JP6913505B2 - デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ - Google Patents

デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ Download PDF

Info

Publication number
JP6913505B2
JP6913505B2 JP2017091025A JP2017091025A JP6913505B2 JP 6913505 B2 JP6913505 B2 JP 6913505B2 JP 2017091025 A JP2017091025 A JP 2017091025A JP 2017091025 A JP2017091025 A JP 2017091025A JP 6913505 B2 JP6913505 B2 JP 6913505B2
Authority
JP
Japan
Prior art keywords
conductor portion
dual
band
conductor
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017091025A
Other languages
English (en)
Other versions
JP2018191099A5 (ja
JP2018191099A (ja
Inventor
尚人 關谷
尚人 關谷
雄丈 海野
雄丈 海野
勉 鶴岡
勉 鶴岡
岸田 和人
和人 岸田
庸夫 佐藤
庸夫 佐藤
典敬 北田
典敬 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Tokyo Keiki Inc
University of Yamanashi NUC
Original Assignee
Japan Steel Works Ltd
Tokyo Keiki Inc
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Tokyo Keiki Inc, University of Yamanashi NUC filed Critical Japan Steel Works Ltd
Priority to JP2017091025A priority Critical patent/JP6913505B2/ja
Priority to US16/608,245 priority patent/US11211678B2/en
Priority to CN201880028211.2A priority patent/CN110574226B/zh
Priority to PCT/JP2018/017180 priority patent/WO2018203521A1/ja
Publication of JP2018191099A publication Critical patent/JP2018191099A/ja
Publication of JP2018191099A5 publication Critical patent/JP2018191099A5/ja
Application granted granted Critical
Publication of JP6913505B2 publication Critical patent/JP6913505B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20309Strip line filters with dielectric resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20372Hairpin resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/088Tunable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • H01P7/105Multimode resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、異なる2つの周波数で共振するデュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタに関する。
近年、スマートフォン及びタブレットなどの無線通信端末の利用増加や、映像などの大容量コンテンツの利用増加により、データトラフィックは、年率1.5倍のペースで増加しており、今後も増加傾向が継続することが見込まれている。
そこで、各通信業者は、ネットワークの高速・大容量化のために、複数の周波数帯域を同時に用いて通信を行うキャリアアグリゲーション(CA)技術を導入した。このCA技術では、複数の周波数帯域の信号を同時に通過させるマルチバンド帯域通過フィルタが必要である。
特許文献1及び2には、2つの周波数帯域の信号を同時に通過させるデュアルバンド帯域通過フィルタが開示されている。このデュアルバンド帯域通過フィルタを構成するデュアルバンド共振器は、1つの共振器で発生する2つのモードを利用して2つの周波数帯域を同時に実現する。具体的には、デュアルバンド共振器は、下面に接地導体が配置された誘電体の上面にストリップ導体として形成され、半波長共振器(第1導体部)にスタブ(第2導体部)を付加した構造を有する。このデュアルバンド共振器では、半波長共振器に奇モード共振が生じ、半波長共振器及びスタブに偶モード共振が生じる。このように、1つの共振器を2つの周波数帯域で共有することにより、2つの独立した共振器を用いるよりも、デュアルバンド共振器及びデュアルバンド帯域通過フィルタの小型化を実現することができる。
特開2014−236362号公報 特開2016−111671号公報
本発明は、従来に比して更なる小型化が可能なデュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタを提供することを目的とする。
(1) 本発明に係るデュアルバンド共振器は、異なる2つの周波数で共振するデュアルバンド共振器であって、接地導体を有する誘電体上又は誘電体内部に形成された第1導体部と第2導体部とを備え、前記第1導体部は、中央部における第1折返部でU字状に折り返され、所定間隔で隣接して所定方向に延在し、前記第1導体部における前記第1折返部よりも一端側の一端側導体部分と、前記第1導体部における前記第1折返部よりも他端側の他端側導体部分とは、更に、一端及び他端と前記第1折返部との間の第2折返部で、前記一端及び前記他端が互いに離れる方向に折り返された構造をなし、前記第2導体部は、前記一端が前記第1導体部の前記第1折返部に接続され、前記第1導体部に連続して前記所定方向に延在し、前記第1導体部の両端は開放されて、前記第1導体部は半波長共振器を構成し、前記第1導体部には、前記2つの周波数のうちの一方の周波数で共振する奇モード共振が生じ、前記第2導体部の他端は開放されて、前記第1導体部及び前記第2導体部は半波長共振器を構成し、前記第1導体部及び前記第2導体部には、前記2つの周波数のうちの他方の周波数で共振する偶モード共振が生じる。
(2) (1)に記載のデュアルバンド共振器において、前記一端側導体部分と前記他端側導体部分とは、更に、前記一端、前記他端及び前記第1折返部と前記第2折返部との間の第3折返部で、前記第2折返部が互いに離れる方向に折り返された構造をなしてもよい。
(3) (2)に記載のデュアルバンド共振器において、前記一端側導体部分において、前記所定方向に交差する交差方向に、前記第1折返部と、前記一端と、前記第2折返部とが順に配列されてもよく、前記他端側導体部分において、前記交差方向に、前記第1折返部と、前記他端と、前記第2折返部とが順に配列されてもよい。
(4) (3)に記載のデュアルバンド共振器において、前記一端側導体部分において、前記交差方向に、前記第1折返部と、前記一端と、前記第2折返部とが直線状に配列されてもよく、前記他端側導体部分において、前記交差方向に、前記第1折返部と、前記他端と、前記第2折返部とが直線状に配列されてもよい。
(5) (1)〜(4)の何れかに記載のデュアルバンド共振器において、前記第1導体部を前記第2導体部よりも細くし、第2導体部をステップインピーダンス構造としてもよい。
(6) (1)〜(5)の何れかに記載のデュアルバンド共振器において、前記第2導体部の前記他端側の端部に、凹部又は凸部が形成されてもよい。
(7) 本発明に係るデュアルバンド帯域通過フィルタは、(1)〜(6)の何れかに記載のデュアルバンド共振器を1又は複数備える。
(8) (7)に記載のデュアルバンド帯域通過フィルタは、奇モード共振の結合係数を満たすように配列された複数のデュアルバンド共振器と、偶モード共振の結合係数を満たすように、前記複数のデュアルバンド共振器における第2導体部の間に設けられた1又は複数の導波路とを備えてもよい。
(9) (8)に記載のデュアルバンド帯域通過フィルタは、前記複数のデュアルバンド共振器を挟み込むように設けられ、前記デュアルバンド共振器における第1導体部と第2導体部とに個別に結合された一対の給電線を更に備えてもよい。
本発明によれば、従来に比して更なる小型化が可能なデュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタを提供することができる。
従来のデュアルバンド共振器の側面図である。 従来のデュアルバンド共振器の平面図である。 従来のデュアルバンド共振器における奇モード共振の電流分布の模式図である。 従来のデュアルバンド共振器における偶モード共振の電流分布の模式図である。 従来のデュアルバンド共振器における奇モード共振の電流分布のシミュレーション結果である。 従来のデュアルバンド共振器における偶モード共振の電流分布のシミュレーション結果である。 従来のデュアルバンド帯域通過フィルタの平面図である。 従来例のデュアルバンド帯域通過フィルタの平面図である。 図6の従来例の設計時のSパラメータ(S21(通過特性))のシミュレーション結果である。 図7AのVIIB部分(奇モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す拡大図である。 図7AのVIIC部分(偶モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す拡大図である。 図6の従来例のSパラメータ(S21(通過特性))の実測結果である。 図8AのVIIIB部分(奇モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す拡大図である。 図8AのVIIIC部分(偶モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す拡大図である。 本実施形態に係るデュアルバンド共振器の平面図である。 本実施形態に係る他のデュアルバンド共振器の平面図である。 本実施形態のデュアルバンド共振器における偶モード共振の電流分布の模式図である。 本実施形態の他のデュアルバンド共振器における偶モード共振の電流分布の模式図である。 本実施形態に係るデュアルバンド帯域通過フィルタの平面図である。 本実施形態の変形例に係るデュアルバンド共振器の平面図である。 本実施形態の変形例に係るデュアルバンド帯域通過フィルタの平面図である。 本実施例のデュアルバンド帯域通過フィルタの平面図である。 図14の実施例の設計時のSパラメータ(S21(通過特性))のシミュレーション結果である。 図15AのXVB部分(奇モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す拡大図である。 図15AのXVC部分(偶モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す拡大図である。 図14の実施例のSパラメータ(S21(通過特性))の実測結果である。 図16AのXVIB部分(奇モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す拡大図である。 図16AのXVIC部分(偶モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す拡大図である。
以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
まず、本実施形態について説明する前に、本願発明者らが考案した従来のデュアルバンド共振器及びデュアルバンド帯域通過フィルタについて説明する。
(従来のデュアルバンド共振器)
図1は、従来のデュアルバンド共振器の側面図であり、図2は、従来のデュアルバンド共振器の平面図である。図1及び図2にはXYZ直行座標系が示されている。X方向(交差方向)は後述するフィルタの幅方向であり、Y方向(所定方向)はフィルタの長さ方向であり、Z方向はフィルタの高さ方向である。
図1に示すように、従来のデュアルバンド共振器10Xは、誘電体11上に形成されたマイクロストリップライン構造の導体で構成される。誘電体11の裏面には、接地された接地導体12が形成されている。なお、デュアルバンド共振器10Xは、誘電体内部に形成されたストリップライン構造の導体で構成されてもよいし、誘電体上に形成されたコプレナライン又はグランデッドコプレナライン構造の導体で構成されてもよい。
誘電体11としては、周知の誘電体を用いることができる。例えば、誘電体11の材料として、成形性に優れた材料が用いられてもよい。また、誘電体11の材料として、誘電体損を低減するために、誘電正接が小さい材料が用いられてもよい。また、誘電体11の材料として、温度上昇を低減するために、熱伝導率が高い材料が用いられてもよい。
デュアルバンド共振器10Xを構成する導体及び接地導体12としても、周知の導体を用いることができる。例えば、導体として、常伝導体が用いられてもよい。また、導体として、導体損を低減するために、超伝導体が用いられてもよい。
図2に示すように、デュアルバンド共振器10Xは、第1導体部20Xと第2導体部30Xとを備える。
第1導体部20Xは、いわゆるヘアピン形状をなす。具体的には、第1導体部20Xは、直線状の導体の中央部における第1折返部21でU字状に折り返された構造をなす。第1折返部21よりも一端28側の導体部分26と、第1折返部21よりも他端29側の導体部分27とは、所定間隔で隣接してY方向に延在する。第1導体部20Xの両端28,29は開放されており、第1導体部20XはU字状の半波長共振器を構成する。
第2導体部30Xは、いわゆるスタブ形状をなす。具体的には、第2導体部30Xは、一端38が第1導体部20Xの第1折返部21に接続され、第1導体部20Xに連続してY方向に延在する。第2導体部30Xの他端39は開放されており、第2導体部30Xと第1導体部20Xとは、第1導体部20Xの一端28及び他端29から第2導体部30Xの他端39に向けた直線状(I字状)の半波長共振器を構成する。
このように構成されたデュアルバンド共振器10Xでは、X方向における中心に沿ってY方向に延びるAB面は電気/磁気壁をなし、第1導体部20Xで構成されるU字状の半波長共振器には奇モード共振が生じ、第1導体部20X及び第2導体部30Xで構成される直線状(I字状)の半波長共振器には偶モード共振が生じる。これより、デュアルバンド共振器10Xは、奇モード共振周波数と偶モード共振周波数との2つの周波数(帯域)で共振する。
図3Aは、従来のデュアルバンド共振器10Xにおける奇モード共振の電流分布の模式図であり、図3Bは、従来のデュアルバンド共振器10Xにおける偶モード共振の電流分布の模式図である。また、図4Aは、従来のデュアルバンド共振器10Xにおける奇モード共振の電流分布のシミュレーション結果であり、図4Bは、従来のデュアルバンド共振器10Xにおける偶モード共振の電流分布のシミュレーション結果である。図4A及び図4Bのシミュレーションでは、電磁界解析シミュレータSONNET EM(ソネット技研社製)を用いた。図3A及び図3B、図4A及び図4Bにおける矢印は電流の向きを示す。
第1導体部20Xの一端28及び他端29は開放端であり(換言すれば、第1導体部20Xは半波長共振器であり)、第1折返部21は第1導体部20Xの中心部であるので、図3Aに示すように、第1折返部21において奇モード共振の電流が最大となり、電圧が0Vとなる。これより、奇モード共振では、第1導体部20Xと第2導体部30Xとの境界面40をGNDとみなすことができ、第2導体部30Xの影響を無視することができる。そのため、奇モードの共振周波数は、U字状の第1導体部20の全長で決まる。
図4Aのシミュレーション結果によれば、奇モード共振時の電流は、第1導体部20Xに流れており、第2導体部30Xには流れていない。これより、第2導体部30Xは、奇モード共振に影響しないことがわかる。また、電流が最大となる箇所は、第1導体部20Xの第1折返部21である。よって、奇モード共振時は、第1導体部20Xが半波長共振器として動作していることがわかる。
一方、第1導体部20Xの一端28及び他端29、並びに第2導体部30Xの他端39は開放端である(換言すれば、第1導体部20X及び第2導体部30Xは直線状の半波長共振器である)ので、図3Bに示すように、第1導体部20X及び第2導体部30Xの中心部において偶モード共振の電流が最大となり、電圧が0Vとなる。そのため、偶モードの共振周波数は、第1導体部20Xの一端28及び他端29から第2導体部30Xの他端39までの長さで主に決まる。
図4Bのシミュレーション結果によれば、偶モード共振時の電流は、AB面の電気/磁気壁に流れこまず、第1導体部20X及び第2導体部30Xの左右の側面に集中している。また、電流が最大となる箇所は第1導体部20X及び第2導体部30XのY方向の中心部である。よって、偶モード共振時は、第1導体部20X及び第2導体部30Xが直線状の半波長共振器として動作していることがわかる。
再び図2を参照し、デュアルバンド共振器10Xでは、第1導体部20X及び第2導体部30Xの長さL2を変更せず、第1導体部20Xの長さL1を変更する(このとき、第2導体部30Xの長さも変更する)ことにより、偶モードの共振周波数に影響を与えることなく、奇モードの共振周波数を調整することができる。また、デュアルバンド共振器10Xでは、第1導体部20Xの長さL1を変更せず、第1導体部20X及び第2導体部30Xの長さL2(すなわち、第2導体部30Xの長さ)を変更することにより、奇モードの共振周波数に影響を与えることなく、偶モードの共振周波数を調整することができる。これより、デュアルバンド共振器10Xは、2つの共振周波数を個別に調整することができる。
(従来のデュアルバンド帯域通過フィルタ)
図5は、従来のデュアルバンド帯域通過フィルタの平面図である。図5に示すデュアルバンド帯域通過フィルタ1Xは、図1に示す構成と同様に、誘電体11上に形成されたマイクロストリップライン構造の導体で構成される。デュアルバンド帯域通過フィルタ1Xは、給電線51X,52Xと、2つの上述したデュアルバンド共振器10Xと、導波路60Xとを備える。
給電線51X,52Xは、信号の入出力のための導体であり、X方向においてデュアルバンド共振器10Xを挟み込むように配置される。
デュアルバンド共振器10Xは、給電線51X,52Xの間においてX方向に配列される。デュアルバンド共振器10Xは、互いに180度異なる方向で配置される。換言すれば、隣接するデュアルバンド共振器10Xは、互いに180度異なる方向で配置される。
導波路60Xは、H字状の導体であり、デュアルバンド共振器10Xの間に配置される。導波路60Xは、Y方向においてデュアルバンド共振器10Xの中心部に配置される。
このデュアルバンド帯域通過フィルタ1Xによれば、デュアルバンド共振器10X間の距離dを変更することにより、奇モードの結合係数に影響を与えることなく、偶モードの結合係数を調整することができる。一方、導波路60Xの長さlを変更することにより、偶モードの結合係数に影響を与えることなく、奇モードの結合係数を調整することができる。これは以下の理由による。
U字状の第1導体部20Xは近接しており、奇モード共振の電流の向きが互いに逆向きであるので、奇モード共振において外部に放射される磁界が打消し合って小さくなる。そのため、隣接するデュアルバンド共振器10X間の奇モードの結合が小さくなる。その結果、奇モードの結合係数において、デュアルバンド共振器10X間の距離dによる依存性が小さくなる。
一方、導波路60Xは、X方向の中央部、すなわち偶モード共振の電流が大きく、電圧が小さい部分、換言すれば偶モードの磁界結合が大きい部分に配置される。一般に、導体が近接するほど電界結合が支配的となり、導体が離間するほど磁界結合が支配的となる。導波路60Xでは、電界結合が支配的となるので、偶モードの共振器とはほとんど結合しない。その結果、偶モードの結合係数において、導波路60Xの長さlによる依存性が小さくなる。
以上より、比較例のデュアルバンド帯域通過フィルタ1Xによれば、奇モードの結合係数及び偶モードの結合係数を個別に調整することができる。
(従来例の評価結果)
従来例のデュアルバンド帯域通過フィルタ1Xを設計及び作製し、評価を行った。
図6は、今回の評価において設計及び作製した従来例のデュアルバンド帯域通過フィルタ1Xの平面図である。図6に示すように、今回の評価において設計及び作製した従来例のデュアルバンド帯域通過フィルタ1Xは、デュアルバンド共振器10Xを7段備える。
また、デュアルバンド共振器10Xでは、図2及び図5に示すデュアルバンド共振器10Xにおいてステップインピーダンス構造を採用する。具体的には、第1導体部20Xの導体部分26,27における一端28及び他端29付近を細くし、第1折返部21付近を太くした。これにより、偶モード共振の周波数及び奇モード共振の周波数の調整を行った。
また、第1導体部20X及び第2導体部30XにおけるY方向の中央部に突起部45Xを設けた。第1導体部20X及び第2導体部30XにおけるY方向の中央部では、偶モード共振の電流が最大であり、電圧が0Vであるので、偶モード共振の周波数は突起部45Xに影響されない。これにより、奇モード共振の周波数調整を行った。
また、導波路70Xを備えた。導波路70Xは、デュアルバンド共振器10X間において、第2導体部30Xの近傍に、X方向に延在するように配置される。これにより、偶モードの結合係数の微調整を行った。
また、図6に示すように、デュアルバンド共振器10X間の距離dを各段において調整している。
設計条件及び設計パラメータは以下の通りである。
奇モードの共振周波数 1.5GHz
奇モードの帯域幅 22.5MHz
奇モードのリップル 0.03dB
偶モードの共振周波数 2.0GHz
偶モードの帯域幅 30.0MHz
偶モードのリップル 0.03dB
設計時のSパラメータのシミュレーション結果を図7A〜図7Cに示す。図7Aは、図6の従来例のS21(通過特性)を示し、図7Bは、図7AのVIIB部分(奇モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示し、図7Cは、図7AのVIIC部分(偶モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す。図7A〜図7Cのシミュレーションでは、電磁界解析シミュレータSONNET EM(ソネット技研社製)を用いた。
また、作製した従来例のSパラメータの実測結果を図8A〜図8Cに示す。図8Aは、図6の従来例のS21(通過特性)を示し、図8Bは、図8AのVIIIB部分(奇モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示し、図8Cは、図8AのVIIIC部分(偶モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す。図8A〜図8Cの測定では、ネットワークアナライザE5063A(キーサイト社製)を用いた。
図7A〜図7C、図8A〜図8Cによれば、シミュレーション結果とほぼ同様の測定結果を得ることができ、従来例の手法の有効性を実証した。
更に、図6の従来例のデュアルバンド共振器10Xの大きさは、2.6mm(X方向)×28.7mm(Y方向)あり、図6の従来例のデュアルバンド帯域通過フィルタ1Xの大きさは、50.0mm(X方向)×39.1mm(Y方向)であった。このように、従来例のデュアルバンド共振器10X及びデュアルバンド帯域通過フィルタ1Xは、1つの共振器で発生する二つのモードを利用して2つの周波数帯域を同時に実現することにより、2つの独立した共振器を用いるよりも小型化が可能である。
ここで、従来のデュアルバンド共振器10Xでは、偶モード共振において外部に放射される磁界が比較的に大きく、フィルタを構成する際に隣り合う共振器同士の結合が大きい。そのため、偶モード共振において所望の結合を得るために、共振器間の距離が大きくなり、フィルタ全体のサイズが比較的に大きくなってしまう。
そこで、本実施形態では、従来に比して更なる小型化が可能なデュアルバンド共振器及びデュアルバンド帯域通過フィルタを提供する。
(本実施形態に係るデュアルバンド共振器)
図9Aは、本実施形態に係るデュアルバンド共振器の平面図である。図9Aに示すデュアルバンド共振器10は、図1に示す従来のデュアルバンド共振器10Xと同様に、誘電体上に形成されたマイクロストリップライン構造の導体で構成される。
図9Aに示すように、デュアルバンド共振器10は、第1導体部20と第2導体部30とを備える。
第1導体部20は、図2に示す従来の第1導体部20Xと同様に、直線状の導体の中央部における第1折返部21でU字状に折り返された構造をなす。第1導体部20における第1折返部21よりも一端28側の導体部分26と、第1導体部20における第1折返部21よりも他端29側の導体部分27とは、所定間隔で隣接してY方向に延在する。
更に、導体部分26及び導体部分27は、一端28及び他端29と第1折返部21との間の中央部における第2折返部22で外側に折り返された構造をなす。すなわち、導体部分26及び導体部分27は、第2折返部22で、一端28及び他端29が互いに離れる方向に折り返された構造をなす。
換言すれば、導体部分26は、第2折返部22で、X方向において導体部分27と離間する方向に折り返された構造をなし、導体部分27は、第2折返部22で、X方向において導体部分26と離間する方向に折り返された構造をなす。
本実施形態では、導体部分26及び導体部分27は、一端28及び他端29が第1折返部21に隣接するように折り返されている。これにより、図11で後述する導波路60による偶モードの結合係数の独立調整を可能にしつつ、偶モード共振において外部に放射される磁界が打消し合って小さくなる効果を最大限に得ることができる。
なお、導体部分26及び導体部分27は、一端28及び他端29が第1折返部21と第2折返部22との間の導体部分26,27に隣接する程度に折り返されてもよいし、一端28及び他端29が第2導体部30に隣接するまで折り返されてもよい。
第1導体部20の両端28,29は開放されており、第1導体部20はU字状の半波長共振器を構成する。
第2導体部30は、図2に示す従来の第2導体部30Xと同様に、一端38が第1導体部20の第1折返部21に接続され、第1導体部20に連続してY方向に延在する。第2導体部30の他端39は開放されており、第2導体部30と第1導体部20とは直線状(I字状)の半波長共振器を構成する。
図10Aは、本実施形態のデュアルバンド共振器10における偶モード共振の電流分布の模式図である。図10Aでは、第1折返部21よりも一端28側の導体部分26における偶モード共振の電流分布を示すが、第1折返部21よりも他端29側の導体部分27における偶モード共振の電流分布も同様である。図中の矢印は電流の方向を示す。
第2折返部22は、一端28及び他端29と第1折返部21との間の中央部、換言すれば、第1導体部20と第2導体部30との中央部付近であるので、偶モード共振の電流が略最大となる。これより、図10Aに示すように、導体部分26における隣り合う導体において、偶モード共振の電流が互いに逆向きとなり、また、偶モード共振の電流の大きさが略等しくなる。そのため、偶モード共振において外部に放射される磁界が打消し合って小さくなる。
なお、奇モード共振では、第1折返部21から第2折返部22までの奇モード共振の電流が大きい導体部分が隣接するので、上述したように、奇モード共振において外部に放射される磁界が打消し合って小さくなる。
(本実施形態に係る他のデュアルバンド共振器)
図9Bは、本実施形態に係るデュアルバンド共振器の平面図である。図9Bに示すデュアルバンド共振器10は、図9Aに示す本実施形態のデュアルバンド共振器10において第1導体部20の構成が異なる。
第1導体部20では、図9Aに示す第1導体部20において、更に、折り返された導体部分26及び導体部分27は、一端28、他端29及び第1折返部21と第2折返部22との間の中央部である第3折返部23で、外側に折り返された構造をなす。すなわち、折り返された導体部分26及び導体部分27は、第3折返部23で、第2折返部22が互いに離れる方向に折り返された構造をなす。
換言すれば、折り返された導体部分26は、第3折返部23で、X方向において導体部分27と離間する方向に折り返された構造をなし、折り返された導体部分27は、第3折返部23で、X方向において導体部分26と離間する方向に折り返された構造をなす。
本実施形態では、導体部分26において、X方向に直線状に、第1折返部21と、一端28と、第2折返部22とが順に配列され、導体部分27において、X方向に直線状に、第1折返部21と、他端29と、第2折返部22とが順に配列される。
なお、第1折返部21と、一端28と、第2折返部22とは、X方向に直線状に配列されていなくてもよい。また、第1折返部21と、他端29と、第2折返部22とは、X方向に直線状に配列されていなくてもよい。具体的には、第1折返部21と、一端28と、第2折返部22とは、Y方向にずれつつ、X方向に配列されてもよい。また、第1折返部21と、他端29と、第2折返部22とは、Y方向にずれつつ、X方向に配列されてもよい。
更に、折り返された導体部分26及び導体部分27は、更に折り返された構造をなしてもよい。この場合、導体部分26において、X方向に、第1折返部21と、一端28と、第2折返部22と、第3折返部23と、・・・とが順に配列され、導体部分27において、X方向に、第1折返部21と、他端29と、第2折返部22と、第3折返部23と、・・・とが順に配列されればよい。
図10Bは、本実施形態の他のデュアルバンド共振器10における偶モード共振の電流分布の模式図である。図10Bでも、第1折返部21よりも一端28側の導体部分26における偶モード共振の電流分布を示すが、第1折返部21よりも他端29側の導体部分27における偶モード共振の電流分布も同様である。図中の矢印は電流の方向を示す。
第3折返部23は、一端28、他端29及び第1折返部21と第2折返部22との間の中央部、換言すれば、第1導体部20と第2導体部との1/4付近であるので、偶モード共振の電流が最大値の略1/2となる。これより、図10Bに示すように、導体部分26における隣り合う導体において、偶モード共振の電流が互いに逆向きとなり、また、偶モード共振の電流の大きさが略等しくなる。そのため、偶モード共振において外部に放射される磁界が打消し合って小さくなる。
なお、奇モード共振では、第1折返部21から第3折返部23までの奇モード共振の電流が大きい導体部分が隣接するので、上述したように、奇モード共振において外部に放射される磁界が打消し合って小さくなる。
以上説明したように、本実施形態のデュアルバンド共振器10によれば、第1導体部20における導体部分26と導体部分27とが、第1折返部21で、一端28及び他端29が互いに離れる方向に折り返された構造をなすことにより、従来のデュアルバンド共振器10Xと比較して、デュアルバンド共振器10の小型化が可能である。
更に、本実施形態のデュアルバンド共振器10によれば、導体部分26と導体部分27とが、第3折返部23で、第2折返部22が互いに離れる方向に折り返された構造をなすことにより、デュアルバンド共振器10の更なる小型化が可能である。
また、上述のように導体部分26と導体部分27とが折り返された構造をなすことにより、隣り合う導体において、偶モード共振の電流が互いに逆向きとなり、また、偶モード共振の電流の大きさが略等しくなるため、偶モード共振において外部に放射される磁界が打消し合って小さくなる。
これより、フィルタを構成する際に、隣り合う共振器における奇モードの結合のみならず偶モードの結合も小さくなり、共振器間の距離を小さくすることができる。その結果、フィルタの小型化が可能である。
(本実施形態に係るデュアルバンド帯域通過フィルタ)
図11は、本実施形態に係るデュアルバンド帯域通過フィルタの平面図である。図11に示すデュアルバンド帯域通過フィルタ1は、図1に示す従来のデュアルバンド共振器10Xと同様に、誘電体上に形成されたマイクロストリップライン構造の導体で構成される。デュアルバンド帯域通過フィルタ1は、図5に示すデュアルバンド帯域通過フィルタ1Xと同様に、給電線51,52と、2つの上述したデュアルバンド共振器10と、導波路60とを備える。
給電線51,52は、信号の入出力のための導体であり、X方向においてデュアルバンド共振器10を挟み込むように配置される。給電線51,52は、第1導体部20と第2導体部30とに個別に結合される。
デュアルバンド共振器10は、給電線51,52の間においてX方向に配列される。
導波路60は、L字状の導体と逆L字状の導体とを接続した導体であり、デュアルバンド共振器10の間に配置される。導波路60は、Y方向において第2導体部30に隣接するように配置される。
このデュアルバンド帯域通過フィルタ1によれば、奇モードの結合のみならず、偶モードの結合も小さいので、デュアルバンド共振器10の間隔を小さくすることができる。本実施形態では、デュアルバンド共振器10間の距離dを変更することにより、奇モードの結合係数を調整する。このとき、偶モードの結合係数も調整されるが不十分であるので、導波路60の長さlを変更することにより、奇モードの結合係数に影響を与えることなく、偶モードの結合係数を調整することができる。これより、デュアルバンド帯域通過フィルタ1によれば、奇モードの結合係数及び偶モードの結合係数を個別に調整することができる。
また、このデュアルバンド帯域通過フィルタ1によれば、給電線51,52が、第1導体部20と第2導体部30とに個別に結合されるので、奇モードの外部Q値及び偶モードの外部Q値を個別に調整することができる。外部Q値とは、給電線と共振器との結合の強さを表す。
ところで、狭帯域フィルタを実現する場合、設計上、共振器間の結合を小さくしなければならないため、共振器間距離を広くとる必要がある。このデュアルバンド帯域通過フィルタ1によれば、共振器間の結合が小さいため、共振器間距離を広く取らなくてもよく、その結果、小型に狭帯域のデュアルバンド帯域通過フィルタが実現することができる。
ところで、周波数資源を有効利用するために、帯域通過フィルタでは、急峻な遮断特性が求められる。急峻な遮断特性を得るためには、共振器を多段化することが考えられるが、損失が大きくなり、フィルタとしての性能が劣化してしまう。そこで、第1導体部及び第2導体部として、超伝導体が用いられてもよい。超伝導体は、マイクロ波帯において、銅などの常伝導金属に比べて表面抵抗が2〜3桁ほど小さい。そのため、共振器を多段化しても、低損失を維持したまま、急峻な遮断特性を実現することができる。
以上説明したように、本実施形態のデュアルバンド帯域通過フィルタ1によれば、上述したデュアルバンド共振器10を備えるので、隣り合う共振器における奇モードの結合のみならず偶モードの結合も小さくなり、共振器間の距離を小さくすることができる。その結果、フィルタの小型化が可能である。
また、本実施形態のデュアルバンド帯域通過フィルタ1によれば、上述したように共振器間の距離を小さくすることができるので、小型に狭帯域のデュアルバンド帯域通過フィルタが実現することができる。
また、本実施形態のデュアルバンド帯域通過フィルタ1によれば、上述したように共振器間の距離を小さくすることができるので、共振器を多段化することが可能となり、急峻な遮断特性を実現することができる。
また、本実施形態のデュアルバンド帯域通過フィルタ1によれば、奇モードの結合のみならず偶モードの結合も小さいので、隣り合う共振器以外の不要な飛越結合を低減することができ、その結果、多段化設計が容易になる。
(本実施形態の変形例に係るデュアルバンド共振器)
図12は、本実施形態の変形例に係るデュアルバンド共振器の平面図である。図12に示すように、図9Bに示すデュアルバンド共振器10において、ステップインピーダンス構造を採用してもよい。具体的には、デュアルバンド共振器10は、第1導体部20を細くし、第2導体部30を太くした構造であってもよい。これにより、偶モード及び奇モードの周波数調整を行うことができる。また、共振器の更なる小型化が可能である。
また、第2導体部30の他端39側の端部に凹部35が設けられてもよい。凹部35の溝の深さを調整することにより、第2導体部30の他端39の端部全体を調整する場合と比較して、偶モード共振の周波数を微調整することができる。凹部35の形成位置は、第2導体部30の他端39側の端部の中央部であることが好ましい。これにより、図11に示す導波路60による偶モードの結合係数の調整に影響を与えることなく、偶モード共振の周波数の微調整を行うことができる。
また、凹部35に代えて凸部が、第2導体部30の他端39側の端部に設けられてもよい。この場合、凸部の突起の長さを調整することにより、偶モード共振の周波数を微調整することができる。
(本実施形態の変形例に係るデュアルバンド帯域通過フィルタ)
図13は、本実施形態の変形例に係るデュアルバンド帯域通過フィルタの平面図である。図13に示すように、図11に示すデュアルバンド帯域通過フィルタ1において、デュアルバンド共振器10として図12のデュアルバンド共振器10を採用してもよい。
また、I字状の導波路70を更に備えてもよい。導波路70は、デュアルバンド共振器10間において、第2折返部22の近傍及び/又は第3折返部23の近傍に、X方向に延在するように配置される。これにより、奇モードの結合係数を微調整することができる。
(実施例の評価結果)
実施例のデュアルバンド帯域通過フィルタ1を設計及び作製し、評価を行った。
図14は、今回の評価において設計及び作製した実施例のデュアルバンド帯域通過フィルタ1の平面図である。図14に示すように、今回の評価において設計及び作製した実施例のデュアルバンド帯域通過フィルタ1は、図13に示すデュアルバンド帯域通過フィルタ1の構成に従ってデュアルバンド共振器10を10段備える。
図14に示すように、デュアルバンド共振器10間の距離d、導波路70の有無及び長さ、及び、凹部35の深さを各段において調整している。
設計条件及び設計パラメータは以下の通りである。
奇モードの共振周波数 1.5GHz
奇モードの帯域幅 15MHz
奇モードのリップル 0.03dB
偶モードの共振周波数 2.0GHz
偶モードの帯域幅 20MHz
偶モードのリップル 0.03dB
設計時のSパラメータのシミュレーション結果を図15A〜図15Cに示す。図15Aは、図14の実施例のS21(通過特性)を示し、図15Bは、図15AのXVB部分(奇モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示し、図15Cは、図15AのXVC部分(偶モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す。図15A〜図15Cのシミュレーションでは、電磁界解析シミュレータSONNET EM(ソネット技研社製)を用いた。
また、作製した実施例のSパラメータの実測結果を図16A〜図16Cに示す。図16Aは、図14の実施例のS21(通過特性)を示し、図16Bは、図16AのXVIB部分(奇モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示し、図16Cは、図16AのXVIC部分(偶モード共振周波数近傍)のS21(通過特性)及びS11(反射特性)を拡大して示す。図16A〜図16Cの測定では、ネットワークアナライザE5063A(キーサイト社製)を用いた。
図15A〜図15C、図16A〜図16Cによれば、シミュレーション結果とほぼ同様の測定結果を得ることができ、実施例の手法の有効性を実証した。
また、デュアルバンド共振器10を10段と多段化することにより、急峻な遮断特性を実現することができた。
更に、図14の実施例のデュアルバンド共振器10の大きさは、2.7mm(X方向)×10.6mm(Y方向)あり、図14の実施例のデュアルバンド帯域通過フィルタ1の大きさは、39.35mm(X方向)×15.8mm(Y方向)であった。これより、実施例のデュアルバンド共振器10及びデュアルバンド帯域通過フィルタ1は、上述した従来例のデュアルバンド共振器10X及びデュアルバンド帯域通過フィルタ1Xと比較して、小型化が可能である。
なお、実施例では、奇モード用共振器が低周波側で共振し、偶モード用共振器が高周波側で共振するように共振器長を調整したが、奇モード用共振器が高周波側で共振し、偶モード用共振器が低周波側で共振するように共振器長を調整してもよい。
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に制限されるものではなく、適宜変更が可能である。
1,1X デュアルバンド帯域通過フィルタ
10,10X デュアルバンド共振器
11 誘電体
12 接地導体
20,20X 第1導体部
21 第1折返部
22 第2折返部
23 第3折返部
26 一端側の導体部分
27 他端側の導体部分
28 一端
29 他端
30,30X 第2導体部
35 凹部
38 一端
39 他端
40 境界面
51,51X,52,52X 給電線
60,60X,70,70X 導波路

Claims (9)

  1. 異なる2つの周波数で共振するデュアルバンド共振器であって、
    接地導体を有する誘電体上又は誘電体内部に形成された第1導体部と第2導体部とを備え、
    前記第1導体部は、中央部における第1折返部でU字状に折り返され、所定間隔で隣接して所定方向に延在し、
    前記第1導体部における前記第1折返部よりも一端側の一端側導体部分と、前記第1導体部における前記第1折返部よりも他端側の他端側導体部分とは、更に、一端及び他端と前記第1折返部との間の第2折返部で、前記一端及び前記他端が互いに離れる方向に折り返された構造をなし、
    前記第2導体部は一端が前記第1導体部の前記第1折返部に接続され、前記第1導体部に連続して前記所定方向に延在し、
    前記第1導体部の両端は開放されて、前記第1導体部は半波長共振器を構成し、前記第1導体部には、前記2つの周波数のうちの一方の周波数で共振する奇モード共振が生じ、
    前記第2導体部の他端は開放されて、前記第1導体部及び前記第2導体部は半波長共振器を構成し、前記第1導体部及び前記第2導体部には、前記2つの周波数のうちの他方の周波数で共振する偶モード共振が生じる、
    デュアルバンド共振器。
  2. 前記一端側導体部分と前記他端側導体部分とは、更に、前記一端、前記他端及び前記第1折返部と前記第2折返部との間の第3折返部で、前記第2折返部が互いに離れる方向に折り返された構造をなす、請求項1に記載のデュアルバンド共振器。
  3. 前記一端側導体部分において、前記所定方向に交差する交差方向に、前記第1折返部と、前記一端と、前記第2折返部とが順に配列され、
    前記他端側導体部分において、前記交差方向に、前記第1折返部と、前記他端と、前記第2折返部とが順に配列される、
    請求項2に記載のデュアルバンド共振器。
  4. 前記一端側導体部分において、前記交差方向に、前記第1折返部と、前記一端と、前記第2折返部とが直線状に配列され、
    前記他端側導体部分において、前記交差方向に、前記第1折返部と、前記他端と、前記第2折返部とが直線状に配列される、
    請求項3に記載のデュアルバンド共振器。
  5. 前記第1導体部を前記第2導体部よりも細くし、第2導体部をステップインピーダンス構造とする、請求項1〜4の何れか1項に記載のデュアルバンド共振器。
  6. 前記第2導体部の前記他端側の端部に、凹部又は凸部が形成される、請求項1〜5の何れか1項に記載のデュアルバンド共振器。
  7. 請求項1〜6の何れか1項に記載のデュアルバンド共振器を1又は複数備える、
    デュアルバンド帯域通過フィルタ。
  8. 奇モード共振の結合係数を満たすように配列された複数のデュアルバンド共振器と、
    偶モード共振の結合係数を満たすように、前記複数のデュアルバンド共振器における第2導体部の間に設けられた1又は複数の導波路と、
    を備える、請求項7に記載のデュアルバンド帯域通過フィルタ。
  9. 前記複数のデュアルバンド共振器を挟み込むように設けられ、前記デュアルバンド共振器における第1導体部と第2導体部とに個別に結合された一対の給電線を更に備える、請求項8に記載のデュアルバンド帯域通過フィルタ。
JP2017091025A 2017-05-01 2017-05-01 デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ Active JP6913505B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017091025A JP6913505B2 (ja) 2017-05-01 2017-05-01 デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ
US16/608,245 US11211678B2 (en) 2017-05-01 2018-04-27 Dual-band resonator and dual-band bandpass filter using same
CN201880028211.2A CN110574226B (zh) 2017-05-01 2018-04-27 双频谐振器及使用该双频谐振器的双频带通滤波器
PCT/JP2018/017180 WO2018203521A1 (ja) 2017-05-01 2018-04-27 デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091025A JP6913505B2 (ja) 2017-05-01 2017-05-01 デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ

Publications (3)

Publication Number Publication Date
JP2018191099A JP2018191099A (ja) 2018-11-29
JP2018191099A5 JP2018191099A5 (ja) 2020-05-07
JP6913505B2 true JP6913505B2 (ja) 2021-08-04

Family

ID=64016182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091025A Active JP6913505B2 (ja) 2017-05-01 2017-05-01 デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ

Country Status (4)

Country Link
US (1) US11211678B2 (ja)
JP (1) JP6913505B2 (ja)
CN (1) CN110574226B (ja)
WO (1) WO2018203521A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952319B (zh) * 2021-03-11 2021-11-30 电子科技大学 基于零度馈电结构的通带独立可控的微带双通带滤波器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888942A (en) * 1996-06-17 1999-03-30 Superconductor Technologies, Inc. Tunable microwave hairpin-comb superconductive filters for narrow-band applications
JP3610861B2 (ja) * 2000-01-31 2005-01-19 三菱電機株式会社 低域通過フィルタ
JP3632597B2 (ja) * 2000-02-01 2005-03-23 株式会社村田製作所 フィルタ、デュプレクサおよび通信装置
JP4489113B2 (ja) * 2007-11-26 2010-06-23 株式会社東芝 共振器およびフィルタ
US8884722B2 (en) * 2009-01-29 2014-11-11 Baharak Mohajer-Iravani Inductive coupling in transverse electromagnetic mode
CN102509822B (zh) 2011-10-26 2014-08-13 京信通信***(中国)有限公司 双通带微带滤波器
JP6265460B2 (ja) 2013-06-01 2018-01-24 国立大学法人山梨大学 デュアルバンド共振器及びそれを用いたデュアルバンド帯域通過フィルタ
JP6265461B2 (ja) * 2013-07-04 2018-01-24 国立大学法人山梨大学 共振器装荷型デュアルバンド共振器及びそれを用いたデュアルバンドフィルタ
JP6265478B2 (ja) * 2014-01-29 2018-01-24 国立大学法人山梨大学 チューナブルデュアルバンド帯域通過フィルタ
CN204205007U (zh) * 2014-11-13 2015-03-11 华南理工大学 基于多阶跃阻抗谐振器加载结构的双频宽带带阻滤波器
JP6236701B2 (ja) * 2014-12-09 2017-11-29 国立大学法人山梨大学 改良型チューナブルデュアルバンド帯域通過フィルタ
US9979064B2 (en) 2014-12-09 2018-05-22 University Of Yamanashi Tunable dual-band band-pass filter
CN104466319A (zh) 2014-12-15 2015-03-25 中国科学院微电子研究所 一种阶梯阻抗发夹式谐振器加载开路线的双模滤波器
CN105789754A (zh) * 2014-12-22 2016-07-20 哈尔滨飞羽科技有限公司 基于e型谐振器与t型馈线的紧凑双模微带滤波器

Also Published As

Publication number Publication date
CN110574226B (zh) 2022-02-25
JP2018191099A (ja) 2018-11-29
US20200194856A1 (en) 2020-06-18
CN110574226A (zh) 2019-12-13
WO2018203521A1 (ja) 2018-11-08
US11211678B2 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
US7710222B2 (en) Dual band resonator and dual band filter
US10629974B2 (en) Tunable dual-band resonator
CN107146930B (zh) 基于s-型互补螺旋线的半模基片集成波导带通滤波器
Jang et al. Compact metamaterial zeroth-order resonator bandpass filter for a UHF band and its stopband improvement by transmission zeros
US7764147B2 (en) Coplanar resonator and filter using the same
JP2007134781A (ja) 可変共振器
JP4827260B2 (ja) 通信回路、インピーダンス整合回路、インピーダンス整合回路を生産する方法、及び、インピーダンス整合回路の設計方法
KR101154091B1 (ko) 메타 재질 mimo 안테나
CN109066039A (zh) 一种新型的微带功分双工器
JP6913505B2 (ja) デュアルバンド共振器、及び、それを用いたデュアルバンド帯域通過フィルタ
JP6265478B2 (ja) チューナブルデュアルバンド帯域通過フィルタ
JP4230467B2 (ja) コプレーナライン型の共振器を用いた高周波フィルタ
JP5578440B2 (ja) 差動伝送線路
JP4501729B2 (ja) 高周波フィルタ
JP4189971B2 (ja) 周波数可変型高周波フィルタ
JP4602240B2 (ja) 短絡手段、および短絡手段を備える先端短絡スタブ、共振器並びに高周波フィルタ
EP2790266B1 (en) Filter and resonator
US20230143899A1 (en) Filter
JP4629617B2 (ja) 高周波結合線路及び高周波フィルタ
JP2008042608A (ja) 帯域通過フィルタ
CN115706326A (zh) 天线***及电子设备
Jankovic et al. 6 Fractal-based multi-band microstrip filters
KR20170080158A (ko) 스터브가 삽입된 인터디지털 결합 선로를 이용한 crlh 대역 통과 필터
Meeloon et al. UWB-Bandpass Filters with Improved Stopband Performance
JP2009004836A (ja) 帯域通過フィルタ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6913505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150