのように細化するかは、オリゴ糖含有農作物の種類によっても異なり、特に限定されない。この細化は、包丁等を用いて人手により行ってもよいが、この方法は、手間を要し、大量生産には向いていない。このため、微生物含有浄化材を大量生産する場合には、ミキサーや破砕機やすりおろし装置等を用いて機械的に細化を行うことが好ましい。入手したオリゴ糖含有農作物が既に細化されている場合(食品加工工場等から廃棄される農作物は、既にある程度細化された状態となっている場合がある。)には、微生物含有浄化材の製造工場において、敢えて細化を行わなくてもよい。 In the process of manufacturing oligosaccharide-containing materials, how to refine the oligosaccharide-containing crops depends on the type of oligosaccharide-containing crops and is not particularly limited. This thinning may be performed manually using a kitchen knife or the like, but this method requires labor and is not suitable for mass production. Therefore, in the case of mass-producing a microorganism-containing purifying material, it is preferable to mechanically refine it using a mixer, a crusher, a grate device, or the like. If the obtained oligosaccharide-containing crops have already been refined (the crops discarded from food processing factories, etc. may have already been refined to some extent), the microorganism-containing purifying material It is not necessary to dare to reduce the size at the manufacturing plant.

オリゴ糖含有資材製造工程において、オリゴ糖含有農作物をどの程度の大きさまで細化するかも、オリゴ糖含有農作物の種類によっても異なり、特に限定されない。しかし、オリゴ糖含有農作物の細化片が大きすぎると、当該細化片の比表面積が小さくなり、期待されるCOD濃度低下能が得られにくくなる虞がある。このため、オリゴ糖含有農作物は、少なくとも、細化後の長辺の長さが50mm以下となる程度まで細化される。オリゴ糖含有農作物の細化後の長辺の長さは、30mm以下とすると好ましく、10mm以下とするとより好ましく、5mm以下とするとさらに好ましい。オリゴ糖含有農作物は、細化した後にさらに粉砕等することでさらに細かくしてもよい。 In the process of manufacturing the oligosaccharide-containing material, the size of the oligosaccharide-containing crop is also different depending on the type of the oligosaccharide-containing crop, and is not particularly limited. However, if the fine pieces of the oligosaccharide-containing crop are too large, the specific surface area of the fine pieces becomes small, and there is a risk that the expected ability to reduce the COD concentration cannot be obtained. Therefore, the oligosaccharide-containing crop is thinned to at least the length of the long side after thinning is 50 mm or less. The length of the long side of the oligosaccharide-containing crop after thinning is preferably 30 mm or less, more preferably 10 mm or less, and even more preferably 5 mm or less. The oligosaccharide-containing crop may be further refined by further crushing after being refined.

1.2 炭素源混合工程
オリゴ糖含有資材製造工程を終えると、図1に示すように、続いて炭素源混合工程が行われる。炭素源混合工程は、炭素源に対して、オリゴ糖含有資材製造工程で得られたオリゴ糖含有資材を混合する工程である。オリゴ糖含有資材と炭素源との混合物は、その混ざり具合にバラツキが出ないように、混合した後に撹拌すると好適である。
1.2 Carbon source mixing step When the oligosaccharide-containing material manufacturing step is completed, a carbon source mixing step is subsequently performed as shown in FIG. The carbon source mixing step is a step of mixing the oligosaccharide-containing material obtained in the oligosaccharide-containing material manufacturing step with the carbon source. It is preferable that the mixture of the oligosaccharide-containing material and the carbon source is stirred after being mixed so that the mixing condition does not vary.

炭素源混合工程で用いる炭素源は、得られる混合物(微生物含有浄化材)のC/N比を20〜50の範囲に調整するためのものとなっている。というのも、オリゴ糖含有資材そのもののC/N比は、オリゴ糖含有農作物としてダイズやもやしを使用した場合で6〜8程度と低く、これをそのまま微生物含有浄化材として用いると、窒素過多となって微生物の活性が鈍化する虞があるところ、炭素源を添加することでこれを防いでいる。炭素源としては、バーク堆肥や腐葉土等が例示される。 The carbon source used in the carbon source mixing step is for adjusting the C / N ratio of the obtained mixture (microorganism-containing purifying material) in the range of 20 to 50. This is because the C / N ratio of the oligosaccharide-containing material itself is as low as about 6 to 8 when soybeans and bean sprouts are used as oligosaccharide-containing crops, and when this is used as it is as a microorganism-containing purifying material, nitrogen is excessive. There is a risk that the activity of microorganisms will slow down, but this is prevented by adding a carbon source. Examples of carbon sources include bark compost and leaf mold.

炭素源に対するオリゴ糖含有資材の混合割合は、その混合物のC/N比が20〜50の範囲内になるのであれば、特に限定されないが、炭素源100容積部に対して、5〜20容積部程度のオリゴ糖含有資材を添加すると、混合物のC/N比が20〜50の範囲に収まることが多い。オリゴ糖含有資材と炭素源との混合物のC/N比は、30〜40の範囲内に収まるようにすると、より好適である。 The mixing ratio of the oligosaccharide-containing material to the carbon source is not particularly limited as long as the C / N ratio of the mixture is in the range of 20 to 50, but is 5 to 20 volumes with respect to 100 parts by volume of the carbon source. When a portion of the oligosaccharide-containing material is added, the C / N ratio of the mixture often falls within the range of 20 to 50. It is more preferable that the C / N ratio of the mixture of the oligosaccharide-containing material and the carbon source is within the range of 30 to 40.

1.3 混合物撹拌工程
炭素源混合工程を終えると、図1に示すように、続いて混合物撹拌工程が行われる。混合物撹拌工程は、炭素源混合工程で得られた混合物(オリゴ糖含有資材と炭素源との混合物)にカビが生えてくるとその混合物を撹拌し、以下、その混合物にカビが生えてこなくなるまで、この撹拌を繰り返す工程である。
1.3 Mixture agitation step After the carbon source mixing step is completed, a mixture agitation step is subsequently performed as shown in FIG. In the mixture stirring step, when mold grows on the mixture (mixture of oligosaccharide-containing material and carbon source) obtained in the carbon source mixing step, the mixture is stirred, and thereafter, until mold does not grow on the mixture. , This is a step of repeating this stirring.

すなわち、オリゴ糖含有資材と炭素源との混合物は、外気に接触した状態で放置しておくと、数日でカビが生えてくるところ、このカビが目立つようになる度に、そのカビが概ね視認できなくなる状態となるまで混合物を撹拌する。乾燥している場合等、オリゴ糖含有資材と炭素源との混合物にカビが生えにくいような場合には、適量の水を添加して、その混合物を湿らせた状態にするとよい。最初の撹拌からしばらくすると、再びカビが生えてくるが、そのカビが再び目立つようになるとその混合物を再び撹拌し、以降、カビが生えてこなくなるまでこれを繰り返す。この混合物撹拌工程を行うことにより、微生物含有浄化材の処理能力を高めることができる。この混合物撹拌工程を行うことによって微生物含有浄化材の処理能力が高まる理由は、既に述べたように、その間に、オリゴ糖含有資材と炭素源との混合物(微生物含有浄化材)に含まれる微生物相が変化し、その混合物に含まれる善玉菌が凝縮されて活性化された状態になるためと推測される。 That is, if the mixture of the oligosaccharide-containing material and the carbon source is left in contact with the outside air, mold will grow in a few days, and every time this mold becomes noticeable, the mold will generally grow. Stir the mixture until it becomes invisible. When mold does not easily grow on the mixture of the oligosaccharide-containing material and the carbon source, such as when it is dry, it is advisable to add an appropriate amount of water to moisten the mixture. After a while from the first agitation, mold grows again, but when the mold becomes noticeable again, the mixture is agitated again and then repeated until no mold grows. By performing this mixture stirring step, the processing capacity of the microorganism-containing purifying material can be increased. The reason why the processing capacity of the microbial-containing purifying material is increased by performing this mixture stirring step is that, as already described, the microbial phase contained in the mixture of the oligosaccharide-containing material and the carbon source (microorganism-containing purifying material) during that period. Is changed, and it is presumed that the good bacteria contained in the mixture are condensed and activated.

1.4 完了
混合物撹拌工程を終えると、本発明の微生物含有浄化材の製造方法は完了する。得られた微生物含有浄化材は、後述するように、COD濃度低下能が非常に優れているだけでなく、その使用を重ねてもその効果を維持し続けることができるものとなっている。
1.4 Completion When the mixture stirring step is completed, the method for producing the microorganism-containing purifying material of the present invention is completed. As will be described later, the obtained microorganism-containing purifying material is not only extremely excellent in the ability to reduce the COD concentration, but also can continue to maintain its effect even after repeated use.

2.被処理水の浄化方法
続いて、上記の製造方法で製造された微生物含有浄化材を用いた被処理水の浄化方法について説明する。
2. Method for Purifying Water to be Treated Subsequently, a method for purifying water to be treated using the microorganism-containing purifying material produced by the above-mentioned production method will be described.

2.1 用途
上記の製造方法で得られた微生物含有浄化材(以下、「本発明の微生物含有浄化材」と呼ぶことがある。)は、被処理水のCOD濃度を低下させる必要のある各種用途において使用することができる。しかし、本発明の微生物含有浄化材は、COD濃度低下能に優れたものであるため、尿等、COD濃度が高い被処理水を浄化する際に好適に用いることができる。また、本発明の微生物含有浄化材は、その優れたCOD濃度低下能を長期間にわたって維持し続けることができるものであるため、山岳地帯に設置されるトイレ(山岳トイレ)に***された尿の浄化材として好適に用いることができる。
2.1 Applications Various microorganism-containing purifying materials obtained by the above-mentioned production method (hereinafter, may be referred to as "microorganism-containing purifying material of the present invention") need to reduce the COD concentration of the water to be treated. Can be used in applications. However, since the microorganism-containing purifying material of the present invention has an excellent ability to reduce the COD concentration, it can be suitably used when purifying water to be treated having a high COD concentration such as urine. Further, since the microorganism-containing purifying material of the present invention can maintain its excellent ability to reduce the COD concentration for a long period of time, urine excreted in a toilet (mountain toilet) installed in a mountainous area It can be suitably used as a purifying material.

というのも、従来の山岳トイレにおいては、既に述べたように、尿の濾過材(浄化材)の交換を頻繁に行う必要が生じており、ヘリコプターを飛ばすコストが嵩んでいたところ、本発明の微生物含有浄化材を使用すると、浄化材の交換頻度を少なく抑えることができるからである。具体的には、従来の山岳トイレにおいては、浄化材を1年間に2〜3回の頻度で交換する必要があったところ、本発明の微生物含有浄化材を用いると、この頻度を2年間に1回程度まで抑えることも可能である。 This is because, as already mentioned, in the conventional mountain toilet, it is necessary to frequently replace the urine filter material (purifying material), and the cost of flying the helicopter is high. This is because the use of a microorganism-containing purifying material can reduce the frequency of replacement of the purifying material. Specifically, in the conventional mountain toilet, it was necessary to replace the purifying material at a frequency of 2 to 3 times a year, but when the microorganism-containing purifying material of the present invention is used, this frequency is reduced to 2 years. It is also possible to suppress it to about once.

2.2 微生物含有浄化材の設置方法
本発明の微生物含有浄化材は、通常、被処理水が通される容器(タンク等)内に充填される。本発明の微生物含有浄化材は、それ単独で用いてもよいが、他の浄化材と併せて用いると好ましい。他の浄化材としては、物理的吸着材を好適に用いることができ、物理的吸着材としては、木炭や黒ボク土等を好適に用いることができる。これにより、被処理水のCOD濃度をさらに低下させることが可能になる。
2.2 Installation method of microorganism-containing purifying material The microorganism-containing purifying material of the present invention is usually filled in a container (tank or the like) through which water to be treated is passed. The microorganism-containing purifying material of the present invention may be used alone, but is preferably used in combination with other purifying materials. As the other purifying material, a physical adsorbent can be preferably used, and as the physical adsorbent, charcoal, Andosols, or the like can be preferably used. This makes it possible to further reduce the COD concentration of the water to be treated.

本発明の微生物含有浄化材と併せて他の除去材(物理的吸着材等)も使用する場合には、微生物含有浄化材と他の除去材は、完全に混ぜ合わせてもよいが、層状に配すると好ましい。この場合、本発明の微生物含有浄化材を、他の浄化材の上側に層状に配置すると好ましい。これにより、生の尿等に含まれる除去が難しい成分を、微生物含有浄化材で除去した後、他の除去材(物理的吸着材等)による除去を行うことが可能になり、被処理水の浄化を効率的に行うことが可能になる。また、本発明の微生物含有浄化材の交換を容易に行うことも可能になる。 When another removing material (physical adsorbent, etc.) is used in combination with the microorganism-containing purifying material of the present invention, the microorganism-containing purifying material and the other removing material may be completely mixed, but may be layered. It is preferable to arrange it. In this case, it is preferable that the microorganism-containing purifying material of the present invention is arranged in a layer on the upper side of the other purifying material. This makes it possible to remove difficult-to-remove components contained in raw urine, etc. with a microorganism-containing purifying material, and then remove them with another removing material (physical adsorbent, etc.), and the water to be treated can be removed. Purification can be performed efficiently. In addition, the microorganism-containing purifying material of the present invention can be easily replaced.

3.実験
本発明の微生物含有浄化材によるCOD濃度低下能を検証するため、以下の実験を行った。
3. 3. Experiments The following experiments were conducted to verify the ability of the microorganism-containing purifying material of the present invention to reduce the COD concentration.

3.1 実験方法
既に述べたように、本発明の微生物含有浄化材は、オリゴ糖含有農作物(オリゴ糖含有資材)と炭素源との混合を経て製造されるものとなっている。この点、実験を行うにあたり、下記表1における8種類(微生物含有浄化材A,A,B,B,C,C,D,D)の微生物含有浄化材を作製した。
3.1 Experimental method As described above, the microorganism-containing purifying material of the present invention is produced by mixing an oligosaccharide-containing agricultural product (oligosaccharide-containing material) with a carbon source. In this regard, in conducting the experiment, eight types of microorganism-containing purification materials (microorganism-containing purification materials A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , D 2 ) shown in Table 1 below were prepared. did.

Figure 0006915778
Figure 0006915778

上記表1に示すように、微生物含有浄化材A,Aは、オリゴ糖含有農作物としてダイズを用い、微生物含有浄化材B,Bは、オリゴ糖含有農作物としてもやしを用い、微生物含有浄化材C,Cは、オリゴ糖含有農作物としてゴボウを用い、微生物含有浄化材D,Dは、オリゴ糖含有農作物としてアスパラガスを用いたものでる。これらのうち、微生物含有浄化材A,B,C,Dは、炭素源としてバーク堆肥を用い、微生物含有浄化材A,B,C,Dは、炭素源として腐葉土を用いたものである。微生物含有浄化材A,A,B,B,C,C,D,Dのいずれにおいても、オリゴ糖含有農作物は、包丁で刻んで細化した後に粉砕したものを用いている。 As shown in Table 1 above, the microorganism-containing purifying materials A 1 and A 2 use soybean as an oligosaccharide-containing agricultural product, and the microorganism-containing purifying materials B 1 and B 2 use coconut as an oligosaccharide-containing agricultural product and contain microorganisms. Purifying materials C 1 and C 2 use gobo as an oligosaccharide-containing agricultural product, and microorganism-containing purifying materials D 1 and D 2 use asparagus as an oligosaccharide-containing agricultural product. Of these, the microorganism-containing purifying materials A 1 , B 1 , C 1 , and D 1 use bark compost as a carbon source, and the microorganism-containing purifying materials A 2 , B 2 , C 2 , and D 2 use leaf mold as a carbon source. Is used. In all of the microorganism-containing purification materials A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , and D 2 , oligosaccharide-containing crops are chopped with a kitchen knife and then crushed. I am using it.

また、微生物含有浄化材A,A,B,B,C,C,D,Dのいずれも、オリゴ糖含有農作物と炭素源とを1対9の容量比で混ぜたもの(混合物)となっており、その混合物のC/N比が20〜50の範囲内のものとなっている。例えば、ダイズとバーク堆肥との混合物からなる微生物含有浄化材AのC/N比は、29.65となっており、ゴボウとバーク堆肥との混合物からなる微生物含有浄化材CのC/N比は、38.25となっている。 In addition, all of the microorganism-containing purifying materials A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , and D 2 mix oligosaccharide-containing crops and carbon sources in a volume ratio of 1: 9. It is a mixture (mixture), and the C / N ratio of the mixture is in the range of 20 to 50. For example, C / N ratio of the microorganism-containing purification material A 1 consisting of a mixture of soybean and bark compost is a 29.65, a microorganism-containing purification material C 1 consisting of a mixture of burdock and bark compost C / The N ratio is 38.25.

さらに、微生物含有浄化材A,A,B,B,C,C,D,Dのいずれも、上記の混合物(オリゴ糖含有農作物と炭素源との混合物)100容積部に対して5容積部の割合で水(水道水)を添加して撹拌し、袋の口を開けたまま、放置と撹拌とを繰り返した後に得たものとなっている。具体的には、微生物含有浄化材A,A,B,B,C,C,D,Dのいずれにおいても、上記の混合物を袋に入れて水を添加して放置すると、7日目前後でカビが生えてきたところ、このようにカビが生える度に、そのカビが視認できなくなる状態になるまで撹拌を行い、以下、この操作を繰り返した。結果として、微生物含有浄化材A,A,B,B,C,C,D,Dのいずれにおいても、最初にカビが生えて以降は、約6日に1度の頻度で撹拌を行うこととなり、25〜30日目前後でカビが生えなくなった。このカビが生えない状態となった混合物を、微生物含有浄化材A,A,B,B,C,C,D,Dとして用いている。 Furthermore, all of the above-mentioned mixture (mixture of oligosaccharide-containing agricultural product and carbon source) 100 volumes of the microorganism-containing purifying material A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , D 2 Water (tap water) was added at a ratio of 5 parts by volume to the part and stirred, and the mixture was obtained after repeating leaving and stirring with the mouth of the bag open. Specifically, in any of the microorganism-containing purifying materials A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , and D 2 , the above mixture is placed in a bag and water is added. When left unattended, mold grew around the 7th day, and each time mold grew in this way, stirring was performed until the mold became invisible, and this operation was repeated thereafter. As a result, in any of the microorganism-containing purifying materials A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , and D 2 , after the first mold grows, about once every 6 days. The agitation was carried out at the frequency of the above, and the mold did not grow around the 25th to 30th days. This mold-free mixture is used as the microorganism-containing purifying materials A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , and D 2 .

続いて、図2に示すように、容器10の下層Aに物理的吸着材20を入れ、その上層Bに微生物含有浄化材30を入れた。図2は、本発明の微生物含有浄化材30のCOD濃度低下能を確認する実験を説明する図である。 Subsequently, as shown in FIG. 2, the physical adsorbent 20 was placed in the lower layer A of the container 10, and the microorganism-containing purifying material 30 was placed in the upper layer B thereof. FIG. 2 is a diagram illustrating an experiment for confirming the COD concentration reducing ability of the microorganism-containing purifying material 30 of the present invention.

容器10に入れる物理的吸着材20及び微生物含有浄化材30の種類及び量は、下記表2における、実施例1.1−1、実施例1.1−2及び実施例1.1−3並びに実施例1.2と、実施例2.1及び実施例2.2と、実施例3.1及び実施例3.2と、実施例4.1及び実施例4.2とに示す通りとした。下記表2における「資材X」は、黒ボク土(400ml)と、木炭(250ml)と、ゼオライト(200ml)との混合物である。木炭は、群馬木炭を用いている。 The types and amounts of the physical adsorbent 20 and the microorganism-containing purifying material 30 to be put in the container 10 are shown in Table 2 below, as shown in Example 1.1-1, Example 1.1-2 and Example 1.1-3. As shown in Example 1.2, Example 2.1 and Example 2.2, Example 3.1 and Example 3.2, and Example 4.1 and Example 4.2. .. “Material X” in Table 2 below is a mixture of Andosols (400 ml), charcoal (250 ml), and zeolite (200 ml). Gunma charcoal is used as the charcoal.

Figure 0006915778
Figure 0006915778

そして、容器10の上側開口11から、被処理水として尿を注ぎ、微生物含有浄化材30と物理的吸着材20とを通過して容器10の下側開口12から落ちてくる尿(被処理水)を採取し、各種の測定を行った。尿の注入作業は、所定時間が経過するごとに繰り返し行い、上記の測定も、容器10の下側開口12から尿が採取される度に行った。容器10の上側開口11に注ぐ尿の量(1回の注入作業で注ぐ量)は、実施例1.1−3のみ50mlとし、他の実施例では全て100mlで統一した。これは、実施例1.1−3では、微生物含有浄化材30と物理的吸着材20とを足し合わせた量が、他の実施例におけるその量の半分となっているからである。後述するように、尿としては、CODMn濃度が2500mg/Lのものと2000mg/Lのものとの2種類を使用した。 Then, urine is poured as water to be treated from the upper opening 11 of the container 10, and urine (water to be treated) that passes through the microorganism-containing purifying material 30 and the physical adsorbent 20 and falls from the lower opening 12 of the container 10. ) Was collected and various measurements were performed. The urine injection work was repeated every time a predetermined time elapsed, and the above measurement was also performed every time urine was collected from the lower opening 12 of the container 10. The amount of urine poured into the upper opening 11 of the container 10 (the amount poured in one injection operation) was 50 ml only in Example 1.1-3, and 100 ml in all other examples. This is because, in Example 1.1-3, the total amount of the microorganism-containing purifying material 30 and the physical adsorbent 20 is half the amount in the other examples. As will be described later, two types of urine were used, one having a COD Mn concentration of 2500 mg / L and the other having a COD Mn concentration of 2000 mg / L.

3.2 実験結果
以上の方法で実験を行ったところ、実施例1.1−1、実施例1.1−2及び実施例1.1−3並びに実施例1.2と、実施例2.1及び実施例2.2と、実施例3.1及び実施例3.2と、実施例4.1及び実施例4.2とのそれぞれにつき、以下の結果が得られた。
3.2 Experimental Results When the experiment was carried out by the above method, Example 1.1-1, Example 1.1-2, Example 1.1-3, Example 1.2, and Example 2. The following results were obtained for 1 and Example 2.2, Example 3.1 and Example 3.2, and Example 4.1 and Example 4.2, respectively.

[1] 実施例1.1−1についての実験結果
下記表3に、実施例1.1−1についての実験結果を示す。実施例1.1−1では、1〜7回目に投入した尿のCODMn濃度を2500mg/Lとし、8〜18回目に投入した尿のCODMn濃度を2000mg/Lとした。
[1] Experimental Results for Example 1.1-1 Table 3 below shows the experimental results for Example 1.1-1. In Example 1.1-1, the COD Mn concentration of urine was poured into 1-7-th and 2500 mg / L, the COD Mn concentration of urine was poured into 8 to 18-th and the 2000 mg / L.

Figure 0006915778
Figure 0006915778

上記表3において、「時間」は、1回目に尿を注入してからの経過時間であり、「pH」は浄化後の被処理水のpHであり、「EC」は浄化後の被処理水の電気伝導度である。また、「通過時間」における「出始め」は、その回で尿を注入したときから容器10の下側開口12から尿が落ち始めるまでの経過時間であり、「終了」は、その回で尿を注入したときから容器10の下側開口12から尿が落ちなくなるまでの経過時間である。さらに、「通過率」は、その回で容器10の上側開口11に注いだ尿の量に対する、容器10の下側開口12から落ちてきた尿の量の比を、百分率で示した値である。さらにまた、「CODMn濃度」は、容器10の下側開口12から採取された尿のCODMn濃度であり、「浄化率」は、その回で容器10の下側開口12から採取された尿における、同じ回で容器10の上側開口11から注入された尿に対する、CODMn濃度の減少率である。これらの項目が意味するところは、後掲する表4以降においても同じである。 In Table 3 above, "time" is the elapsed time since the first injection of urine, "pH" is the pH of the water to be treated after purification, and "EC" is the water to be treated after purification. The electrical conductivity of. In addition, the "start of urine" in the "transit time" is the elapsed time from the time when urine is injected at that time until the urine begins to fall from the lower opening 12 of the container 10, and the "end" is the urine at that time. This is the elapsed time from the time when the container 10 is injected until the urine does not fall from the lower opening 12 of the container 10. Further, the "passage rate" is a value indicating the ratio of the amount of urine that has fallen from the lower opening 12 of the container 10 to the amount of urine that has been poured into the upper opening 11 of the container 10 at that time as a percentage. .. Furthermore, the "COD Mn concentration" is the COD Mn concentration of urine collected from the lower opening 12 of the container 10, and the "purification rate" is the urine collected from the lower opening 12 of the container 10 at that time. It is the reduction rate of the COD Mn concentration with respect to the urine injected from the upper opening 11 of the container 10 at the same time. The meanings of these items are the same in Table 4 and subsequent tables, which will be described later.

[2] 実施例1.1−2についての実験結果
下記表4に、実施例1.1−2についての実験結果を示す。実施例1.1−2では、1〜6回目に投入した尿のCODMn濃度を2500mg/Lとし、7〜17回目に投入した尿のCODMn濃度を2000mg/Lとした。
[2] Experimental Results for Example 1.1-2 Table 4 below shows the experimental results for Example 1.1-2. In Example 1.1-2, the COD Mn concentration of urine was charged on day 1-6 times and 2500 mg / L, the COD Mn concentration of urine was poured into 7-17 time was 2000 mg / L.

Figure 0006915778
Figure 0006915778

[3] 実施例1.1−3についての実験結果
下記表5に、実施例1.1−3についての実験結果を示す。実施例1.1−3では、1〜4回目に投入した尿のCODMn濃度を2500mg/Lとし、5〜7回目に投入した尿のCODMn濃度を2000mg/Lとした。
[3] Experimental Results for Example 1.1-3 Table 5 below shows the experimental results for Example 1.1-3. In Example 1.1-3, the COD Mn concentration of the urine added in the 1st to 4th times was 2500 mg / L, and the COD Mn concentration of the urine added in the 5th to 7th times was 2000 mg / L.

Figure 0006915778
Figure 0006915778

[4] 実施例1.2についての実験結果
下記表6に、実施例1.2についての実験結果を示す。実施例1.2では、1〜7回目に投入した尿のCODMn濃度を2500mg/Lとし、8〜18回目に投入した尿のCODMn濃度を2000mg/Lとした。
[4] Experimental Results for Example 1.2 Table 6 below shows the experimental results for Example 1.2. In Example 1.2, the COD Mn concentration of the urine added in the 1st to 7th times was 2500 mg / L, and the COD Mn concentration of the urine added in the 8th to 18th times was 2000 mg / L.

Figure 0006915778
Figure 0006915778

[5] 実施例2.1についての実験結果
下記表7に、実施例2.1についての実験結果を示す。実施例2.1では、1〜7回目に投入した尿のCODMn濃度を2500mg/Lとし、8〜10回目に投入した尿のCODMn濃度を2000mg/Lとした。
[5] Experimental Results for Example 2.1 Table 7 below shows the experimental results for Example 2.1. In Example 2.1, the COD Mn concentration of the urine added in the 1st to 7th times was 2500 mg / L, and the COD Mn concentration of the urine added in the 8th to 10th times was 2000 mg / L.

Figure 0006915778
Figure 0006915778

[6] 実施例2.2についての実験結果
下記表8に、実施例2.2についての実験結果を示す。実施例2.2では、1〜7回目に投入した尿のCODMn濃度を2500mg/Lとし、8〜10回目に投入した尿のCODMn濃度を2000mg/Lとした。
[6] Experimental Results for Example 2.2 Table 8 below shows the experimental results for Example 2.2. In Example 2.2, the COD Mn concentration of the urine added in the 1st to 7th times was 2500 mg / L, and the COD Mn concentration of the urine added in the 8th to 10th times was 2000 mg / L.

Figure 0006915778
Figure 0006915778

[7] 実施例3.1についての実験結果
下記表9に、実施例3.1についての実験結果を示す。実施例3.1では、1〜7回目に投入した尿のCODMn濃度を2500mg/Lとし、8〜18回目に投入した尿のCODMn濃度を2000mg/Lとした。
[7] Experimental Results for Example 3.1 Table 9 below shows the experimental results for Example 3.1. In Example 3.1, the COD Mn concentration of the urine added in the 1st to 7th times was 2500 mg / L, and the COD Mn concentration of the urine added in the 8th to 18th times was 2000 mg / L.

Figure 0006915778
[8] 実施例3.2についての実験結果
下記表10に、実施例3.2についての実験結果を示す。実施例3.2では、1〜7回目に投入した尿のCODMn濃度を2500mg/Lとし、8〜17回目に投入した尿のCODMn濃度を2000mg/Lとした。
Figure 0006915778
[8] Experimental Results for Example 3.2 Table 10 below shows the experimental results for Example 3.2. In Example 3.2, the COD Mn concentration of the urine added in the 1st to 7th times was 2500 mg / L, and the COD Mn concentration of the urine added in the 8th to 17th times was 2000 mg / L.

Figure 0006915778
Figure 0006915778

[9] 実施例4.1についての実験結果
下記表11に、実施例4.1についての実験結果を示す。実施例4.1では、1〜7回目に投入した尿のCODMn濃度を2500mg/Lとし、8〜10回目に投入した尿のCODMn濃度を2000mg/Lとした。
[9] Experimental Results for Example 4.1 Table 11 below shows the experimental results for Example 4.1. In Example 4.1, the COD Mn concentration of the urine added in the 1st to 7th times was 2500 mg / L, and the COD Mn concentration of the urine added in the 8th to 10th times was 2000 mg / L.

Figure 0006915778
Figure 0006915778

[10] 実施例4.2についての実験結果
下記表12に、実施例4.2についての実験結果を示す。実施例4.2では、1〜7回目に投入した尿のCODMn濃度を2500mg/Lとし、8〜10回目に投入した尿のCODMn濃度を2000mg/Lとした。
[10] Experimental Results for Example 4.2 Table 12 below shows the experimental results for Example 4.2. In Example 4.2, the COD Mn concentration of the urine added in the 1st to 7th times was 2500 mg / L, and the COD Mn concentration of the urine added in the 8th to 10th times was 2000 mg / L.

Figure 0006915778
Figure 0006915778

[11] 実験結果のまとめ
既に述べたように、尿を周辺環境に流すためは、そのCOD濃度を環境省目標値である400mg/L以下まで低下させることが好ましい。この点、本発明の微生物含有浄化材を使用すると、容器10の下側開口12から採取された尿(被処理水)のCOD濃度は、上記の表3〜12に示すように、回数を重ねるごとに微増傾向にあるものの、全ての実施例において、100mg/L以下(最も高い値を示した、実施例1.2(表6)の18回目でさえ82mg/Lで抑えられている。)という非常に低濃度まで除去されている。また、除去率においても、本発明の微生物含有浄化材は、全ての実施例において95%以上(最も低い値を示した実施例1.2(表8)の18回目でさえ、95.9%という高い値を示している。)という非常に優れた値を示している。このことから、本発明の微生物含有浄化材を使用すると、尿のようにCOD濃度の高い被処理水のCOD濃度を、非常に低濃度となるまで低下させることができるだけでなく、微生物含有浄化材の使用を重ねても、その優れた効果を維持し続けることができるということが分かった。
[11] Summary of Experimental Results As already mentioned, in order to allow urine to flow into the surrounding environment, it is preferable to reduce the COD concentration to 400 mg / L or less, which is the target value of the Ministry of the Environment. In this regard, when the microorganism-containing purifying material of the present invention is used, the COD concentration of urine (water to be treated) collected from the lower opening 12 of the container 10 is repeated as shown in Tables 3 to 12 above. Although there is a slight increase in each case, it is 100 mg / L or less in all the examples (even the 18th time of Example 1.2 (Table 6) showing the highest value is suppressed to 82 mg / L). It has been removed to a very low concentration. Also, in terms of removal rate, the microorganism-containing purifying material of the present invention was 95% or more in all the examples (95.9% even in the 18th time of Example 1.2 (Table 8) which showed the lowest value). It shows a very excellent value of.). From this, when the microorganism-containing purifying material of the present invention is used, not only can the COD concentration of the water to be treated having a high COD concentration such as urine be reduced to a very low concentration, but also the microorganism-containing purifying material can be used. It was found that the excellent effect can be maintained even after repeated use of.

10 容器
11 上側開口
12 下側開口
20 物理的吸着材
30 微生物含有浄化材
10 Container 11 Upper opening 12 Lower opening 20 Physical adsorbent 30 Microorganism-containing purifying material

Claims (5)

被処理水中のCOD濃度が所定値以下となるように被処理水を浄化するための微生物含有浄化材の製造方法であって、
オリゴ糖を1重量%以上含むオリゴ糖含有農作物を細化してオリゴ糖含有資材を得るオリゴ糖含有資材製造工程と、
バーク堆肥又は腐葉土である炭素源に対して、オリゴ糖含有資材製造工程で得られたオリゴ糖含有資材を混合し、その混合物のC/N比が20〜50の範囲となるように調整する炭素源混合工程と、
炭素源混合工程で得られた混合物を放置し、その混合物にカビが視認できる状態で生えてくると、そのカビが視認できなくなる状態まで混合物を撹拌し、以下、攪拌を止めてその混合物を放置してもその混合物にカビが視認できる状態で生えてこなくなるまで、この撹拌を繰り返す混合物撹拌工程と、
を経ることを特徴とする微生物含有浄化材の製造方法。
A method for producing a microorganism-containing purifying material for purifying water to be treated so that the COD concentration in the water to be treated is equal to or less than a predetermined value.
An oligosaccharide-containing material manufacturing process for obtaining an oligosaccharide-containing material by refining an oligosaccharide-containing crop containing 1% by weight or more of oligosaccharide.
The oligosaccharide-containing material obtained in the oligosaccharide-containing material manufacturing process is mixed with a carbon source such as bark compost or humus, and the C / N ratio of the mixture is adjusted to be in the range of 20 to 50. Source mixing process and
Leave the mixture obtained in the carbon source mixing step, standing the mold come grow in a state of visible to the mixture, the mixture was stirred until a state where the mold can not be visually recognized, hereinafter, the mixture stopped stirring Even so, the mixture stirring step of repeating this stirring until mold does not grow in the mixture in a visible state, and
A method for producing a microorganism-containing purifying material, which is characterized by passing through.
オリゴ糖含有農作物が、ゴボウである請求項1記載の微生物含有浄化材の製造方法。
The method for producing a microorganism-containing purifying material according to claim 1, wherein the oligosaccharide-containing agricultural product is burdock.
請求項1又は2記載の製造方法で製造された微生物含有浄化材を用いて被処理水の浄化を行う被処理水の浄化方法。
A method for purifying water to be treated, which purifies the water to be treated using the microorganism-containing purifying material produced by the production method according to claim 1 or 2.
微生物含有浄化材と併せて物理的吸着材も使用する請求項記載の被処理水の浄化方法。
The method for purifying water to be treated according to claim 3, wherein a physical adsorbent is used in addition to the microorganism-containing purifying material.
微生物含有浄化材を、物理的吸着材における被処理水導入側である上側に層状に配置する請求項4記載の被処理水の浄化方法。 The method for purifying water to be treated according to claim 4 , wherein the microorganism-containing purifying material is arranged in a layer on the upper side of the physical adsorbent on which the water to be treated is introduced.
JP2017125870A 2017-06-28 2017-06-28 Method for manufacturing microorganism-containing purifying material and method for purifying water to be treated Active JP6915778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017125870A JP6915778B2 (en) 2017-06-28 2017-06-28 Method for manufacturing microorganism-containing purifying material and method for purifying water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017125870A JP6915778B2 (en) 2017-06-28 2017-06-28 Method for manufacturing microorganism-containing purifying material and method for purifying water to be treated

Publications (2)

Publication Number Publication Date
JP2019005723A JP2019005723A (en) 2019-01-17
JP6915778B2 true JP6915778B2 (en) 2021-08-04

Family

ID=65027167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017125870A Active JP6915778B2 (en) 2017-06-28 2017-06-28 Method for manufacturing microorganism-containing purifying material and method for purifying water to be treated

Country Status (1)

Country Link
JP (1) JP6915778B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204295A (en) * 1990-11-30 1992-07-24 Tomoji Tanaka Cleaning of dust, sump and soil contaminated with radioaction in reactor power plant
JP3461514B2 (en) * 1991-05-13 2003-10-27 株式会社明電舎 Advanced water treatment system and method of starting advanced water treatment system
JPH08267080A (en) * 1995-04-04 1996-10-15 Unitika Ltd Waste water treating device
JP3929905B2 (en) * 2002-02-04 2007-06-13 出光興産株式会社 Method for decomposing hardly decomposable substance, method for regenerating adsorbent using the same, method for treating waste water
JP2016202057A (en) * 2015-04-21 2016-12-08 三菱レイヨン株式会社 Methods for culturing 1,4-dioxane-degrading microorganisms and methods for treating 1,4-dioxane

Also Published As

Publication number Publication date
JP2019005723A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
Waqas et al. Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia
EP0698005B1 (en) Device and method for the composting and wet-fermentation of biological waste
CN107117786A (en) Plant's dejecta treatment method and system
US20040065610A1 (en) Process for treatment of organic wastes
CN101224999A (en) Anaerobic digestion handling method for restaurant garbage
CN102951939B (en) Rapid harmless plant organic residue treatment and fertilizer utilization process and equipment thereof
CN112125712A (en) Garbage treatment method
CN108218480A (en) A kind of method and its system for handling human excrement
CN111570466A (en) System and method for cooperatively treating kitchen garbage and food and beverage garbage
Chowdhury et al. Techno-economic analysis and life-cycle assessment of vermi-technology for waste bioremediation
CN113173808A (en) Method for preparing organic fertilizer by treating biochemical tailings of kitchen waste through earthworm composting
JP6915778B2 (en) Method for manufacturing microorganism-containing purifying material and method for purifying water to be treated
JP2004024969A (en) Heavy metal decreasing agent and method for decreasing heavy metal using it
US6238564B1 (en) Sludge treatment method
JP2008050248A (en) Grass-derived organic fermentation fertilizer and its manufacturing method
JP2007105036A (en) Granular material for agricultural soil
KR19990076331A (en) Natural liquid fertilizer manufacturing method using agricultural and livestock waste
WO2022255448A1 (en) Microbial preparation production method, microbial preparation, and compost production method
JP3720015B2 (en) Garbage disposal method
JPH07265842A (en) Continuous decomposition treating device for organic waste
CN108586038A (en) A kind of long-acting organic fertilizer of aroma type based on sludge and lemon pomace
JP2002192130A (en) Device for decomposing residue of food processing
WO2005016833A1 (en) Waste water treatment process
JP6248249B2 (en) Biomass (organic matter) odorless fermentation decomposition method
JPH0747347A (en) Dry and heated garbage decomposing method and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6915778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150