JP6911174B2 - Nickel-based alloy - Google Patents

Nickel-based alloy Download PDF

Info

Publication number
JP6911174B2
JP6911174B2 JP2020074183A JP2020074183A JP6911174B2 JP 6911174 B2 JP6911174 B2 JP 6911174B2 JP 2020074183 A JP2020074183 A JP 2020074183A JP 2020074183 A JP2020074183 A JP 2020074183A JP 6911174 B2 JP6911174 B2 JP 6911174B2
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
based alloy
temperature
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020074183A
Other languages
Japanese (ja)
Other versions
JP2020117813A (en
Inventor
孝文 菊竹
孝文 菊竹
富高 韋
富高 韋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017176760A external-priority patent/JP6723210B2/en
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2020074183A priority Critical patent/JP6911174B2/en
Publication of JP2020117813A publication Critical patent/JP2020117813A/en
Application granted granted Critical
Publication of JP6911174B2 publication Critical patent/JP6911174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化学プラント、天然ガス配管及び容器に代表される各種用途に使用されるNi基合金に関するものである。 The present invention relates to Ni-based alloys used in various applications represented by chemical plants, natural gas pipes and containers.

Ni基合金、特に、Ni−Cr−Mo−Nb合金は、優れた耐食性を有するため、腐食性の強い過酷な環境で使用される。このようにFe基合金では腐食する危険のある過酷な環境で使用される合金である。そのため、表面の耐食性はとりわけ重要視される。 Ni-based alloys, especially Ni-Cr-Mo-Nb alloys, have excellent corrosion resistance and are therefore used in harsh environments with strong corrosiveness. As described above, the Fe-based alloy is an alloy used in a harsh environment where there is a risk of corrosion. Therefore, the corrosion resistance of the surface is particularly important.

Ni−Cr−Mo−Nb合金の耐食性を充分に活かすため、不動態皮膜の形成に関する技術が示されている(例えば、特許文献1参照)。耐食性の威力を発揮するのは表面であるので、とりわけ表面の状態は重要である。表面を微視的に見ると、結晶粒で構成されている。結晶粒の表面は、緻密な不動態皮膜によって、十分確保される。しかしながら、結晶粒界は、耐食性に劣る問題があった。その理由は、Ni−Cr−Mo−Nb合金は、熱処理の条件が不適切であると、粒界にCrやMoを含有する析出物が形成されることがある。Ni、Cr、Mo、Oを主成分とする耐食性に有効な不動態被膜は、析出物上には緻密に形成され難いので耐食性の劣化を招く。さらに鋭敏化して耐食性を低下させる。つまり、CrやMoを含有する析出物近傍は、母材のCrやMoが析出物に拡散してしまい、これらの元素の欠乏層が形成される。CrやMoは耐食性に有効な元素であるため、腐食環境において不動態被膜が溶解すると、このCrとMoの欠乏層から腐食が発生し、著しく耐食性が悪化する。 In order to fully utilize the corrosion resistance of the Ni—Cr—Mo—Nb alloy, a technique for forming a passivation film has been shown (see, for example, Patent Document 1). The surface condition is especially important because it is the surface that exerts the power of corrosion resistance. When the surface is viewed microscopically, it is composed of crystal grains. The surface of the crystal grains is sufficiently secured by a dense passivation film. However, the grain boundaries have a problem of being inferior in corrosion resistance. The reason is that in the Ni-Cr-Mo-Nb alloy, if the heat treatment conditions are inappropriate, precipitates containing Cr and Mo may be formed at the grain boundaries. A passivation film containing Ni, Cr, Mo, and O as main components and effective for corrosion resistance is difficult to be formed densely on the precipitate, which causes deterioration of corrosion resistance. Further sensitize and reduce corrosion resistance. That is, in the vicinity of the precipitate containing Cr and Mo, Cr and Mo of the base material diffuse into the precipitate, and a depletion layer of these elements is formed. Since Cr and Mo are elements effective for corrosion resistance, when the passivation film is dissolved in a corroded environment, corrosion occurs from the depletion layer of Cr and Mo, and the corrosion resistance is remarkably deteriorated.

上記の課題に対して、固溶化熱処理を施すことで、炭化物の存在しないNi基合金を提供する技術が開示されている(例えば、特許文献2参照)。実際に、この技術によれば、工場から出荷する段階では優れた耐食性を有している。しかしながら、Ni基合金はパイプライン、化学プラント、反応容器などに加工されて使われるため、これらの加工や溶接の工程を経て熱処理を行う場合もある。その際に、適切でない熱処理を実施してしまうと、粒界にCrやMoを含有する析出物が形成されることがある。そうすると、上述した機構により耐粒界腐食性を損ない、粒界腐食が進行し、最悪の場合は素材を貫通する程の甚大な問題を起こす。このように、耐食性に有効な元素であるCrやMoを含有する炭化物を、結晶粒界に形成させないことは、非常に重要な技術であると言える。 To solve the above problems, a technique for providing a Ni-based alloy in which carbides do not exist by performing a solution heat treatment is disclosed (see, for example, Patent Document 2). In fact, according to this technology, it has excellent corrosion resistance at the stage of shipping from the factory. However, since Ni-based alloys are processed and used in pipelines, chemical plants, reaction vessels, etc., heat treatment may be performed through these processing and welding processes. At that time, if an inappropriate heat treatment is performed, precipitates containing Cr and Mo may be formed at the grain boundaries. Then, the above-mentioned mechanism impairs the intergranular corrosion resistance, the intergranular corrosion progresses, and in the worst case, it causes a serious problem of penetrating the material. As described above, it can be said that it is a very important technique to prevent carbides containing Cr and Mo, which are effective elements for corrosion resistance, from being formed at the grain boundaries.

Moを11〜20%含有するNi−Cr−Mo−Nb合金において、CrやMoを含有する炭化物形成を防止する技術が示されている(例えば、特許文献3参照)。すなわち、600〜800℃で1〜200時間の時効熱処理を施すことで、粒界にNbCを析出させることでCrやMoを含有する炭化物形成を防止する技術である。しかしながら、600〜800℃で1〜200時間の長時間時効熱処理が必要であり、パイプライン、化学プラント、反応容器等を組み上げた後に実施するのは非現実的であるという問題があった。つまり、工業的には適用が不可能な方法であった。なおかつ、NbCのサイズと密度に関しては何ら記載が無く、本技術にて安定化されるかについて疑問もあった。 In a Ni—Cr—Mo—Nb alloy containing 11 to 20% of Mo, a technique for preventing the formation of carbides containing Cr and Mo has been shown (see, for example, Patent Document 3). That is, it is a technique for preventing the formation of carbides containing Cr and Mo by precipitating NbC at the grain boundaries by performing an aging heat treatment at 600 to 800 ° C. for 1 to 200 hours. However, there is a problem that long-term aging heat treatment at 600 to 800 ° C. for 1 to 200 hours is required, and it is impractical to carry out after assembling a pipeline, a chemical plant, a reaction vessel and the like. In other words, it was an industrially inapplicable method. Moreover, there was no description about the size and density of NbC, and there was a question as to whether it would be stabilized by this technology.

NbCを析出させない条件、すなわち、固溶化熱処理を行い、試験片を作製した後、歪を与えながら耐粒界腐食試験で評価して開発した耐粒界破壊性に優れるNi基合金が提案されている(例えば、特許文献4参照)。上述した通り、炭化物が固溶化した状態であると、パイプライン、化学プラント、反応容器などに組み上げた後、適切でない熱処理を実施してしまうと、粒界にCrやMoを含有する析出物が形成されることがあり、実用性に欠ける問題があった。 A Ni-based alloy with excellent intergranular boundary fracture resistance has been proposed, which was developed under the condition that NbC does not precipitate, that is, after performing solution heat treatment to prepare a test piece and then evaluating it in an intergranular corrosion resistance test while applying strain. (See, for example, Patent Document 4). As described above, if the carbide is in a solution state, if an inappropriate heat treatment is performed after assembling it in a pipeline, a chemical plant, a reaction vessel, etc., precipitates containing Cr or Mo will be formed at the grain boundaries. There was a problem that it was sometimes formed and lacked practicality.

また、1000〜1100℃で固溶化熱処理を行い、200℃/秒以上の急冷により炭化物を固溶させる技術が開示されている(例えば、特許文献5参照)。確かに、その状態が実現できれば、耐食性は確保できると言える。しかし、実際に、パイプライン、化学プラント、反応容器等を組み上げた後に当該熱処理と急冷を行うことは非現実的であり、実用性に欠ける問題があった。 Further, a technique is disclosed in which a solution heat treatment is performed at 1000 to 1100 ° C. and a carbide is dissolved by quenching at 200 ° C./sec or higher (see, for example, Patent Document 5). Certainly, if that state can be realized, it can be said that corrosion resistance can be ensured. However, it is unrealistic to actually perform the heat treatment and quenching after assembling a pipeline, a chemical plant, a reaction vessel, etc., and there is a problem that it is not practical.

特開2015−183290号公報Japanese Unexamined Patent Publication No. 2015-183290 特開昭57−9861号公報Japanese Unexamined Patent Publication No. 57-9861 特開平7−11404号公報Japanese Unexamined Patent Publication No. 7-11404 特開平5−255787号公報Japanese Unexamined Patent Publication No. 5-255787 特開平5−140707号公報Japanese Unexamined Patent Publication No. 5-140707

上記した従来技術に鑑み、まずNi基合金のCrやMoを含有する析出物を制御するために、C量が炭化物の析出挙動に与える影響を明確にし、優れた耐粒界腐食性を引き出すことのできるNi基合金を提供することを目的とする。 In view of the above-mentioned prior art, first, in order to control the precipitation containing Cr and Mo of the Ni-based alloy, the influence of the amount of C on the precipitation behavior of the carbide is clarified, and excellent intergranular corrosion resistance is brought out. It is an object of the present invention to provide a Ni-based alloy capable of producing a product.

発明者らは、上記問題を解決するために、鋭意研究を行った。実際に実機で製造した製品を評価した。すなわち、連続鋳造機で製造したスラブを熱間圧延し、6mm厚の熱間圧延板を得て、その後冷間圧延を行い4mmの冷延板を製造した。その冷延板から20×25mmの試験片を採取し、NbCの割合、M6C(Mは、主にMo、Ni、Cr、Siである)の割合、M23C6(Mは主にCr、Mo、Feである)の割合、NbCの密度、サイズの因子と耐粒界腐食試験結果の相関関係から、本願発明を完成させた。つまり、M6CとM23C6の析出を抑制し、NbCを効果的に析出させる事で耐粒界腐食性を高く維持できることを見出した。この発明は、Ni−Cr−Mo−Nb系の多元系合金の平衡状態図を詳細に解析することによって定量的にC濃度と温度の関係を明確にすることで、より正確な制御を可能にした。 The inventors have conducted diligent research to solve the above problems. We evaluated the products actually manufactured on the actual machine. That is, the slab manufactured by the continuous casting machine was hot-rolled to obtain a hot-rolled plate having a thickness of 6 mm, and then cold-rolled to produce a cold-rolled plate having a thickness of 4 mm. A 20 × 25 mm test piece was collected from the cold rolled plate, and the ratio of NbC, the ratio of M6C (M is mainly Mo, Ni, Cr, Si), and M23C6 (M is mainly Cr, Mo, Fe). The present invention was completed from the correlation between the ratio of (), the density of NbC, the size factor, and the result of the intergranular corrosion resistance test. That is, it has been found that high intergranular corrosion resistance can be maintained by suppressing the precipitation of M6C and M23C6 and effectively precipitating NbC. The present invention enables more accurate control by quantitatively clarifying the relationship between C concentration and temperature by analyzing the equilibrium phase diagram of a Ni-Cr-Mo-Nb-based multi-element alloy in detail. did.

特に本合金において、Nbの添加効果は極めて重要で強度を高めるだけでなく、耐粒界腐食性を劣化させる鋭敏化状態を防止するにあたっても極めて重要である。その理由は、耐粒界腐食性を良好な状態に保つために重要な元素であるCr、Moを固溶状態に保つためにCがNbと結合し、NbCを形成することに基づく。本発明は、上記の知見に基づき開発されたものである。 In particular, in this alloy, the effect of adding Nb is extremely important and not only increases the strength but also is extremely important in preventing the sensitization state that deteriorates the intergranular corrosion resistance. The reason is that C binds to Nb to form NbC in order to keep Cr and Mo, which are important elements for keeping intergranular corrosion resistance in a good state, in a solid solution state. The present invention has been developed based on the above findings.

すなわち、本発明のNi基合金は、以下質量%にて、C:0.005〜0.03%、Si:0.02〜1%、Mn:0.02〜1%、P≦0.03%、S:0.005%以下、Cr:18〜24%、Mo:8〜10%、Nb:2.5〜5.0%、Al:0.05〜0.4%、Ti:1%以下、Fe:5%以下、N:0.02%以下、残部Niおよび不可避的不純物からなり、前記C濃度範囲において、すべての炭化物に対して、(Nb,Ti)C炭化物の割合が90%以上であり、2000×%C+890≦T(温度℃)≦1030にて、(Nb,Ti)C炭化物の個数が6000〜100000(個/mm(ただし、−30×T+37220≦(Nb,Ti)C炭化物の個数(個/mm )≦−7.7×T +15700×T−7866000の範囲を除く)であることを特徴とする。 That is, the Ni-based alloy of the present invention has C: 0.005 to 0.03%, Si: 0.02-1%, Mn: 0.02-1%, P ≦ 0.03 in the following mass%. %, S: 0.005% or less, Cr: 18 to 24%, Mo: 8 to 10%, Nb: 2.5 to 5.0%, Al: 0.05 to 0.4%, Ti: 1% Below, Fe: 5% or less, N: 0.02% or less, the balance Ni and unavoidable impurities, and in the above C concentration range, the ratio of (Nb, Ti) C carbide to all carbides is 90%. As described above, at 2000 ×% C + 890 ≦ T (temperature ° C.) ≦ 1030, the number of (Nb, Ti) C carbides is 6000 to 100,000 (pieces / mm 2 ) (however, -30 × T + 37220 ≦ (Nb, Ti). ) The number of C carbides (pieces / mm 2 ) ≤ -7.7 x T 2 +15700 x T-7866000) .

本発明のNi基合金においては、前記T(温度℃)の範囲は、2000×%C+890≦T(温度℃)≦980であることを好ましい態様とする。In the Ni-based alloy of the present invention, the range of T (temperature ° C.) is preferably 2000 ×% C + 890 ≦ T (temperature ° C.) ≦ 980.

本発明のNi基合金においては、N:0.002〜0.02%であることを好ましい態様とする。 In the Ni-based alloy of the present invention, N: 0.002 to 0.02% is a preferred embodiment.

本発明のNi基合金においては、(Nb,Ti)C炭化物の大きさが0.03〜3μmであることを好ましい態様とする。 In the Ni-based alloy of the present invention, it is preferable that the size of the (Nb, Ti) C carbide is 0.03 to 3 μm.

本発明のNi基合金においては、ASTM G28 Method A試験において腐食度が1.5mm/y未満であることを好ましい態様とする。 In the Ni-based alloy of the present invention, it is preferable that the degree of corrosion is less than 1.5 mm / y in the ASTM G28 Method A test.

本発明のNi基合金においては、500〜800℃、1〜20hにおいて熱処理を施した後、ASTM G28 Method A試験において腐食度が1.5mm/y未満であることを好ましい態様とする。 The Ni-based alloy of the present invention preferably has a degree of corrosion of less than 1.5 mm / y in the ASTM G28 Method A test after being heat-treated at 500 to 800 ° C. for 1 to 20 hours.

(Nb,Ti)C炭化物を形成する事でCrやMoの炭化物の析出を抑えることができる。それによって、耐粒界腐食性を良好な状態に維持する事ができるので、合金の出荷先で実施される熱処理によっても耐粒界腐食性の低下が抑制され、極めて厳しい環境で使用する素材を提供する事が可能となる。 By forming (Nb, Ti) C carbides, precipitation of Cr and Mo carbides can be suppressed. As a result, the intergranular corrosion resistance can be maintained in a good state, so that the decrease in intergranular corrosion resistance can be suppressed even by the heat treatment performed at the alloy shipping destination, and the material used in an extremely harsh environment can be used. It will be possible to provide.

本発明のNi基合金における平衡状態図を示すグラフであり、温度と炭素含有量(mass%)の関係を示す。It is a graph which shows the equilibrium state diagram in the Ni-based alloy of this invention, and shows the relationship between temperature and carbon content (mass%). 本発明のNi基合金における(Nb,Ti)C炭化物の個数(個/mm)と熱処理温度の関係を示すグラフである。It is a graph which shows the relationship between the number of (Nb, Ti) C carbides (piece / mm 2) in the Ni-based alloy of this invention, and the heat treatment temperature.

以下、本願発明の成分範囲を限定した理由を説明する。なお、%はすべてmass%(質量%)である。 Hereinafter, the reason for limiting the component range of the present invention will be described. In addition,% is mass% (mass%).

C:0.005〜0.03%
Cは合金の強度を保つために有用な元素である。そのため、0.005%は必要である。しかしながら、熱処理過程や溶接時における熱影響部等において、CrやMoと結合し炭化物を析出する。Cr、Moは耐食性を維持するために有効な元素であり、析出物の周囲では欠乏層が生じてしまい、耐粒界腐食性を損なう。そのため、Cは0.03%以下と定めた。したがって、0.005〜0.03%と定めた。好ましくは0.007〜0.028%、さらに好ましくは0.01〜0.02%、より好ましくは、0.011〜0.018%である。
C: 0.005 to 0.03%
C is an element useful for maintaining the strength of the alloy. Therefore, 0.005% is required. However, in the heat treatment process and the heat-affected zone during welding, carbides are precipitated by combining with Cr and Mo. Cr and Mo are elements that are effective for maintaining corrosion resistance, and a depletion layer is formed around the precipitate, impairing intergranular corrosion resistance. Therefore, C was set to 0.03% or less. Therefore, it was set to 0.005 to 0.03%. It is preferably 0.007 to 0.028%, more preferably 0.01 to 0.02%, and even more preferably 0.01 to 0.018%.

Si:0.02〜1%
Siは脱酸のために有効な元素であり、0.02%は必要である。しかしながら、M6CとM23C6の形成を助長して、耐粒界腐食性を低下させる元素でもあるので、1%以下に抑える必要がある。したがって、0.02〜1%と定めた。
Si: 0.02-1%
Si is an effective element for deoxidation and 0.02% is required. However, since it is also an element that promotes the formation of M6C and M23C6 and lowers the intergranular corrosion resistance, it is necessary to suppress it to 1% or less. Therefore, it was set to 0.02-1%.

Mn:0.02〜1%
Mnは脱酸のために有効な元素であり、0.02%は必要である。しかしながら、1%を超えるとMnSを形成し易くなり、耐孔食性を悪化させるため、0.02〜1%と定めた。
Mn: 0.02-1%
Mn is an effective element for deoxidation and 0.02% is required. However, if it exceeds 1%, MnS is likely to be formed and the pitting corrosion resistance is deteriorated. Therefore, it is set to 0.02 to 1%.

P≦0.03%
Pは、熱間加工性に有害な元素であり、極力低減することが望ましい。したがって、0.03%以下と定めた。
P ≤ 0.03%
P is an element harmful to hot workability, and it is desirable to reduce it as much as possible. Therefore, it was set to 0.03% or less.

S:0.005%以下
Sは、Pと同様に熱間加工性に有害な元素であり、極力低減することが望ましい。したがって、0.005%以下と定めた。
S: 0.005% or less S is an element harmful to hot workability like P, and it is desirable to reduce it as much as possible. Therefore, it was set to 0.005% or less.

Cr:18〜24%
Crは、不動態皮膜を構成して耐食性を維持するために重要な元素である。母材のCr
濃度は18%以上含有する必要がある。しかしながら、過剰な含有はM23C6(Mは主にCr、Mo、Fe)を析出し易くする。24%を超えるとこの傾向が顕著となり、耐食性を低下させるため18〜24%と規定した。好ましくは20〜23%、さらに好ましくは21〜22.8%である。
Cr: 18-24%
Cr is an important element for forming a passivation film and maintaining corrosion resistance. Base material Cr
The concentration should be 18% or more. However, excessive content makes it easy to precipitate M23C6 (M is mainly Cr, Mo, Fe). When it exceeds 24%, this tendency becomes remarkable, and it is specified as 18 to 24% in order to reduce the corrosion resistance. It is preferably 20 to 23%, more preferably 21 to 22.8%.

Mo:8〜10%
Moは不導態皮膜を構成して耐食性を維持するために重要な元素である。母材のMo濃度は8%以上含有する必要がある。しかし、過剰な含有はM6C(Mは、主にMo、Ni、Cr、Si)を析出し易くなることに加え、強度が高くなり加工性が悪化するため8〜10%と規定した。好ましくは8.1〜9.0%、さらに好ましくは8.2〜8.7%である。
Mo: 8-10%
Mo is an important element for forming a non-conducting film and maintaining corrosion resistance. The Mo concentration of the base material needs to be 8% or more. However, the excessive content is defined as 8 to 10% because M6C (M is mainly Mo, Ni, Cr, Si) is likely to be precipitated, and the strength is increased and the workability is deteriorated. It is preferably 8.1 to 9.0%, more preferably 8.2 to 8.7%.

Nb:2.5〜5.0%
Nbは強度を高める元素である。さらに、炭素と結合しNbCを形成するため、Mo、Crと炭素の結合を防ぐ重要な効果を示す。そのため、耐粒界腐食性を高める役割もある。しかしながら、5%以上では延性発現温度が低下してしまい、熱間加工ができなくなってしまう。そのため、2.5〜5.0%の範囲に定めた。好ましくは3〜4.8%、さらに好ましくは3.5〜4.5%である。
Nb: 2.5-5.0%
Nb is an element that enhances strength. Furthermore, since it binds to carbon to form NbC, it has an important effect of preventing the bond between Mo and Cr and carbon. Therefore, it also has a role of enhancing intergranular corrosion resistance. However, if it is 5% or more, the ductile development temperature will decrease, and hot working will not be possible. Therefore, it was set in the range of 2.5 to 5.0%. It is preferably 3 to 4.8%, more preferably 3.5 to 4.5%.

Al:0.05〜0.4%
Alは脱酸および脱硫のために重要な元素である。脱酸、脱硫を行い、本発明の範囲であるS:0.005%以下を満足するために0.05%は必要である。0.4%を超えての添加は、アルミナクラスターを形成してしまう危険性がある。そのため、0.05〜0.4%と規定した。好ましくは0.1〜0.35%、さらに好ましくは0.15〜0.33%である。
Al: 0.05 to 0.4%
Al is an important element for deoxidation and desulfurization. 0.05% is required to deoxidize and desulfurize and satisfy the range of the present invention, S: 0.005% or less. Additions in excess of 0.4% may result in the formation of alumina clusters. Therefore, it is defined as 0.05 to 0.4%. It is preferably 0.1 to 0.35%, more preferably 0.15 to 0.33%.

Ti:1%以下
Tiは強度を高めるため有効な元素であるとともに、Nbと同様にTiは炭素と結合しTiCを形成して、Cr、Moの炭化物の形成を防ぐ。そのため、耐粒界腐食性を高める性質を持つため、1%以下の範囲で添加する。
Ti: 1% or less Ti is an effective element for increasing the strength, and like Nb, Ti combines with carbon to form TiC and prevents the formation of carbides of Cr and Mo. Therefore, since it has the property of enhancing intergranular corrosion resistance, it is added in the range of 1% or less.

Fe:5%以下
Feは製造コストを低減させるために添加されることがあるが、不動態皮膜中のFe濃度が高くなると耐食性を低下させるために5%以下と定めた。好ましくは4.8%以下、さらに好ましくは4.7%以下である。
Fe: 5% or less Fe may be added to reduce the production cost, but it is set to 5% or less in order to reduce the corrosion resistance when the Fe concentration in the passivation film increases. It is preferably 4.8% or less, more preferably 4.7% or less.

N:0.02%以下
Nは、クラスター化して表面欠陥をもたらすTiNを形成するために極力低く抑える必要がある。したがって、0.02%以下と定めた。一方、強度および耐食性を発現させるために最低限度の添加が好ましく、0.002%以上添加すると好ましい。さらに好ましくは0.002〜0.015%である。なお、N濃度はAODまたはVODにおいて、窒素ガス吹き込みあるいは窒化フェロクロムの添加により、精緻に制御した。
N: 0.02% or less N needs to be kept as low as possible in order to form TiN that clusters and causes surface defects. Therefore, it was set to 0.02% or less. On the other hand, in order to develop strength and corrosion resistance, the minimum amount of addition is preferable, and 0.002% or more is preferable. More preferably, it is 0.002 to 0.015%. The N concentration was precisely controlled in AOD or VOD by blowing nitrogen gas or adding ferrochrome nitride.

基本的に本発明の合金はNi基合金である。その理由は、次の通りである。Niは貴金属であるから、Feより耐食性に優れている。不動態皮膜中においてはFeのように水酸化物Fe(OH)を生成しないため、不動態皮膜は緻密かつ保護作用も高い。また、Ni基合金はFe基合金に比べて固溶できる合金元素の含有量が高いため、CrやMo等の耐食性を高める元素をより多く含有できる。そのため優れた耐食性を有する保護皮膜を母材表面に形成させるためにはNi基合金である必要がある。また、本発明で言う不可避的不純物とは、Cu、Co、W、Ta、V、B、Hである。 Basically, the alloy of the present invention is a Ni-based alloy. The reason is as follows. Since Ni is a precious metal, it has better corrosion resistance than Fe. Unlike Fe, hydroxide Fe (OH) 2 is not generated in the passivation film, so that the passivation film is dense and has a high protective effect. Further, since the Ni-based alloy has a higher content of alloying elements that can be solid-solved than the Fe-based alloy, it can contain more elements such as Cr and Mo that enhance the corrosion resistance. Therefore, in order to form a protective film having excellent corrosion resistance on the surface of the base material, it is necessary to use a Ni-based alloy. Further, the unavoidable impurities referred to in the present invention are Cu, Co, W, Ta, V, B and H.

上記のC濃度範囲(C:0.005〜0.03%)において、すべての炭化物に対して、(Nb,Ti)C炭化物の割合が90%以上必要である理由を説明する。M6CとM23C6の析出する割合を10%未満に抑えないと、ASTM G28 Method A試験において腐食度が1.5mm/y未満を達成できないためである。 The reason why the ratio of (Nb, Ti) C carbide is required to be 90% or more with respect to all carbides in the above C concentration range (C: 0.005 to 0.03%) will be described. This is because the degree of corrosion cannot be achieved to be less than 1.5 mm / y in the ASTM G28 Method A test unless the precipitation ratio of M6C and M23C6 is suppressed to less than 10%.

2000×%C+890≦T(温度℃)≦1150にて、−30×T+37220≦(Nb,Ti)C炭化物の個数(個/mm)≦−7.7×T+15700×T−7866000の割合で含む原理は、実験的に検証され、なおかつ平衡状態図との整合性から導き出されたものである。条件を満たせば(Nb,Ti)C炭化物の割合が90%以上となり、さらにASTM G28 Method A試験において腐食度が1.5mm/y未満を達成できるためである。さらに、10×C%+950の境界より30℃高い温度の範囲では、M6CやM23C6が固溶し、NbCが一部残存するため、歪取焼鈍後のASTM G28 Method A試験において1.5mm/y未満を達成できるためである。 At 2000 ×% C + 890 ≦ T (temperature ° C.) ≦ 1150, the ratio of −30 × T + 37220 ≦ (Nb, Ti) C carbide number (pieces / mm 2 ) ≦ -7.7 × T 2 +15700 × T-7866000 The principles contained in are experimentally verified and derived from consistency with the equilibrium phase diagram. This is because if the conditions are satisfied, the ratio of (Nb, Ti) C carbides becomes 90% or more, and the degree of corrosion can be achieved to be less than 1.5 mm / y in the ASTM G28 Method A test. Furthermore, in the range of 10 4 × C% + 950 Temperature 30 ° C. higher than the boundary of, M6C and M23C6 is dissolved, because the NbC remains partially, 1.5 mm in ASTM G28 Method A test after stress relief annealing / This is because less than y can be achieved.

上記の(Nb,Ti)C炭化物の個数分布を正しく求めることは、極めて重要な事である。まず、当該温度で熱処理した後に、速やかに冷却してその温度での状態を維持する必要がある。したがって、50℃/秒以上で冷却する。そのようにして製造した4mm厚の冷延板を10×10mmのサイズに切断した。圧延方向に垂直な断面を湿式研磨後、さらに電解研磨を行い、FE−SEMを用いて観察し、求めたものである。さらに、炭化物の組成は定量分析することにより、特定した。 It is extremely important to correctly obtain the number distribution of the above (Nb, Ti) C carbides. First, after heat treatment at the temperature, it is necessary to quickly cool and maintain the state at that temperature. Therefore, it is cooled at 50 ° C./sec or higher. The 4 mm thick cold rolled plate thus produced was cut into a size of 10 × 10 mm. The cross section perpendicular to the rolling direction was wet-polished, then electrolytically polished, and observed using an FE-SEM to obtain the result. Furthermore, the composition of carbides was identified by quantitative analysis.

PRE値=Cr%+3.3Mo%+16N%が50以上である必要性を説明する。表面に緻密な不導態皮膜を形成するためにPRE値は50以上と定めた。なお、特に限定はしないが、緻密な不動態皮膜をえるために、大気中で4日間放置するか、不動態化処理をするのが好ましい。 The necessity that PRE value = Cr% + 3.3Mo% + 16N% is 50 or more will be explained. The PRE value was set to 50 or more in order to form a dense non-conducting film on the surface. Although not particularly limited, it is preferable to leave it in the air for 4 days or to perform a passivation treatment in order to obtain a dense passivation film.

(Nb,Ti)C炭化物の大きさが0.03〜3μmである必要性を説明する。0.03μmよりも細かく分散すると、ピン止め効果により結晶粒が細かくなってしまうため、冷間加工性を低下させてしまう。一方、3μmを超えて大きいと、析出物上には緻密な不動態皮膜が形成しないため、腐食の起点になってしまい、すきま腐食を誘発する危険性がある。そのため0.03〜3μmとした。より好ましくは、0.1〜2μmである。 The need for the size of the (Nb, Ti) C carbide to be 0.03 to 3 μm will be explained. If the dispersion is finer than 0.03 μm, the crystal grains become finer due to the pinning effect, which lowers the cold workability. On the other hand, if it is larger than 3 μm, a dense passivation film is not formed on the precipitate, so that it becomes a starting point of corrosion and there is a risk of inducing crevice corrosion. Therefore, it was set to 0.03 to 3 μm. More preferably, it is 0.1 to 2 μm.

上記の発明の範囲を満足することにより、ASTM G28 Method A試験において腐食度が1.5mm/y未満を満足することができる。場合によっては、加工や溶接時に導入された歪を取り除くために、本合金を500〜800℃、1〜20h熱処理をすることがある。上記の発明の範囲を満足することにより、ASTM G28 Method A試験において腐食度が1.5mm/y未満を満足することができる。好ましくは1.3mm/y未満、より好ましくは1.2mm/y未満、さらに好ましくは1mm/y未満である。 By satisfying the scope of the above invention, the degree of corrosion can be satisfied to be less than 1.5 mm / y in the ASTM G28 Method A test. In some cases, the alloy may be heat treated at 500 to 800 ° C. for 1 to 20 hours in order to remove the strain introduced during processing or welding. By satisfying the scope of the above invention, the degree of corrosion can be satisfied to be less than 1.5 mm / y in the ASTM G28 Method A test. It is preferably less than 1.3 mm / y, more preferably less than 1.2 mm / y, and even more preferably less than 1 mm / y.

10×C%+950〜2000×%C+890℃において熱間圧延を施せば、上述した通り、(Nb,Ti)C炭化物をより効果的に析出させることができるため、10×C%+950〜2000×%C+890℃において熱間圧延することと規定した。 If Hodokose hot rolled in 10 4 × C% + 950~2000 × % C + 890 ℃, as described above, it is possible to more effectively precipitate (Nb, Ti) C carbides, 10 4 × C% + 950~ It is specified that hot rolling is performed at 2000 ×% C + 890 ° C.

スクラップ、Ni、Cr、Moなどの原料を電気炉で溶解し、AOD(Argon Oxygen Decarburization)および/またはVOD(Vacuum Oxygen Decarburization)にて酸素吹精して脱炭を行った。その後、Alと石灰石を投入してCr還元を行い、さらに石灰石と蛍石を投入し、溶融合金上にCaO−SiO−Al−MgO−F系スラグを形成して脱酸、脱硫を行った。スラグ中SiO濃度は10%以下に制御した。このようにして精錬した溶融合金を、連続鋳造機にて鋳造しスラブを得た。 Raw materials such as scrap, Ni, Cr, and Mo were melted in an electric furnace, and oxygen was blown by AOD (Argon Oxygen Decarburization) and / or VOD (Vacum Oxygen Decarburization) to decarburize. Thereafter, Al and limestone was charged performs Cr reduction, further limestone and fluorite were charged, CaO-SiO 2 -Al 2 O 3 -MgO-F slag was formed by deoxidation onto the molten alloy, desulfurization Was done. The SiO 2 concentration in the slag was controlled to 10% or less. The molten alloy refined in this way was cast by a continuous casting machine to obtain a slab.

その後、スラブをステッケルミルで熱間圧延し、引き続き冷間圧延して板厚4mmの冷延板を製造した。表1に製造した合金の化学成分を、表2に測定条件、評価結果を示す。表1および2において括弧内に示す数値は本発明の範囲外であることを示す。
ここで、評価方法を明記する。
(1)蛍光X線分析により行った。ただし、CとSは燃焼重量法、Oは不活性ガスインパルス融解赤外線吸収法によった。
(2)熱延温度は、ステッケルミルの仕上げ圧延後、水冷前に放射温度計により測温した。
(3)(Nb,Ti)Cの個数分布:(Nb,Ti)C炭化物の個数分布を正しく求めることは、極めて重要な事である。まず、当該温度で熱処理した後に、速やかに冷却してその温度での状態を維持する必要がある。したがって、50℃/秒以上で冷却する。そのようにして製造した4mm厚の冷延板を10×10mmのサイズに切断した。圧延方向に平行な断面を鏡面研磨した後にFE−SEMを用いて観察し、求めたものである。なお、測定に供した領域は1mmである。
(4)炭化物の組成はEDSにより定量分析することにより求めた。
(5)(Nb,Ti)Cのサイズは、上記の通りFE−SEMにより求めた。なお、表2に示したサイズは、平均サイズを代表値として示した。
(6)耐粒界腐食性の評価:ASTM G28 Method A試験により、年間腐食深さ(mm/y)を評価した。
(7)SR(Stress Release)は、歪取焼鈍であり、600度×5hrの熱処理を行った。合金の出荷先で実施され耐粒界腐食性の低下の原因となっている熱処理を再現したものである。
Then, the slab was hot-rolled with a stickel mill and then cold-rolled to produce a cold-rolled plate having a plate thickness of 4 mm. Table 1 shows the chemical composition of the manufactured alloy, and Table 2 shows the measurement conditions and evaluation results. The numerical values shown in parentheses in Tables 1 and 2 indicate that they are outside the scope of the present invention.
Here, the evaluation method is specified.
(1) Fluorescent X-ray analysis was performed. However, C and S were based on the combustion gravimetric method, and O was based on the inert gas impulse melting infrared absorption method.
(2) The hot rolling temperature was measured with a radiation thermometer after the finish rolling of the stickel mill and before water cooling.
(3) Number distribution of (Nb, Ti) C: It is extremely important to correctly obtain the number distribution of (Nb, Ti) C carbides. First, after heat treatment at the temperature, it is necessary to quickly cool and maintain the state at that temperature. Therefore, it is cooled at 50 ° C./sec or higher. The 4 mm thick cold rolled plate thus produced was cut into a size of 10 × 10 mm. The cross section parallel to the rolling direction was mirror-polished and then observed using an FE-SEM to obtain the result. The area used for measurement is 1 mm 2 .
(4) The composition of carbide was determined by quantitative analysis by EDS.
(5) The size of (Nb, Ti) C was determined by FE-SEM as described above. The sizes shown in Table 2 are represented by the average size as a representative value.
(6) Evaluation of Intergranular Corrosion Resistance: The annual corrosion depth (mm / y) was evaluated by the ASTM G28 Method A test.
(7) SR (Stress Release) was strain-removing annealing, and was heat-treated at 600 ° C. × 5 hr. This is a reproduction of the heat treatment performed at the destination of the alloy, which causes a decrease in intergranular corrosion resistance.

Figure 0006911174
Figure 0006911174

Figure 0006911174
Figure 0006911174

表2に実例を示して、本発明の効果を明確にする。また、図1に本検討結果より作成した平衡状態図を示す。図1の平衡状態図において、請求項5に示した10×C%+950を境界(1)、2000×%C+890を境界(2)とする。また、表2ではASTM G28 Method A試験を試験I、歪取焼鈍後のASTM G28 Method A試験を試験IIと明記する。 Examples are shown in Table 2 to clarify the effects of the present invention. In addition, FIG. 1 shows an equilibrium phase diagram created from the results of this study. In the equilibrium state diagram of FIG. 1, the 10 4 × C% + 950 of the claims 5 boundary (1), the 2000 ×% C + 890 and boundaries (2). Further, in Table 2, the ASTM G28 Method A test is specified as Test I, and the ASTM G28 Method A test after strain annealing is specified as Test II.

発明例であるNo.1〜3は、熱延温度が図1に示す境界(1)と(2)の間であり、(Nb,Ti)Cが析出する領域であるが、焼鈍温度は境界(1)と1150℃の間の領域であるため、試験Iは1.5mm/y未満を満たし良好(〇)である。さらにNo.1と3の焼鈍温度は、境界(1)から30℃高い温度範囲以内で熱処理を行っているため、Cが固溶し易い領域ではあるが、(Nb,Ti)Cが残存するため、試験IIにおいても良好(〇)である。ただし、腐食度の値は範囲内ではあるが、高目であったことが分かる。 No. which is an example of the invention. Nos. 1 to 3 are regions where the hot rolling temperature is between the boundary (1) and (2) shown in FIG. 1 and (Nb, Ti) C is precipitated, but the annealing temperature is between the boundary (1) and 1150 ° C. Since it is a region between, Test I satisfies less than 1.5 mm / y and is good (◯). Furthermore, No. The annealing temperatures of 1 and 3 are in the region where C is easily dissolved because the heat treatment is performed within a temperature range 30 ° C. higher than the boundary (1), but (Nb, Ti) C remains, so the test It is also good (〇) in II. However, although the value of the degree of corrosion is within the range, it can be seen that it was high.

No.4〜7は、境界(1)と(2)に挟まれた範囲内で熱間圧延を行い、その後の熱処理も適切であったので、試験IおよびIIの結果ともに良好(〇)である。 No. In Nos. 4 to 7, hot rolling was performed within the range sandwiched between the boundaries (1) and (2), and the subsequent heat treatment was also appropriate, so that the results of Tests I and II were both good (◯).

No.8は、C量が下限値の0.005%より低いため、強度が低くなってしまった。また、Cr量が下限の18%より低く、Nが0.001%と下限を下回ったため、耐食性が低く、PREは50以下である。また、熱延終了温度および焼鈍温度は境界(1)以上、1150℃以下であるため、Cは固溶状態となる。よって、 M6CとM23C6は固溶するため、(Nb,Ti)Cは95%だが、個数は100個/mmと少ない。よって試験I、IIのどちらも1.5mm/yを上回った。 No. In No. 8, since the amount of C was lower than the lower limit of 0.005%, the strength was lowered. Further, since the amount of Cr is lower than the lower limit of 18% and N is 0.001%, which is lower than the lower limit, the corrosion resistance is low and the PRE is 50 or less. Further, since the hot rolling end temperature and the annealing temperature are above the boundary (1) and below 1150 ° C., C is in a solid solution state. Therefore, since M6C and M23C6 are solid-solved, (Nb, Ti) C is 95%, but the number is as small as 100 / mm 2. Therefore, both Tests I and II exceeded 1.5 mm / y.

No.9は、熱延終了温度および焼鈍温度が境界(1)以上であり、さらに焼鈍温度は1150℃を超えているため、(Nb,Ti)Cは完全固溶状態であるので、析出しない。よって試験I、IIのどちらも1.5mm/yを上回った。 No. In No. 9, since the hot rolling end temperature and the annealing temperature are above the boundary (1) and the annealing temperature exceeds 1150 ° C., (Nb, Ti) C is in a completely solid solution state and does not precipitate. Therefore, both Tests I and II exceeded 1.5 mm / y.

No.10は、C%量が0.032%と高く、境界(1)は1270℃、境界(2)は954℃になる。熱延終了温度が920℃であるため、境界(2)より低いため、熱延後はM6Cが析出する。焼鈍温度は1100℃であり、境界(1)と(2)の間なので、(Nb,Ti)Cが析出し易い。よって、(Nb,Ti)Cの割合は30%程度であり、(Nb,Ti)Cは5,000個/mmと少ない。結果、試験I、IIのどちらも1.5mm/yを上回る。 No. In No. 10, the amount of C% is as high as 0.032%, the boundary (1) is 1270 ° C., and the boundary (2) is 954 ° C. Since the hot rolling end temperature is 920 ° C., it is lower than the boundary (2), so that M6C is precipitated after hot rolling. Since the annealing temperature is 1100 ° C. and is between the boundaries (1) and (2), (Nb, Ti) C is likely to precipitate. Therefore, the ratio of (Nb, Ti) C is about 30%, and the ratio of (Nb, Ti) C is as small as 5,000 / mm 2. As a result, both Tests I and II exceed 1.5 mm / y.

No.11は、C量は0.005%と下限値であり、境界(1)は1000℃、境界(2)は900℃である。熱延終了温度は1070℃であり、境界(1)以上なので熱延後のC量は固溶状態である。一方、焼鈍温度は780℃であり、M6CやM23C6が析出する。よって(Nb,Ti)Cの割合は5%、(Nb,Ti)Cは200個/mmと少ない。結果、試験I、IIのどちらも1.5mm/yを上回る。また、N値が0.024%と上限値を超えたため、TiNクラスターを生成し、連続鋳造においてノズル閉塞を生じた。 No. In No. 11, the amount of C is 0.005%, which is the lower limit, the boundary (1) is 1000 ° C., and the boundary (2) is 900 ° C. Since the hot rolling end temperature is 1070 ° C. and is above the boundary (1), the amount of C after hot rolling is in a solid solution state. On the other hand, the annealing temperature is 780 ° C., and M6C and M23C6 are precipitated. Therefore, the ratio of (Nb, Ti) C is as small as 5%, and the ratio of (Nb, Ti) C is as small as 200 pieces / mm 2. As a result, both Tests I and II exceed 1.5 mm / y. Further, since the N value exceeded the upper limit value of 0.024%, TiN clusters were generated and nozzle blockage occurred in continuous casting.

No.12は、C量が下限値の0.005%より低いため、強度が低く、境界(1)は980℃、境界(2)は896℃である。熱延終了温度および焼鈍温度は、どちらも境界(2)より低いので、M6CやM23C6が析出する。(Nb,Ti)Cの割合は5%、(Nb,Ti)Cは200個/mmと少ない。さらにPREも50以下であり、結果、試験I、IIのどちらも1.5mm/yを上回る。 No. No. 12 has a low intensity because the amount of C is lower than the lower limit of 0.005%, and the boundary (1) is 980 ° C. and the boundary (2) is 896 ° C. Since both the hot rolling end temperature and the annealing temperature are lower than the boundary (2), M6C and M23C6 are deposited. The ratio of (Nb, Ti) C is as small as 5%, and the ratio of (Nb, Ti) C is as small as 200 pieces / mm 2. Furthermore, the PRE is also 50 or less, and as a result, both Tests I and II exceed 1.5 mm / y.

No.13は、C量、Si、Mo量が上限を超えており、M6Cが多く析出し易い成分である。境界(1)は1190℃、境界(2)は938℃、熱延温度が1100℃、焼鈍温度が900℃であり、熱延後にMCが析出し、焼鈍後にM6CやM23C6が析出する。成分と焼鈍条件により、M6Cが多く析出するため、(Nb,Ti)Cの割合が低く、(Nb,Ti)Cの個数も20個/mmと少ない。結果、試験I、IIのどちらも1.5mm/yを上回る。 No. Reference numeral 13 is a component in which the amounts of C, Si, and Mo exceed the upper limits, and M6C is abundant and easily precipitated. The boundary (1) is 1190 ° C., the boundary (2) is 938 ° C., the hot rolling temperature is 1100 ° C., and the annealing temperature is 900 ° C., MC is precipitated after hot rolling, and M6C and M23C6 are precipitated after annealing. Since a large amount of M6C is precipitated depending on the components and annealing conditions, the ratio of (Nb, Ti) C is low, and the number of (Nb, Ti) C is as small as 20 / mm 2. As a result, both Tests I and II exceed 1.5 mm / y.

No.14は、C量が下限値以下で実施例の中で最も低いため、強度が低い。境界(1)は960℃、境界(2)は892℃、熱延終了温度は境界(2)以上で境界(2)から30℃以内、焼鈍温度は境界(2)以下である。(Nb,Ti)Cは析出しない。結果、試験I、IIのどちらも1.5mm/yを上回る。 No. No. 14 has a low strength because the amount of C is equal to or less than the lower limit value and is the lowest in the examples. The boundary (1) is 960 ° C, the boundary (2) is 892 ° C, the hot rolling end temperature is above the boundary (2) and within 30 ° C from the boundary (2), and the annealing temperature is below the boundary (2). (Nb, Ti) C does not precipitate. As a result, both Tests I and II exceed 1.5 mm / y.

合金の出荷先で実施される熱処理によっても耐粒界腐食性の低下が抑制され、粒界腐食性の強い過酷な環境下において、長時間に亘って使用することができる高耐粒界腐食性のNi基合金を製造することができ、有望である。 High intergranular corrosion resistance that can be used for a long time in a harsh environment with strong intergranular corrosion resistance by suppressing the decrease in intergranular corrosion resistance even by the heat treatment performed at the alloy shipping destination. It is promising because it can produce Ni-based alloys.

Claims (6)

以下質量%にて、C:0.005〜0.03%、Si:0.02〜1%、Mn:0.02〜1%、P≦0.03%、S:0.005%以下、Cr:18〜24%、Mo:8〜10%、Nb:2.5〜5.0%、Al:0.05〜0.4%、Ti:1%以下、Fe:5%以下、N:0.02%以下、残部Niおよび不可避的不純物からなり、前記C濃度範囲において、すべての炭化物に対して、(Nb,Ti)C炭化物の割合が90%以上であり、2000×%C+890≦T(温度℃)≦1030にて、前記(Nb,Ti)C炭化物の個数が6000〜100000(個/mm(ただし、−30×T+37220≦(Nb,Ti)C炭化物の個数(個/mm )≦−7.7×T +15700×T−7866000の範囲を除く)であることを特徴とするNi基合金。 In the following mass%, C: 0.005 to 0.03%, Si: 0.02 to 1%, Mn: 0.02 to 1%, P ≦ 0.03%, S: 0.005% or less, Cr: 18 to 24%, Mo: 8 to 10%, Nb: 2.5 to 5.0%, Al: 0.05 to 0.4%, Ti: 1% or less, Fe: 5% or less, N: It consists of 0.02% or less, the balance Ni and unavoidable impurities, and in the above C concentration range, the ratio of (Nb, Ti) C carbide is 90% or more with respect to all carbides, and 2000 ×% C + 890 ≦ T. When (temperature ° C.) ≤ 1030, the number of the (Nb, Ti) C carbides is 6000 to 100,000 (pieces / mm 2 ) (however, -30 × T + 37220 ≦ (Nb, Ti) number of C carbides (pieces / mm). 2 ) A Ni-based alloy characterized in that (excluding the range of ≦ −7.7 × T 2 +15700 × T-7866000). 前記T(温度℃)の範囲は、2000×%C+890≦T(温度℃)≦980であることを特徴とする請求項1に記載のNi基合金。 The Ni-based alloy according to claim 1, wherein the range of T (temperature ° C.) is 2000 ×% C + 890 ≦ T (temperature ° C.) ≦ 980. N:0.002〜0.02%であることを特徴とする請求項1または2に記載のNi基合金。 The Ni-based alloy according to claim 1 or 2, wherein N: 0.002 to 0.02%. 前記(Nb,Ti)C炭化物の大きさが0.03〜3μmであることを特徴とする請求項1〜3のいずれかに記載のNi基合金。 The Ni-based alloy according to any one of claims 1 to 3, wherein the size of the (Nb, Ti) C carbide is 0.03 to 3 μm. ASTM G28 Method A試験において腐食度が1.5mm/y未満であることを特徴とする請求項1〜4のいずれかに記載のNi基合金。 The Ni-based alloy according to any one of claims 1 to 4, wherein the degree of corrosion is less than 1.5 mm / y in the ASTM G28 Method A test. 500〜800℃、1〜20hにおいて熱処理を施した後、ASTM G28 Method A試験において腐食度が1.5mm/y未満であることを特徴とする請求項1〜5のいずれかに記載のNi基合金。 The Ni group according to any one of claims 1 to 5, wherein the degree of corrosion is less than 1.5 mm / y in the ASTM G28 Method A test after heat treatment at 500 to 800 ° C. for 1 to 20 hours. alloy.
JP2020074183A 2017-09-14 2020-04-17 Nickel-based alloy Active JP6911174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020074183A JP6911174B2 (en) 2017-09-14 2020-04-17 Nickel-based alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017176760A JP6723210B2 (en) 2017-09-14 2017-09-14 Nickel-based alloy
JP2020074183A JP6911174B2 (en) 2017-09-14 2020-04-17 Nickel-based alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017176760A Division JP6723210B2 (en) 2017-09-14 2017-09-14 Nickel-based alloy

Publications (2)

Publication Number Publication Date
JP2020117813A JP2020117813A (en) 2020-08-06
JP6911174B2 true JP6911174B2 (en) 2021-07-28

Family

ID=71890163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020074183A Active JP6911174B2 (en) 2017-09-14 2020-04-17 Nickel-based alloy

Country Status (1)

Country Link
JP (1) JP6911174B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160500A (en) * 1962-01-24 1964-12-08 Int Nickel Co Matrix-stiffened alloy
JPS61153251A (en) * 1984-12-26 1986-07-11 Toshiba Corp Nickel alloy having high hot workability
US4765956A (en) * 1986-08-18 1988-08-23 Inco Alloys International, Inc. Nickel-chromium alloy of improved fatigue strength
JPH01136939A (en) * 1987-11-25 1989-05-30 Nippon Steel Corp Manufacture of ni-based super alloy having excellent hot workability
FR2653451B1 (en) * 1989-10-20 1993-08-13 Tecphy METHOD FOR IMPROVING THE CORROSION RESISTANCE OF A NICKEL-BASED ALLOY AND ALLOY THUS PRODUCED.
US8101122B2 (en) * 2009-05-06 2012-01-24 General Electric Company NiCrMoCb alloy with improved mechanical properties
JP6723210B2 (en) * 2017-09-14 2020-07-15 日本冶金工業株式会社 Nickel-based alloy

Also Published As

Publication number Publication date
JP2020117813A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6723210B2 (en) Nickel-based alloy
WO2017043660A1 (en) Steel sheet and enameled product
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
WO2019070000A1 (en) Austenitic stainless steel weld metal and welded structure
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP6852806B2 (en) Nickel-containing steel for low temperature
JP6852805B2 (en) Nickel-containing steel for low temperature
JP6482074B2 (en) Duplex stainless steel sheet and its manufacturing method
EP3438306B1 (en) Ni-fe-cr alloy
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
WO2019069998A1 (en) Austenitic stainless steel
JP5741454B2 (en) Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof
JP6911174B2 (en) Nickel-based alloy
WO2022191085A1 (en) Martensitic stainless steel sheet having excellent corrosion resistance and method for manufacturing same, and martensitic stainless bladed product
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
CN111684093B (en) High Mn steel and method for producing same
JPH0633195A (en) Precipitation hardening martensitic stainless steel and its production
RU2387727C2 (en) Modifying agent for carbon and low-alloyed steel for rolled products and tubes from steel with increased corrosion resistance
WO2022025078A1 (en) Highly corrosion-resistant austenitic stainless steel and method for producing same
JP6950071B2 (en) Ni-Cr-Mo-Nb alloy
JP2019112696A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance
WO2022168686A1 (en) Steel material and method for producing same, and tank and method for producing same
JP4765680B2 (en) Martensitic stainless steel with excellent tempering efficiency and tempering stability
JP3475927B2 (en) Low Cr ferritic heat-resistant steel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20210212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210707

R150 Certificate of patent or registration of utility model

Ref document number: 6911174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150