JP6912217B2 - Variable thermal conductivity material - Google Patents

Variable thermal conductivity material Download PDF

Info

Publication number
JP6912217B2
JP6912217B2 JP2017029261A JP2017029261A JP6912217B2 JP 6912217 B2 JP6912217 B2 JP 6912217B2 JP 2017029261 A JP2017029261 A JP 2017029261A JP 2017029261 A JP2017029261 A JP 2017029261A JP 6912217 B2 JP6912217 B2 JP 6912217B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
foaming
molded body
variable
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017029261A
Other languages
Japanese (ja)
Other versions
JP2018137065A (en
Inventor
カイオ 田草川
カイオ 田草川
川井 友博
友博 川井
陽子 安部
陽子 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
MCPP Innovation LLC
Original Assignee
Mitsubishi Chemical Corp
MCPP Innovation LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, MCPP Innovation LLC filed Critical Mitsubishi Chemical Corp
Priority to JP2017029261A priority Critical patent/JP6912217B2/en
Publication of JP2018137065A publication Critical patent/JP2018137065A/en
Application granted granted Critical
Publication of JP6912217B2 publication Critical patent/JP6912217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、複数の蓄電素子が並列配置された蓄電装置に配置される熱伝導率可変材に関する。 The present invention relates to a variable thermal conductivity material that is arranged in a power storage device in which a plurality of power storage elements are arranged in parallel.

電気自動車やハイブリッド車といった電動車両の動力源として、小型且つ軽量でエネルギー密度が高く、繰り返し充放電が可能なリチウムイオン二次電池の需要が高まっている。このような車載用途においては、複数のセル(蓄電素子/単電池)を一方向にスペーサを挟んで並列配置するとともに電気的に直列に接続した電池モジュール、及びこれを電気的に複数接続した電池パックが採用されている。そして近年では、電動車両の航続距離の増大等への要求が高まってきており、これに応じて電池モジュールのさらなるコンパクト化及び高エネルギー密度化が求められている。 As a power source for electric vehicles such as electric vehicles and hybrid vehicles, there is an increasing demand for lithium-ion secondary batteries that are compact, lightweight, have high energy density, and can be repeatedly charged and discharged. In such in-vehicle applications, a battery module in which a plurality of cells (storage elements / cell cells) are arranged in parallel with a spacer in one direction and electrically connected in series, and a battery in which a plurality of cells are electrically connected are connected. The pack is adopted. In recent years, there has been an increasing demand for an increase in the cruising range of an electric vehicle, and in response to this, further compactification and higher energy density of the battery module are required.

リチウムイオン二次電池のセルは、充放電時において発熱することが知られているが、電池モジュールの高エネルギー密度化にともない、潜在的に発生し得る熱量が大きなものとなってきている。とりわけ、セルの熱暴走が生じた場合には、セル表面温度が200℃以上に達することもある。そして、リチウムイオン二次電池のセルは、高温に曝されると電池寿命や高速充放電性能等が大きく劣化することから、いずれかの蓄電素子の温度が急激に上昇したとしても、隣り合って配置された他の蓄電素子にその熱が伝達されるのを抑制することが望まれている。 It is known that cells of lithium ion secondary batteries generate heat during charging and discharging, but as the energy density of battery modules increases, the amount of heat that can potentially be generated is increasing. In particular, when thermal runaway occurs in the cell, the cell surface temperature may reach 200 ° C. or higher. When the cells of the lithium ion secondary battery are exposed to a high temperature, the battery life and the high-speed charge / discharge performance are significantly deteriorated. Therefore, even if the temperature of any of the power storage elements rises sharply, they are adjacent to each other. It is desired to suppress the transfer of the heat to other arranged power storage elements.

このようなセル間の伝熱抑制を行うものとして、例えば特許文献1には、蓄電素子の間に、未硬化状態の熱硬化性樹脂で形成された仕切り部材(スペーサ)を配置した蓄電装置が提案されている。また、特許文献2には、蓄電素子の間に、母材樹脂と前記蓄電素子の発熱に伴う温度上昇に応じて熱分解される発泡剤とを有する仕切り部材(スペーサ)を配置した蓄電装置が提案されている。 As a device for suppressing heat transfer between cells, for example, in Patent Document 1, a power storage device in which a partition member (spacer) formed of an uncured thermosetting resin is arranged between power storage elements is provided. Proposed. Further, in Patent Document 2, a power storage device in which a partition member (spacer) having a base resin and a foaming agent that is thermally decomposed in response to a temperature rise due to heat generation of the power storage element is arranged between the power storage elements is provided. Proposed.

特開2010−097693号公報Japanese Unexamined Patent Publication No. 2010-097693 特開2010−165597号公報Japanese Unexamined Patent Publication No. 2010-165597

特許文献1及び2の技術は、セル表面温度が200℃以上に達するような異常発熱時において、隣接配置された他の蓄電素子に熱が伝達されるのを抑制する上では有効ではある。しかしながら、特許文献1及び2の技術では、仕切り部材が熱を吸収することで伝熱抑制を行うものであるため、外部への熱の伝達効率が低下し、特に通常使用時において各セルに熱がこもってしまうという問題がある。 The techniques of Patent Documents 1 and 2 are effective in suppressing heat transfer to other power storage elements arranged adjacent to each other when abnormal heat generation occurs such that the cell surface temperature reaches 200 ° C. or higher. However, in the techniques of Patent Documents 1 and 2, since the partition member absorbs heat to suppress heat transfer, the efficiency of heat transfer to the outside is lowered, and heat is transferred to each cell especially during normal use. There is a problem of being muffled.

すなわち、通常使用時には、例えば充放電にともないセル表面温度が50〜100℃程度の発熱が生じるが、このような通常使用時の発熱がスペーサ間に留まってしまい、セルに蓄熱する。そのため、特許文献1及び2に記載されたスペーサを用いると、これを使用しない場合に比して、通常使用時の各セルの温度上昇幅が大きくなってしまう。そして、リチウムイオン二次電池のセルがその性能を最大限に発揮できる適正な温度域は、現状−30〜45℃程度であることから、通常使用時に生じ得る50〜100℃程度の熱であっても、電池寿命や高速充放電性能等を低下させてしまう。この傾向は、電池モジュールのコンパクト化及び高エネルギー密度化にともない、さらに顕在化しつつある。 That is, during normal use, for example, heat generation with a cell surface temperature of about 50 to 100 ° C. occurs due to charging and discharging, but such heat generation during normal use stays between spacers and stores heat in the cell. Therefore, when the spacers described in Patent Documents 1 and 2 are used, the temperature rise width of each cell during normal use becomes larger than that when the spacers are not used. The proper temperature range in which the cell of the lithium ion secondary battery can maximize its performance is currently about -30 to 45 ° C. Therefore, it is the heat of about 50 to 100 ° C. that can be generated during normal use. However, the battery life and high-speed charge / discharge performance are deteriorated. This tendency is becoming more apparent as the battery modules become more compact and have higher energy densities.

本発明は、かかる課題に鑑みてなされたものである。その目的は、セル表面温度が200℃以上に達するような異常発熱時には隣接配置された他の蓄電素子に熱が伝達されるのを抑制するとともに、セル表面温度が50〜100℃程度の通常使用時の発熱については、外部へ熱伝導させることでセル温度の低下を促進させることで、電池性能の低下を抑制した新規な熱伝導率可変材を提供することにある。 The present invention has been made in view of such a problem. The purpose is to suppress heat transfer to other power storage elements arranged adjacent to each other during abnormal heat generation such that the cell surface temperature reaches 200 ° C or higher, and for normal use with a cell surface temperature of about 50 to 100 ° C. Regarding heat generation during time, it is an object of the present invention to provide a new variable thermal conductivity material that suppresses a decrease in battery performance by accelerating a decrease in cell temperature by conducting heat to the outside.

なお、ここでいう目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本発明の他の目的として位置づけることができる。 It should be noted that the present invention is not limited to the purpose described here, and it is an action and effect derived by each configuration shown in the embodiment for carrying out the invention described later, and it is also possible to exert an action and effect that cannot be obtained by the conventional technique. It can be positioned as another purpose.

本発明者らは、上記課題を解決するべく鋭意検討した結果、発泡前後で蓄電素子間の熱伝導率を劇的に変化させる熱伝導率可変材を用いることで、異常発熱時のみならず通常使用時のセル発熱による電池性能の低下が抑制可能であることを見出し、本発明を完成するに至った。すなわち、本発明は、以下に示す種々の具体的態様を提供する。 As a result of diligent studies to solve the above problems, the present inventors have used a thermal conductivity variable material that dramatically changes the thermal conductivity between storage elements before and after foaming, so that not only during abnormal heat generation but also normally. We have found that it is possible to suppress a decrease in battery performance due to cell heat generation during use, and have completed the present invention. That is, the present invention provides various specific aspects shown below.

[1]隣り合う2以上の蓄電素子の間に配置される熱伝導率可変材であって、熱硬化型エラストマー及び発泡剤を少なくとも含有する発泡性樹脂組成物の成形体を少なくとも備え、前記成形体は所定の温度以上で発泡し、その発泡前後で、前記蓄電素子間の熱伝導率を1/3以下に変化させることを特徴とする熱伝導率可変材。
[2]隣り合う2以上の蓄電素子の間に配置される熱伝導率可変材であって、熱硬化型エラストマー及び発泡剤を少なくとも含有する発泡性樹脂組成物の成形体を少なくとも備え、前記成形体は所定の温度以上で発泡し、その発泡前後で、前記蓄電素子間の熱伝導率を0.3W/mK以上減少させることを特徴とする熱伝導率可変材。
[3]前記熱硬化型エラストマー、及び前記発泡剤を少なくとも含有する第1発泡性樹脂組成物の成形体Aと、前記熱硬化型エラストマー、前記発泡剤及び熱伝導性フィラーを少なくとも含有する第2発泡性樹脂組成物の成形体Bとを少なくとも備え、前記成形体A及び前記成形体Bが積層されてなる[1]又は[2]に記載の熱伝導率可変材。
[4]前記成形体Bの少なくとも一部が、前記蓄電素子の側面に貼着されており、発泡前後で、前記成形体Bと前記蓄電素子との接触面積が減少する[3]に記載の熱伝導率可変材。
[5]前記成形体Aの少なくとも一部が、前記蓄電素子の側面に貼着されており、発泡前後で、前記成形体Aと前記蓄電素子との接触面積が増大する[3]又は[4]に記載の熱伝導率可変材。
[6]前記成形体Aは、発泡倍率が150〜3000%であり、前記成形体Aの発泡により、前記成形体Bと前記蓄電素子との接触面積が減少する[3]〜[5]のいずれか一項に記載の熱伝導率可変材。
[7]前記成形体Aは、発泡前の熱伝導率が0.2W/mK以上であり且つ発泡後の熱伝導率が0.1W/mK以下であり、前記成形体Bは、発泡前の熱伝導率が0.8W/mK以上であり且つ発泡後の熱伝導率が0.3W/mK以上である
[3]〜[6]のいずれか一項に記載の熱伝導率可変材。
[1] A molded body of a foamable resin composition which is a thermal conductivity variable material arranged between two or more adjacent power storage elements and contains at least a thermosetting elastomer and a foaming agent, and the molding thereof. A heat conductivity variable material characterized in that the body foams at a predetermined temperature or higher, and the thermal conductivity between the power storage elements is changed to 1/3 or less before and after the foaming.
[2] A molded body of a foamable resin composition which is a thermal conductivity variable material arranged between two or more adjacent power storage elements and contains at least a thermosetting elastomer and a foaming agent, and the molding thereof. A heat conductivity variable material characterized in that the body foams at a predetermined temperature or higher, and before and after the foaming, the thermal conductivity between the power storage elements is reduced by 0.3 W / mK or more.
[3] A second molded product A of the first foamable resin composition containing at least the thermosetting elastomer and the foaming agent, and a second containing at least the thermosetting elastomer, the foaming agent and the heat conductive filler. The heat conductivity variable material according to [1] or [2], which comprises at least a molded body B of a foamable resin composition, and which is formed by laminating the molded body A and the molded body B.
[4] The described in [3], wherein at least a part of the molded body B is attached to the side surface of the power storage element, and the contact area between the molded body B and the power storage element decreases before and after foaming. Variable thermal conductivity material.
[5] At least a part of the molded body A is attached to the side surface of the power storage element, and the contact area between the molded body A and the power storage element increases before and after foaming [3] or [4]. ] The material having a variable thermal conductivity.
[6] The molded body A has a foaming ratio of 150 to 3000%, and the foaming of the molded body A reduces the contact area between the molded body B and the power storage element [3] to [5]. The material having a variable thermal conductivity according to any one of the items.
[7] The molded body A has a thermal conductivity of 0.2 W / mK or more before foaming and a thermal conductivity of 0.1 W / mK or less after foaming, and the molded body B has a thermal conductivity of 0.1 W / mK or less before foaming. The material for varying thermal conductivity according to any one of [3] to [6], wherein the thermal conductivity is 0.8 W / mK or more and the thermal conductivity after foaming is 0.3 W / mK or more.

[8]前記熱伝導性フィラーが、アルミナ、シリカ、アルミニウム粉、窒化アルミニウム、炭化珪素、窒化ホウ素、酸化マグネシウム、炭酸カルシウム、水酸化マグネシウム、及び水酸化アルミニウムよりなる群から選択される少なくとも1種を含む[3]〜[7]のいずれか一項に記載の熱伝導率可変材。
[9]前記熱硬化型エラストマーが、ウレタン系エラストマー、シリコーン系エラストマー、フッ素ゴム、エチレン酢酸ビニルゴム、アクリルゴム、及びエチレンプロピレンゴムよりなる群から選択される少なくとも1種を含む[1]〜[8]のいずれか一項に記載の熱伝導率可変材。
[10]前記発泡剤が、重曹、炭酸アンモニウム、樹脂系発泡剤、及び有機系発泡剤よりなる群から選択される少なくとも1種を含む[1]〜[9]のいずれか一項に記載の熱伝導率可変材。
[8] The thermal conductive filler is at least one selected from the group consisting of alumina, silica, aluminum powder, aluminum nitride, silicon carbide, boron nitride, magnesium oxide, calcium carbonate, magnesium hydroxide, and aluminum hydroxide. The thermal conductivity variable material according to any one of [3] to [7], which comprises.
[9] The thermosetting elastomer contains at least one selected from the group consisting of urethane-based elastomers, silicone-based elastomers, fluororubbers, ethylene vinyl acetate rubbers, acrylic rubbers, and ethylene propylene rubbers [1] to [8]. ]. The material having a variable thermal conductivity according to any one of the items.
[10] The item according to any one of [1] to [9], wherein the foaming agent contains at least one selected from the group consisting of baking soda, ammonium carbonate, a resin-based foaming agent, and an organic foaming agent. Variable thermal conductivity material.

本発明によれば、異常発熱時のみならず通常使用時のセル発熱による電池性能の低下が抑制可能な熱伝導率可変材を実現することができる。そして、本発明の熱伝導率可変材を用いれば、いずれかのセルの熱暴走が生じて異常発熱した場合でも隣接する他のセルへの熱の影響が抑制されるため、他のセルの電池性能の熱劣化が抑制されるとともに、セルの熱暴走の連鎖を抑制可能なため、電池モジュール及びこれを用いた電池パックの安全性が高められる。また、本発明の熱伝導率可変材を用いれば、通常使用時の熱による電池性能の劣化が抑制されるので、電池モジュール及びこれを用いた電池パックの長寿命化を図ることができる。 According to the present invention, it is possible to realize a material having a variable thermal conductivity that can suppress deterioration of battery performance due to cell heat generation not only during abnormal heat generation but also during normal use. Then, if the variable thermal conductivity material of the present invention is used, even if thermal runaway occurs in one of the cells and abnormal heat is generated, the influence of heat on the other adjacent cells is suppressed, so that the battery of the other cell Since the thermal deterioration of the performance can be suppressed and the chain of thermal runaway of the cell can be suppressed, the safety of the battery module and the battery pack using the battery module can be enhanced. Further, if the variable thermal conductivity material of the present invention is used, deterioration of battery performance due to heat during normal use is suppressed, so that the life of the battery module and the battery pack using the same can be extended.

一実施形態の電池モジュール100における熱伝導率可変材21(発泡前)を概略的に示す模式図である。It is a schematic diagram which shows typically the thermal conductivity variable material 21 (before foaming) in the battery module 100 of one Embodiment. 一実施形態の電池モジュール100における熱伝導率可変材21(発泡後)を概略的に示す模式図である。It is a schematic diagram which shows typically the thermal conductivity variable material 21 (after foaming) in the battery module 100 of one Embodiment. 発泡性樹脂組成物の成形体において、発泡剤の含有割合による熱伝導率の変化の一例を示すグラフである。It is a graph which shows an example of the change of the thermal conductivity by the content ratio of the foaming agent in the molded body of a foamable resin composition. 発泡性樹脂組成物の成形体において、熱伝導性フィラーの含有割合による熱伝導率の変化の一例を示すグラフである。It is a graph which shows an example of the change of the thermal conductivity by the content ratio of the thermal conductive filler in the molded article of the foamable resin composition. 熱伝導率可変材21の変形例(a)〜(g)を概略的に示す模式図である。It is a schematic diagram which shows typically the modification (a)-(g) of the thermal conductivity variable material 21.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。但し、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではない。なお、本明細書において、例えば「1〜100」との数値範囲の表記は、その上限値「1」及び下限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Unless otherwise specified, the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings. Moreover, the dimensional ratio of the drawing is not limited to the ratio shown in the drawing. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited thereto. In this specification, for example, the notation of the numerical range of "1 to 100" includes both the upper limit value "1" and the lower limit value "100". The same applies to the notation of other numerical ranges.

図1は、本実施形態の熱伝導率可変材21、及びこれを用いて構成された電池モジュール100を模式的に示す側面図である。 FIG. 1 is a side view schematically showing the heat conductivity variable material 21 of the present embodiment and the battery module 100 configured by using the variable material 21.

電池モジュール100は、複数のセル11(蓄電素子/単電池)、複数の熱伝導率可変材21、支持プレート31、及び側板41を備えている。各セル11は、支持プレート31上において、一方向すなわち図示横方向で所定間隔をおいて並列配置されており、隣り合う2つのセル11の間に熱伝導率可変材21がそれぞれ配置されている。また、電池モジュール100の両端には、側板41がそれぞれ配置されている。そして、セル11、熱伝導率可変材21、及び側板41は、図示しない固定具により拘束固定されており、これにより、熱伝導率可変材21は、各セル11の間に挟持された状態で各セル11の側面に貼着(密着)されている。なお、設置するセル11の数は、所望する電圧値等に応じて適宜設定することができ、特に限定されない。また、熱伝導率可変材21の設置数は、セル11の数に応じて適宜変更すればよい。さらに、隣り合う2つのセル11の間に熱伝導率可変材21を複数個設けることもできる。 The battery module 100 includes a plurality of cells 11 (storage elements / cells), a plurality of variable thermal conductivity members 21, a support plate 31, and a side plate 41. The cells 11 are arranged in parallel on the support plate 31 in one direction, that is, in the horizontal direction shown in the drawing at predetermined intervals, and the thermal conductivity variable member 21 is arranged between two adjacent cells 11. .. Further, side plates 41 are arranged at both ends of the battery module 100. The cell 11, the variable thermal conductivity material 21, and the side plate 41 are restrained and fixed by a fixture (not shown), whereby the variable thermal conductivity material 21 is sandwiched between the cells 11. It is attached (adhered) to the side surface of each cell 11. The number of cells 11 to be installed can be appropriately set according to a desired voltage value or the like, and is not particularly limited. Further, the number of heat conductivity variable members 21 installed may be appropriately changed according to the number of cells 11. Further, a plurality of thermal conductivity variable members 21 may be provided between two adjacent cells 11.

セル11としては、リチウムイオン電池、ニッケル水素電池等の、充放電可能な二次電池を用いることができる。充放電可能な二次電池としては、集電板上に正極活物質層を設けた正極、電解液が含浸されたセパレータ、及び集電板上に負極活物質層を設けた負極素子がこの順に積層された構成のものが広く知られている。また、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることもできる。 As the cell 11, a rechargeable secondary battery such as a lithium ion battery or a nickel hydrogen battery can be used. As the rechargeable secondary battery, a positive electrode having a positive electrode active material layer on the current collector plate, a separator impregnated with an electrolytic solution, and a negative electrode element having a negative electrode active material layer on the current collector plate are in this order. Those with a laminated structure are widely known. Further, an electric double layer capacitor (capacitor) can be used instead of the secondary battery.

なお、図示省略するが、各セル11の上部には正極端子及び負極端子が設けられている。そして、セル11の正極端子は、隣り合って配置された他のセル11の負極端子とバスバーを介して電気的に接続されている。同様に、セル11の負極端子は、隣り合って配置された他のセル11の正極端子とバスバーを介して電気的に接続されている。このようにして、電池モジュール100を構成する複数のセル11は、電気的に直列に接続されている。そして、電気的に直列接続された端子の両末端には、充放電を行うためのプラスケーブル及びマイナスケーブルが接続されている。 Although not shown, a positive electrode terminal and a negative electrode terminal are provided on the upper part of each cell 11. The positive electrode terminal of the cell 11 is electrically connected to the negative electrode terminal of another cell 11 arranged adjacent to each other via a bus bar. Similarly, the negative electrode terminal of the cell 11 is electrically connected to the positive electrode terminal of another cell 11 arranged adjacent to each other via a bus bar. In this way, the plurality of cells 11 constituting the battery module 100 are electrically connected in series. A plus cable and a minus cable for charging / discharging are connected to both ends of the terminals electrically connected in series.

熱伝導率可変材21は、熱硬化型エラストマー及び発泡剤を少なくとも含有する発泡性樹脂組成物の成形体を少なくとも備える。かかる成形体が所定の温度以上で発泡することにより、本実施形態の熱伝導率可変材21は、その発泡前後で、セル11間の熱伝導率を1/3以下に変化させる。また、別言すれば、本実施形態の熱伝導率可変材21は、その発泡前後で、セル11間の熱伝導率を0.3W/mK以上減少させる。 The thermal conductivity variable material 21 includes at least a molded product of a foamable resin composition containing at least a thermosetting elastomer and a foaming agent. When the molded body foams at a predetermined temperature or higher, the thermal conductivity variable material 21 of the present embodiment changes the thermal conductivity between the cells 11 to 1/3 or less before and after the foaming. In other words, the thermal conductivity variable material 21 of the present embodiment reduces the thermal conductivity between the cells 11 by 0.3 W / mK or more before and after foaming.

異常発熱時や通常使用時のセル発熱による電池性能の低下を抑制する観点から、上述したセル11間の熱伝導率の変化割合は、1/5以下が好ましく、1/10以下がより好ましく、1/20以下がさらに好ましく、1/25以下が特に好ましい。なお、セル11間の熱伝導率の変化割合の下限値は、特に限定されないが、材料選定の自由度の観点から1/50程度が目安とされる。また同様に、上述したセル11間の熱伝導率の減少量は、0.5W/mK以上が好ましく、0.7W/mK以上がより好ましく、0.8W/mK以上がさらに好ましく、1.0W/mK以上が特に好ましく、1.2W/mK以上が最も好ましい。なお、セル11間の熱伝導率の減少量の上限値は、特に限定されないが、材料選定の自由度の観点から2.0W/mK程度が目安とされる。 From the viewpoint of suppressing deterioration of battery performance due to cell heat generation during abnormal heat generation or normal use, the rate of change in thermal conductivity between the cells 11 described above is preferably 1/5 or less, more preferably 1/10 or less. 1/20 or less is more preferable, and 1/25 or less is particularly preferable. The lower limit of the rate of change in thermal conductivity between the cells 11 is not particularly limited, but is about 1/50 from the viewpoint of the degree of freedom in material selection. Similarly, the amount of decrease in thermal conductivity between the cells 11 described above is preferably 0.5 W / mK or more, more preferably 0.7 W / mK or more, further preferably 0.8 W / mK or more, and 1.0 W. / MK or more is particularly preferable, and 1.2 W / mK or more is most preferable. The upper limit of the amount of decrease in thermal conductivity between the cells 11 is not particularly limited, but is about 2.0 W / mK from the viewpoint of the degree of freedom in material selection.

このように発泡前後でセル11間の熱伝導率を劇的に変化させる熱伝導率可変材21を採用することにより、異常発熱時のみならず通常使用時のセル11の発熱による電池性能の低下を抑制することができる。すなわち、本実施形態では、通常使用時の充放電によりいずれかのセル11が発熱した場合、例えばセル表面温度が50〜100℃程度の発熱が生じても、発泡前の熱伝導率に優れる熱伝導率可変材21を介して、発熱したセル11から隣のセル21へ熱が移動するため、発熱したセル11の温度上昇が緩和される。また、いずれかのセル21が熱暴走してセル表面温度が200℃以上に達するような異常発熱時には、その熱暴走したセル21に隣接する熱伝導率可変材21が熱により発泡して劇的に熱伝導率が劇的に低下し、熱暴走したセル11から隣のセル21への熱の移動が抑制されるため、セル21の熱暴走の連鎖が抑制される。そのため、この熱伝導率可変材21を用いて構成された電池モジュール100は、異常発熱時のみならず通常使用時のセル11の発熱による電池性能の低下が緩和されたものとなる。なお、本実施形態においては、セル11間に配置されるスペーサ材として熱伝導率可変材21の使用例を示したが、この熱伝導率可変材21は、セル11を支持する補強材、セル11を保護するバリア材や緩衝材等として用いることもできる。 By adopting the thermal conductivity variable material 21 that dramatically changes the thermal conductivity between the cells 11 before and after foaming in this way, the battery performance deteriorates not only during abnormal heat generation but also during normal use due to heat generation of the cell 11. Can be suppressed. That is, in the present embodiment, when any cell 11 generates heat due to charging / discharging during normal use, for example, even if the cell surface temperature generates heat of about 50 to 100 ° C., the heat having excellent thermal conductivity before foaming is excellent. Since the heat is transferred from the heat-generating cell 11 to the adjacent cell 21 via the conductivity variable member 21, the temperature rise of the heat-generating cell 11 is alleviated. Further, when one of the cells 21 undergoes thermal runaway and the cell surface temperature reaches 200 ° C. or higher, the heat conductivity variable material 21 adjacent to the thermal runaway cell 21 foams dramatically due to heat. In addition, the thermal conductivity is dramatically reduced, and the transfer of heat from the thermal runaway cell 11 to the adjacent cell 21 is suppressed, so that the chain of thermal runaway of the cell 21 is suppressed. Therefore, the battery module 100 configured by using the thermal conductivity variable material 21 can alleviate the deterioration of the battery performance due to the heat generated by the cell 11 not only during abnormal heat generation but also during normal use. In the present embodiment, an example of using the thermal conductivity variable material 21 as a spacer material arranged between the cells 11 has been shown. The thermal conductivity variable material 21 is a reinforcing material and a cell that support the cell 11. It can also be used as a barrier material, a cushioning material, or the like that protects 11.

以上のとおりであるから、本実施形態の熱伝導率可変材21は、発泡前に熱伝導率が比較的に高く、発泡後に熱伝導率が劇的に低下するものである限り、その素材や構成は特に限定されない。スイッチング機能を十分に担保する観点から、発泡前にセル11間の熱伝導率が0.7W/mK以上であり、発泡後にセル11間の熱伝導率が0.1W/mK以下の熱伝導率可変材21が好ましい。より好ましくは発泡前に0.8W/mK以上であり発泡後に0.1W/mK以下であり、さらに好ましくは発泡前に0.9W/mK以上であり発泡後に0.1W/mK以下であり、特に好ましくは発泡前に1.0W/mK以上であり発泡後に0.05W/mK以下である。 As described above, the material and the material of the variable thermal conductivity 21 of the present embodiment are as long as the thermal conductivity is relatively high before foaming and the thermal conductivity is dramatically reduced after foaming. The configuration is not particularly limited. From the viewpoint of sufficiently ensuring the switching function, the thermal conductivity between the cells 11 is 0.7 W / mK or more before foaming, and the thermal conductivity between the cells 11 is 0.1 W / mK or less after foaming. The variable material 21 is preferable. More preferably, it is 0.8 W / mK or more before foaming, 0.1 W / mK or less after foaming, and more preferably 0.9 W / mK or more before foaming and 0.1 W / mK or less after foaming. Particularly preferably, it is 1.0 W / mK or more before foaming and 0.05 W / mK or less after foaming.

以下では、比較的に低熱伝導性の成形体Aと比較的に高熱伝導性の成形体Bとが積層された複合構造体からなる熱伝導率可変材21を例に挙げて、好適例をさらに説明する。 In the following, a preferred example will be further described by taking as an example a heat conductivity variable material 21 composed of a composite structure in which a molded body A having a relatively low thermal conductivity and a molded body B having a relatively high thermal conductivity are laminated. explain.

図1に示すように、この複合構造体からなる熱伝導率可変材21は、熱硬化型エラストマー、及び発泡剤を少なくとも含有する第1発泡性樹脂組成物の成形体Aと、熱硬化型エラストマー、発泡剤及び熱伝導性フィラーを少なくとも含有する第2発泡性樹脂組成物の成形体Bとを少なくとも備え、成形体A上に成形体Bが積層された積層構造を有する。この複合構造体からなる熱伝導率可変材21においては、発泡前に熱伝導率が0.8W/mK以上の成形体Bと、発泡後に熱伝導率が0.1W/mK以下の成形体Aとを組み合わせて用いることで、発泡前のセル11間の熱伝導率を0.7W/mK以上としている。 As shown in FIG. 1, the thermal conductivity variable material 21 composed of this composite structure includes a thermosetting elastomer, a molded product A of a first foamable resin composition containing at least a foaming agent, and a thermosetting elastomer. It has at least a molded body B of a second foamable resin composition containing at least a foaming agent and a heat conductive filler, and has a laminated structure in which the molded body B is laminated on the molded body A. In the heat conductivity variable material 21 made of this composite structure, a molded body B having a thermal conductivity of 0.8 W / mK or more before foaming and a molded body A having a thermal conductivity of 0.1 W / mK or less after foaming. By using in combination with, the thermal conductivity between the cells 11 before foaming is set to 0.7 W / mK or more.

そして、図2に示すように、例えば左から2番目のセル11が異常発熱してセル表面温度が200℃以上になった場合には、これに隣接する熱伝導率可変材21が発泡して、セル11間の熱伝導率を0.1W/mK以下に減少させる。この熱伝導率の減少作用は、主として、発泡による成形体A及び成形体Bそれぞれの熱伝導率が減少すること、成形体Aの発泡により成形体Bが上方に押し出されることでセル11の側面と(比較的に高熱伝導性の)成形体Bとの接触面積が大きく減少すること、及び、成形体Aの発泡によりセル11の側面と(比較的に低熱伝導性の)成形体Aとの接触面積が大きく増加すること等に起因している。 Then, as shown in FIG. 2, for example, when the second cell 11 from the left abnormally generates heat and the cell surface temperature becomes 200 ° C. or higher, the heat conductivity variable material 21 adjacent thereto foams. , The thermal conductivity between the cells 11 is reduced to 0.1 W / mK or less. The effect of reducing the thermal conductivity is mainly that the thermal conductivity of each of the molded body A and the molded body B is reduced by foaming, and the molded body B is pushed upward by the foaming of the molded body A, so that the side surface of the cell 11 is formed. And the contact area with the molded body B (relatively high thermal conductivity) is greatly reduced, and the side surface of the cell 11 and the molded body A (relatively low thermal conductivity) are formed by foaming of the molded body A. This is due to the large increase in contact area.

発泡後のより低い熱伝導性を担保する観点から、発泡後の成形体Aの熱伝導率は、0.08W/mK以下が好ましく、0.06W/mK以下がより好ましく、0.05W/mK以下がさらに好ましく、0.04W/mK以下が特に好ましい。同様に、発泡後の成形体Bの熱伝導率は、0.7W/mK以下が好ましく、0.6W/mK以下がより好ましく、0.5W/mK以下が好ましく、0.4W/mK以下が好ましい。 From the viewpoint of ensuring lower thermal conductivity after foaming, the thermal conductivity of the molded product A after foaming is preferably 0.08 W / mK or less, more preferably 0.06 W / mK or less, and 0.05 W / mK. The following is more preferable, and 0.04 W / mK or less is particularly preferable. Similarly, the thermal conductivity of the molded product B after foaming is preferably 0.7 W / mK or less, more preferably 0.6 W / mK or less, preferably 0.5 W / mK or less, and preferably 0.4 W / mK or less. preferable.

発泡前のより高い熱伝導性を担保する観点から、発泡前の成形体Bの熱伝導率は、0.8W/mK以上が好ましく、1.0W/mK以上がより好ましく、1.2W/mK以上がさらに好ましく、1.5W/mK以上が特に好ましい。同様に、発泡前の成形体Aの熱伝導率は、0.15W/mK以上が好ましく、0.2W/mK以上がより好ましい。 From the viewpoint of ensuring higher thermal conductivity before foaming, the thermal conductivity of the molded product B before foaming is preferably 0.8 W / mK or more, more preferably 1.0 W / mK or more, and 1.2 W / mK. The above is more preferable, and 1.5 W / mK or more is particularly preferable. Similarly, the thermal conductivity of the molded product A before foaming is preferably 0.15 W / mK or more, more preferably 0.2 W / mK or more.

このような熱伝導率を有する成形体A及び成形体Bは、上述した第1及び第2発泡性樹脂組成物を用いることで容易に得ることができる。以下、図3及び図4を用いて説明する。 The molded product A and the molded product B having such thermal conductivity can be easily obtained by using the above-mentioned first and second foamable resin compositions. Hereinafter, a description will be given with reference to FIGS. 3 and 4.

図3は、熱硬化型エラストマー及び発泡剤を含有する第1発泡性樹脂組成物の成形体Aにおいて、発泡剤の含有割合と熱伝導率との相関関係を示すグラフである。ここでは、熱硬化型エラストマーとしてシリコーンエラストマー(Nusil社製、GEL−8150、ゲル状、2液混合系、粘度500cps)及び発泡剤として重曹(JIS試薬特級)を用いた。 FIG. 3 is a graph showing the correlation between the content ratio of the foaming agent and the thermal conductivity in the molded product A of the first foamable resin composition containing the thermosetting elastomer and the foaming agent. Here, a silicone elastomer (manufactured by Nusil, GEL-8150, gel-like, two-component mixed system, viscosity 500 cps) was used as the thermosetting elastomer, and baking soda (JIS reagent special grade) was used as the foaming agent.

図4は、熱硬化型エラストマー、発泡剤及び熱伝導性フィラーを少なくとも含有する第2発泡性樹脂組成物の成形体Bにおいて、熱伝導性フィラーの含有割合と熱伝導率との相関関係を示すグラフである。ここでは、熱硬化型エラストマーとしてシリコーンエラストマー(Nusil社製、GEL−8150、ゲル状、2液混合系、粘度500cps)、発泡剤として重曹(JIS試薬特級)、及び熱伝導性フィラーとして球状アルミナ(昭和電工社製、平均粒子径D50が5μmと45μmの1:1ブレンド)を用いた。グラフは、発泡剤の含有割合を第2発泡性樹脂組成物の総量に対して20質量%とし、シリコーンエラストマーに対する熱伝導性フィラーの含有比率を変動させた場合の熱伝導率を示している。 FIG. 4 shows the correlation between the content ratio of the heat conductive filler and the thermal conductivity in the molded product B of the second foamable resin composition containing at least the thermosetting elastomer, the foaming agent and the heat conductive filler. It is a graph. Here, silicone elastomer (manufactured by Nusil, GEL-8150, gel-like, two-component mixed system, viscosity 500 cps) as a thermosetting elastomer, baking soda (JIS reagent special grade) as a foaming agent, and spherical alumina as a heat conductive filler (spherical alumina) ( A 1: 1 blend of 5 μm and 45 μm with an average particle size D 50 manufactured by Showa Denko Co., Ltd. was used. The graph shows the thermal conductivity when the content ratio of the foaming agent is 20% by mass with respect to the total amount of the second foamable resin composition and the content ratio of the heat conductive filler to the silicone elastomer is changed.

図3から明らかなとおり、熱硬化型エラストマー及び発泡剤を含有する第1発泡性樹脂組成物の成形体Aのみを用いた場合、発泡前後の熱伝導率の変化割合は2/3〜1/7程度である。また同様に、図4から明らかなとおり、熱硬化型エラストマー、発泡剤及び熱伝導性フィラーを少なくとも含有する第2発泡性樹脂組成物の成形体Bのみを用いた場合、発泡前後の熱伝導率の変化割合は1/3〜1/6程度である。 As is clear from FIG. 3, when only the molded product A of the first foamable resin composition containing the thermosetting elastomer and the foaming agent is used, the rate of change in thermal conductivity before and after foaming is 2/3 to 1/1. It is about 7. Similarly, as is clear from FIG. 4, when only the molded product B of the second foamable resin composition containing at least a thermosetting elastomer, a foaming agent and a heat conductive filler is used, the thermal conductivity before and after foaming is used. The rate of change of is about 1/3 to 1/6.

これに対し、上記の複合構造体からなる熱伝導率可変材21においては、発泡前に熱伝導率が0.8W/mK以上の成形体B(例えば、図4においてAl2 3 の含有量が70〜90質量%のもの)と、発泡後に熱伝導率が0.1W/mK以下の成形体A(例えば、図3において発泡剤の含有量が20〜60質量%のもの)とを組み合わせて用いている。そして、かかる複合構造体を採用することで、成形体A又は成形体Bを単独使用した場合の限界性能(発泡前後の熱伝導率の変化割合が1/6〜1/7程度)を超える、より高いスイッチング性能を有する熱伝導率可変材21を実現することができる。すなわち、使用する成形体A及び成形体Bの組み合わせによって、発泡前後の熱伝導率の変化割合が1/10以下(より好ましくは1/20以下、さらに好ましくは1/25以下)の、より高いスイッチング性能を持たせることができる。かかるスイッチング性能は、使用する成形体A及び成形体Bの配合組成、成形体Aや成形体Bとセル11の側面との発泡前の接触面積、成形体Aや成形体Bとセル11の側面との発泡後の接触面積、発泡後に成形体Bとセル11の側面とのを不接触とする等を調整することにより、任意に設定することができる。 On the other hand, in the heat conductivity variable material 21 made of the above composite structure, the molded body B having a thermal conductivity of 0.8 W / mK or more before foaming (for example, the content of Al 2 O 3 in FIG. 4). 70 to 90% by mass) and molded product A having a thermal conductivity of 0.1 W / mK or less after foaming (for example, one having a foaming agent content of 20 to 60% by mass in FIG. 3) are combined. Is used. Then, by adopting such a composite structure, the limit performance (the rate of change in thermal conductivity before and after foaming is about 1/6 to 1/7) when the molded body A or the molded body B is used alone is exceeded. The variable thermal conductivity material 21 having higher switching performance can be realized. That is, depending on the combination of the molded body A and the molded body B used, the rate of change in thermal conductivity before and after foaming is 1/10 or less (more preferably 1/20 or less, still more preferably 1/25 or less), which is higher. It is possible to have switching performance. Such switching performance includes the compounding composition of the molded body A and the molded body B to be used, the contact area between the molded body A and the molded body B and the side surface of the cell 11 before foaming, and the side surface of the molded body A and the molded body B and the cell 11. It can be arbitrarily set by adjusting the contact area after foaming, the non-contact between the molded body B and the side surface of the cell 11 after foaming, and the like.

上記の複合構造体からなる熱伝導率可変材21は、好適例の1つであり、その要旨を逸脱しない範囲内で任意に変更して実施することができる。例えば、成形体A及び成形体Bのそれぞれの発泡前後の熱伝導率は、例えばセル11の側面と成形体Aや成形体Bとの接触面積、各々の発泡倍率、要求性能等に応じて適宜設定すればよく、上述した例に特に限定されない。例えば、成形体Aの発泡倍率としては、110〜5000%の範囲内で適宜調整することができ、好ましくは150〜3000%である。 The thermal conductivity variable material 21 made of the above-mentioned composite structure is one of the preferable examples, and can be arbitrarily changed within a range not deviating from the gist thereof. For example, the thermal conductivity of each of the molded body A and the molded body B before and after foaming is appropriately determined according to, for example, the contact area between the side surface of the cell 11 and the molded body A or the molded body B, the respective foaming ratios, the required performance, and the like. It may be set, and is not particularly limited to the above-mentioned example. For example, the foaming ratio of the molded product A can be appropriately adjusted within the range of 110 to 5000%, preferably 150 to 3000%.

なお、成形体A(第1発泡性樹脂組成物)は、成形体B(第2発泡性樹脂組成物)と同様に、熱伝導性フィラーを含有していてもよい。但し、発泡後の熱伝導率を低く保つ観点から、第1発泡性樹脂組成物の成形体Aは発泡後の熱伝導率が低いことが好ましい。かかる観点から、その含有量は、熱伝導率が過度に大きくならない程度とすることが望ましい。具体的には、第1発泡性樹脂組成物が熱伝導性フィラーを含有する場合には、第1発泡性樹脂組成物の総量に対して、熱伝導性フィラーの含有割合は50質量%以下が好ましく、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。また、成形体A(第1発泡性樹脂組成物)が熱伝導性フィラーを実質的に含有しない態様も好ましい一例として挙げられる。ここで実質的に含有しないとは、熱伝導性フィラーの含有量が第1発泡性樹脂組成物の総量に対して5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下であることを意味する。 The molded product A (first foamable resin composition) may contain a thermally conductive filler in the same manner as the molded product B (second foamable resin composition). However, from the viewpoint of keeping the thermal conductivity after foaming low, it is preferable that the molded product A of the first foamable resin composition has a low thermal conductivity after foaming. From this point of view, it is desirable that the content is such that the thermal conductivity does not become excessively large. Specifically, when the first foamable resin composition contains the heat conductive filler, the content ratio of the heat conductive filler is 50% by mass or less with respect to the total amount of the first foamable resin composition. It is preferable, more preferably 40% by mass or less, still more preferably 30% by mass or less. Further, a mode in which the molded product A (first foamable resin composition) does not substantially contain the heat conductive filler is also mentioned as a preferable example. Here, substantially not contained means that the content of the thermally conductive filler is 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, based on the total amount of the first foamable resin composition. Means that

ここで、第1及び第2発泡性樹脂組成物の構成材料は、公知のものから適宜選択して用いることができ、上述した例に特に限定されない。また、第1及び第2発泡性樹脂組成物の配合処方も、要求性能に応じて適宜設定すればよく、上述した例に特に限定されない。 Here, the constituent materials of the first and second foamable resin compositions can be appropriately selected from known materials and used, and are not particularly limited to the above-mentioned examples. Further, the compounding formulation of the first and second foamable resin compositions may be appropriately set according to the required performance, and is not particularly limited to the above-mentioned example.

例えば、熱硬化型エラストマーとしては、耐熱性等の観点から、ウレタン系エラストマー、シリコーン系エラストマー、フッ素ゴム、エチレン酢酸ビニルゴム、アクリルゴム、エチレンプロピレンゴム等が好ましい。これらは、1種を単独で又は2種以上を任意の配合割合で組み合わせて用いることができる。 For example, as the thermosetting elastomer, urethane-based elastomer, silicone-based elastomer, fluororubber, ethylene vinyl acetate rubber, acrylic rubber, ethylene propylene rubber and the like are preferable from the viewpoint of heat resistance and the like. These can be used individually by 1 type or in combination of 2 or more types at an arbitrary blending ratio.

発泡剤としては、発泡性、耐火性、安全性等の観点から、重曹(炭酸水素ナトリウム)、炭酸アンモニウム、樹脂系発泡剤(熱膨張性マイクロスフェア:具体的にはAkzoNobel社製のExpancel、松本油脂製薬社製のマツモトマイクロスフェアー等が該当する。)、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、p,p’−オキシビス(ベンゼンスルホニルヒドラジド)、ヒドラゾジカルボンアミド等の有機系発泡剤等が好ましく、これらに加えて消火性能の観点から重曹がより好ましい。また、熱伝導性フィラーに代えて、発泡剤等が層間インタカーレートしたグラファイトを用いることもできる。これらは、1種を単独で又は2種以上を任意の配合割合で組み合わせて用いることができる。 Examples of the foaming agent include baking soda (sodium hydrogen carbonate), ammonium carbonate, and resin-based foaming agent (thermally expandable microspheres: specifically, Expancel manufactured by AkzoNobel, Matsumoto) from the viewpoints of foamability, fire resistance, safety, and the like. Matsumoto microspheres manufactured by Yushi Pharmaceutical Co., Ltd., etc.), azodicarbonamide, dinitrosopentamethylenetetramine, p, p'-oxybis (benzenesulfonylhydrazide), organic foaming agents such as hydrazodicarboxylicamide, etc. Preferably, in addition to these, baking soda is more preferable from the viewpoint of fire extinguishing performance. Further, instead of the heat conductive filler, graphite in which a foaming agent or the like is intercalated between layers can be used. These can be used individually by 1 type or in combination of 2 or more types at an arbitrary blending ratio.

熱伝導性フィラーとしては、熱伝導率、難燃性、非導電性、耐火性等の観点から、熱伝導率が高い無機材料が好ましい。具体的には、アルミナ、シリカ、アルミニウム粉、窒化アルミニウム、炭化珪素、窒化ホウ素、酸化マグネシウム、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム等が挙げられるが、これらに特に限定されない。より好ましくはアルミナである。これらは、1種を単独で又は2種以上を任意の配合割合で組み合わせて用いることができる。なお、本明細書において、上記のとおり例示した重曹、炭酸アンモニウム、樹脂系発泡剤、有機系発泡剤等の発泡剤は、熱伝導性フィラーには含まれないものとする。 As the thermally conductive filler, an inorganic material having high thermal conductivity is preferable from the viewpoints of thermal conductivity, flame retardancy, non-conductivity, fire resistance and the like. Specific examples thereof include alumina, silica, aluminum powder, aluminum nitride, silicon carbide, boron nitride, magnesium oxide, calcium carbonate, magnesium hydroxide, aluminum hydroxide and the like, but the present invention is not particularly limited thereto. More preferably, it is alumina. These can be used individually by 1 type or in combination of 2 or more types at an arbitrary blending ratio. In this specification, the foaming agents such as baking soda, ammonium carbonate, resin-based foaming agent, and organic foaming agent exemplified as described above are not included in the heat conductive filler.

また、第1及び第2発泡性樹脂組成物は、本発明の効果を過度に損なわない限り、他の成分を含有していてもよい。他の成分としては、熱硬化性樹脂、熱可塑性樹脂、他のエラストマー類、各種ゴム、難燃剤、抗菌剤、防カビ剤、酸化防止剤、流動調整剤、分散剤、紫外線吸収剤等が挙げられるが、これらに特に限定されない。 In addition, the first and second foamable resin compositions may contain other components as long as the effects of the present invention are not excessively impaired. Other components include thermosetting resins, thermoplastic resins, other elastomers, various rubbers, flame retardants, antibacterial agents, antifungal agents, antioxidants, flow regulators, dispersants, UV absorbers, etc. However, the present invention is not particularly limited to these.

第1発泡性樹脂組成物の配合組成は、使用する材料や要求性能に応じて適宜設定すればよく、特に限定されない。熱硬化型エラストマーと発泡剤との配合割合は、90:10〜50:50が好ましく、より好ましくは85:15〜70:30である。 The blending composition of the first foamable resin composition may be appropriately set according to the material used and the required performance, and is not particularly limited. The mixing ratio of the thermosetting elastomer and the foaming agent is preferably 90: 10 to 50:50, more preferably 85: 15 to 70:30.

第2発泡性樹脂組成物の配合組成は、使用する材料や要求性能に応じて適宜設定すればよく、特に限定されない。熱硬化型エラストマーと発泡剤との配合割合は、90:10〜50:50が好ましく、より好ましくは85:15〜70:30である。また、熱伝導性フィラーの含有割合は、熱硬化型エラストマーに対して40〜95質量%が好ましく、より好ましくは50〜90質量%である。 The blending composition of the second foamable resin composition may be appropriately set according to the material used and the required performance, and is not particularly limited. The mixing ratio of the thermosetting elastomer and the foaming agent is preferably 90: 10 to 50:50, more preferably 85: 15 to 70:30. The content of the thermally conductive filler is preferably 40 to 95% by mass, more preferably 50 to 90% by mass, based on the thermosetting elastomer.

成形体A及び成形体Bの形状、積層態様、さらには成形体A及び成形体Bの高さ(図中上下方向)や厚み(図中左右方向)は任意に設定でき、図示のものに特に限定されない。成形体A及び成形体Bの発泡倍率や熱伝導率、セル11の側面と成形体Aや成形体Bとの接触面積等を考慮し、さらには所望する性能に応じて適宜設定すればよい。成形体A及び成形体Bの変形例としては、例えば図5(a)〜(g)に示すものが挙げられるが、これらの形状、高さ、厚み、積層数、積層態様、配置等は任意に変更実施可能である。また、成形体A及び成形体Bは、セル11の側面に対して、他のシート部材を介して貼着(積層)されていてもよい。このとき、他のシート部材は、セル11の側面の少なくとも一部若しくは全面を覆うように配置されていればよい。他のシート部材としては、樹脂組成物からなるシート部材、発泡性樹脂組成物からなるシート部材、熱伝導性樹脂組成物からなるシート部材等が好適に用いられるが、これらに特に限定されない。セル11の表面の少なくとも一部若しくは全面に他のシート部材を被覆した状態で、熱伝導率可変材21をセル11の側面に貼着(積層)することで、上述したスイッチング機能の調整がさらに容易になり、また上述したスイッチング機能のさらなる向上を図ることができる。 The shapes and stacking modes of the molded body A and the molded body B, as well as the height (vertical direction in the figure) and the thickness (horizontal direction in the figure) of the molded body A and the molded body B can be arbitrarily set, and particularly those shown in the figure. Not limited. The foaming ratio and thermal conductivity of the molded body A and the molded body B, the contact area between the side surface of the cell 11 and the molded body A and the molded body B, and the like may be taken into consideration, and further, it may be appropriately set according to the desired performance. Examples of modifications of the molded body A and the molded body B include those shown in FIGS. 5 (a) to 5 (g), but their shapes, heights, thicknesses, number of layers, stacking modes, arrangements, etc. are arbitrary. Can be changed to. Further, the molded body A and the molded body B may be attached (laminated) to the side surface of the cell 11 via another sheet member. At this time, the other sheet members may be arranged so as to cover at least a part or the entire surface of the side surface of the cell 11. As the other sheet member, a sheet member made of a resin composition, a sheet member made of a foamable resin composition, a sheet member made of a heat conductive resin composition, and the like are preferably used, but are not particularly limited thereto. By attaching (laminating) the heat conductivity variable material 21 to the side surface of the cell 11 in a state where at least a part or the entire surface of the cell 11 is covered with another sheet member, the above-mentioned adjustment of the switching function is further performed. It becomes easy, and the above-mentioned switching function can be further improved.

11・・・セル
21・・・熱伝導率可変材
31・・・支持プレート
41・・・側板
100・・・電池モジュール
11 ... Cell 21 ... Thermal conductivity variable material 31 ... Support plate 41 ... Side plate 100 ... Battery module

Claims (9)

隣り合う2以上の蓄電素子の間に配置される熱伝導率可変材であって、
熱硬化型エラストマー及び発泡剤を少なくとも含有する発泡性樹脂組成物の成形体を少なくとも備え、
前記成形体は所定の温度以上で発泡し、その発泡前後で、前記蓄電素子間の熱伝導率を1/3以下に変化させるとともに、
前記熱硬化型エラストマー、及び前記発泡剤を少なくとも含有する第1発泡性樹脂組成物の成形体Aと、
前記熱硬化型エラストマー、前記発泡剤及び熱伝導性フィラーを少なくとも含有する第2発泡性樹脂組成物の成形体Bとを少なくとも備え、
前記成形体A及び前記成形体Bが積層されてなる
ことを特徴とする熱伝導率可変材。
It is a material with variable thermal conductivity that is placed between two or more power storage elements that are adjacent to each other.
A molded product of a foamable resin composition containing at least a thermosetting elastomer and a foaming agent is provided.
The molded product foams at a predetermined temperature or higher, and before and after the foaming, the thermal conductivity between the power storage elements is changed to 1/3 or less, and at the same time,
A molded product A of the first foamable resin composition containing at least the thermosetting elastomer and the foaming agent.
At least including the molded product B of the second foamable resin composition containing at least the thermosetting elastomer, the foaming agent and the heat conductive filler.
A material having a variable thermal conductivity, wherein the molded body A and the molded body B are laminated.
隣り合う2以上の蓄電素子の間に配置される熱伝導率可変材であって、
熱硬化型エラストマー及び発泡剤を少なくとも含有する発泡性樹脂組成物の成形体を少なくとも備え、
前記成形体は所定の温度以上で発泡し、その発泡前後で、前記蓄電素子間の熱伝導率を0.3W/mK以上減少させるとともに、
前記熱硬化型エラストマー、及び前記発泡剤を少なくとも含有する第1発泡性樹脂組成物の成形体Aと、
前記熱硬化型エラストマー、前記発泡剤及び熱伝導性フィラーを少なくとも含有する第2発泡性樹脂組成物の成形体Bとを少なくとも備え、
前記成形体A及び前記成形体Bが積層されてなる
ことを特徴とする熱伝導率可変材。
It is a material with variable thermal conductivity that is placed between two or more power storage elements that are adjacent to each other.
A molded product of a foamable resin composition containing at least a thermosetting elastomer and a foaming agent is provided.
The molded product foams at a predetermined temperature or higher, and before and after the foaming, the thermal conductivity between the power storage elements is reduced by 0.3 W / mK or more, and at the same time,
A molded product A of the first foamable resin composition containing at least the thermosetting elastomer and the foaming agent.
At least including the molded product B of the second foamable resin composition containing at least the thermosetting elastomer, the foaming agent and the heat conductive filler.
A material having a variable thermal conductivity, wherein the molded body A and the molded body B are laminated.
前記成形体Bの少なくとも一部が、前記蓄電素子の側面に貼着されており、
発泡前後で、前記成形体Bと前記蓄電素子との接触面積が減少する
請求項1又は2に記載の熱伝導率可変材。
At least a part of the molded body B is attached to the side surface of the power storage element.
The material having a variable thermal conductivity according to claim 1 or 2 , wherein the contact area between the molded body B and the power storage element is reduced before and after foaming.
前記成形体Aの少なくとも一部が、前記蓄電素子の側面に貼着されており、
発泡前後で、前記成形体Aと前記蓄電素子との接触面積が増大する
請求項1〜3のいずれか一項に記載の熱伝導率可変材。
At least a part of the molded body A is attached to the side surface of the power storage element.
The thermal conductivity variable material according to any one of claims 1 to 3, wherein the contact area between the molded body A and the power storage element increases before and after foaming.
前記成形体Aは、発泡倍率が150〜3000%であり、
前記成形体Aの発泡により、前記成形体Bと前記蓄電素子との接触面積が減少する
請求項1〜4のいずれか一項に記載の熱伝導率可変材。
The molded product A has a foaming ratio of 150 to 3000%.
The thermal conductivity variable material according to any one of claims 1 to 4 , wherein the contact area between the molded body B and the power storage element is reduced by foaming the molded body A.
前記成形体Aは、発泡前の熱伝導率が0.2W/mK以上であり且つ発泡後の熱伝導率が0.1W/mK以下であり、
前記成形体Bは、発泡前の熱伝導率が0.8W/mK以上であり且つ発泡後の熱伝導率が0.3W/mK以下である
請求項1〜5のいずれか一項に記載の熱伝導率可変材。
The molded product A has a thermal conductivity of 0.2 W / mK or more before foaming and a thermal conductivity of 0.1 W / mK or less after foaming.
The method according to any one of claims 1 to 5 , wherein the molded body B has a thermal conductivity of 0.8 W / mK or more before foaming and a thermal conductivity of 0.3 W / mK or less after foaming. Variable thermal conductivity material.
前記熱伝導性フィラーが、アルミナ、シリカ、アルミニウム粉、窒化アルミニウム、炭化珪素、窒化ホウ素、酸化マグネシウム、炭酸カルシウム、水酸化マグネシウム、及び水酸化アルミニウムよりなる群から選択される少なくとも1種を含む
請求項1〜6のいずれか一項に記載の熱伝導率可変材。
Claimed that the thermal conductive filler contains at least one selected from the group consisting of alumina, silica, aluminum powder, aluminum nitride, silicon carbide, boron nitride, magnesium oxide, calcium carbonate, magnesium hydroxide, and aluminum hydroxide. Item 2. The material having a variable thermal conductivity according to any one of Items 1 to 6.
前記熱硬化型エラストマーが、ウレタン系エラストマー、シリコーン系エラストマー、フッ素ゴム、エチレン酢酸ビニルゴム、アクリルゴム、及びエチレンプロピレンゴムよりなる群から選択される少なくとも1種を含む
請求項1〜7のいずれか一項に記載の熱伝導率可変材。
Any one of claims 1 to 7 , wherein the thermosetting elastomer comprises at least one selected from the group consisting of urethane-based elastomers, silicone-based elastomers, fluororubbers, ethylene vinyl acetate rubbers, acrylic rubbers, and ethylene propylene rubbers. The variable thermal conductivity material described in the section.
前記発泡剤が、重曹、炭酸アンモニウム、樹脂系発泡剤、及び有機系発泡剤よりなる群から選択される少なくとも1種を含む
請求項1〜8のいずれか一項に記載の熱伝導率可変材。
The thermal conductivity variable material according to any one of claims 1 to 8 , wherein the foaming agent contains at least one selected from the group consisting of baking soda, ammonium carbonate, a resin-based foaming agent, and an organic-based foaming agent. ..
JP2017029261A 2017-02-20 2017-02-20 Variable thermal conductivity material Active JP6912217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029261A JP6912217B2 (en) 2017-02-20 2017-02-20 Variable thermal conductivity material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029261A JP6912217B2 (en) 2017-02-20 2017-02-20 Variable thermal conductivity material

Publications (2)

Publication Number Publication Date
JP2018137065A JP2018137065A (en) 2018-08-30
JP6912217B2 true JP6912217B2 (en) 2021-08-04

Family

ID=63366996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029261A Active JP6912217B2 (en) 2017-02-20 2017-02-20 Variable thermal conductivity material

Country Status (1)

Country Link
JP (1) JP6912217B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061959A (en) * 2017-09-26 2019-04-18 積水化学工業株式会社 Conductivity variable member and safety system
US11387502B2 (en) 2018-01-31 2022-07-12 Panasonic Intellectual Property Management Co., Ltd. Battery module comprising a heat transfer component and a thermal expansion material between cells
KR102213758B1 (en) * 2018-11-30 2021-02-10 주식회사 티움리서치 High power Lithium Ion Battery at elevated temperature with composite heat dissipated material
KR102380225B1 (en) * 2019-03-06 2022-03-28 주식회사 엘지에너지솔루션 A ESS module having a structure capable of preventing external exposure of a flame and a ESS pack comprising the same
DE102019111910A1 (en) * 2019-05-08 2020-11-12 Bayerische Motoren Werke Aktiengesellschaft Cell separator
KR20220145336A (en) * 2020-02-28 2022-10-28 니폰 제온 가부시키가이샤 Inter-cell spacers and battery modules
KR102495768B1 (en) * 2021-01-06 2023-02-07 (주)비오스 Foam for Battery Module, Method for Forming the Same and Battery Module Comprising the Same
CN114197219B (en) * 2021-11-23 2023-05-09 上海交通大学 Composite lithium battery fireproof material and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947428B2 (en) * 2007-11-12 2012-06-06 北川工業株式会社 Thermal insulation sheet and housing
JP5326480B2 (en) * 2008-10-14 2013-10-30 トヨタ自動車株式会社 Power storage device
JP2010165597A (en) * 2009-01-16 2010-07-29 Toyota Motor Corp Energy storage device
JP6047052B2 (en) * 2012-03-30 2016-12-21 積水化学工業株式会社 Cushioning material
JP2016046163A (en) * 2014-08-25 2016-04-04 三菱重工業株式会社 Battery module and module cover
JP6523210B2 (en) * 2016-05-19 2019-05-29 富士高分子工業株式会社 Low temperature thermal conductive and high temperature insulating composition
WO2018062172A1 (en) * 2016-09-30 2018-04-05 積水化学工業株式会社 Thermally conductive, thermally expandable resin composition, thermally conductive, thermally expandable molded body, battery module, and battery pack

Also Published As

Publication number Publication date
JP2018137065A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6912217B2 (en) Variable thermal conductivity material
KR101272524B1 (en) Radiant heat plate for battery cell and battery module having the same
US8518574B1 (en) Heat control pouch for battery cell module and battery cell module having the same
JP5621111B2 (en) Battery cell with improved thermal stability and medium- or large-sized battery module using the same
US10396321B2 (en) Battery pack spacer
US20110070476A1 (en) Power storage apparatus
CN112366401A (en) Battery module
US10804580B2 (en) Cell assembly having cushion member
JP2012014938A (en) Battery module
JP4730705B2 (en) Battery pack
JP2006196230A (en) Battery pack
WO2020179196A1 (en) Battery pack
US20180175467A1 (en) Heat distributor for a battery
US20200388892A1 (en) Battery module
EP4164041A1 (en) Battery module and battery pack comprising same
KR20160058674A (en) Battery Module
CN114204187A (en) High-voltage battery module and battery pack with built-in heat insulating film
KR20220036171A (en) Battery module
KR20220029482A (en) Battery module and battery pack including the same
KR20170039948A (en) Battery Pack
JP6954213B2 (en) Control method of filling member, assembled battery and heat transfer
KR20180112630A (en) Method for producing cell module improved in characteristics of safety
US8372532B2 (en) Secondary battery module and composite article thereof
KR20220049870A (en) Battery module and battery pack including the same
KR102522505B1 (en) Supercapacitor module for easy assembly

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210708

R150 Certificate of patent or registration of utility model

Ref document number: 6912217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150