JP6908132B2 - Resistance spot welded member and its manufacturing method - Google Patents

Resistance spot welded member and its manufacturing method Download PDF

Info

Publication number
JP6908132B2
JP6908132B2 JP2019563908A JP2019563908A JP6908132B2 JP 6908132 B2 JP6908132 B2 JP 6908132B2 JP 2019563908 A JP2019563908 A JP 2019563908A JP 2019563908 A JP2019563908 A JP 2019563908A JP 6908132 B2 JP6908132 B2 JP 6908132B2
Authority
JP
Japan
Prior art keywords
energization
nugget
spot welded
max
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019563908A
Other languages
Japanese (ja)
Other versions
JPWO2020036198A1 (en
Inventor
直雄 川邉
直雄 川邉
松田 広志
広志 松田
池田 倫正
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2020036198A1 publication Critical patent/JPWO2020036198A1/en
Application granted granted Critical
Publication of JP6908132B2 publication Critical patent/JP6908132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Resistance Welding (AREA)

Description

本発明は、抵抗スポット溶接部材及びその製造方法に関するものである。 The present invention relates to a resistance spot welded member and a method for manufacturing the same.

自動車の燃費を向上させるための自動車車体の軽量化と衝突安全性の向上とを両立するために、使用する鋼板を高強度化してその板厚を低減する努力が続けられている。しかしながら、自動車用鋼板の引張強度980MPa級以上への高強度化に伴い、溶接部の耐遅れ破壊特性の低下に対する懸念が生じてきた。 Efforts are being made to increase the strength of the steel sheet used and reduce its thickness in order to achieve both weight reduction of the automobile body and improvement of collision safety in order to improve the fuel efficiency of the automobile. However, as the tensile strength of steel sheets for automobiles is increased to 980 MPa class or higher, there is a concern that the delayed fracture resistance of the welded portion may be lowered.

詳述すると、自動車の生産工程で主に用いられている溶接方法は抵抗スポット溶接であるが、この抵抗スポット溶接の溶接部は、溶融した部分が急冷されることによりマルテンサイト変態を起こしやすく硬い組織となる。また、該溶接部には冷却過程の熱収縮により引張残留応力が発生する。さらに、鋼板表面のめっき層、鋼板表面の油や水分などから、溶接中に溶接金属内に水素が取り込まれたり、使用環境(例えば酸性環境下)から溶接部へ水素が進入したりする場合がある。したがって、抵抗スポット溶接の溶接部は、耐遅れ破壊特性の観点からは非常に不利な状態となる場合がある。 In detail, the welding method mainly used in the production process of automobiles is resistance spot welding, but the welded part of this resistance spot welding is hard and prone to martensitic transformation due to quenching of the melted part. Become an organization. In addition, tensile residual stress is generated in the welded portion due to heat shrinkage during the cooling process. Furthermore, hydrogen may be taken into the weld metal during welding from the plating layer on the surface of the steel sheet, oil or moisture on the surface of the steel sheet, or hydrogen may enter the weld from the usage environment (for example, in an acidic environment). be. Therefore, the welded portion of the resistance spot weld may be in a very disadvantageous state from the viewpoint of the delayed fracture resistance.

従来は、鋼板強度がそれほど高くなかったために、溶接部への応力集中が比較的小さく、遅れ破壊が問題とされることはなかった。しかし、鋼板の引張強度が980MPa級以上の高強度鋼板においては、炭素等の焼入れ性元素を多く含むため、ナゲットおよびその近傍が非常に硬くなって、遅れ破壊が発生しやすい状態となる。 Conventionally, since the strength of the steel sheet is not so high, the stress concentration on the welded portion is relatively small, and delayed fracture has not been a problem. However, since a high-strength steel sheet having a tensile strength of 980 MPa or more contains a large amount of hardenable elements such as carbon, the nugget and its vicinity become very hard, and delayed fracture is likely to occur.

また、このようなナゲットが非常に硬い抵抗スポット溶接部は、ナゲット組織の粒界強度を低下させる要因となる元素であるP、Sに対する感受性が高い。このため、これらの元素を多く含む鋼板の抵抗スポット溶接部材ではナゲットの強度が低下し、遅れ破壊がより発生しやすい状態となる。この抵抗スポット溶接部材の遅れ破壊の問題は、高強度鋼板を含む板組であれば軟鋼との合わせ板組であっても生じる場合がある。また、該高強度鋼板においては、プレス成形が難しくなることから高強度鋼板を重ね合わせたときに鋼板間に隙間が生じやすい。このため、この隙間を一対の対向する電極で強制的に潰して溶接する抵抗スポット溶接では、ナゲットの端部にこの鋼板の隙間に起因する引張応力が追加され、さらに遅れ破壊が発生しやすい状態となることが考えられる。 Further, such a resistance spot welded portion in which the nugget is very hard is highly sensitive to P and S, which are elements that cause a decrease in the grain boundary strength of the nugget structure. For this reason, the strength of the nugget is lowered in the resistance spot welded member of the steel sheet containing a large amount of these elements, and the delayed fracture is more likely to occur. This problem of delayed fracture of the resistance spot welded member may occur even if the plate assembly includes a high-strength steel plate or a laminated plate assembly with mild steel. Further, in the high-strength steel sheet, press forming becomes difficult, so that a gap is likely to occur between the steel sheets when the high-strength steel sheets are laminated. For this reason, in resistance spot welding in which this gap is forcibly crushed by a pair of opposing electrodes and welded, tensile stress due to the gap between the steel plates is added to the end of the nugget, and delayed fracture is more likely to occur. It is conceivable that

このような溶接部の遅れ破壊を防止する方法として、特許文献1には、溶接通電(主通電)直後に加圧力を上昇させると共に電流を減少させることで溶接部の組織や硬さを制御し、遅れ破壊を防止する技術が開示されている。 As a method for preventing such delayed fracture of the welded portion, Patent Document 1 states that the structure and hardness of the welded portion are controlled by increasing the pressing force and decreasing the current immediately after the welding energization (main energization). , A technique for preventing delayed fracture is disclosed.

また、特許文献2には、溶接通電(主通電)直後に加圧力を上昇させると共に無通電での冷却時間経過後に通電することで溶接部の組織や硬さを制御し、遅れ破壊を防止する技術が開示されている。 Further, in Patent Document 2, the pressing force is increased immediately after the welding energization (main energization) and the welding is energized after the cooling time without energization elapses to control the structure and hardness of the welded portion and prevent delayed breakage. The technology is disclosed.

特開2015−93282号公報Japanese Unexamined Patent Publication No. 2015-93282 WO2014/171495号公報WO2014 / 171495

しかし、これらの技術は、遅れ破壊を防止する効果を得るために長時間の後通電を要する。このため、投入熱量が過多となった場合には熱影響部が過度の軟化により強度低下し、低応力で熱影響部からの破断が発生する場合がある。また、これらの技術は、ナゲットの強度低下の要因となる元素であるP、Sの影響については何ら考慮されていない。 However, these techniques require a long period of post-energization in order to obtain the effect of preventing delayed fracture. Therefore, when the amount of heat input is excessive, the heat-affected zone may be excessively softened to reduce its strength, and the heat-affected zone may be broken due to low stress. Further, these techniques do not consider the influence of P and S, which are elements that cause a decrease in the strength of the nugget.

なお、このような溶接時に水素脆化感受性の高い溶接金属内に水素が侵入することにより遅れ破壊が発生するという問題は、自動車用の高強度鋼板を抵抗スポット溶接する場合に限らず、その他の鋼板の抵抗スポット溶接においても同様に存在する。 It should be noted that the problem that delayed fracture occurs due to hydrogen invasion into the weld metal having high hydrogen embrittlement sensitivity during such welding is not limited to the case of resistance spot welding of high-strength steel sheets for automobiles, and other problems. It also exists in resistance spot welding of steel sheets.

本発明はかかる事情に鑑みてなされたものであって、その目的は、ナゲットの端部(ナゲット端部)の組織を改善することにより、耐遅れ破壊特性に優れた抵抗スポット溶接部材及びその製造方法を提供するものである。 The present invention has been made in view of such circumstances, and an object thereof is to manufacture a resistance spot welded member having excellent delayed fracture resistance by improving the structure of the nugget end (nugget end). It provides a method.

本発明者は、遅れ破壊の発生起点であるナゲット端部の組織を改善することにより、スポット溶接部の硬さを調整して、引張強度が980MPa以上の鋼板を含む板組の場合であっても、耐遅れ破壊特性に優れたスポット溶接部材を提供可能であると考えた。 The present inventor adjusts the hardness of the spot welded portion by improving the structure of the nugget end portion, which is the starting point of delayed fracture, in the case of a plate assembly containing a steel plate having a tensile strength of 980 MPa or more. However, it was considered possible to provide a spot welded member having excellent delayed fracture resistance.

そこで、遅れ破壊の要因であるナゲット端部の硬さおよび粒界強度低下の要因となる元素のP、Sについて調査し、以下のような知見を得た。 Therefore, the hardness of the nugget end, which is a factor of delayed fracture, and the elements P and S, which are a factor of lowering the grain boundary strength, were investigated, and the following findings were obtained.

ナゲットの硬さに影響を与える鋼板中の合金元素としては、C、Mn、Siが挙げられる。鋼板中のこれらの元素の含有量が多いほど抵抗スポット溶接部材の遅れ破壊感受性が高くなる。しかし、これらの元素の含有量に応じてナゲット端部の硬さを低減することにより、上記鋼板を含む板組の抵抗スポット溶接部材の耐遅れ破壊特性を改善することが可能となる。 Examples of alloying elements in the steel sheet that affect the hardness of the nugget include C, Mn, and Si. The higher the content of these elements in the steel sheet, the higher the delayed fracture sensitivity of the resistance spot welded member. However, by reducing the hardness of the nugget end portion according to the content of these elements, it is possible to improve the delayed fracture resistance of the resistance spot welded member of the plate assembly including the steel plate.

しかしながら、鋼板がP、Sを多く含む場合、ナゲット端部のP、Sの濃度が高くなり、遅れ破壊がより発生しやすい状態となる。また、ナゲットは複数の被溶接鋼板が溶融し形成される組織である。よって、高強度鋼板がP、Sを多く含まない場合であっても、例えば板組に含まれる他の鋼板のP、Sの含有量が大きかった場合には、同様に遅れ破壊が発生しやすい状態となる。そのため鋼板のC、Mn、Siの含有量だけでなく、P、Sの含有量を考慮してナゲット端部の硬さを適切に制御することが必要となり、これにより耐遅れ破壊特性に優れた抵抗スポット溶接部材を作製可能となる。 However, when the steel sheet contains a large amount of P and S, the concentration of P and S at the end of the nugget becomes high, and delayed fracture is more likely to occur. A nugget is a structure formed by melting a plurality of steel sheets to be welded. Therefore, even when the high-strength steel sheet does not contain a large amount of P and S, for example, when the content of P and S of other steel sheets contained in the sheet set is large, delayed fracture is likely to occur as well. It becomes a state. Therefore, it is necessary to appropriately control the hardness of the nugget end in consideration of not only the contents of C, Mn and Si of the steel sheet but also the contents of P and S, which is excellent in delayed fracture resistance. It becomes possible to manufacture a resistance spot welded member.

また、ナゲット端部の硬さを制御する方法としては、抵抗スポット溶接プロセスにおいて、ナゲットを形成するための主通電工程が終了した後に、焼き戻しを目的とした後通電工程を付与することが有効な手段である。しかし、ナゲット端部を焼き戻すための後通電工程が長時間となった場合、ナゲットの外側の熱影響部(以下、溶接熱影響部と称する場合もある。)にまで後通電による焼き戻しの影響が及び、過度の軟化による強度低下を引き起こす場合がある。そこで、主通電工程後、主通電工程における電流値以上の高電流を通電し、焼き戻しに必要な熱量を短時間でナゲット端部に投入することで、熱影響部を過度に軟化させることなくナゲット端部の硬さを制御することが必要となる。 Further, as a method of controlling the hardness of the nugget end portion, it is effective to add a post-energization step for tempering after the main energization step for forming the nugget is completed in the resistance spot welding process. Means. However, if the post-energization process for tempering the nugget end takes a long time, the heat-affected zone on the outside of the nugget (hereinafter, may be referred to as the welding heat-affected zone) is tempered by post-energization. It may have an effect and cause a decrease in strength due to excessive softening. Therefore, after the main energization process, a high current equal to or higher than the current value in the main energization process is energized, and the amount of heat required for tempering is applied to the nugget end in a short time without excessively softening the heat-affected zone. It is necessary to control the hardness of the nugget end.

本発明は以上のような知見に基づいてなされたものであり、要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist is as follows.

[1]2以上の鋼板と、前記鋼板間に形成されたスポット溶接部と、を備える抵抗スポット溶接部材であって、前記2以上の鋼板の少なくとも1つの鋼板の引張強度が980MPa以上であり、前記2以上の鋼板において、下記(1)式で表される係数Xが最も大きくなる鋼板のXをXmaxとし、下記(2)式で表される係数Yが最も小さくなる鋼板のYをYminとした場合に、前記スポット溶接部のナゲットの端部のビッカース硬さH(Hv)が下記(3)式で表されるHob(Hv)以下であり、前記スポット溶接部の溶接熱影響部の最軟化部のビッカース硬さHmin(Hv)が下記(4)式を満足する、抵抗スポット溶接部材。
X=[C]+[Si]/40+[Mn]/200 (1)
Y=[P]+3×[S] (2)
ob=(800× Xmax+300)/(0.7+20 × Ymin) (3)
0.4 × H≦Hmin≦0.9 × H (4)
前記(1)式及び(2)式において[C]、[Si]、[Mn]、[P]及び[S]は各元素の含有量(質量%)である。ただし、含まない場合は0とする。
[1] A resistance spot welded member including two or more steel plates and a spot welded portion formed between the steel plates, wherein at least one of the two or more steel plates has a tensile strength of 980 MPa or more. Among the two or more steel plates, the X of the steel plate having the largest coefficient X represented by the following equation (1) is defined as X max, and the Y of the steel plate having the smallest coefficient Y represented by the following equation (2) is Y. When set to min , the Vickers hardness H n (Hv) at the end of the nugget of the spot welded portion is less than or equal to Hob (Hv) represented by the following equation (3), and the welding heat of the spot welded portion. A resistance spot welded member in which the Vickers hardness H min (Hv) of the softened part of the affected part satisfies the following equation (4).
X = [C] + [Si] / 40 + [Mn] / 200 (1)
Y = [P] + 3 × [S] (2)
Hob = (800 x X max +300) / (0.7 + 20 x Y min ) (3)
0.4 x H n ≤ H min ≤ 0.9 x H n (4)
In the above equations (1) and (2), [C], [Si], [Mn], [P] and [S] are the contents (mass%) of each element. However, if it is not included, it is set to 0.

[2]抵抗スポット溶接部材の製造方法であって、引張強度が980MPa以上の鋼板を少なくとも1枚含む2枚以上の鋼板を重ね合わせて1対の溶接電極で挟持し加圧しながら通電してナゲットを形成する主通電工程と、前記主通電工程の後に下記の(5)式、(6)式で表される冷却時間C(ms)の間鋼板を前記溶接電極で加圧保持してナゲットを冷却する冷却工程と、前記冷却工程後に、下記(7)式を満足する電流値I(kA)で通電する後通電工程と、を有する、抵抗スポット溶接部材の製造方法。
≧160 × t (t≦1.6) (5)
≧256 × t (t>1.6) (6)
0.8 × Imin≦I<1.5 × Imax (7)
前記(5)式、(6)式、(7)式において、
t:被接合鋼板の平均板厚(mm)
max:主通電工程における最大電流値(kA)
min:主通電工程における最小電流値(kA)
である。
[2] A method for manufacturing a resistance spot welded member, in which two or more steel plates including at least one steel plate having a tensile strength of 980 MPa or more are superposed, sandwiched between a pair of welding electrodes, and energized while being pressurized. The steel plate is pressed and held by the welding electrode for the cooling time Ct (ms) represented by the following equations (5) and (6) after the main energization step of forming the above main energization step and the nugget. A method for manufacturing a resistance spot welded member, which comprises a cooling step of cooling the surface and a post-energization step of energizing with a current value Ip (kA) satisfying the following equation (7) after the cooling step.
C t ≧ 160 × t 2 (t ≦ 1.6) (5)
C t ≧ 256 × t (t> 1.6) (6)
0.8 x I min ≤ I p <1.5 x I max (7)
In the above equations (5), (6) and (7),
t: Average thickness (mm) of the steel plate to be joined
I max : Maximum current value (kA) in the main energization process
I min : Minimum current value (kA) in the main energization process
Is.

[3]前記後通電工程の後に、冷却し下記(8)式を満たす条件で通電する冷却通電と、前記冷却通電後に下記(9)式を満たす条件で再後通電する再後通電とをn回行う繰返通電工程を有する、[2]に記載の抵抗スポット溶接部材の製造方法。
0≦Inc≦Imax (8)
0.8 × Imin≦Inr<1.5 × Imax (9)
前記(8)式、(9)式において、
nc:n回目の冷却通電における電流値(kA)
nr:n回目の再後通電における電流値(kA)
max:主通電工程における最大電流値(kA)
min:主通電工程における最小電流値(kA)
n:1以上の自然数
である。
[3] After the post-energization step, cooling energization to cool and energize under the condition satisfying the following formula (8) and re-post-energization to re-energize after the cooling energization under the condition satisfying the following formula (9) are n The method for manufacturing a resistance spot welded member according to [2], which comprises a repeated energization step.
0 ≤ Inc ≤ I max (8)
0.8 x I minInr <1.5 x I max (9)
In the above equations (8) and (9),
Inc : Current value (kA) at the nth cooling energization
Inr : Current value (kA) in the nth re-energization
I max : Maximum current value (kA) in the main energization process
I min : Minimum current value (kA) in the main energization process
It is a natural number of n: 1 or more.

本発明によれば、高強度鋼板の抵抗スポット溶接を行う場合であっても、熱影響部の軟化による強度低下を防止しつつナゲット端部の組織を改善し、耐遅れ破壊特性に優れた抵抗スポット溶接部材を得ることができる。 According to the present invention, even when resistance spot welding of a high-strength steel plate is performed, the structure of the nugget end is improved while preventing the strength decrease due to the softening of the heat-affected zone, and the resistance is excellent in delayed fracture resistance. A spot welded member can be obtained.

図1は、スポット溶接部を説明するための模式図である。FIG. 1 is a schematic view for explaining a spot welded portion. 図2は、抵抗スポット溶接の例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of resistance spot welding. 図3(a)〜図3(c)は抵抗スポット溶接の試験片を示す図であり、図3(a)は平面図であり、図3(b)および図3(c)は側面図である。3 (a) to 3 (c) are views showing test pieces for resistance spot welding, FIG. 3 (a) is a plan view, and FIGS. 3 (b) and 3 (c) are side views. be. 図4は、本発明のナゲット端部を説明する断面図である。FIG. 4 is a cross-sectional view illustrating the nugget end portion of the present invention. 図5(a)は本発明の溶接熱影響部の最軟化部を説明する断面図であり、図5(b)はナゲット端部および溶接熱影響部におけるビッカース硬さを示すグラフである。FIG. 5A is a cross-sectional view for explaining the softened portion of the welding heat-affected zone of the present invention, and FIG. 5B is a graph showing Vickers hardness at the nugget end portion and the welding heat-affected zone.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.

本発明の抵抗スポット溶接部材は、2以上の鋼板と、スポット溶接部とを有する。2以上の鋼板、スポット溶接部の順で説明する。 The resistance spot welded member of the present invention has two or more steel plates and a spot welded portion. Two or more steel plates and spot welds will be described in this order.

鋼板
2以上の鋼板は、引張強度が980MPa以上の鋼板(「高強度鋼板」という場合がある)を含む。引張強度が980MPa以上の鋼板を用いると、スポット溶接部の遅れ破壊が問題になりやすい。しかし、後述する通り、本発明の抵抗スポット溶接部材は、スポット溶接部の硬さの調整が行われているため、高強度鋼板を用いても、スポット溶接部の耐遅れ破壊特性が良好になる。なお、引張強度が980MPa以上の鋼板の使用量(使用枚数)が多いほど、遅れ破壊時間の問題が生じやすくなるため、本発明の効果は、2以上の鋼板のうち半数以上の鋼板の引張強度が980MPa以上の場合により顕著に現れる。
The steel plate of 2 or more includes a steel plate having a tensile strength of 980 MPa or more (sometimes referred to as a “high-strength steel plate”). When a steel sheet having a tensile strength of 980 MPa or more is used, delayed fracture of the spot welded portion tends to be a problem. However, as will be described later, in the resistance spot welded member of the present invention, the hardness of the spot welded portion is adjusted, so that the delayed fracture resistance of the spot welded portion is improved even if a high-strength steel plate is used. .. The larger the amount of steel sheets used (the number of sheets used) having a tensile strength of 980 MPa or more, the more likely the problem of delayed fracture time occurs. Therefore, the effect of the present invention is that the tensile strength of more than half of the two or more steel sheets Appears more prominently when is 980 MPa or more.

また、鋼板の枚数は2以上であれば上限は特に限定されないが、溶接のしやすさ等を考慮すると鋼板の枚数は4以下が好ましい。 The upper limit is not particularly limited as long as the number of steel plates is 2 or more, but the number of steel plates is preferably 4 or less in consideration of ease of welding and the like.

上記2以上の鋼板の成分組成は特に限定されないが、質量%で、C:0.6%以下、Si:3.0%以下、Mn:20.0%以下、P:1.0%以下、S:0.8%以下、Al:3.0%以下を含有し、残部がFe及び不可避的不純物である成分組成が好ましい。 The composition of the two or more steel sheets is not particularly limited, but in terms of mass%, C: 0.6% or less, Si: 3.0% or less, Mn: 20.0% or less, P: 1.0% or less, A component composition containing S: 0.8% or less, Al: 3.0% or less, and the balance being Fe and unavoidable impurities is preferable.

上記2以上の鋼板の全て又は一部が、めっき処理されて表面にめっき層を有するものであってもよい。めっきとしては、例えば、Zn系めっきやAl系めっき系が挙げられる。Zn系めっきとしては、溶融亜鉛めっき(GI)、Zn−Ni系めっき、Zn−Al系めっきなどが挙げられる。また、Al系めっきとしては、Al−Si系めっき(例えば、10〜20質量%のSiを含むAl−Si系めっき)などが例示できる。溶融めっき層は、合金化された合金化溶融めっき層であってもよい。合金化溶融めっき層としては、例えば、合金化溶融亜鉛めっき(GA)層が挙げられる。 All or part of the above two or more steel sheets may be plated and have a plating layer on the surface. Examples of the plating include Zn-based plating and Al-based plating. Examples of the Zn-based plating include hot-dip zinc plating (GI), Zn-Ni-based plating, and Zn-Al-based plating. Further, as the Al-based plating, Al-Si-based plating (for example, Al-Si-based plating containing 10 to 20% by mass of Si) and the like can be exemplified. The hot-dip plating layer may be an alloyed alloyed hot-dip plating layer. Examples of the alloyed hot-dip galvanized layer include an alloyed hot-dip galvanized (GA) layer.

上記2以上の鋼板の板厚は特に限定されないが、例えば0.5mm以上2.0mm以下の範囲内であることが好ましい。板厚がこの範囲内である鋼板は、自動車用部材として好適に使用することができる。 The thickness of the above two or more steel plates is not particularly limited, but is preferably in the range of, for example, 0.5 mm or more and 2.0 mm or less. A steel plate having a plate thickness within this range can be suitably used as an automobile member.

2以上の鋼板は、同じでも異なっていてもよく、同種および同形状の鋼板であってもよいし、異種や異形状の鋼板であってもよい。 The two or more steel plates may be the same or different, may be steel plates of the same type and shape, or may be steel plates of different or different shapes.

2以上の鋼板は、抵抗スポット溶接部材を構成する鋼板であるため、重ね合された状態になる。重ね合された鋼板間には下記のスポット溶接部が形成される。 Since the two or more steel plates are steel plates constituting the resistance spot welded member, they are in a superposed state. The following spot welds are formed between the laminated steel plates.

スポット溶接部
スポット溶接部12は、図1に示すように、2以上の鋼板間15に形成され、中央のナゲット13、ナゲットの外側の溶接熱影響部14から構成される。ナゲット13と溶接熱影響部14との境界は、スポット溶接部の板厚断面において、ピクリン酸水溶液を用いた腐食を実施することで目視で判定可能である。
Spot-welded portion As shown in FIG. 1, the spot-welded portion 12 is formed between two or more steel plates 15 and is composed of a central nugget 13 and a welding heat-affected zone 14 on the outside of the nugget. The boundary between the nugget 13 and the weld heat affected zone 14 can be visually determined by performing corrosion using an aqueous picric acid solution on the plate thickness cross section of the spot welded portion.

2以上の鋼板において、下記(1)式で表される係数Xが最も大きくなる鋼板のXをXmaxとし、下記(2)式で表される係数Yが最も小さくなる鋼板のYをYminとした場合に、スポット溶接部のナゲット端部のビッカース硬さH(Hv)が下記(3)式で表されるHob(Hv)以下である。
X=[C]+[Si]/40+[Mn]/200 (1)
Y=[P]+3×[S] (2)
ob=(800× Xmax+300)/(0.7+20 × Ymin) (3)
(1)式において[C]、[Si]、[Mn]、[P]及び[S]は各元素の含有量(質量%)である。ただし、含まない場合は0とする。
Among two or more steel sheets, the X of the steel sheet having the largest coefficient X represented by the following equation (1) is defined as X max, and the Y of the steel sheet having the smallest coefficient Y represented by the following equation (2) is Y min. In the case of, the Vickers hardness H n (Hv) of the nugget end portion of the spot welded portion is less than or equal to Ho b (Hv) represented by the following equation (3).
X = [C] + [Si] / 40 + [Mn] / 200 (1)
Y = [P] + 3 × [S] (2)
Hob = (800 x X max +300) / (0.7 + 20 x Y min ) (3)
In the formula (1), [C], [Si], [Mn], [P] and [S] are the contents (mass%) of each element. However, if it is not included, it is set to 0.

スポット溶接部の硬さは、C、Si、Mnの影響を受けるため、C、Si、Mnを考慮する必要がある。本発明では、X=[C]+[Si]/40+[Mn]/200(上記(1)式)により、C、Si、Mnの影響を考慮する。また、P、Sは、ナゲット組織の強度低下の要因となる元素である。このため、遅れ破壊を改善する本発明においてはPやSの影響を考慮する必要がある。そこで、本発明では、Y=[P]+3×[S](上記(2)式)によりSやPの影響を考慮する。なお、X、Yにおける各元素にかかる係数は、それぞれの元素が及ぼす影響の大きさを加味して決定している。
スポット溶接部のナゲット端部のビッカース硬さH(Hv)は、下記(3)式で表されるHob(Hv)以下である。ナゲット端部のビッカース硬さが式(3)で表されるHob(Hv)を超える場合は、遅れ破壊が発生し易い。
耐遅れ破壊特性を向上させる効果をより顕著に発揮させたい場合には、ナゲット端部のビッカース硬さH(Hv)を下記(10)式で表されるHob2(Hv)以下とするか、もしくは(0.95×Hob)以下とすることがより好ましい。
ob2=(800× Xmax+300)/(0.7+20 × Ymax) (10)
ここで、(10)式において、Ymax:上記(2)式で表される係数Yが最も大きくなる鋼板のY、である。
なお、ナゲット端部のビッカース硬さHは(0.4×Hob)以上とすることが好ましい。ナゲット端部のビッカース硬さHが(0.4×Hob)より小さい場合は、ナゲットの強度自体が低下し、継手強度など、耐遅れ破壊特性以外の継手性能が低下する恐れがある。
Since the hardness of the spot welded portion is affected by C, Si, and Mn, it is necessary to consider C, Si, and Mn. In the present invention, the influence of C, Si, and Mn is taken into consideration by X = [C] + [Si] / 40 + [Mn] / 200 (formula (1) above). Further, P and S are elements that cause a decrease in the strength of the nugget structure. Therefore, in the present invention for improving delayed fracture, it is necessary to consider the influence of P and S. Therefore, in the present invention, the influence of S and P is considered by Y = [P] + 3 × [S] (the above equation (2)). The coefficients of each element in X and Y are determined in consideration of the magnitude of the influence of each element.
The Vickers hardness H n (Hv) of the nugget end of the spot welded portion is H ob (Hv) or less represented by the following equation (3). When the Vickers hardness of the nugget end exceeds Hob (Hv) represented by the equation (3), delayed fracture is likely to occur.
Or delayed when you want more markedly exhibit the effect of improving the fracture property is H ob2 (Hv) hereinafter represented Vickers hardness H n of the nugget end portion (Hv) below (10) Or, it is more preferably (0.95 × Hob) or less.
Hob2 = (800 x X max +300) / (0.7 + 20 x Y max ) (10)
Here, in the equation (10), Y max : Y of the steel sheet having the largest coefficient Y represented by the equation (2) above.
The Vickers hardness H n at the end of the nugget is preferably (0.4 × Hob ) or more. If the Vickers hardness H n at the end of the nugget is smaller than (0.4 × Hob ), the strength of the nugget itself may decrease, and the joint performance other than the delayed fracture resistance may decrease.

ここで、図4を用いてナゲット端部について説明する。図4には、スポット溶接部12におけるナゲット端部16を拡大した図も示す。図4に示すように、ナゲット端部16とは、抵抗スポット溶接部材のナゲット13の中央を通る板厚断面において、ナゲット13と溶接熱影響部14との境界からナゲット13の中央に向けて50μmの位置を意味する。また、ナゲット端部16は、ナゲット13の中央を通る板厚断面において、鋼板15間の境界線とナゲット13との2つの交点からそれぞれナゲット13の中央に向けて50μmの位置の2か所であり、そのうちビッカース硬さの値が小さい方をナゲット端部のビッカース硬さHとして定義する。なお、ビッカース硬さの値が同じ場合には、その値をナゲット端部のビッカース硬さHとして定義する。
なお本発明では、上記境界からナゲット13の中央に向けて50μmの位置を中心として一定の範囲内で上記ビッカース硬さH(HV)を有していれば同様に上述の効果が得られる。この一定の範囲内とは、上記境界からナゲット中央に向けて40〜60μmの領域である。そのため、「ナゲット端部」には上記境界からナゲット中央に向けて40〜60μmの領域が含まれるものとする。
3枚以上の鋼板を溶接する場合には、複数のナゲット端部が形成されるが、引張強度が980MPa以上の鋼板を含む板組の少なくとも一つのナゲット端部で(3)式を満たせばよい。
Here, the nugget end portion will be described with reference to FIG. FIG. 4 also shows an enlarged view of the nugget end portion 16 in the spot welded portion 12. As shown in FIG. 4, the nugget end portion 16 is 50 μm from the boundary between the nugget 13 and the welding heat-affected zone 14 toward the center of the nugget 13 in a plate thickness cross section passing through the center of the nugget 13 of the resistance spot welding member. Means the position of. Further, the nugget end portion 16 is located at two positions 50 μm from the boundary line between the steel plates 15 and the two intersections of the nugget 13 toward the center of the nugget 13 in the plate thickness cross section passing through the center of the nugget 13. The one with the smaller Vickers hardness value is defined as the Vickers hardness H n at the end of the nugget. When the Vickers hardness values are the same, the values are defined as the Vickers hardness H n at the end of the nugget.
In the present invention, a similar effect of the above so long as it has the Vickers hardness H n (HV) within a certain range around the position of 50μm toward the center of the nugget 13 from the boundary is obtained. This fixed range is a region of 40 to 60 μm from the boundary toward the center of the nugget. Therefore, it is assumed that the "nugget end portion" includes a region of 40 to 60 μm from the boundary toward the center of the nugget.
When three or more steel plates are welded, a plurality of nugget ends are formed, but the equation (3) may be satisfied by at least one nugget end of a plate set including steel plates having a tensile strength of 980 MPa or more. ..

本発明では、スポット溶接部の溶接熱影響部の最軟化部のビッカース硬さHmin(Hv)が下記(4)式を満足する。
0.4 × H≦Hmin≦0.9 × H (4)
溶接熱影響部の最軟化部のビッカース硬さHmin(Hv)が(0.4×H)(Hv)未満の場合は、溶接熱影響部の過度の軟化により、強度低下を引き起こし易い。また、溶接熱影響部の最軟化部のビッカース硬さHmin(Hv)が(0.9×H)(Hv)超えの場合は、ナゲット端部に局所的に高い応力が集中し、遅れ破壊が発生し易い。また、強度低下を引き起こすことなく、遅れ破壊を抑制する効果をより顕著に発揮させたい場合には、溶接熱影響部の最軟化部のビッカース硬さHminは(0.5×H)以上が好ましく、(0.8×H)以下が好ましい。
In the present invention, the Vickers hardness H min (Hv) of the softened portion of the weld heat affected zone of the spot welded portion satisfies the following equation (4).
0.4 x H n ≤ H min ≤ 0.9 x H n (4)
When the Vickers hardness H min (Hv) of the most softened portion of the welding heat-affected zone is less than (0.4 × H n ) (Hv), the strength is likely to decrease due to excessive softening of the welding heat-affected zone. When the Vickers hardness H min (Hv) of the softened portion of the weld heat affected zone exceeds (0.9 × H n ) (Hv), high stress is locally concentrated on the nugget end, resulting in a delay. Destruction is likely to occur. Further, when it is desired to exert the effect of suppressing delayed fracture more remarkably without causing a decrease in strength, the Vickers hardness H min of the softened portion of the weld heat affected zone is (0.5 × H n ) or more. Is preferable, and (0.8 × H n ) or less is preferable.

ここで、図5(a)および図5(b)を用いて、スポット溶接部の溶接熱影響部の最軟化部について説明する。図5(a)はナゲット13の中央を通る板厚方向の断面図であり、図5(b)はナゲットと溶接熱影響部の境界周辺における、境界からの距離(mm)とビッカース硬さ(HV)を示すグラフである。
図5(a)および図5(b)に示すように、スポット溶接部12の溶接熱影響部14の最軟化部とは、次の位置を意味する。ナゲット13の中央と上述したナゲット端部16(図示せず)とを通る直線上において、ナゲット13と溶接熱影響部14との境界からナゲット13の外側3mmの領域について、上記境界から150μm間隔で測定した場合に最も軟らかい硬さを示した部分(位置)を意味する。なお、硬さは後述する実施例に記載の方法で測定することができる。
Here, the softened portion of the weld heat-affected zone of the spot welded portion will be described with reference to FIGS. 5 (a) and 5 (b). FIG. 5 (a) is a cross-sectional view in the plate thickness direction passing through the center of the nugget 13, and FIG. 5 (b) shows the distance (mm) and Vickers hardness (mm) from the boundary around the boundary between the nugget and the weld heat affected zone. It is a graph which shows HV).
As shown in FIGS. 5 (a) and 5 (b), the softened portion of the weld heat affected zone 14 of the spot welded portion 12 means the following positions. On a straight line passing through the center of the nugget 13 and the nugget end 16 (not shown) described above, a region 3 mm outside the nugget 13 from the boundary between the nugget 13 and the welding heat affected zone 14 at intervals of 150 μm from the boundary. It means the part (position) that shows the softest hardness when measured. The hardness can be measured by the method described in Examples described later.

次いで、本発明の抵抗スポット溶接部材の製造方法について説明する。本発明の製造方法は、主通電工程と、冷却工程と、後通電工程と、を有する。図1、2を用いて、本発明の製造方法を説明する。 Next, a method for manufacturing the resistance spot welded member of the present invention will be described. The manufacturing method of the present invention includes a main energizing step, a cooling step, and a post-energizing step. The manufacturing method of the present invention will be described with reference to FIGS. 1 and 2.

主通電工程とは、引張強度が980MPa以上の鋼板を少なくとも1枚含む2枚以上の鋼板を重ね合わせて、1対の溶接電極で挟持し、加圧しながら通電してナゲットを形成する工程である。 The main energization step is a step of stacking two or more steel plates including at least one steel plate having a tensile strength of 980 MPa or more, sandwiching them between a pair of welding electrodes, and energizing while applying pressure to form a nugget. ..

図2に示すように、下側に配置される鋼板(以下、下鋼板1という)と上側に配置される鋼板(以下、上鋼板2という)とを重ね合わせる。このとき、下鋼板1、上鋼板2の少なくとも1つを引張強度が980MPa以上の鋼板とする。次いで、1対の溶接電極、すなわち下側に配置される電極(以下、下電極4という)および上側に配置される電極(以下、上電極5という)で、重ね合わせた鋼板(下鋼板1と上鋼板2)を挟持して、加圧しながら通電する。下電極4と上電極5によって加圧し、且つその加圧力を制御する構成は特に限定されず、エアシリンダやサーボモータ等の従来から知られている機器が使用できる。また、通電の際に電流を供給し、且つ電流値を制御する構成も特に限定されず、従来から知られている機器が使用できる。また、直流、交流のいずれにも本発明を適用できる。なお、交流の場合は、「電流」は「実効電流」を意味する。また、下電極4や上電極5の先端の形式も特に限定されず、例えば、JIS C 9304:1999に記載されるDR形(ドームラジアス形)、R形(ラジアス形)、D形(ドーム形)等が挙げられる。また、電極の先端径(先端の直径)は、例えば4mm〜16mmである。 As shown in FIG. 2, the steel plate arranged on the lower side (hereinafter referred to as the lower steel plate 1) and the steel plate arranged on the upper side (hereinafter referred to as the upper steel plate 2) are superposed. At this time, at least one of the lower steel plate 1 and the upper steel plate 2 is a steel plate having a tensile strength of 980 MPa or more. Next, a pair of welded electrodes, that is, an electrode arranged on the lower side (hereinafter referred to as a lower electrode 4) and an electrode arranged on the upper side (hereinafter referred to as an upper electrode 5) are used to superimpose a steel plate (hereinafter referred to as a lower steel plate 1). The upper steel plate 2) is sandwiched and energized while pressurizing. The configuration in which the lower electrode 4 and the upper electrode 5 pressurize and control the pressing force is not particularly limited, and conventionally known devices such as an air cylinder and a servomotor can be used. Further, the configuration in which a current is supplied at the time of energization and the current value is controlled is not particularly limited, and a conventionally known device can be used. Further, the present invention can be applied to both direct current and alternating current. In the case of alternating current, "current" means "effective current". Further, the type of the tip of the lower electrode 4 and the upper electrode 5 is not particularly limited, and for example, the DR type (dome radius type), the R type (radius type), and the D type (dome shape) described in JIS C 9304: 1999. ) Etc. can be mentioned. The tip diameter (tip diameter) of the electrode is, for example, 4 mm to 16 mm.

上記のように行われる主通電工程は、鋼板を溶融させてナゲットを形成する工程である。そのナゲットを形成するための通電条件、加圧条件は特に限定されず、従来から用いられている溶接条件を採用することができる。例えば、電流値は1.0kA以上15.0kA以下であり、加圧力は2.0kN以上7.0kN以下である。また、通電時間も特に限定されず、例えば、100ms以上1000ms以下である。なお、「ナゲット」とは、重ね抵抗溶接においてスポット溶接部に生じる溶融凝固する部分である。 The main energization step performed as described above is a step of melting the steel sheet to form a nugget. The energization conditions and pressurization conditions for forming the nugget are not particularly limited, and conventionally used welding conditions can be adopted. For example, the current value is 1.0 kA or more and 15.0 kA or less, and the pressing force is 2.0 kN or more and 7.0 kN or less. Further, the energizing time is not particularly limited, and is, for example, 100 ms or more and 1000 ms or less. The "nugget" is a portion that melts and solidifies in the spot welded portion in lap resistance welding.

上記主通電工程後に、下記の(5)式、(6)式で表される冷却時間C(ms)の間、鋼板を溶接電極で加圧しながら保持してナゲットを冷却する冷却工程を行う。
≧160 × t (t≦1.6) (5)
≧256 × t (t>1.6) (6)
(5)式、(6)式において、t:被接合鋼板の平均板厚(mm)である。
After the main energization step, a cooling step is performed in which the steel sheet is held while being pressurized by the welding electrode to cool the nugget during the cooling time Ct (ms) represented by the following equations (5) and (6). ..
C t ≧ 160 × t 2 (t ≦ 1.6) (5)
C t ≧ 256 × t (t> 1.6) (6)
In the equations (5) and (6), t: the average thickness (mm) of the steel plate to be joined.

冷却工程は、後述する後通電工程によって焼き戻しの効果を得るために必要な工程である。冷却時間C(ms)が(5)式、(6)式を満たさない場合は、ナゲット端部が十分に冷却されないままその後の後通電によって加熱されることになる。そうなると、焼き戻しの効果が得られず、ナゲット端部の硬さを低減できない。冷却時間C(ms)は鋼板の板厚に依存し、板厚の異なる鋼板を接合する場合には各鋼板の板厚の平均値とする。また、ナゲット端部をより十分に冷却し、その後の後通電における焼き戻しの効果をより顕著に発揮させたい場合は、t≦1.6の場合はC≧200×t、t>1.6の場合はC≧320×tとすることが好ましい。
本発明において特に冷却時間C(ms)の上限は規定しないが、C<800×tとすることが好ましい。Cが(800×t)以上の場合は、溶接工程自体の総時間が長くなって生産性が低下する。
以上より、本発明の製造方法では、(5)式及び(6)式に基づいて冷却時間の条件を決定する過程を経た後に、冷却工程が行われる。なお、被接合鋼板の平均板厚は、溶接される全ての鋼板の板厚の平均を意味する。
The cooling step is a step necessary to obtain the effect of tempering by the post-energization step described later. If the cooling time Ct (ms) does not satisfy the equations (5) and (6), the nugget end is heated by the subsequent energization without being sufficiently cooled. In that case, the effect of tempering cannot be obtained, and the hardness of the nugget end cannot be reduced. The cooling time Ct (ms) depends on the plate thickness of the steel plates, and when joining steel plates having different plate thicknesses, the average value of the plate thicknesses of each steel plate is used. Further, if it is desired to cool the nugget end more sufficiently and to exert the effect of tempering in the subsequent energization more remarkably, when t ≦ 1.6, C t ≧ 200 × t 2 , t> 1. In the case of 6.6, it is preferable that C t ≧ 320 × t.
Although the upper limit of the cooling time C t (ms) is not specified in the present invention, it is preferable that C t <800 × t. When C t is (800 × t) or more, the total time of the welding process itself becomes long and the productivity decreases.
Based on the above, in the production method of the present invention, the cooling step is performed after passing through the process of determining the cooling time conditions based on the equations (5) and (6). The average plate thickness of the steel plates to be welded means the average plate thickness of all the steel plates to be welded.

上記冷却工程後に後通電工程を行う。後通電工程とは、下記(7)式を満足する電流値I(kA)で通電する工程である。
0.8 × Imin≦I<1.5 × Imax (7)
(7)式において、Imax:主通電工程における最大電流値(kA)、Imin:主通電工程における最小電流値(kA)である。
After the cooling step, a post-energization step is performed. The post-energization step is a step of energizing with a current value I p (kA) satisfying the following equation (7).
0.8 x I min ≤ I p <1.5 x I max (7)
In the equation (7), I max : the maximum current value (kA) in the main energization step, and I min : the minimum current value (kA) in the main energization step.

後通電工程はナゲット端部を再加熱し、焼き戻しによりナゲット端部の硬さを低減する工程である。後通電工程における電流値I(kA)が(0.8×Imin)未満の場合は投入熱量が足りず、ナゲット端部の硬さを低減できない。また、後通電工程における電流値I(kA)が(1.5×Imax)以上の場合は投入熱量が過多となり、ナゲット端部の焼き戻しの効果が得られる温度域を超えるため、ナゲット端部の硬さを低減できない。また、ナゲット端部の硬さを低減し、耐遅れ破壊特性を向上する効果をより顕著に発生させたい場合は、後通電工程における電流値I(kA)が0.95×Imin≦I<1.2×Imaxを満たすことが好ましい。また、後通電工程における電流値I(kA)の下限は、(1.0×Imin)以上とすることがより一層好ましい。以上より、本発明の製造方法では、(7)式に基づいて電流値Iの条件を決定する過程を経た後に、後通電工程が行われる。The post-energization step is a step of reheating the nugget end and reducing the hardness of the nugget end by tempering. If the current value I p (kA) in the post-energization step is less than (0.8 × I min ), the amount of heat input is insufficient and the hardness of the nugget end cannot be reduced. Further, when the current value I p (kA) in the post-energization process is (1.5 × I max ) or more, the amount of heat input is excessive and exceeds the temperature range in which the effect of tempering the nugget end can be obtained. The hardness of the edges cannot be reduced. Further, if the effect of reducing the hardness of the nugget end and improving the delayed fracture resistance is to be generated more remarkably, the current value I p (kA) in the post-energization process is 0.95 × I min ≦ I. It is preferable to satisfy p <1.2 × I max. Further, it is more preferable that the lower limit of the current value I p (kA) in the post-energization step is (1.0 × I min) or more. From the above, in the manufacturing method of the present invention, the post-energization step is performed after passing through the process of determining the condition of the current value Ip based on the equation (7).

後通電工程の通電時間が20ms未満では、ナゲットが十分に加熱されず、焼き戻しの効果を得られない場合がある。後通電工程の通電時間が200msを超えると、投入熱量は十分となりナゲット端部の硬さは低減するが、熱影響部が過度の軟化により強度低下し、低応力で熱影響部からの破断が発生する場合がある。また、後通電工程における電流値が高く、投入熱量が過多となった場合には、ナゲットが再び溶融して、焼き戻しの効果を得られず、散り発生などの問題が生じる場合がある。したがって、後通電工程の通電時間は20〜200msの範囲内が好ましい。より好ましくは、20〜100msである。 If the energization time in the post-energization step is less than 20 ms, the nugget may not be sufficiently heated and the tempering effect may not be obtained. When the energization time in the post-energization process exceeds 200 ms, the amount of heat input becomes sufficient and the hardness of the nugget end decreases, but the strength of the heat-affected zone decreases due to excessive softening, and the heat-affected zone breaks due to low stress. It may occur. Further, when the current value in the post-energization step is high and the amount of heat input is excessive, the nugget may be melted again, the tempering effect may not be obtained, and problems such as scattering may occur. Therefore, the energization time of the post-energization step is preferably in the range of 20 to 200 ms. More preferably, it is 20 to 100 ms.

また、上記後通電工程後に、繰返通電工程を行ってもよい。繰返通電工程とは、後通電工程の後に、冷却し下記(8)式を満たす条件で通電する冷却通電と、前記冷却通電後に下記(9)式を満たす条件で再後通電する再後通電とを、n回行う工程である。
0≦Inc≦Imax (8)
0.8 × Imin≦Inr<1.5 × Imax (9)
(8)式、(9)式において、Inc:n回目の冷却通電における電流値(kA)、Inr:n回目の再後通電における電流値(kA)、n:1以上の自然数である。Imax、Iminは(7)式と同様である。
Further, the repeated energization step may be performed after the post-energization step. The repeated energization step is a cooling energization that is cooled and energized under the condition of satisfying the following formula (8) after the post-energization process, and a re-post-energization that is re-energized under the condition of satisfying the following formula (9) after the cooling energization. This is a step of performing n times.
0 ≤ Inc ≤ I max (8)
0.8 x I minInr <1.5 x I max (9)
In equations (8) and (9), Inc : current value (kA) in the nth cooling energization, Inr : current value (kA) in the nth re-energization, n: 1 or more natural numbers. .. I max and I min are the same as in Eq. (7).

繰返通電工程を行うことで、ナゲット端部の焼き戻しによる硬さ低減の効果をより顕著に発揮させ、溶接部材の耐遅れ破壊特性をより一層向上させることができる。 By performing the repeated energization step, the effect of reducing the hardness by tempering the nugget end portion can be more remarkablely exhibited, and the delayed fracture resistance of the welded member can be further improved.

繰返通電工程において、冷却と加熱を繰り返すことにより、ナゲット端部を適切な温度域に長時間維持し、焼き戻しの効果をより一層発揮することができる。また、冷却通電はナゲット端部を冷却する過程であるから、無通電で行ってもよい。また、冷却通電における電流値Inc(kA)がImax超の場合は、ナゲット端部を冷却する効果が得られず、その後の再後通電で適切な温度域を維持できない。また、冷却通電でナゲット端部を冷却し、その後の再後通電で適切な温度域に保持する効果をより顕著に発揮したい場合は、冷却通電における電流値Inc(kA)が0≦Inc≦0.5×Imaxを満足することが好ましい。
また、再後通電における電流値Inr(kA)が(0.8×Imin)未満の場合は、ナゲット端部を十分に再加熱できず、適切な温度域を保持できない。また、再後通電における電流値Inr(kA)が(1.5×Imax)以上の場合は、投入熱量が過多となりナゲットが再び溶融して、焼き戻しの効果を得られない。また、再後通電でナゲット端部を適切な温度域に保持する効果をより顕著に発揮したい場合は、再後通電における電流値Inr(kA)が0.95×Imin≦Inr<1.2×Imaxを満足することが好ましい。また、再後通電工程における通電時間は、20ms〜200msの範囲内とすることが好ましい。より好ましくは、20ms〜100msである。
なお、本発明において、特に繰返通電工程における冷却通電の通電時間の上限は規定しないが、(800×t)以下とすることが好ましい。(800×t)を超える場合は、溶接工程自体の総時間が長くなって生産性が低下することがある。
一方、冷却通電の通電時間の下限も特に規定しないが、20ms以上とすることが好ましい。20ms未満の場合は、ナゲット端部を冷却する効果が得られず、その後の再後通電で適切な温度域を維持できない場合がある。
By repeating cooling and heating in the repeated energization step, the nugget end can be maintained in an appropriate temperature range for a long time, and the effect of tempering can be further exhibited. Further, since the cooling energization is a process of cooling the nugget end portion, the cooling energization may be performed without energization. Further, when the current value Inc (kA) in the cooling energization exceeds I max , the effect of cooling the nugget end portion cannot be obtained, and the appropriate temperature range cannot be maintained by the subsequent re-energization. Further, if the effect of cooling the nugget end by cooling energization and then holding it in an appropriate temperature range by re-energization is more remarkable, the current value Inc (kA) in the cooling energization is 0 ≦ Inc. It is preferable to satisfy ≦ 0.5 × I max.
Further, when the current value Inr (kA) in the re-energization is less than (0.8 × I min ), the nugget end cannot be sufficiently reheated and an appropriate temperature range cannot be maintained. Further, when the current value Inr (kA) in the re-energization is (1.5 × I max ) or more, the amount of heat input becomes excessive and the nugget melts again, so that the effect of tempering cannot be obtained. If it is desired to exert the effect of keeping the nugget end in an appropriate temperature range by re-energization more remarkably, the current value Inr (kA) in the re-energization is 0.95 × I minInr <1. It is preferable to satisfy .2 × I max. Further, the energizing time in the post-re-energization step is preferably in the range of 20 ms to 200 ms. More preferably, it is 20 ms to 100 ms.
In the present invention, the upper limit of the energization time of cooling energization in the repeated energization step is not specified, but it is preferably (800 × t) or less. If it exceeds (800 × t), the total time of the welding process itself may become long and the productivity may decrease.
On the other hand, the lower limit of the energizing time for cooling energization is not particularly specified, but it is preferably 20 ms or more. If it is less than 20 ms, the effect of cooling the nugget end may not be obtained, and the appropriate temperature range may not be maintained by the subsequent re-energization.

繰返通電工程では、上記の冷却通電と再後通電とをn回繰り返す。複数回行う場合、各回の条件は、上記範囲内であれば同じでも異なってもよい。ただし、後通電工程を繰り返し行うことにより溶接工程自体が長時間化し、抵抗スポット溶接の施工能率の低下を招く。このため、後通電工程の繰り返し数nは3以下が好ましい。 In the repeated energization step, the above cooling energization and re-energization are repeated n times. When performing a plurality of times, the conditions for each time may be the same or different as long as they are within the above range. However, by repeating the post-energization process, the welding process itself takes a long time, which causes a decrease in the construction efficiency of resistance spot welding. Therefore, the number n of repetitions of the post-energization step is preferably 3 or less.

以上では、2枚の鋼板を溶接する場合について主に述べたが、3枚以上の鋼板を溶接する場合についても、同様に本発明の製造方法を適用可能である。 In the above, the case of welding two steel plates has been mainly described, but the manufacturing method of the present invention can be similarly applied to the case of welding three or more steel plates.

なお、電極が常に水冷されている状態で抵抗スポット溶接を行う。 Resistance spot welding is performed while the electrodes are always water-cooled.

以下、実施例を用いて本発明を説明する。なお、本発明は以下の実施例に限定されない。
2枚板組と3枚板組の各条件において、抵抗スポット溶接を行った。抵抗スポット溶接は常温で行い、電極を常に水冷した状態で行った。下電極4と上電極5は、いずれも先端の直径(先端径)6mm、曲率半径40mmとし、クロム銅製のDR形電極とした。また、下電極4と上電極5をサーボモータで駆動することによって加圧力を制御し、通電の際には周波数50Hzの単相交流を供給した。2枚板組の場合には下鋼板1および上鋼板2とし、3枚板組の場合には下鋼板9、中鋼板10、上鋼板11とした。板組としては、下記の(A)、(B)、(C)とした。
(A):下鋼板1と上鋼板2として、引張強度1470MPa、(1)式で表されるXが0.24、(2)式で表されるYが0.020となるめっき処理有り(溶融亜鉛めっき(GI)、付着量は片面当たり50g/m))の板厚1.4mmの鋼板を用いた。
(B):下鋼板1として、引張強度1470MPa、(1)式で表されるXが0.24、(2)式で表されるYが0.020となるめっき処理有り(溶融亜鉛めっき(GI)、付着量は片面当たり50g/m))の板厚1.6mmの鋼板、上鋼板2として、引張強度1180MPa、(1)式で表されるXが0.20、(2)式で表されるYが0.024となるめっき処理無しの板厚2.0mmの鋼板を用いた。
(C):下鋼板9および中鋼板10として、引張強度1470MPa、(1)式で表されるXが0.22、(2)式で表されるYが0.024となるめっき処理無しの板厚1.4mmの鋼板、上鋼板11として、引張強度270MPa、(1)式で表されるXが0.027、(2)式で表されるYが0.044となるめっき処理有り(溶融亜鉛めっき(GA)、付着量は片面当たり45g/m)の板厚0.7mmの鋼板を用いた。
(A)の場合、Xmax=0.24、Ymin=0.020であり、(B)の場合、Xmax=0.24、Ymin=0.020、(C)の場合、Xmax=0.22、Ymin=0.024である。引張強度は、各鋼板から、圧延方向に対して平行方向にJIS5号引張試験片を作製し、JIS Z 2241:2011の規定に準拠して引張試験を実施して求めた引張強度である。
Hereinafter, the present invention will be described with reference to examples. The present invention is not limited to the following examples.
Resistance spot welding was performed under each condition of the two-plate set and the three-plate set. Resistive spot welding was performed at room temperature and the electrodes were always water-cooled. Both the lower electrode 4 and the upper electrode 5 have a tip diameter (tip diameter) of 6 mm and a radius of curvature of 40 mm, and are DR-type electrodes made of chrome copper. Further, the pressing force was controlled by driving the lower electrode 4 and the upper electrode 5 with a servomotor, and a single-phase alternating current having a frequency of 50 Hz was supplied at the time of energization. In the case of a two-plate set, the lower steel plate 1 and the upper steel plate 2 were used, and in the case of a three-plate set, the lower steel plate 9, the middle steel plate 10, and the upper steel plate 11 were used. The board sets were (A), (B), and (C) below.
(A): As the lower steel plate 1 and the upper steel plate 2, there is a plating treatment in which the tensile strength is 1470 MPa, the X represented by the formula (1) is 0.24, and the Y represented by the formula (2) is 0.020. A hot-dip galvanized (GI) steel sheet with a thickness of 1.4 mm was used, with an adhesion amount of 50 g / m per side 2)).
(B): As the lower steel sheet 1, there is a plating treatment in which the tensile strength is 1470 MPa, X represented by the formula (1) is 0.24, and Y represented by the formula (2) is 0.020 (hot dip galvanizing (hot dip galvanizing). GI), the amount of adhesion is 50 g / m per side 2 )) As a steel plate with a thickness of 1.6 mm and an upper steel plate 2, the tensile strength is 1180 MPa, X represented by the formula (1) is 0.20, and the formula (2) A steel sheet having a thickness of 2.0 mm and having no plating treatment, in which Y represented by is 0.024, was used.
(C): As the lower steel plate 9 and the middle steel plate 10, the tensile strength is 1470 MPa, X represented by the formula (1) is 0.22, and Y represented by the formula (2) is 0.024 without plating treatment. As a steel plate with a thickness of 1.4 mm and an upper steel plate 11, there is a plating treatment in which the tensile strength is 270 MPa, X represented by the formula (1) is 0.027, and Y represented by the formula (2) is 0.044 (. A steel plate with a thickness of 0.7 mm was used, which was hot-dip galvanized (GA) and had an adhesion amount of 45 g / m 2) per side.
In the case of (A), X max = 0.24 and Y min = 0.020, in the case of (B), X max = 0.24, Y min = 0.020, and in the case of (C), X max. = 0.22, Y min = 0.024. The tensile strength is the tensile strength obtained by preparing a JIS No. 5 tensile test piece from each steel sheet in a direction parallel to the rolling direction and performing a tensile test in accordance with the provisions of JIS Z 2241: 2011.

抵抗スポット溶接は、2枚板組の場合は、図3(a)および図3(b)に示すように、上記鋼板(長手方向の長さ:150mm、短手方向の長さ:50mm)の2枚の間に、厚さ1.6mmで50mm四方のスペーサ6を両側に挟み込んで仮溶接し、2枚の鋼板を重ね合わせた板組の中心を上記および表1−1に記載する条件で溶接し、溶接継手を作製した。図3(a)〜図3(c)は、抵抗スポット溶接の試験片を示す平面図(図3(a))および側面図(図3(b)、図3(c))であり、図3(a)〜図3(c)中の符号7は溶接点、符号8は仮溶接点である。また、3枚板組の場合は、図3(c)に示すように、下鋼板9、中鋼板10、上鋼板11を重ね合わせ、下鋼板9と中鋼板10の間にスペーサ6を両側に挟み込んで溶接を行った。なお、鋼板やスペーサの寸法は上記2枚板組の場合と同様である。 In the case of a two-plate set, resistance spot welding is performed on the steel plate (length in the longitudinal direction: 150 mm, length in the lateral direction: 50 mm) as shown in FIGS. 3 (a) and 3 (b). Spacers 6 of 1.6 mm in thickness and 50 mm square are sandwiched between the two sheets and temporarily welded, and the center of the plate assembly in which the two steel plates are overlapped is set under the conditions shown in the above and Table 1-1. Welded to make a welded joint. 3 (a) to 3 (c) are a plan view (FIG. 3 (a)) and a side view (FIGS. 3 (b) and 3 (c)) showing test pieces for resistance spot welding. Reference numerals 7 in 3 (a) to 3 (c) are welding points, and reference numeral 8 is a temporary welding point. Further, in the case of a three-sheet set, as shown in FIG. 3C, the lower steel plate 9, the middle steel plate 10, and the upper steel plate 11 are overlapped, and spacers 6 are placed on both sides between the lower steel plate 9 and the middle steel plate 10. It was sandwiched and welded. The dimensions of the steel plate and the spacer are the same as in the case of the above-mentioned two-plate set.

得られた溶接継手を常温(20℃)で大気中に静置して、24時間経過した後に、遅れ破壊の有無を調査した。結果を表1−2に示す。遅れ破壊については、24時間静置後に遅れ破壊が発生しなかったものに記号「○」を、破壊が発生したものに記号「×」を記載した。遅れ破壊の判定については、溶接後にナゲットの剥離(接合界面でナゲットが二つに剥離する現象)が目視で観察されたものを、遅れ破壊が発生したものとした。 The obtained welded joint was allowed to stand in the air at room temperature (20 ° C.), and after 24 hours had passed, the presence or absence of delayed fracture was investigated. The results are shown in Table 1-2. Regarding delayed fracture, the symbol "○" was given to those in which delayed fracture did not occur after standing for 24 hours, and the symbol "x" was given to those in which destruction occurred. Regarding the determination of delayed fracture, the one in which the nugget peeling (a phenomenon in which the nugget peels in two at the joining interface) was visually observed after welding was regarded as the delayed fracture.

また、遅れ破壊試験とは別に同条件・同形状で溶接継手を作製した。得られた溶接継手に対して、ナゲット中央にて切断し、ピクリン酸にてエッチングして溶融部の境界線を明瞭にした後に、荷重200gf、荷重保持時間15sでナゲット端部および最軟化部のビッカース硬さを測定した。ナゲット端部の硬さは、溶融部の境界線から50μmナゲット内側部分の硬さ測定値とした。最軟化部の硬さは、ナゲット端部からナゲット外側に150μm間隔で、ナゲット端部から3mmの長さの領域を測定した場合における、最軟化部分の測定値とした。 In addition to the delayed fracture test, a welded joint was manufactured under the same conditions and shape. The obtained welded joint was cut at the center of the nugget and etched with picric acid to clarify the boundary line of the molten portion, and then the nugget end and the softened portion were subjected to a load of 200 gf and a load holding time of 15 s. Vickers hardness was measured. The hardness of the nugget end was measured by measuring the hardness of the inner part of the nugget by 50 μm from the boundary line of the molten portion. The hardness of the softened portion was taken as a measured value of the softened portion when a region having a length of 3 mm from the nugget end was measured at intervals of 150 μm from the nugget end to the outside of the nugget.

また、遅れ破壊試験とは別に、同条件で作製した溶接継手で十字引張試験を実施した。十字引張試験については、JISZ 3137に基づいた形状の試験体で実施した。後通電を行わず、主通電工程のみで溶接した場合の継手強度と比較して、10%以上強度低下したものには記号「×」を、10%以上強度低下しなかったものには記号「○」を記載した。 In addition to the delayed fracture test, a cross tensile test was conducted on welded joints manufactured under the same conditions. The cross tensile test was carried out on a test piece having a shape based on JISZ 3137. Compared to the joint strength when welding is performed only in the main energization process without post-energization, the symbol "x" is used for those whose strength is reduced by 10% or more, and the symbol "x" is used for those whose strength is not reduced by 10% or more. ○ ”is described.

各評価で得られた結果を表1−2に示す。表1−2に示す「判定」の欄には、「遅れ破壊」および「継手強度」の両方が「〇」であったものに記号「〇」を記載し、「遅れ破壊」および「継手強度」の少なくとも1つが「×」であったものに記号「×」を記載した。表1−2から明らかなように、発明例では全て継手強度が低下せず、耐遅れ破壊特性に優れた溶接継手が得られたのに対して、比較例では良好な溶接継手が得られなかった。 The results obtained in each evaluation are shown in Table 1-2. In the "Judgment" column shown in Table 1-2, the symbol "○" is entered for those in which both "delayed fracture" and "joint strength" were "○", and "delayed fracture" and "joint strength" are entered. The symbol "x" was added to the one in which at least one of "" was "x". As is clear from Table 1-2, in all the examples of the invention, the joint strength did not decrease and a welded joint having excellent delayed fracture resistance was obtained, whereas in the comparative example, a good welded joint could not be obtained. rice field.

Figure 0006908132
Figure 0006908132
Figure 0006908132
Figure 0006908132

1 下鋼板
2 上鋼板
3 ナゲット
4 下電極
5 上電極
6 スペーサ
7 溶接点
8 仮溶接点
9 下鋼板
10 中鋼板
11 上鋼板
12 スポット溶接部
13 ナゲット
14 溶接熱影響部
15 鋼板
16 ナゲット端部
1 Lower steel plate 2 Upper steel plate 3 Nugget 4 Lower electrode 5 Upper electrode 6 Spacer 7 Welding point 8 Temporary welding point 9 Lower steel plate 10 Medium steel plate 11 Upper steel plate 12 Spot welded part 13 Nugget 14 Welding heat influence part 15 Steel plate 16 Nugget end

Claims (3)

2以上の鋼板と、前記鋼板間に形成されたスポット溶接部と、を備える抵抗スポット溶接部材であって、
前記2以上の鋼板の少なくとも1つの鋼板の引張強度が980MPa以上であり、
前記2以上の鋼板において、下記(1)式で表される係数Xが最も大きくなる鋼板のXをXmaxとし、下記(2)式で表される係数Yが最も小さくなる鋼板のYをYminとした場合に、
前記係数Yが0.020〜0.044であり、
前記スポット溶接部のナゲットの端部のビッカース硬さH(Hv)が下記(3)式で表されるHob(Hv)以下であり、
前記スポット溶接部の溶接熱影響部の最軟化部のビッカース硬さHmin(Hv)が下記(4)式を満足する、抵抗スポット溶接部材。
X=[C]+[Si]/40+[Mn]/200 (1)
Y=[P]+3×[S] (2)
ob=(800 × Xmax+300)/(0.7+20 × Ymin) (3)
0.4 × H≦Hmin≦0.9 × H (4)
前記(1)式及び(2)式において[C]、[Si]、[Mn]、[P]及び[S]は各元素の含有量(質量%)である。ただし、含まない場合は0とする。
A resistance spot welded member including two or more steel plates and a spot welded portion formed between the steel plates.
The tensile strength of at least one of the two or more steel sheets is 980 MPa or more.
Among the two or more steel sheets, the X of the steel sheet having the largest coefficient X represented by the following equation (1) is defined as X max, and the Y of the steel sheet having the smallest coefficient Y represented by the following equation (2) is Y. When set to min ,
The coefficient Y is 0.020 to 0.044, and the coefficient Y is 0.020 to 0.044.
The Vickers hardness H n (Hv) at the end of the nugget of the spot welded portion is less than or equal to Hob (Hv) represented by the following equation (3).
A resistance spot welded member in which the Vickers hardness H min (Hv) of the softened portion of the weld heat affected zone of the spot welded portion satisfies the following equation (4).
X = [C] + [Si] / 40 + [Mn] / 200 (1)
Y = [P] + 3 × [S] (2)
Hob = (800 x X max +300) / (0.7 + 20 x Y min ) (3)
0.4 x H n ≤ H min ≤ 0.9 x H n (4)
In the above equations (1) and (2), [C], [Si], [Mn], [P] and [S] are the contents (mass%) of each element. However, if it is not included, it is set to 0.
請求項1に記載の抵抗スポット溶接部材の製造方法であって、
引張強度が980MPa以上の鋼板を少なくとも1枚含む2枚以上の鋼板を重ね合わせて1対の溶接電極で挟持し加圧しながら通電してナゲットを形成する主通電工程と、
前記主通電工程の後に下記の(5)式、(6)式で表される冷却時間C(ms)の間鋼板を前記溶接電極で加圧保持してナゲットを冷却する冷却工程と、
前記冷却工程後に、下記(7)式を満足する電流値I(kA)で通電する後通電工程と、を有する、抵抗スポット溶接部材の製造方法。
≧160 × t (t≦1.6) (5)
≧256 × t (t>1.6) (6)
0.8 × Imin≦I<1.5 × Imax (7)
前記(5)式、(6)式、(7)式において、
t:被接合鋼板の平均板厚(mm)
max:主通電工程における最大電流値(kA)
min:主通電工程における最小電流値(kA)
である。
The method for manufacturing a resistance spot welded member according to claim 1.
A main energization process in which two or more steel plates including at least one steel plate having a tensile strength of 980 MPa or more are superposed, sandwiched between a pair of welding electrodes, and energized while pressurizing to form a nugget.
After the main energization step, a cooling step of cooling the nugget by holding the steel plate under pressure with the welding electrode for a cooling time Ct (ms) represented by the following equations (5) and (6).
A method for manufacturing a resistance spot welded member, comprising: after the cooling step, a post-energization step of energizing with a current value Ip (kA) satisfying the following equation (7).
C t ≧ 160 × t 2 (t ≦ 1.6) (5)
C t ≧ 256 × t (t> 1.6) (6)
0.8 x I min ≤ I p <1.5 x I max (7)
In the above equations (5), (6) and (7),
t: Average thickness (mm) of the steel plate to be joined
I max : Maximum current value (kA) in the main energization process
I min : Minimum current value (kA) in the main energization process
Is.
前記後通電工程の後に、冷却し下記(8)式を満たす条件で通電する冷却通電と、前記冷却通電後に下記(9)式を満たす条件で再後通電する再後通電とをn回行う繰返通電工程を有する、請求項2に記載の抵抗スポット溶接部材の製造方法。
0≦Inc≦Imax (8)
0.8 × Imin≦Inr<1.5 × Imax (9)
前記(8)式、(9)式において、
nc:n回目の冷却通電における電流値(kA)
nr:n回目の再後通電における電流値(kA)
max:主通電工程における最大電流値(kA)
min:主通電工程における最小電流値(kA)
n:1以上の自然数
である。
After the post-energization step, cooling energization to cool and energize under the condition satisfying the following formula (8) and re-post-energization to re-energize under the condition satisfying the following formula (9) after the cooling energization are performed n times. The method for manufacturing a resistance spot welded member according to claim 2, further comprising a return energization step.
0 ≤ Inc ≤ I max (8)
0.8 x I minInr <1.5 x I max (9)
In the above equations (8) and (9),
Inc : Current value (kA) at the nth cooling energization
Inr : Current value (kA) in the nth re-energization
I max : Maximum current value (kA) in the main energization process
I min : Minimum current value (kA) in the main energization process
It is a natural number of n: 1 or more.
JP2019563908A 2018-08-16 2019-08-14 Resistance spot welded member and its manufacturing method Active JP6908132B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018153041 2018-08-16
JP2018153041 2018-08-16
PCT/JP2019/031949 WO2020036198A1 (en) 2018-08-16 2019-08-14 Resistance spot-welded member and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2020036198A1 JPWO2020036198A1 (en) 2020-08-20
JP6908132B2 true JP6908132B2 (en) 2021-07-21

Family

ID=69524751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019563908A Active JP6908132B2 (en) 2018-08-16 2019-08-14 Resistance spot welded member and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6908132B2 (en)
KR (1) KR102491219B1 (en)
CN (1) CN112584959B (en)
WO (1) WO2020036198A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4371688A1 (en) * 2021-10-12 2024-05-22 JFE Steel Corporation Resistance spot-welded joint and resistance spot welding method therefor
WO2023181680A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Resistance spot-welded joint and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229720A (en) * 2007-02-22 2008-10-02 Kobe Steel Ltd Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
JP5210552B2 (en) * 2007-06-19 2013-06-12 株式会社神戸製鋼所 High strength spot welded joint
JP5201116B2 (en) * 2008-10-16 2013-06-05 Jfeスチール株式会社 Resistance spot welding method for high strength steel sheet
JP5640410B2 (en) * 2009-03-17 2014-12-17 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint
JP5333560B2 (en) * 2011-10-18 2013-11-06 Jfeスチール株式会社 Resistance spot welding method and resistance spot welding joint of high strength steel plate
MY172299A (en) * 2013-04-17 2019-11-20 Nippon Steel Corp Spot welding method
JP6149522B2 (en) * 2013-04-22 2017-06-21 新日鐵住金株式会社 Lap welded member of high strength steel plate and method for producing the same
JP6194765B2 (en) 2013-11-08 2017-09-13 新日鐵住金株式会社 Spot welding method for high strength steel sheet

Also Published As

Publication number Publication date
WO2020036198A1 (en) 2020-02-20
CN112584959A (en) 2021-03-30
CN112584959B (en) 2022-10-11
JPWO2020036198A1 (en) 2020-08-20
KR20210033486A (en) 2021-03-26
KR102491219B1 (en) 2023-01-20

Similar Documents

Publication Publication Date Title
JP5987982B2 (en) Spot welding joint and spot welding method
JP6769467B2 (en) Resistance spot welding method and manufacturing method of resistance spot welding member
JP6409470B2 (en) Spot welding method
WO2021177254A1 (en) Resistance spot welding method and manufacturing method for resistance spot welded joint
JP6879345B2 (en) Resistance spot welding method, resistance spot welding joint manufacturing method
WO2017064817A1 (en) Spot welded joint and spot welding method
WO2013114851A1 (en) Base metal for high-toughness clad steel plate giving weld with excellent toughness, and process for producing said clad steel plate
JP6908132B2 (en) Resistance spot welded member and its manufacturing method
KR102028435B1 (en) Resistance spot welding method and method for manufacturing welding member
JP6763483B2 (en) Resistance spot welding method, resistance spot welding joint manufacturing method
KR102197434B1 (en) Resistance spot welding method
JP7347716B1 (en) Resistance spot welding joints and resistance spot welding methods
JP5008172B2 (en) High strength steel plate for resistance welding and joining method thereof
JP7332065B1 (en) Resistance spot welding joint and resistance spot welding method thereof
WO2024111224A1 (en) Resistance spot welding method
JP7473861B1 (en) Resistance Spot Welding Method
WO2023080076A1 (en) Resistance spot welded member, and resistance spot welding method for same
JP2020082104A (en) Joint structure and joint structure manufacturing method
JP6828831B1 (en) Resistance spot welding method, resistance spot welding joint manufacturing method
JP7435935B1 (en) Welded parts and their manufacturing method
WO2021059720A1 (en) Resistance spot welding method and method of manufacturing resistance spot welded joint
WO2024063011A1 (en) Welded member and manufacturing method therefor
WO2024063010A1 (en) Welded member and method for manufacturing same
WO2024029626A1 (en) Method for manufacturing spot welded joint, and spot welded joint
WO2024063012A1 (en) Welded member and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6908132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250