JP6907562B2 - Temperature detector - Google Patents

Temperature detector Download PDF

Info

Publication number
JP6907562B2
JP6907562B2 JP2017016254A JP2017016254A JP6907562B2 JP 6907562 B2 JP6907562 B2 JP 6907562B2 JP 2017016254 A JP2017016254 A JP 2017016254A JP 2017016254 A JP2017016254 A JP 2017016254A JP 6907562 B2 JP6907562 B2 JP 6907562B2
Authority
JP
Japan
Prior art keywords
temperature
magnetic
sensitive
magnetic material
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017016254A
Other languages
Japanese (ja)
Other versions
JP2018124168A (en
Inventor
小林 浩
浩 小林
徹雄 波多
徹雄 波多
泰 寺園
泰 寺園
健太郎 潮田
健太郎 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017016254A priority Critical patent/JP6907562B2/en
Publication of JP2018124168A publication Critical patent/JP2018124168A/en
Application granted granted Critical
Publication of JP6907562B2 publication Critical patent/JP6907562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、感温磁性体を利用した温度検出装置に関する。 The present invention relates to a temperature detecting device using a temperature sensitive magnetic material.

温度をワイヤレスで検出する温度検出装置として、任意のキュリー点を有する感温磁性体を被計測部に配置するとともに、被計測部から離れた場所に設置された磁場発生源から磁場を発生させ、感温磁性体の温度に依存する、磁場の磁束ベクトルの変化を、磁気センサで検出することによって、被計測部の温度を計測するものが知られている。 As a temperature detection device that wirelessly detects the temperature, a temperature-sensitive magnetic material having an arbitrary Curie point is placed in the measured portion, and a magnetic flux is generated from a magnetic flux generation source installed at a location away from the measured portion. It is known that the temperature of the measured portion is measured by detecting a change in the magnetic flux vector of the magnetic field, which depends on the temperature of the temperature-sensitive magnetic material, with a magnetic sensor.

特許5263894号公報Japanese Patent No. 5263894

特許文献1の構成において、磁気センサの検出する磁束ベクトルは、被計測部の温度変化により変化するが、磁場発生源と磁気センサに対する感温磁性体の相対位置の変化によっても変化する。そのため、感温磁性体の相対位置を高精度に固定できないと、正確な温度測定ができないという課題があった。 In the configuration of Patent Document 1, the magnetic flux vector detected by the magnetic sensor changes depending on the temperature change of the measured portion, but also changes depending on the change in the relative position of the temperature-sensitive magnetic material with respect to the magnetic field generation source and the magnetic sensor. Therefore, there is a problem that accurate temperature measurement cannot be performed unless the relative position of the temperature-sensitive magnetic material can be fixed with high accuracy.

本発明はこうした状況を認識してなされたものであり、その目的は、感温磁性体の相対位置を高精度に固定できない環境においても温度検出の正確性を向上させることの可能な温度検出装置を提供することにある。 The present invention has been made in recognition of such a situation, and an object of the present invention is a temperature detection device capable of improving the accuracy of temperature detection even in an environment where the relative position of the temperature-sensitive magnetic material cannot be fixed with high accuracy. Is to provide.

本発明のある態様は、温度検出装置である。この温度検出装置は、
磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記磁場発生手段と前記感温磁性体とを結ぶ仮想直線からの距離が互いに同一でないという第1条件と、前記磁場発生手段からの距離が互いに等しくなく、かつ前記感温磁性体からの距離が互いに等しくないという第2条件と、の双方を満たす位置関係となるように配置され、
前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体の温度を検出する。
One aspect of the present invention is a temperature detector. This temperature detector
It is equipped with a magnetic field generating means, a temperature-sensitive magnetic material, and a plurality of magnetic sensors.
The plurality of magnetic sensors have the first condition that the distances from the virtual straight line connecting the magnetic field generating means and the temperature-sensitive magnetic material are not the same, and the distances from the magnetic field generating means are not equal to each other and the feeling. It is arranged so as to satisfy both of the second condition that the distances from the thermomagnetic materials are not equal to each other.
The temperature of the temperature-sensitive magnetic material is detected based on a plurality of measured values obtained from the plurality of magnetic sensors.

本発明のもう1つの態様は、温度検出装置である。この温度検出装置は、 Another aspect of the present invention is a temperature detector. This temperature detector
磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、 It is equipped with a magnetic field generating means, a temperature-sensitive magnetic material, and a plurality of magnetic sensors.
前記複数の磁気センサは、前記感温磁性体の温度変化と、前記感温磁性体の任意方向の位置変化と、に対して互いに異なる変化をする複数の測定値が得られる配置であり、 The plurality of magnetic sensors are arranged so that a plurality of measured values that change differently from each other with respect to the temperature change of the temperature-sensitive magnetic material and the position change of the temperature-sensitive magnetic material in an arbitrary direction can be obtained.
前記複数の磁気センサの各々について、キュリー点より低い所定温度範囲内における前記感温磁性体の温度と位置との組合せによって特定される出力電圧を記憶しておき、その記憶内容、及び、前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体のキュリー点より低い前記所定温度範囲内における温度を検出する。 For each of the plurality of magnetic sensors, the output voltage specified by the combination of the temperature and the position of the temperature-sensitive magnetic material within a predetermined temperature range lower than the Curie point is stored, and the stored contents and the plurality of the stored contents. Based on a plurality of measured values obtained from the magnetic sensor of the above, the temperature within the predetermined temperature range lower than the Curie point of the temperature-sensitive magnetic material is detected.

本発明のもう1つの態様は、温度検出装置である。この温度検出装置は、
磁場発生手段と、感温磁性体と、n+1個(nは三以下の任意の自然数)の磁気センサと、を備え、
前記n+1個の磁気センサは、前記感温磁性体の温度変化と、前記感温磁性体のn次元方向の位置変化と、に対して互いに異なる変化をする複数の測定値が得られる配置であり、
前記n+1個の磁気センサから得られるn+1個の測定値を基に、前記感温磁性体の温度及びn次元位置を検出する。
本発明のもう1つの態様は、温度検出装置である。この温度検出装置は、
磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記感温磁性体の温度変化と、前記感温磁性体の任意方向の位置変化と、に対して互いに異なる変化をする複数の測定値が得られる配置であり、
前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体の温度を検出する、温度検出装置であり、
複数の磁場発生手段を備え、前記複数の磁場発生手段から一つずつ磁場を発生させた各々の場合の複数の測定値を基に、前記感温磁性体の温度を検出する。
Another aspect of the present invention is a temperature detector. This temperature detector
It is equipped with a magnetic field generating means, a temperature-sensitive magnetic material, and n + 1 (n is an arbitrary natural number of 3 or less) magnetic sensors.
The n + 1 magnetic sensors are arranged so that a plurality of measured values that change differently from each other with respect to the temperature change of the temperature-sensitive magnetic material and the position change of the temperature-sensitive magnetic material in the n-dimensional direction can be obtained. ,
The temperature and n-dimensional position of the temperature-sensitive magnetic material are detected based on the n + 1 measured values obtained from the n + 1 magnetic sensors.
Another aspect of the present invention is a temperature detector. This temperature detector
It is equipped with a magnetic field generating means, a temperature-sensitive magnetic material, and a plurality of magnetic sensors.
The plurality of magnetic sensors are arranged so that a plurality of measured values that change differently from each other with respect to the temperature change of the temperature-sensitive magnetic material and the position change of the temperature-sensitive magnetic material in an arbitrary direction can be obtained.
A temperature detection device that detects the temperature of the temperature-sensitive magnetic material based on a plurality of measured values obtained from the plurality of magnetic sensors.
The temperature of the temperature-sensitive magnetic material is detected based on a plurality of measured values in each case in which a plurality of magnetic field generating means are provided and a magnetic field is generated one by one from the plurality of magnetic field generating means.

前記磁場発生手段と、前記複数の磁気センサとが、同一直線上に存在しなくてもよい。 The magnetic field generating means and the plurality of magnetic sensors do not have to exist on the same straight line.

前記感温磁性体は、感温フェライトであってもよい。 The temperature-sensitive magnetic material may be a temperature-sensitive ferrite.

前記磁場発生手段は、コイルであってもよい。 The magnetic field generating means may be a coil.

前記磁場発生手段の発生する磁場は、交流であってもよい。 The magnetic field generated by the magnetic field generating means may be alternating current.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。 Any combination of the above components and a conversion of the expression of the present invention between methods, systems and the like are also effective as aspects of the present invention.

本発明によれば、感温磁性体の相対位置を高精度に固定できない環境においても温度検出の正確性を向上させることの可能な温度検出装置を提供することができる。 According to the present invention, it is possible to provide a temperature detection device capable of improving the accuracy of temperature detection even in an environment where the relative position of the temperature-sensitive magnetic material cannot be fixed with high accuracy.

本発明の実施の形態1に係る温度検出装置1の概略構成図。The schematic block diagram of the temperature detection apparatus 1 which concerns on Embodiment 1 of this invention. 図1の感温磁性体13の温度と比透磁率μiとの関係(温度特性)の一例を示すグラフ。The graph which shows an example of the relationship (temperature characteristic) between the temperature of the temperature-sensitive magnetic material 13 of FIG. 1 and the specific magnetic permeability μi. 図4及び図5のシミュレーション結果の前提となる、磁場発生手段10、感温磁性体13、第1磁気センサ15、及び第2磁気センサ16、の配置説明図。2 is an explanatory view of the arrangement of the magnetic field generating means 10, the temperature-sensitive magnetic body 13, the first magnetic sensor 15, and the second magnetic sensor 16, which are the premise of the simulation results of FIGS. 4 and 5. 図4(A)及び図4(B)は、図3の配置における、感温磁性体13の比透磁率μi及び温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の組合せによって特定される、第1磁気センサ15の出力電圧V1及び第2磁気センサ16の出力電圧V2の表。4 (A) and 4 (B) show the relative magnetic permeability μi and the temperature T of the temperature-sensitive magnetic body 13 and the position (positional deviation amount) of the temperature-sensitive magnetic body 13 in the Y direction in the arrangement of FIG. The table of the output voltage V1 of the first magnetic sensor 15 and the output voltage V2 of the second magnetic sensor 16 specified by the combination of. 図5(A)及び図5(B)は、図3の配置における、第1磁気センサ15の出力電圧V1及び第2磁気センサ16の出力電圧V2からそれぞれ導かれる、感温磁性体13の温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の組合せを、等値線として描いたグラフ。5 (A) and 5 (B) show the temperature of the temperature-sensitive magnetic body 13 derived from the output voltage V1 of the first magnetic sensor 15 and the output voltage V2 of the second magnetic sensor 16 in the arrangement of FIG. The graph which drew the combination of T and the position (positional deviation amount) of the temperature sensitive magnetic material 13 in the Y direction as an equivalence line. 本発明の実施の形態2に係る温度検出装置2の概略構成図。The schematic block diagram of the temperature detection apparatus 2 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る温度検出装置3の概略構成図。The schematic block diagram of the temperature detection apparatus 3 which concerns on Embodiment 3 of this invention.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The same or equivalent components, members, etc. shown in the drawings are designated by the same reference numerals, and redundant description will be omitted as appropriate. Moreover, the embodiment is not limited to the invention but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.

(実施の形態1)
図1は、本発明の実施の形態1に係る温度検出装置1の概略構成図である。図1において、直交3軸であるXYZ軸を定義する。温度検出装置1は、磁場発生手段10、感温磁性体13、第1磁気センサ15、第2磁気センサ16、第3磁気センサ17、第4磁気センサ18、及び演算部20、を備える。磁場発生手段10は、ここでは電磁石(コイル)である。なお、図1において、磁場発生手段10への通電回路の図示は省略している。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a temperature detection device 1 according to a first embodiment of the present invention. In FIG. 1, the XYZ axes, which are three orthogonal axes, are defined. The temperature detection device 1 includes a magnetic field generating means 10, a temperature-sensitive magnetic body 13, a first magnetic sensor 15, a second magnetic sensor 16, a third magnetic sensor 17, a fourth magnetic sensor 18, and a calculation unit 20. The magnetic field generating means 10 is an electromagnet (coil) here. Note that in FIG. 1, the circuit for energizing the magnetic field generating means 10 is not shown.

感温磁性体13は、例えば感温フェライトであり、検出対象物(被検出部)5の内部に設けられる。検出対象物5は、樹脂やゴムのような変形するものであってもよいし、油などの液体であってもよいし、磁場発生手段10及び各磁気センサのいずれか又は両方と壁部によって仕切られた(隔てられた)空間であってもよい。図2は、感温磁性体13の温度と比透磁率μiとの関係(温度特性)の一例を示すグラフである。図2に示す温度特性は、周波数が1kHzで振幅が0.4A/mの磁場を印加した場合のものである。図2に示す温度特性では、横軸の温度Tが210℃〜230℃の範囲において、温度上昇に伴い比透磁率μiが急激に低下しており、感温磁性体13は、当該温度範囲の温度検出に好適に利用することができる。ここで、温度上昇に伴い比透磁率μiが急激に低下する温度範囲は、感温磁性体13の材質によって様々であり、検出対象とする温度範囲に応じて感温磁性体13の材質を選定すればよい。また、感温磁性体13は、温度上昇に伴い比透磁率μiが緩やかに上昇する温度範囲(図2の例では200℃以下の温度範囲)の温度検出にも利用可能である。 The temperature-sensitive magnetic material 13 is, for example, a temperature-sensitive ferrite, and is provided inside the detection target (detected portion) 5. The detection object 5 may be a deformable object such as resin or rubber, or may be a liquid such as oil, or may be a magnetic field generating means 10, either or both of the magnetic sensors, and a wall portion. It may be a partitioned (separated) space. FIG. 2 is a graph showing an example of the relationship (temperature characteristics) between the temperature of the temperature-sensitive magnetic material 13 and the specific magnetic permeability μi. The temperature characteristics shown in FIG. 2 are when a magnetic field having a frequency of 1 kHz and an amplitude of 0.4 A / m is applied. In the temperature characteristics shown in FIG. 2, when the temperature T on the horizontal axis is in the range of 210 ° C. to 230 ° C., the relative magnetic permeability μi sharply decreases as the temperature rises, and the temperature-sensitive magnetic material 13 is in the temperature range. It can be suitably used for temperature detection. Here, the temperature range in which the relative magnetic permeability μi sharply decreases as the temperature rises varies depending on the material of the temperature-sensitive magnetic material 13, and the material of the temperature-sensitive magnetic material 13 is selected according to the temperature range to be detected. do it. Further, the temperature-sensitive magnetic material 13 can also be used for temperature detection in a temperature range (a temperature range of 200 ° C. or lower in the example of FIG. 2) in which the relative magnetic permeability μi gradually increases as the temperature rises.

第1磁気センサ15、第2磁気センサ16、第3磁気センサ17、及び第4磁気センサ18(以下「第1〜第4磁気センサ15〜18」とも表記)は、それぞれ所定方向(ここではY方向)の磁束密度の大きさ(スカラー値)を測定(検出)するものであり、検出対象物5を挟んで磁場発生手段10の反対側に設けられる。第1〜第4磁気センサ15〜18は、感温磁性体13の温度変化と、感温磁性体13の任意方向の位置変化と、に対して互いに異なる変化をする複数の出力電圧(磁気測定値)が得られる配置である。具体的には、第1〜第4磁気センサ15〜18は、磁場発生手段10と感温磁性体13とを結ぶ仮想直線Lからの距離が互いに同一という第1条件と、磁場発生手段10又は感温磁性体13からの距離が互いに等しいという第2条件と、の双方を満たす位置関係とならないように配置される。その理由は、第1及び第2条件が共に満たされると、仮想直線Lに沿って感温磁性体13の位置が変化した場合に、第1〜第4磁気センサ15〜18の出力電圧の変化が同じになるためである。また、磁場発生手段10と、第1〜第4磁気センサ15〜18とは、同一直線上に存在しない。それらが同一直線状に存在すると、当該直線を軸とする軸周り方向に感温磁性体13の位置が変化した場合に、第1〜第4磁気センサ15〜18の出力電圧が変化しないためである。 The first magnetic sensor 15, the second magnetic sensor 16, the third magnetic sensor 17, and the fourth magnetic sensor 18 (hereinafter, also referred to as “first to fourth magnetic sensors 15 to 18”) are in predetermined directions (here, Y). It measures (detects) the magnitude (scalar value) of the magnetic field density (direction), and is provided on the opposite side of the magnetic field generating means 10 with the detection object 5 sandwiched between them. The first to fourth magnetic sensors 15 to 18 have a plurality of output voltages (magnetic measurements) that change differently from each other with respect to the temperature change of the temperature-sensitive magnetic body 13 and the position change of the temperature-sensitive magnetic body 13 in an arbitrary direction. Value) is the arrangement that can be obtained. Specifically, the first to fourth magnetic sensors 15 to 18 have the first condition that the distances from the virtual straight line L connecting the magnetic field generating means 10 and the temperature-sensitive magnetic body 13 are the same, and the magnetic field generating means 10 or The positions are arranged so as not to satisfy both of the second condition that the distances from the temperature-sensitive magnetic material 13 are equal to each other. The reason is that when both the first and second conditions are satisfied, the output voltage of the first to fourth magnetic sensors 15 to 18 changes when the position of the temperature-sensitive magnetic body 13 changes along the virtual straight line L. Is the same. Further, the magnetic field generating means 10 and the first to fourth magnetic sensors 15 to 18 do not exist on the same straight line. This is because if they exist in the same straight line, the output voltages of the first to fourth magnetic sensors 15 to 18 do not change when the position of the temperature-sensitive magnetic body 13 changes in the axial direction around the straight line. be.

演算部20は、感温磁性体13の温度、並びに感温磁性体13のX方向位置、Y方向位置、及びZ方向位置、の4つの組合せによって特定される、第1〜第4磁気センサ15〜18の出力電圧を、予めテーブルとして記憶しており、第1〜第4磁気センサ15〜18の出力電圧を基に、感温磁性体13の温度、すなわち検出対象物5の温度を検出(特定)する。なお、図1において、演算部20と第1〜第4磁気センサ15〜18との間の接続配線の図示は省略している。感温磁性体13の温度検出のために4つの磁気センサ(第1〜第4磁気センサ15〜18)の出力電圧(磁気測定値)を利用するのは、以下の理由による。 The calculation unit 20 is the first to fourth magnetic sensors 15 specified by four combinations of the temperature of the temperature-sensitive magnetic body 13 and the X-direction position, the Y-direction position, and the Z-direction position of the temperature-sensitive magnetic body 13. The output voltages of ~ 18 are stored in advance as a table, and the temperature of the temperature-sensitive magnetic body 13, that is, the temperature of the detection object 5 is detected based on the output voltages of the first to fourth magnetic sensors 15 to 18 ( Identify. In FIG. 1, the connection wiring between the calculation unit 20 and the first to fourth magnetic sensors 15 to 18 is not shown. The output voltages (magnetically measured values) of the four magnetic sensors (first to fourth magnetic sensors 15 to 18) are used to detect the temperature of the temperature-sensitive magnetic body 13 for the following reasons.

第1〜第4磁気センサ15〜18の各出力電圧は、感温磁性体13の温度変化(検出対象物5の温度変化)によって変化するが、磁場発生手段10及び第1〜第4磁気センサ15〜18に対する感温磁性体13の相対位置の変化によっても変化する。そのため、仮に第1〜第4磁気センサ15〜18のうち1つしか存在しないとすると、感温磁性体13の位置が振動等により変動する環境下では、当該1つの磁気センサの出力電圧の変化が、感温磁性体13の温度変化によるものなのか、感温磁性体13の相対位置の変化によるものなのか、を特定することができず、結果として感温磁性体13の温度検出(検出対象物5の温度検出)ができない。 Each output voltage of the first to fourth magnetic sensors 15 to 18 changes depending on the temperature change of the temperature-sensitive magnetic body 13 (the temperature change of the detection object 5), but the magnetic field generating means 10 and the first to fourth magnetic sensors It also changes depending on the change in the relative position of the temperature-sensitive magnetic material 13 with respect to 15-18. Therefore, assuming that only one of the first to fourth magnetic sensors 15 to 18 exists, the output voltage of the one magnetic sensor changes in an environment where the position of the temperature-sensitive magnetic body 13 fluctuates due to vibration or the like. However, it is not possible to specify whether it is due to a change in the temperature of the temperature-sensitive magnetic material 13 or a change in the relative position of the temperature-sensitive magnetic material 13, and as a result, the temperature of the temperature-sensitive magnetic material 13 is detected (detected). The temperature of the object 5) cannot be detected.

ここで、感温磁性体13の相対位置の変化が三次元的に発生する場合、感温磁性体13の、温度、X方向位置、Y方向位置、及びZ方向位置、の4つが未知数となる。このため本実施の形態では、第1〜第4磁気センサ15〜18から得られる4つの出力電圧を利用することで、上記4つの未知数(感温磁性体13の温度と三次元的な位置)を求め、感温磁性体13の温度を検出可能としている。なお、感温磁性体13の相対位置の変化が二次元的な場合、未知数が3つになるため、感温磁性体13の温度検出には3つの磁気センサで足りる。同様に、感温磁性体13の相対位置の変化が一次元的な場合、未知数が2つになるため、感温磁性体13の温度検出には2つの磁気センサで足りる。 Here, when the relative position of the temperature-sensitive magnetic body 13 changes three-dimensionally, the temperature, the X-direction position, the Y-direction position, and the Z-direction position of the temperature-sensitive magnetic body 13 are unknown. .. Therefore, in the present embodiment, by using the four output voltages obtained from the first to fourth magnetic sensors 15 to 18, the above four unknowns (the temperature and the three-dimensional position of the temperature-sensitive magnetic body 13) The temperature of the temperature-sensitive magnetic material 13 can be detected. When the change in the relative position of the temperature-sensitive magnetic body 13 is two-dimensional, the number of unknowns becomes three, so that three magnetic sensors are sufficient for temperature detection of the temperature-sensitive magnetic body 13. Similarly, when the change in the relative position of the temperature-sensitive magnetic body 13 is one-dimensional, there are two unknowns, so that two magnetic sensors are sufficient for temperature detection of the temperature-sensitive magnetic body 13.

図3は、図4及び図5のシミュレーション結果の前提となる、磁場発生手段10、感温磁性体13、第1磁気センサ15、及び第2磁気センサ16、の配置説明図である。ここでは、感温磁性体13の相対位置がY方向にのみ変動する(XZ方向位置は固定である)場合を例に、感温磁性体13の温度特定の原理を説明する。感温磁性体13の相対位置の変化が一次元的なため、磁気センサは2つ(第1磁気センサ15及び第2磁気センサ16)としている。 FIG. 3 is an explanatory diagram of the arrangement of the magnetic field generating means 10, the temperature-sensitive magnetic body 13, the first magnetic sensor 15, and the second magnetic sensor 16, which are the premise of the simulation results of FIGS. 4 and 5. Here, the principle of specifying the temperature of the temperature-sensitive magnetic body 13 will be described by taking as an example the case where the relative position of the temperature-sensitive magnetic body 13 fluctuates only in the Y direction (the position in the XZ direction is fixed). Since the change in the relative position of the temperature-sensitive magnetic body 13 is one-dimensional, the number of magnetic sensors is two (first magnetic sensor 15 and second magnetic sensor 16).

図4(A)及び図4(B)は、図3の配置における、感温磁性体13の比透磁率μi及び温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の組合せによって特定される、第1磁気センサ15の出力電圧V1及び第2磁気センサ16の出力電圧V2の表である。これらの表の各電圧値は、シミュレーションによって算出され、予めテーブルとして演算部20(図1)に記憶されるものである。シミュレーションでは、周波数が1kHzの磁場を第1磁気センサ15及び第2磁気センサ16に印加した。なお、実際に記憶されるテーブルは、図4(A)及び図4(B)に示されるよりも、感温磁性体13の比透磁率μi及び温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の刻み幅が遥かに細かい。 4 (A) and 4 (B) show the relative magnetic permeability μi and the temperature T of the temperature-sensitive magnetic body 13 and the position (positional deviation amount) of the temperature-sensitive magnetic body 13 in the Y direction in the arrangement of FIG. It is a table of the output voltage V1 of the first magnetic sensor 15 and the output voltage V2 of the second magnetic sensor 16 specified by the combination of. Each voltage value in these tables is calculated by simulation and stored in advance in the calculation unit 20 (FIG. 1) as a table. In the simulation, a magnetic field having a frequency of 1 kHz was applied to the first magnetic sensor 15 and the second magnetic sensor 16. The table that is actually stored has a relative magnetic permeability μi and temperature T of the temperature-sensitive magnetic material 13 and a Y direction of the temperature-sensitive magnetic material 13 than those shown in FIGS. 4 (A) and 4 (B). The position of (the amount of misalignment) and the step size of are much finer.

図5(A)及び図5(B)は、図3の配置における、第1磁気センサ15の出力電圧V1及び第2磁気センサ16の出力電圧V2からそれぞれ導かれる、感温磁性体13の温度Tと、感温磁性体13のY方向の位置(位置ずれ量)と、の組合せを、等値線として描いたグラフである。図5(A)は、第1磁気センサ15の出力電圧V1が106.57mVの場合における等値線を示しており、図4(A)の表を基に描かれる。図5(B)は、第2磁気センサ16の出力電圧V2が101.24mVの場合における等値線を示しており、図4(B)の表を基に描かれる。図5(A)及び図5(B)における星印は、図5(A)及び図5(B)に示す等値線同士が交差する点に付されている。ある時点において、第1磁気センサ15の出力電圧V1が106.57mVで第2磁気センサ16の出力電圧V2が101.24mVという測定値が得られた場合、星印を付した交点(T=229℃及びY=-1.5mm)が、当該時点における2つの未知数(感温磁性体13の温度TとY方向位置)の解となり、感温磁性体13の温度Tを一意に特定できる。 5 (A) and 5 (B) show the temperature of the temperature-sensitive magnetic body 13 derived from the output voltage V1 of the first magnetic sensor 15 and the output voltage V2 of the second magnetic sensor 16 in the arrangement of FIG. 6 is a graph in which the combination of T and the position (positional deviation amount) of the temperature-sensitive magnetic material 13 in the Y direction is drawn as an isoline. FIG. 5 (A) shows contour lines when the output voltage V1 of the first magnetic sensor 15 is 106.57 mV, and is drawn based on the table of FIG. 4 (A). FIG. 5B shows contour lines when the output voltage V2 of the second magnetic sensor 16 is 101.24 mV, and is drawn based on the table of FIG. 4B. The asterisks in FIGS. 5 (A) and 5 (B) are attached to the points where the contour lines shown in FIGS. 5 (A) and 5 (B) intersect with each other. At a certain point in time, if the measured value of the output voltage V1 of the first magnetic sensor 15 is 106.57 mV and the output voltage V2 of the second magnetic sensor 16 is 101.24 mV, the intersections marked with stars (T = 229 ° C. and (Y = -1.5 mm) is the solution of two unknowns (the temperature T of the temperature-sensitive magnetic body 13 and the position in the Y direction) at that time, and the temperature T of the temperature-sensitive magnetic body 13 can be uniquely specified.

図3〜図5で説明した原理は、感温磁性体13の相対位置の変化が一次元的な場合を例にしたものであるが、感温磁性体13の相対位置の変化が二次元的あるいは三次元的な場合も、磁気センサの数を3つあるいは4つに増やすことで、同様の原理により感温磁性体13の温度検出が可能である(感温磁性体13の温度Tを一意に特定できる)。 The principle described with reference to FIGS. 3 to 5 is an example in which the change in the relative position of the temperature-sensitive magnetic body 13 is one-dimensional, but the change in the relative position of the temperature-sensitive magnetic body 13 is two-dimensional. Alternatively, even in the three-dimensional case, by increasing the number of magnetic sensors to three or four, the temperature of the temperature-sensitive magnetic body 13 can be detected by the same principle (the temperature T of the temperature-sensitive magnetic body 13 is unique). Can be identified as).

本実施の形態によれば、第1〜第4磁気センサ15〜18から得られる4つの測定値を基に、演算部20が感温磁性体13の温度(検出対象物5の温度)を検出するため、感温磁性体13の相対位置が三次元的に変化する場合であっても、感温磁性体13の温度を高精度に検出することができる。換言すれば、感温磁性体13の相対位置を高精度に固定できない環境においても温度検出の正確性を向上させることができる。 According to the present embodiment, the calculation unit 20 detects the temperature of the temperature-sensitive magnetic body 13 (the temperature of the detection object 5) based on the four measured values obtained from the first to fourth magnetic sensors 15 to 18. Therefore, even when the relative position of the temperature-sensitive magnetic body 13 changes three-dimensionally, the temperature of the temperature-sensitive magnetic body 13 can be detected with high accuracy. In other words, the accuracy of temperature detection can be improved even in an environment where the relative position of the temperature-sensitive magnetic material 13 cannot be fixed with high accuracy.

(実施の形態2)
図6は、本発明の実施の形態2に係る温度検出装置2の概略構成図である。本実施の形態の温度検出装置2は、実施の形態1のものと比較して、磁場発生手段11が追加された点で相違し、その他の点で一致する。磁場発生手段11は、電磁石(コイル)であり、検出対象物5に対して磁場発生手段10と同じ側に設けられる。温度検出装置2においては、磁場発生手段10から磁場を発生させ、磁場発生手段11から磁場を発生させない第1状態と、磁場発生手段10から磁場を発生させず、磁場発生手段11から磁場を発生させる第2状態と、の各々において、演算部20は、第1〜第4磁気センサ15〜18から得られる4つの測定値を基に、感温磁性体13の温度を検出する。これにより、温度検出の正確性を更に向上させることができる。なお、磁場発生手段11は、検出対象物5に対して第1〜第4磁気センサ15〜18と同じ側に設けられてもよい。
(Embodiment 2)
FIG. 6 is a schematic configuration diagram of the temperature detection device 2 according to the second embodiment of the present invention. The temperature detection device 2 of the present embodiment is different from that of the first embodiment in that the magnetic field generating means 11 is added, and is the same in other respects. The magnetic field generating means 11 is an electromagnet (coil) and is provided on the same side as the magnetic field generating means 10 with respect to the detection object 5. In the temperature detection device 2, the first state in which the magnetic field is generated from the magnetic field generating means 10 and the magnetic field is not generated from the magnetic field generating means 11, and the magnetic field is generated from the magnetic field generating means 11 without generating the magnetic field from the magnetic field generating means 10. In each of the second state and the second state, the calculation unit 20 detects the temperature of the temperature-sensitive magnetic body 13 based on the four measured values obtained from the first to fourth magnetic sensors 15 to 18. Thereby, the accuracy of temperature detection can be further improved. The magnetic field generating means 11 may be provided on the same side as the first to fourth magnetic sensors 15 to 18 with respect to the detection object 5.

(実施の形態3)
図7は、本発明の実施の形態3に係る温度検出装置3の概略構成図である。本実施の形態の温度検出装置3は、実施の形態1のものと比較して、磁場発生手段10が、検出対象物5に対して第1〜第4磁気センサ15〜18及び演算部20と同じ側に位置する点で相違し、その他の点で一致する。本実施の形態も、実施の形態1と同様の効果を奏することができる。
(Embodiment 3)
FIG. 7 is a schematic configuration diagram of the temperature detection device 3 according to the third embodiment of the present invention. In the temperature detection device 3 of the present embodiment, as compared with that of the first embodiment, the magnetic field generating means 10 has the first to fourth magnetic sensors 15 to 18 and the calculation unit 20 with respect to the detection object 5. They differ in that they are on the same side and match in other respects. The present embodiment can also have the same effect as that of the first embodiment.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。 Although the present invention has been described above by taking the embodiment as an example, it will be understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, a modified example will be touched upon.

磁場発生手段10は、永久磁石であってもよい。この場合、磁場発生手段10が発生する磁場は直流に限定されるが、原理的に温度検出は可能である。感温磁性体13は、フェライトに限定されず、珪素鋼板等の他の磁性体であってもよい。第1〜第4磁気センサ15〜18は、自身に印加された磁束密度の方向を検出する方向検知型であってもよい。 The magnetic field generating means 10 may be a permanent magnet. In this case, the magnetic field generated by the magnetic field generating means 10 is limited to direct current, but temperature detection is possible in principle. The temperature-sensitive magnetic material 13 is not limited to ferrite, and may be another magnetic material such as a silicon steel plate. The first to fourth magnetic sensors 15 to 18 may be of a direction detection type that detects the direction of the magnetic flux density applied to the first to fourth magnetic sensors 15 to 18.

1〜3 温度検出装置、5 検出対象物(被検出部)、10,11 磁場発生手段、13 感温磁性体、15 第1磁気センサ、16 第2磁気センサ、17 第3磁気センサ、18 第4磁気センサ、20 演算部 1-3 Temperature detector, 5 Detected object (detected part), 10,11 Magnetic field generating means, 13 Temperature-sensitive magnetic material, 15 1st magnetic sensor, 16 2nd magnetic sensor, 17 3rd magnetic sensor, 18th 4 magnetic sensor, 20 arithmetic unit

Claims (8)

磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記磁場発生手段と前記感温磁性体とを結ぶ仮想直線からの距離が互いに同一でないという第1条件と、前記磁場発生手段からの距離が互いに等しくなく、かつ前記感温磁性体からの距離が互いに等しくないという第2条件と、の双方を満たす位置関係となように配置され、
前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体の温度を検出する、温度検出装置。
It is equipped with a magnetic field generating means, a temperature-sensitive magnetic material, and a plurality of magnetic sensors.
The plurality of magnetic sensors have the first condition that the distances from the virtual straight line connecting the magnetic field generating means and the temperature-sensitive magnetic material are not the same, and the distances from the magnetic field generating means are not equal to each other and the feeling. a second condition that a distance from each other equal kuna physicians from temperature magnetic material is arranged both as positional relationship preparative ing meet the,
A temperature detection device that detects the temperature of the temperature-sensitive magnetic material based on a plurality of measured values obtained from the plurality of magnetic sensors.
磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記感温磁性体の温度変化と、前記感温磁性体の任意方向の位置変化と、に対して互いに異なる変化をする複数の測定値が得られる配置であり、
前記複数の磁気センサの各々について、キュリー点より低い所定温度範囲内における前記感温磁性体の温度と位置との組合せによって特定される出力電圧を記憶しておき、その記憶内容、及び、前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体のキュリー点より低い前記所定温度範囲内における温度を検出する、温度検出装置。
It is equipped with a magnetic field generating means, a temperature-sensitive magnetic material, and a plurality of magnetic sensors.
The plurality of magnetic sensors are arranged so that a plurality of measured values that change differently from each other with respect to the temperature change of the temperature-sensitive magnetic material and the position change of the temperature-sensitive magnetic material in an arbitrary direction can be obtained.
For each of the plurality of magnetic sensors, the output voltage specified by the combination of the temperature and the position of the temperature-sensitive magnetic material within a predetermined temperature range lower than the Curie point is stored, and the stored contents and the plurality of them. A temperature detection device that detects a temperature within the predetermined temperature range lower than the Curie point of the temperature-sensitive magnetic material based on a plurality of measured values obtained from the magnetic sensor of the above.
磁場発生手段と、感温磁性体と、n+1個(nは三以下の任意の自然数)の磁気センサと、を備え、 It is equipped with a magnetic field generating means, a temperature-sensitive magnetic material, and n + 1 (n is an arbitrary natural number of 3 or less) magnetic sensors.
前記n+1個の磁気センサは、前記感温磁性体の温度変化と、前記感温磁性体のn次元方向の位置変化と、に対して互いに異なる変化をする複数の測定値が得られる配置であり、 The n + 1 magnetic sensors are arranged so that a plurality of measured values that change differently from each other with respect to the temperature change of the temperature-sensitive magnetic material and the position change of the temperature-sensitive magnetic material in the n-dimensional direction can be obtained. ,
前記n+1個の磁気センサから得られるn+1個の測定値を基に、前記感温磁性体の温度及びn次元位置を検出する、温度検出装置。 A temperature detection device that detects the temperature and n-dimensional position of the temperature-sensitive magnetic material based on n + 1 measured values obtained from the n + 1 magnetic sensors.
磁場発生手段と、感温磁性体と、複数の磁気センサと、を備え、
前記複数の磁気センサは、前記感温磁性体の温度変化と、前記感温磁性体の任意方向の位置変化と、に対して互いに異なる変化をする複数の測定値が得られる配置であり、
前記複数の磁気センサから得られる複数の測定値を基に、前記感温磁性体の温度を検出する、温度検出装置であり、
複数の磁場発生手段を備え、前記複数の磁場発生手段から一つずつ磁場を発生させた各々の場合の複数の測定値を基に、前記感温磁性体の温度を検出する、温度検出装置。
It is equipped with a magnetic field generating means, a temperature-sensitive magnetic material, and a plurality of magnetic sensors.
The plurality of magnetic sensors are arranged so that a plurality of measured values that change differently from each other with respect to the temperature change of the temperature-sensitive magnetic material and the position change of the temperature-sensitive magnetic material in an arbitrary direction can be obtained.
A temperature detection device that detects the temperature of the temperature-sensitive magnetic material based on a plurality of measured values obtained from the plurality of magnetic sensors.
Comprising a plurality of magnetic field generating means, based on a plurality of measurements in each case that caused one by one field from said plurality of magnetic field generating means, for detecting the temperature of the temperature sensitive magnetic substance, temperature detector ..
前記磁場発生手段と、前記複数の磁気センサとが、同一直線上に存在しない、請求項1乃至のいずれか一項に記載の温度検出装置。 The temperature detection device according to any one of claims 1 to 4 , wherein the magnetic field generating means and the plurality of magnetic sensors do not exist on the same straight line. 前記感温磁性体は、感温フェライトである、請求項1乃至5のいずれか一項に記載の温度検出装置。 The temperature detecting device according to any one of claims 1 to 5, wherein the temperature-sensitive magnetic material is a temperature-sensitive ferrite. 前記磁場発生手段は、コイルである、請求項1乃至6のいずれか一項に記載の温度検出装置。 The temperature detecting device according to any one of claims 1 to 6, wherein the magnetic field generating means is a coil. 前記磁場発生手段の発生する磁場は、交流である、請求項1乃至7のいずれか一項に記載の温度検出装置。 The temperature detection device according to any one of claims 1 to 7, wherein the magnetic field generated by the magnetic field generating means is alternating current.
JP2017016254A 2017-01-31 2017-01-31 Temperature detector Active JP6907562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016254A JP6907562B2 (en) 2017-01-31 2017-01-31 Temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016254A JP6907562B2 (en) 2017-01-31 2017-01-31 Temperature detector

Publications (2)

Publication Number Publication Date
JP2018124168A JP2018124168A (en) 2018-08-09
JP6907562B2 true JP6907562B2 (en) 2021-07-21

Family

ID=63110160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016254A Active JP6907562B2 (en) 2017-01-31 2017-01-31 Temperature detector

Country Status (1)

Country Link
JP (1) JP6907562B2 (en)

Also Published As

Publication number Publication date
JP2018124168A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
Zhang et al. A novel absolute angular position sensor based on electromagnetism
US11226211B2 (en) Inductive position detection
JP5620475B2 (en) Method and apparatus for determining position by magnetism
US9689903B2 (en) Apparatus and methods for measuring current
JP6377817B2 (en) Non-contact magnetic linear position sensor
CN105371874A (en) True-phase two-dimensional magnetic field sensor
CN110023791A (en) System for determining the position of pipe-line
JP2015178956A (en) Three-dimensional magnetic detection device and three-dimensional magnetic detection method
JP2016090354A (en) Rotation angle and stroke-amount detection device
CN105487027A (en) Three-dimensional vector magnetic moment measuring instrument
US8902188B2 (en) Digitizer
TWI684776B (en) Magnetic sensor apparatus
JP6907562B2 (en) Temperature detector
US11879792B2 (en) Magnetic sensing system, detection device, and magnetic interference offset method
US9697940B2 (en) Apparatus and methods for generating a uniform magnetic field
US9335151B2 (en) Film measurement
JP6145467B2 (en) Position detection device
Oome et al. Modeling of an electromagnetic geophone with passive magnetic spring
US9816838B2 (en) Magnetoresistive angle sensor with linear sensor elements
US2490102A (en) Magnetic field angular gradientometer
US10969269B1 (en) Remote vibration sensing through opaque media using permanent magnets
JP2016125940A (en) Position sensing device
Nersesov et al. Magnetic ranging as a promising line of development of magnetometric tools for searching underwater objects
JP2018124169A (en) Temperature detection device
WO2017126343A1 (en) Proximity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6907562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250