JP6905065B2 - ベアラ変換 - Google Patents

ベアラ変換 Download PDF

Info

Publication number
JP6905065B2
JP6905065B2 JP2019541802A JP2019541802A JP6905065B2 JP 6905065 B2 JP6905065 B2 JP 6905065B2 JP 2019541802 A JP2019541802 A JP 2019541802A JP 2019541802 A JP2019541802 A JP 2019541802A JP 6905065 B2 JP6905065 B2 JP 6905065B2
Authority
JP
Japan
Prior art keywords
bearer
qos flow
qos
message
ran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019541802A
Other languages
English (en)
Other versions
JP2020505877A (ja
Inventor
オーサ ラーセン,
オーサ ラーセン,
パトリック ダンネブロ,
パトリック ダンネブロ,
ラーシュ−ベッティル オルソン,
ラーシュ−ベッティル オルソン,
Original Assignee
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エルエム エリクソン(パブル), テレフオンアクチーボラゲット エルエム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Publication of JP2020505877A publication Critical patent/JP2020505877A/ja
Application granted granted Critical
Publication of JP6905065B2 publication Critical patent/JP6905065B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0066Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

ベアラ変換のための実施形態が開示される。
今日のセルラー通信ネットワークでは、ユーザ機器(UE)(すなわち、たとえば、スマートフォン、センサーなど、無線通信が可能なデバイス)が、ネットワークに再登録する必要なしに(たとえば、ネットワークアタッチプロシージャを実施する必要なしに)異なる規格(たとえば、2G/3Gおよび4G)をサポートするセル間で移動することができるように、モビリティがサポートされる。モビリティは、接続モード(ハンドオーバ)において、またはアイドルモード(アクセス変更)において行われ得る。
現在の第3世代パートナーシッププロジェクト(3GPP)ネットワークアーキテクチャは、Long Term Evolution(LTE)(別名、4G)におけるエボルブドパケットシステム(EPS)ベアラと、3Gおよび2Gにおけるパケットデータプロトコル(PDP)コンテキストとの間の1:1関係があるように、モビリティを簡単にしている。また、4Gにおける拡張無線アクセスベアラ(E−RAB)とデータ無線ベアラ(DRB)との間の、ならびに、適用可能な場合には、2Gおよび3GにおけるPDPコンテキストと無線アクセスベアラ(RAB)と無線ベアラ(RB)との間の1:1関係がある。
接続モードハンドオーバ時に、ソース無線アクセスネットワーク(RAN)(たとえば、基地局、無線ネットワークコントローラ(RNC)、基地局コントローラ(BSC))、コアネットワークにおけるモビリティアンカー(たとえば、SGSN、MME)、UE、およびIPアンカー(PDN GW)のうちの2つまたはそれ以上が、必要なとき、ソースシステム表現(たとえば、4G EPSベアラ)からターゲットシステム表現(たとえば、3G PDPコンテキスト)への変換を独立して実施する。
「5G」と呼ばれる次世代移動体無線通信システムは、使用事例の多様なセットおよび展開シナリオの多様なセットをサポートする。5Gは、今日の4Gネットワークの発展と、「新しい無線」(NR)として知られる新しいグローバルに標準化された無線アクセス技術の追加とを包含する。5Gシステムの1つの欠点は、2G/3Gと4Gとの間で使用されるモビリティソリューションが4Gと5Gとの間のモビリティのために機能しないことである。
5Gでは、ベアラ概念/アーキテクチャが変更され、その結果、a)4Gでは複数のEPSベアラとして実現されたPDN接続が、5Gでは単一のPDUセッションとして実現され、b)4Gでは別個のデディケーテッドベアラとして多様化されたQoS特性が、5Gでは、代わりに、PDUセッションのためのユーザデータトンネリングを介して伝達されたユーザデータのQoSフローおよび関連するパケットマーキングによって多様化され(QoSフローは、同じQoS扱いを受ける(PDUセッション内の)ユーザプレーントラフィックに対応し)、c)複数のベアラ、したがって複数のDRB/E−RABを使用した4G PDN接続が、5Gでは同じDRBリソース上で多重化され得、d)4Gでは、UEが接続されたとき、常にEPSベアラごとの割り当てられたDRBがあるが、5Gでは、5G RANが自由にDRBリソースを動的に割り当てることができ、したがって、5Gでは、アクティブQoSフローよりも少数の割り当てられたDRBがあり得る。
したがって、4G EPS表現と5G表現との間の保証された1:1マッピングがなく、したがって、UE、RAN、およびコアネットワークによって独立して行われる変換が異なる結果をもたらし得る。その上、EPSベアラIDについての値空間と利用可能なLTE DRBの数とは、5Gにおいて利用可能であることが予想される値範囲に一致しない。さらに、UEは、5Gにおける表現を4Gにおいて使用されるEPSベアラコンテキストおよびIDに変換するために必要とされる十分な情報へのアクセスを有しないことがある。
また、(レガシーEPCプロシージャを使用すれば)、アイドルモードアクセス変更または接続モードハンドオーバ中に、UEとソースネットワーク(5G RAN+5GC)との間のNAS通信がなく、したがって、EPSベアラコンテキストへの希望される変換結果に関する情報をUEに与えることが可能でないことは、事実である。結果として、UEは、ハンドオーバの前に受信された情報に基づいて、単独で5Gリソースを4Gリソースにマッピングしなければならない。
問題を要約すると、a)UE、RANおよびコアネットワーク(CN)は、5G表現と4G表現との間で独立して変換することができず、保証された1:1マッピングがないので同じ結果に達することを保証され得ず、b)関係する識別子の5G表現は、2G/3Gおよび4G表現よりも大きい値空間を有する。
予測可能な変換を実施することに失敗したことによるエンドユーザ影響は、ボイスオーバーLTE(VoLTE)会話中であるときのドロップされた呼、メディアセッションの終了、無線リソースの枯渇、ならびにアクセス変更中のより長いサービス中断であり得る。
本開示は、上記で識別された問題を克服するための実施形態について説明する。たとえば、本開示は、アクセス変更中に、5G−RANからE−UTRAN(または4G−RAN)への変換のルールが、優先度の高いベアラの選択されたセットとして、得られたユーザプレーンリソースの予測可能なセットを作成するために適用されることについて説明する。ベアラの選択されたセットは、あらかじめ規定された変換ルールに従って、UE、5G−RANおよび5Gコアネットワークによって独立して識別され、変換される。ハンドオーバされなかったベアラは、ハンドオーバの直後にコアネットワークによって再始動されるか、より好適な時間において後で再始動されるか、オンデマンドで後で再始動されるか、または、代替的に取り除かれ得る。再始動は、コアネットワークのみによる判断であり、他のいかなる部分からのいかなる変換または識別をも必要としないが、UEとのアプリケーション論理についてのQoS多様化された通信が再び利用可能になるまで、追加遅延を導入する。再始動はレガシープロシージャを使用する。
たとえば、一態様では、保証ビットレート(GBR)ベアラ変換を伴うデフォルトベアラ変換のための方法が提供される。GBRベアラは、UE、5G−RAN、およびSMFにおいて、保証ビットレートについての割り当てられた値を含むPDUセッションのための1つまたは複数のQoSフローからの既存のQoSフローパラメータから知られている。PDUセッションが、GBRについての割り当てられた値を各々含む複数の関連するQoSフローを有する場合、各フローは、ターゲットE−UTRANアクセスのための候補GBRベアラとして決定される。各GBRベアラ候補は、たとえば、割り当ておよび保持優先度(ARP)などのQoSフローパラメータと、5GにおけるQoSフローパラメータを4G表現に変換するときに得られたEPS QoSクラス識別子(QCI)とに基づく優先順位で配置される。したがって、5G表現と4G表現との間の1:1マッピングのための一般的な優先度ルールは、PDUセッションおよびGBR QoSフロー(または略して「GBRフロー」)として特徴づけられたQoSフローの知識を有するノードによって使用され得る。
別の態様では、選択的ベアラ変換を伴うデフォルトベアラ変換のための方法が提供される。ハンドオーバの対象であるQoSフローが、ハンドオーバ対象(subject for handover)として、初期化時に5Gコアネットワークによってマークされる。このマーキングは、QoSフローがハンドオーバの候補であることを指示するためにセットアップ中に5G−RANおよびUEにシグナリングされる。各候補は、ARPなどのQoSフローパラメータと、QoSフローパラメータを変換するときに得られたEPS QCIとに基づく優先順位で配置される。
代替シグナリングソリューションとして、5Gコアは、どのリソースをハンドオーバのために優先度を付けられたものと見なすべきかをハンドオーバ準備段階中にRANおよびUEに通知するために、EPCにおいてレガシーS1ハンドオーバシグナリングとともに使用されるトップのシグナリングパターン上で新しいシグナリングを使用する。5Gコアがソース5G RANからの要求されたハンドオーバを処理することを開始したとき、5Gコアは、ハンドオーバ優先度付けと、ターゲット4Gアクセスにおけるシグナリング(たとえば、トラッキングエリア更新(TAU)シグナリング)においてどのEPSベアラID値を使用すべきかとをUEに通知するために、N1シグナリングを使用する。この機構に伴う利点は、この機構が別個のシグナリングを利用し、そのことによって、4Gへのハンドオーバのサポートなしで5Gシステムにおけるシグナリングに影響を及ぼさないことである。この機構に伴う別の利点は、ターゲット4Gアクセスにおけるシグナリングにおいて使用すべきEPSベアラID値が、UE、5G RAN、および5Gコアのうちの1つによって割り当てられ、次いで他の2つに配信され得、すなわち、そのことが、UE、5G RAN、および5GコアによるEPSベアラID値の協調割り当ての必要を取り除くことである。
5Gコアネットワークアーキテクチャにより、UEをサーブする2つ以上のSMFおよびポリシーサーバがあり得る。したがって、ハンドオーバのための候補リストは、ターゲットシステム能力を超え得る。そのような場合、ベアラは、導出された優先順位に従ってハンドオーバされ得る。
いくつかの実施形態では、(1つまたは複数の)SMFは、ハンドオーバ対象として、動的にトリガされるQoSフローのみをマークする(ならびにUEおよび5G−RANにシグナリングする)ように設定され得る。したがって、UE、RANおよびNGCがすべて、たとえばVoLTEに関連し、ハンドオーバされる、QoSフローに優先度を付けるためにどのリソースをハンドオーバすべきか、すなわち、有効にすべきかを判断するときに同じ情報を有することを確実にすること。
別の態様では、どの変換方法が使用されるべきであるかのシグナリング(指示)のための方法が提供される。上記の方法のうちの1つのみが選択された場合、UEとネットワークの両方が、どの方法を使用すべきか(およびどのQoSフローをハンドオーバすべきか)を知る。2つ以上の変換方法がサポートされた場合、コアネットワークは、どの方法を適用すべきかをUEおよびRANにシグナリングする。それらの方法が異なる時間において導入された場合、UEは、UEがどの方法をサポートするかをコアネットワークに指示する必要があり得る。
別の態様では、5G無線アクセスネットワーク(5G−RAN)から4G−RANへのハンドオーバのための方法が提供される。本方法は、第1のベアラ識別子(ID)をUEのための少なくとも第1のQoSフローに割り当てることを含む。本方法は、第2のベアラIDをUEのための少なくとも第2のQoSフローに割り当てることをも含む。本方法は、ハンドオーバメッセージを生成することと、ハンドオーバメッセージを送信することとをさらに含み、ハンドオーバメッセージを生成することは、第1のベアラIDおよび第2のベアラIDをハンドオーバメッセージ中に含めることを含む。
いくつかの実施形態では、本方法は、ユーザ機器(UE)のための5Gサービス品質(QoS)フローを4Gベアラにマッピングするための変換方法を選択することをさらに含む。
いくつかの実施形態では、本方法は5G−RANによって実施される。
いくつかの実施形態では、変換方法を選択することは、5Gコアネットワークノード(CN)によって選択された変換方法に一致する変換方法を選択することを含む。いくつかの実施形態では、5G CNによって選択された変換方法に一致する変換方法を選択することは、5G CNによって選択された変換方法を識別するメッセージを5G CNから受信することによって、5G CNによって選択された変換方法を決定することを含む。
いくつかの実施形態では、ハンドオーバメッセージを生成することは、4G−RANのためのトランスペアレントコンテナを生成することを含み、第1のベアラIDおよび第2のベアラIDは、トランスペアレントコンテナのE−RAB情報リスト情報エレメント(IE)中に含まれるE−RAB IDである。いくつかの実施形態では、ハンドオーバメッセージは、第1のベアラID、および第1のベアラIDが割り当てられる第1のQoSフローを識別する少なくとも第1のQoSフローIDと、第2のベアラID、および第2のベアラIDが割り当てられる第2のQoSフローを識別する少なくとも第2のQoSフローIDとをさらに含む。
いくつかの実施形態では、第1のQoSフローはデフォルトQoSフローであり、第2のQoSフローは保証ビットレート(GBR)QoSフローである。
いくつかの実施形態では、本方法は、割り当てるステップを実施することより前に保証ビットレート(GBR)QoSフローの順序セットを作成することをさらに含み、GBR QoSフローの順序セットは、第1のGBR QoSフローであって、順序セット中の第1のGBR QoSフローである、第1のGBR QoSフローと、第2のGBR QoSフローであって、順序セット中の第2のGBR QoSフローである、第2のGBR QoSフローとを含み、第1のQoSフローはデフォルトQoSフローであり、第2のQoSフローは第1のGBR QoSフローである。
別の態様では、本方法を実施するように適応されたネットワークノードが提供される。
別の態様では、5G−RANおよび4G−RANと通信することが可能なユーザ機器(UE)によって実施される方法が提供される。本方法は、UEが第1のベアラ識別子(ID)をUEのための第1のQoSフローに割り当てることと、UEが第2のベアラIDをUEのための第2のQoSフローに割り当てることとを含む。
いくつかの実施形態では、本方法は、UEが、UEのための5Gサービス品質(QoS)フローを4Gベアラにマッピングするための変換方法を選択することをさらに含む。
いくつかの実施形態では、変換方法を選択することは、5Gコアネットワークノード(CN)によって選択された変換方法に一致するように変換方法を選択することを含む。いくつかの実施形態では、5G CNによって選択された変換方法に一致する変換方法を選択することは、5G CNによって選択された変換方法を識別するメッセージを5G CNから受信することによって、5G CNによって選択された変換方法を決定することを含む。
いくつかの実施形態では、本方法は、UEが、UEによってサポートされる、5G QoSフローを4Gベアラにマッピングするための1つまたは複数の変換方法のセットを識別する情報を含む登録要求メッセージを送信することをさらに含む。いくつかの実施形態では、登録要求メッセージは、i)非アクセス層(NAS)登録要求およびii)NASトラッキングエリア更新要求のうちの1つである。
別の態様では、本方法を実施するように適応されたUEが提供される。
別の態様では、トラッキングエリア更新(TAU)方法が提供され、本方法は、第1のコアネットワークノード(CN)によって実施される。本方法は、第2のコアネットワークノードによって送信されたコンテキスト要求を受信することであって、第2のコアネットワークノードが、UEに関係するTAU要求を受信した後にコンテキスト応答を送信した、コンテキスト要求を受信することを含む。本方法は、第1のベアラ識別子(ID)をUEのための第1のQoSフローに割り当てることと、第2のベアラIDをUEのための第2のQoSフローに割り当てることと、コンテキスト応答を生成することと、コンテキスト応答を送信することとをも含み、コンテキスト応答を生成することは、第1のベアラIDおよび第2のベアラIDをコンテキスト応答内に含めることを含む。別の態様では、本方法を実施するように適応されたコアネットワークノードが提供される。
別の態様では、トラッキングエリア更新(TAU)方法が提供され、本方法は、UEによって実施される。本方法は、UEが、TAU要求を送るという判断を行うことを含む。本方法は、UEが、第1のベアラ識別子(ID)をUEのための第1のQoSフローに割り当てることと、第2のベアラIDをUEのための第2のQoSフローに割り当てることとをも含む。本方法は、UEが、TAU要求を生成することと、TAU要求を送信することとをさらに含み、TAU要求を生成することは、第1のベアラIDがQoSフローに割り当てられ、第2のベアラIDがQoSフローに割り当てられることを識別する情報をTAU要求内に含めることを含む。いくつかの実施形態では、第1のベアラIDがQoSフローに割り当てられ、第2のベアラIDがQoSフローに割り当てられることを識別する情報をTAU要求内に含めることは、第1のベアラIDおよび第2のベアラIDに対応するベアラが非アクティブでないことを指示するEPSベアラコンテキストステータスIEをTAU要求内に含めることを含む。別の態様では、本TAU方法を実施するように適応されるUEが提供される。
別の態様では、サービス品質(QoS)フローをベアラ識別子にマッピングするための方法が提供される。本方法は、5Gコアネットワークノード(5G−CN)において、セッション確立要求を受信することと、セッション確立要求を受信した後に、5G−CNが5G無線アクセスネットワーク(5G−RAN)にセッション要求を送信することとを含み、セッション要求は、i)QoSフローのセットを識別する情報と、ii)識別されたQoSフローのうちのどれがハンドオーバ対象であるかを指示するハンドオーバ対象情報とを含む。いくつかの実施形態では、セッション要求はQoSプロファイルを含み、ハンドオーバ対象情報はQoSプロファイルの一部である。
利点
5Gから4Gにアクセスを変更するときのエンドユーザ品質が改善する。ハンドオーバ時のエンドユーザ品質は、とりわけ、ホモジニアス5Gカバレッジがなく、UEが5Gカバレッジの外に出るときに4Gへのモビリティを実施する必要があるときの、5GにわたるボイスオーバーLTE(VoLTE)のために重要である。ここで開示される実施形態では、UEは、ハンドオーバ実行の一部として、VoLTE/IMSメディアトランスポートのためのGBRベアラを与えられ、それによって、アクセス変更によって引き起こされるサービス中断を最小限に抑える。
また、UEは、アイドルモードでの5Gから4Gへのアクセス変更時にGBRベアラリソースを自動的に与えられる。アクティブフラグを用いたIRAT TAUプロシージャの効果は、進行中のボイス呼のサービス継続性であるが、ハンドオーバを使用するアクセス変更の使用時と比較してより長いサービス中断を伴う。
別の利点は、それがEPCに対して透過的であることである。
別の利点は、検出され得、サービス継続性のために必須である、5Gアクセスにおけるユーザプレーンリソースのサブセットが、保存され、アクセス変更の後も利用可能なままであることである。アプリケーション機能を識別し、アプリケーション機能に関連付けることが可能でないリソースは、アクセス変更中に暗黙的に取り除かれる。ネットワークは、サービス必要に基づいてそのようなリソースを再アクティブ化することを選び得る。
別の利点は、その場合、NWおよびUEにおける表現の不整合の危険がないことである。
また、サービス検出時の動的フロー/最後のアクティブフローおよびオンデマンドセットアップの後続の再アクティブ化のレガシーオプションと組み合わせられたデフォルトフローおよびGBRフローに範囲を制限することは、そのことが予測可能な変換結果を与えることから、ロバストで十分な組合せを与える。
本明細書に組み込まれ、明細書の一部をなす添付の図面は、様々な実施形態を示している。
いくつかの実施形態による、システムを示す図である。 一実施形態による、プロセスを示すメッセージフロー図である。 一実施形態による、プロセスを示すメッセージフロー図である。 一実施形態による、プロセスを示すメッセージフロー図である。 一実施形態による、プロセスを示すメッセージフロー図である。 一実施形態による、プロセスを示すメッセージフロー図である。 いくつかの実施形態による、プロセスを示すフローチャートである。 いくつかの実施形態による、プロセスを示すフローチャートである。 いくつかの実施形態による、プロセスを示すフローチャートである。 いくつかの実施形態による、プロセスを示すフローチャートである。 いくつかの実施形態による、ネットワークノードのブロック図である。 いくつかの実施形態による、UEのブロック図である。 いくつかの実施形態による、ネットワークノードの機能ユニットを示す図である。 いくつかの実施形態による、ネットワークノードの機能ユニットを示す図である。 いくつかの実施形態による、UEの機能ユニットを示す図である。 いくつかの実施形態による、UEの機能ユニットを示す図である。
図1は、いくつかの実施形態による、システム100を示す。システム100は、5G−RAN102から4G−RAN103にハンドオーバされているUE101を示す。5G−RAN102は5Gコアネットワーク(CN)ノード(たとえば、モビリティ管理ノード)と通信し、4G−RAN103は4G CNノード(たとえば、モビリティ管理エンティティ(MME)などのモビリティ管理ノード)と通信する。
図2は、一実施形態による、プロセスを示すメッセージフロー図である。ステップ202において、UE101は、5G−RAN102(たとえば、5G−RAN102のgNB)にメッセージを送信する。メッセージは、UE101がサポートするユーザプレーンリソースの変換および選択のための方法(または略して「変換方法」)を識別する情報を含む。いくつかの実施形態では、UE101は、以下の変換方法、すなわち、1)デフォルトベアラのみの変換、2)デフォルトおよびGBRベアラ変換、ならびに3)選択的ベアラ変換のうちの1つまたは複数をサポートし得る。選択的ベアラ変換の特殊な場合は、すべてのQoSフローが選択されるときである。いくつかの実施形態では、ステップ202においてUE101によって送信されたメッセージは、UE101を5G CNノード104に登録するための登録プロセスの一部として送信される。したがって、ステップ202において送信されたメッセージは、4Gアタッチ要求メッセージおよび4Gトラッキングエリア更新(TAU)要求メッセージと同様である5G登録要求メッセージ(すなわち、NAS登録要求メッセージ)であり得る。他の実施形態では、ステップ202において送信されたメッセージは、NAS TAU要求メッセージであり得る。
ステップ204において、5G−RAN102は、UE101がサポートする変換方法と5G−RAN102がサポートする変換方法とを指示する情報を含むメッセージをノード104に送信する。他の実施形態では、ステップ204において送信されたメッセージは、UE101と5G−RAN102の両方によってサポートされる変換方法のみを識別する(すなわち、5G−RANは、共通項を評価し、これをノード104に指示する)。いくつかの実施形態では、5G−RAN102は、ステップ202においてUE101によって送信されたメッセージを受信したことに応答してステップ204を実施する。
ステップ205において、ノード104は、ステップ204において5G−RAN102によって送信されたメッセージを受信し、次いで、メッセージ中で識別された変換方法のうちの1つを選択する。
ステップ206において、ノード104は、選択された変換方法を識別する情報を含むメッセージを5G−RAN102に送信する。
ステップ208において、5G−RAN102は、ステップ206においてノード104によって送信されたメッセージを受信し、応答して、選択された変換方法を識別する情報、すなわち、どの選択された変換方法が、UE101によって、ならびにUE101のための5G−RAN102および5G CNノード104によって使用されることになるかを含むメッセージをUE101に送信する。したがって、いくつかの実施形態では、5G−RAN102は、ノード104によって送信されたメッセージを評価して、選択された変換方法を決定し、選択された変換方法を識別する識別子を記憶する(たとえば、識別子は、5G−RAN102によって維持されるUEコンテキスト情報に追加され得る)。いくつかの実施形態では、ステップ208において送信されたメッセージは、4Gアタッチ受付メッセージおよび4G TAU受付メッセージと同様であり得る登録応答メッセージである。
図3は、いくつかの実施形態による、デフォルトベアラ+GBRベアラ変換を実施するための、プロセスを示すメッセージフロー図である。
プロセスはステップ302において始まり、5G−RAN102は、UE101が4G−RAN103にハンドオーバされるべきであると決定する。
ステップ304において、5G−RAN102は、関連するQoS特性に基づいてPDUセッションごとにデフォルトQoSフローおよびGBR QoSフローを識別する。5G−RAN102は、次いで、あらかじめ決定された変換ルールを使用して、E−RAB識別子(ID)(EPSベアラID)を、識別されたQoSフローのうちの1つまたは複数に割り当てる(マッピングする)(たとえば、第1のE−RAB IDはデフォルトQoSフローに割り当てられ得、他のE−RAB IDはGBR QoSフローに割り当てられる)。E−RAB IDは、次いで、5G−RAN102によって生成されたトランスペアレントコンテナ中に含められる。たとえば、5G−RAN102は、あらかじめ規定されたルールに従ってフローを優先順位で分類し得る。この優先順位は、トランスペアレントコンテナをポピュレートするために使用され、トランスペアレントコンテナは、5G−RAN102によって生成され、4G−RAN103に送られる。5G−RAN102によって生成され、送られるトランスペアレントコンテナは、3GPP TS36.413 v14.1.0において規定されている「トランスペアレントコンテナIE」であり得る。
たとえば、ステップ304において、フローを順序付け、それにより、GBRフローの順序セットを作成した後に、5G−RAN102は、E−RAB IDを上位N個のGBRフロー(たとえば、N<5)の各々に割り当てる。たとえば、GBRフローの順序セット中の第1のGBRフローはE−RAB IDn+1を割り当てられ、GBRフローの順序セット中の第2のGBRフローはE−RAB IDn+2を割り当てられ、GBRフローの順序セット中の第3のGBRフローはE−RAB IDn+3を割り当てられるなどである。さらに、E−RAB IDnはデフォルトQoSフローに割り当てられる。割り当てられたE−RAB ID(すなわち、E−RAB IDn、E−RAB IDn+1、E−RAB IDn+2、...)は、トランスペアレントコンテナの一部であるE−RABリスト中に含まれる。
ステップ306において、5G−RAN102は、トランスペアレントコンテナをノード104に送信する。たとえば、ステップ306において、5G−RAN102は、トランスペアレントコンテナを含むメッセージをノード104に送信し得る(このメッセージは、本明細書では「要ハンドオーバ(handover required)」メッセージと呼ばれる)。いくつかの実施形態では、要ハンドオーバメッセージ中にトランスペアレントコンテナを含めることに加えて、5G−RAN102は、要ハンドオーバメッセージ中に、5G−RAN102がどのようにE−RAB IDをQoSフローに割り当てたかを示す情報をも含める。たとえば、トランスペアレントコンテナに加えて、要ハンドオーバメッセージは、トランスペアレントコンテナとは別個に、ペアのリスト(たとえば、タプルのセット)を含み得、ここで、各ペアは、本質的に、EPSベアラIDと、ペアにされたEPSベアラIDが割り当てられたQoSフローを識別するQoSフロー識別子とからなる。当技術分野で知られているように、E−RAB IDとEPSベアラIDとの間の1:1マッピングがある。
ステップ308において、ノード104は、ステップ306において5G−RAN102によって送信されたメッセージを受信し、応答して、関連するQoS特性に基づいてPDUセッションごとにデフォルトQoSフローおよびGBR QoSフローを識別する。ノード104は、次いで、あらかじめ決定された変換ルールを使用して、EPSベアラ識別子(ID)を、識別されたQoSフローのうちの1つまたは複数に割り当てる(たとえば、第1のEPSベアラIDはデフォルトQoSフローに割り当てられ得、他のEPSベアラIDはGBR QoSフローに割り当てられる)。割り当てられたEPSベアラIDは、次いで、ノード104によって生成されたハンドオーバメッセージ中に含められる。たとえば、ノード104は、あらかじめ規定されたルールに従ってQoSフローを優先順位で分類し得る。この優先順位は、ハンドオーバメッセージをポピュレートするために使用され、ハンドオーバメッセージは、ノード104によって生成され、ノード105に送られる。また、ステップ308において生成されたハンドオーバメッセージは、受信されたトランスペアレントコンテナを含む。いくつかの実施形態では、ハンドオーバメッセージは、フォワードリロケーション(Forward Relocation)要求メッセージである。
たとえば、ステップ308において、フローを順序付けた後に、ノード104は、EPSベアラIDを上位N個のGBRフロー(たとえば、N<5)の各々に割り当てる。たとえば、GBRフローの順序セット中の第1のGBRフローはEPSベアラIDn+1を割り当てられ、GBRフローの順序セット中の第2のGBRフローはEPSベアラIDn+2を割り当てられ、GBRフローの順序セット中の第3のGBRフローはEPSベアラIDn+3を割り当てられるなどである。さらに、EPSベアラIDnはデフォルトQoSフローに割り当てられる。割り当てられたEPSベアラID(すなわち、EPSベアラIDn、EPSベアラIDn+1、EPSベアラIDn+2、...)は、トランスペアレントコンテナとともにハンドオーバメッセージ中に含まれる。
5G−RAN102によってステップ306において送信された要ハンドオーバメッセージが、トランスペアレントコンテナを含むだけでなく、上記で説明されたEPSベアラID−QoSフローIDペアをも含む実施形態では、ステップ308において、ノード104は、単に、要ハンドオーバメッセージ中で識別されたEPSベアラIDを、ノード104がノード105に送信するハンドオーバメッセージ中に含める。上記で説明されたように、ステップ308において生成され、ノード104によってノード105に送信されたハンドオーバメッセージは、3GPP TS36.413において規定されているフォワードリロケーション要求メッセージであり得る。したがって、ノード104によって生成されたフォワードリロケーション要求は、5G−RAN102から受信された要ハンドオーバメッセージ中で識別された各EPSベアラID−QoSフローIDペアについてのベアラコンテキストIEを含む。したがって、各ベアラコンテキストIEは、識別されたQoSフローのうちの1つに対応する。QoSフローに対応するベアラコンテキストIEは、QoSフローについてのQoSパラメータに対応する1つまたは複数のベアラレベルQoSパラメータ(たとえば、QCI、ARP、GBR、最大ビットレート(MBR))を含む。
ステップ310において、5Gノード104は、生成されたハンドオーバメッセージを4Gノード105に送信する。
ステップ312において、ノード105は、ノード104から受信された、トランスペアレントコンテナノード105を含むメッセージ(すなわち、ハンドオーバ要求)を4G−RAN103に送信する。
ステップ313において、4G−RAN103は、ハンドオーバ要求を受信し、要求されたベアラ(すなわち、トランスペアレントコンテナ中に含まれるE−RAB IDによって識別されたベアラ)のためのリソースを予約し、確認応答(ACK)(たとえば、S1APメッセージハンドオーバ要求確認応答)を生成する。
ステップ314において、4G−RAN103は、ACKをノード105に送信する。
ステップ315において、ノード105は、4G−RAN103によって送信されたACK(たとえばハンドオーバ要求確認応答)を受信し、要求されたベアラ(すなわち、5Gノード104から受信されたメッセージ中で識別されたベアラ)のためのリソースを予約し、確認応答(ACK)を生成する。
ステップ316において、ノード105は、応答メッセージ(たとえば、フォワードリロケーション応答)をノード104に送信する。
ステップ318において、ノード105によって送信された応答メッセージを受信したことに応答して、ノード104は、ハンドオーバコマンドを5G−RAN102に送信する。
ステップ320において、5G−RAN102は、ハンドオーバコマンドを受信し、次いで、ハンドオーバコマンドをUE101に送る。
いくつかの実施形態では、UE101に送られたハンドオーバコマンドは、5Gネットワーク(すなわち、5G−RAN102または5G CNノード104)がどのようにE−EPSベアラIDをQoSフローに割り当てたかを示す情報を含む。たとえば、ハンドオーバコマンドは、ペアのリスト(たとえば、タプルのセット)を含み得、ここで、各ペアは、本質的に、EPSベアラIDと、ペアにされたEPSベアラIDが割り当てられたQoSフローを識別するQoSフロー識別子とからなる。ノード102およびノード104のうちのいずれか一方が、ハンドオーバコマンド中にペアのリストを含め得る。他の実施形態では、5Gネットワーク(すなわち、5G−RAN102または5G CNノード104)がどのようにE−EPSベアラIDをQoSフローに割り当てたかを示す情報をUE101に伝達するために、他のメッセージが使用される。たとえば、いくつかの実施形態では、この他のメッセージ(たとえば、新しいNASメッセージ)は、ステップ306が実施された後に、および送られる320が実施される前に、RAN102またはCN104のうちの1つによって送信され得る。
ステップ322において、UE101は、関連するQoS特性に基づいてPDUセッションごとにデフォルトQoSフローおよびGBR QoSフローを識別する。UE101は、フローを優先順位で分類する。この優先順位は、UEが4Gにおいて使用するEPSベアラ表現を導出するために使用される。たとえば、UE101は、あらかじめ決定された変換ルールを使用して、EPSベアラIDを、識別されたQoSフローのうちの1つまたは複数に割り当てる(たとえば、第1のEPSベアラIDはデフォルトQoSフローに割り当てられ得、他のEPSベアラIDはGBR QoSフローに割り当てられる)。たとえば、UE101は、あらかじめ規定されたルールに従ってQoSフローを優先順位で分類し、次いで、EPSベアラIDをフローに割り当て得る。より具体的な例として、ステップ322において、フローを順序付けた後に、UE101は、EPSベアラIDを上位N個のGBRフロー(たとえば、N<5)の各々に割り当てる。たとえば、GBRフローの順序セット中の第1のGBRフローはEPSベアラIDn+1を割り当てられ、GBRフローの順序セット中の第2のGBRフローはEPSベアラIDn+2を割り当てられ、GBRフローの順序セット中の第3のGBRフローはEPSベアラIDn+3を割り当てられるなどである。さらに、EPSベアラIDnはデフォルトQoSフローに割り当てられる。これは、各PDUセッションについて繰り返される(UE101は複数のPDUセッションを使用していることがあり、複数のPDUセッションの各々は1つまたは複数のQoSフローに関連する)。
EPSベアラID−QoSフローIDペアを含むメッセージ(たとえば、上記で説明されたような、ハンドオーバコマンドまたは何らかの他のメッセージ)がUE101に送信される実施形態では、ステップ322において、ノード104は、単に、識別されたEPSベアラID−QoSフローIDペアリングを用いる、すなわち、各リストされたペアについて、UE101は、ペア中に含まれるQoSフローIDによって識別されたQoSフローについてのデータを送信するとき、ペア中に含まれるEPSベアラIDによって識別されたEPSベアラを使用する。
上記で証明されたように、UE101、5G−RAN102および5G CN104の各々に、E−RAB ID(EPSベアラID)を5G QoSフローに割り当てるために同じルールを使用させることによって、UE101、4G−RAN103および4G CN105はすべて、5G QoSフローから導出されたEPSベアラの共通セットアップを有する。
図4は、いくつかの実施形態による、トラッキングエリア更新(TAU)プロシージャを実施するための、プロセスを示すメッセージフロー図である。
ステップ402において、UE101は、UE101がTAUプロシージャを始動するべきであると決定する。
ステップ404において、UE101は、選択された変換方法(図2参照)に基づいてEPSベアラを導出する。たとえば、選択された変換方法がデフォルトおよびGBRベアラである場合、ステップ404において、UE101は、ステップ322に関して上記で説明されたのと同じステップを実施する。たとえば、UE101は、UE101に通信されたEPSベアラID−QoSフローIDペアリングを用いるか、または、UE101自体が、上記で説明されたように、EPSベアラIDをそのQoSフローのうちの1つまたは複数に割り当てる。
ステップ406において、UE101は、TAU要求を4G−RAN103に送信する。TAU要求は、QoSフローに割り当てられるEPSベアラIDを識別する情報を含む。たとえば、ステップ404において、UE101が、EPSベアラID1を第1のQoSフローに割り当て、EPSベアラID2を第2のQoSフローに割り当て、EPSベアラID3を第3のQoSフローに割り当てたと仮定すると、TAUメッセージのEPSベアラコンテキストステータスIEは、これらの3つのEPSベアラIDに対応するEPSベアラが非アクティブでないが、他の可能なEPSベアラのすべてが非アクティブであることを指示する。
ステップ408において、4G−RAN103は、UE101からのTAU要求に応答して、TAU要求をノード105に送信する。
ステップ410において、ノード105は、4G−RAN103からのTAU要求に応答して、UE101のためのコンテキスト情報を要求するコンテキスト要求をノード104に送信する。
ステップ412において、ノード104は、コンテキスト要求を受信し、応答してコンテキスト応答を生成する。コンテキスト応答を生成することは、ノード104が、選択された変換方法に基づいてPDUセッションに関連するフローからEPSベアラを導出することと、導出されたEPSベアラを識別する情報をもつコンテキスト応答をポピュレートすることとを含む。すなわち、ステップ412において、ノード104は、ステップ308に関して説明されたのと同様の様式で、EPSベアラIDをQoSフローに割り当てる。EPSベアラIDがアイドルモード変更時に割り当てられるやり方は、ハンドオーバ時と比較して異なり得る。ハンドオーバ時には、5G RANは、EPSベアラID値を使用中のQoSフローに割り当てる。アイドルモード変更時には、関与する5G RANがない。アイドルモード変更時には、UE101と5G CN104とが、選択された変換方法と、EPSベアラID値をどのように割り当てるべきかのあらかじめ規定されたルールとに基づいて、EPSベアラIDを独立して割り当てる。
ステップ414において、ノード104は、コンテキスト応答をノード105に送信する。
ステップ416において、ノード105は、コンテキスト応答を受信したことに応答して、TAU受付をUE101に送信する。
図5Aおよび図5Bは、いくつかの実施形態による、デフォルトベアラ+選択されたベアラ変換を実施するための、プロセスを示すメッセージフロー図を示す。プロセスは、3つのパート、すなわち、パート1(ステップ1〜5)、パート2(ステップ6〜9)、およびパート3(ステップ10〜23)に分けられる。
パート1:PDUセッション確立。UEがPDUセッションを初期化する
ステップ1:UE101は、5G−RAN102を介してノード104にNASメッセージ(たとえば、PDUセッション確立要求)を送ることによって、PDUセッション確立プロシージャを始動する。
ステップ2:5G CN104は、N2 PDUセッション要求を5G−RAN102に送り、その要求は、QoSパラメータとQoSフロー識別子との間でマッピングするためにRAN102によって使用されるQoSプロファイルを含むN2情報を含む。QoSプロファイルはまた、どのQoSフローがハンドオーバ対象であるかをRANに通知する情報を含む。この情報は、「ハンドオーバ対象指示」と呼ばれることがある。N2 PDUセッション要求は、UEのためのNASメッセージ(たとえば、PDUセッション確立受付)をも含む。
ステップ3:5G−RAN102は、必要とされる無線リソースをセットアップし、ステップ2において受信されたNASメッセージ(PDUセッション確立受付)をUE101にフォワーディングする。NASメッセージは、QoSルールと、QoSフロー識別子とのマッピングとを含む。たとえば、マッピング情報は、1つまたは複数のQoSフローIDを含み、各QoSフローIDについて、マッピング情報は、QoSフローIDによって識別されたフローについてのQoSパラメータ(たとえば、GBR)と、QoSフローIDによって識別されたフローについてのパケットフローマーカーとを含む(パケットフローマーカーは、UEに送られたパケット中に含まれ、その結果、UEは、1つのDRBリソースが複数のQoSフローを多重化するために使用される場合にパケットが属するQoSフローを決定することができる)。また、QoSルールは、どのQoSフローがハンドオーバ対象であるかに関してUE101に通知する「ハンドオーバ対象指示」を含む。
ステップ4:UE101は、ノード102によって送信されたNASメッセージを受信し、ACK(たとえば、受付)を送る。
ステップ5:UE101によって送信されたACKを受信したことに応答して、RANノード102は、ACKをCN104に送る。
パート1が完了されたとき、UE101、5G−RAN102および5G−CN104はすべて、ハンドオーバ対象であるQoSフローを識別する情報(たとえば、リスト)を有する。
パート2:PDUセッション修正(随意)
パート2において、PDUセッションは何らかの理由で修正される。新しいQoSルールが追加され得る、前にインストールされたQoSルールが「ハンドオーバ対象」としてマークされる必要があり得る、QoSルールが削除されるなどである。
パート2のステップ(ステップ6〜9)は、上記のステップ2〜5と本質的に同じである。
ステップ6において、5G CN104は、N2 PDUセッション要求を5G−RAN102に送り、その要求は、QoSパラメータとQoSフロー識別子との間でマッピングするためにRAN102によって使用されるQoSプロファイルを含むN2情報を含む。QoSプロファイルはまた、どのQoSフローがハンドオーバ対象であるかに関してRANに通知する情報を含む。たとえば、QoSプロファイルは、5G PDUセッションが5Gから4Gへのアクセス変更の後に4G MMEによって使用/参照され得るかどうかに関する情報を含む。PDUセッションが使用され得ない場合、PDUセッションは、ハンドオーバ中に失敗し、その理由で、PDUセッションは、開始から除外されるべきであり、4Gアクセスにおけるハンドオーバまたは再確立のために考慮されるべきでない。N2 PDUセッション要求は、UEのためのNASメッセージ(たとえば、PDUセッション確立受付)をも含み、NASメッセージはまた、どのQoSフローがハンドオーバ対象であるかに関してUEに通知するための情報を含む。
ステップ7において、5G−RAN102は、必要とされる無線リソースをセットアップし、ステップ6において受信されたNASメッセージ(PDUセッション確立受付)をUE101にフォワーディングする。NASメッセージは、QoSルールと、QoSフロー識別子とのマッピングとを含む。また、QoSルールは、どのQoSフローがハンドオーバ対象であるかに関してUE101に通知する「ハンドオーバ対象指示」を含む。
ステップ8において、UE101は、ノード102によって送信されたNASメッセージを受信し、ACK(たとえば、受付)を送る。
ステップ9において、UE101によって送信されたACKを受信したことに応答して、RANノード102は、ACKをCN104に送る。
パート1が完了されたとき、UE101、5G−RAN102および5G−CN104はすべて、どのQoSフローがハンドオーバ対象であるかの更新されたリストを有する。
パート3 5Gから4Gへのハンドオーバ
パート3において、UE101、5G−RAN102および5G−CN104は、選択的ベアラ変換方法を判断した。4Gに実際に送ることが可能であるものよりも多くの、「ハンドオーバ対象」としてマークされたQoSフローがあり得ることが可能である。
ステップ10:5G−RAN102は、4G−RAN103へのUE101のハンドオーバを実施すると判断する。
ステップ11:5G−RAN102は、4G−RAN103に送られることになるトランスペアレントコンテナを生成する。トランスペアレントコンテナを生成する際に、5G−RAN102は、ハンドオーバ対象とマークされるQoSフローの数がしきい値を超えない限り、E−RAB IDを、ハンドオーバ対象としてマークされる各QoSフローに割り当てる(たとえば、しきい値は、4Gネットワークが扱うことができるEPSベアラの数であり得る)。ハンドオーバ対象とマークされるQoSフローの数がしきい値を超える場合、5G−RAN102は、ハンドオーバ対象としてマークされるQoSフローを(たとえば、優先順位で)順序付け、上位N個のフロー(すなわち、最高優先度をもつN個のフロー)(一実施形態ではN=8)の各々について、5G−RAN102はE−RAB IDをQoSフローに割り当てる。したがって、多くともN個のE−RAB IDがQoSフローに割り当てられる。QoSフローに割り当てられた各E−RAB IDは、E−RAB情報リストIE中でトランスペアレントコンテナに入れられる。
ステップ12:5G−RAN102は、トランスペアレントコンテナを含むハンドオーバメッセージを5G−CN104に送る。ハンドオーバメッセージは、4G「ハンドオーバコマンド」の5Gバージョンである。
ステップ13:ハンドオーバメッセージの受信時に、5G−CN104は、フォワードリロケーション要求(FRR)メッセージを生成する。FRRを生成する際に、5G CN104は、ハンドオーバ対象とマークされるQoSフローの数がしきい値を超えない限り、EPSベアラIDを、ハンドオーバ対象としてマークされる各QoSフローに割り当てる(たとえば、しきい値は、4Gネットワークが扱うことができるEPSベアラの数であり得る)。ハンドオーバ対象とマークされるQoSフローの数がしきい値を超える場合、5G CN104は、ハンドオーバ対象としてマークされるQoSフローを(たとえば、優先順位で)順序付け、上位N個のフロー(すなわち、最高優先度をもつN個のフロー)(一実施形態ではN=8)の各々について、5G CN104はEPSベアラIDをQoSフローに割り当てる。したがって、多くともN個のEPSベアラIDがQoSフローに割り当てられる。QoSフローに割り当てられた各EPSベアラIDは、FRRに入れられる。より詳細には、ノード104によって生成されたFRRは、QoSフローに割り当てられた各EPSベアラIDについてのベアラコンテキストIEを含む。したがって、各ベアラコンテキストIEは、EPSベアラIDが割り当てられたQoSフローのうちの1つに対応する。QoSフローに対応するベアラコンテキストIEは、QoSフローについてのQoSパラメータに対応する1つまたは複数のベアラレベルQoSパラメータ(たとえば、QCI、ARP、GBR、最大ビットレート(MBR))を含む。
ステップ14:5G−CN104は、FRRメッセージを4G−CN105に送る。メッセージは、ステップ12において受信されたトランスペアレントコンテナと、ステップ13において導出されたEPSベアラとを含んでいる。
ステップ15〜19:EPSにおけるレガシープロシージャに従う。
ステップ20:5G−RAN102は、HOから開始するように5G−RAN102に命令する。
ステップ21:5G−RAN102は、HOから開始するようにUE101に命令する。
ステップ22:UE101は、UE101が有する5G表現の4G表現(ベアラおよびDRB)を導出することを開始する。すなわち、ステップ22において、UE101は、ハンドオーバ対象としてマークされたすべてのQoSフローを選択するために「選択的ベアラ」方法を使用する。送ることが可能であるフローよりも多くのフローがあり得るので、UE101は、フローを優先順位で順序付ける。最高優先度をもつ8つのフローが選択され、優先度に従ってEPSベアラIDを得る。
ステップ23:UEは、4Gにおいて現れるとき、ハンドオーバを確認する。
再び図4を参照すると、選択された変換方法が選択的ベアラ変換方法である場合、ステップ404において、UE101はTAU要求を生成し、TAU要求を生成することは、ハンドオーバ対象とマークされるQoSフローの数がしきい値を超えない限り、UE101がEPSベアラIDを、ハンドオーバ対象としてマークされる各QoSフローに割り当てることを含む。ハンドオーバ対象とマークされるQoSフローの数がしきい値を超える場合、UE101は、ハンドオーバ対象としてマークされるQoSフローを(たとえば、優先順位で)順序付け、上位N個のフロー(すなわち、最高優先度をもつN個のフロー)の各々について、UE101はEPSベアラIDをQoSフローに割り当てる。生成されたTAU要求は、QoSフローに割り当てられたEPSベアラIDを識別する情報を含む。たとえば、ステップ404において、UE101が、EPSベアラID1を第1のQoSフローに割り当て、EPSベアラID2を第2のQoSフローに割り当て、EPSベアラID3を第3のQoSフローに割り当てたと仮定すると、TAUメッセージのEPSベアラコンテキストステータスIEは、これらの3つのEPSベアラIDに対応するEPSベアラが非アクティブでないが、他の可能なEPSベアラのすべてが非アクティブであることを指示する。
同様に、再び図4のステップ412を参照すると、選択された変換方法が選択的ベアラ変換方法であるとき、ステップ412において、5G CN104はコンテキスト応答を生成し、コンテキスト応答を生成することは、ハンドオーバ対象とマークされるQoSフローの数がしきい値を超えない限り、5G CN104がEPSベアラIDを、ハンドオーバ対象としてマークされる各QoSフローに割り当てることを含む。ハンドオーバ対象とマークされるQoSフローの数がしきい値を超える場合、5G CN104は、ハンドオーバ対象としてマークされるQoSフローを(たとえば、優先順位で)順序付け、上位N個のフロー(すなわち、最高優先度をもつN個のフロー)の各々について、5G CN104はEPSベアラIDをQoSフローに割り当てる。QoSフローに割り当てられた各EPSベアラIDは、コンテキスト応答に入れられる。より詳細には、ノード104によって生成されたコンテキスト応答は、QoSフローに割り当てられた各EPSベアラIDについてのベアラコンテキストIEを含む。したがって、各ベアラコンテキストIEは、EPSベアラIDが割り当てられたQoSフローのうちの1つに対応する。QoSフローに対応するベアラコンテキストIEは、QoSフローについてのQoSパラメータに対応する1つまたは複数のベアラレベルQoSパラメータ(たとえば、QCI、ARP、GBR、最大ビットレート(MBR))を含む。
図6は、いくつかの実施形態による、プロセス600を示すフローチャートである。プロセス600はステップ602において始まり得、5Gネットワークノード(5G−RAN102または5G CN104)が、UEのための5Gサービス品質(QoS)フローを4Gベアラにマッピングするための変換方法を選択する。ステップ604において、ネットワークノードは、第1のベアラ識別子(ID)をUEのための第1のQoSフローに割り当てる。ステップ606において、ネットワークノードは、第2のベアラIDをUEのための第2のQoSフローに割り当てる。ステップ608において、ネットワークノードはハンドオーバメッセージを生成し、ハンドオーバメッセージを生成することは、第1のベアラIDおよび第2のベアラIDをハンドオーバメッセージ中に含めることを含む。ステップ610において、ネットワークノードは、ハンドオーバメッセージを送信する。
図7は、いくつかの実施形態による、プロセス700を示すフローチャートである。プロセス700はステップ702において始まり得、UE101は、UEを4G−RANにハンドオーバするための、5G−RANによって送信されたハンドオーバメッセージを受信する。ステップ704において、UE101は、UEのための5Gサービス品質(QoS)フローを4Gベアラにマッピングするための変換方法を選択する。ステップ706において、UE101は、第1のベアラ識別子(ID)をUEのための第1のQoSフローに割り当てる。ステップ708において、UE101は、第2のベアラIDをUEのための第2のQoSフローに割り当てる。
図8は、いくつかの実施形態による、プロセス800を示すフローチャートである。プロセス800はステップ802において始まり得、5G CN104は、第2のコアネットワークノード(たとえば、MME)によって送信されたコンテキスト要求を受信し、第2のコアネットワークノードは、UEに関係するTAU要求を受信した後にコンテキスト応答を送信した。ステップ804において、5G CN104は、第1のベアラ識別子(ID)をUEのための第1のQoSフローに割り当てる。ステップ806において、5G CN104は、第2のベアラIDをUEのための第2のQoSフローに割り当てる。ステップ808において、5G CN104はコンテキスト応答を生成し、コンテキスト応答を生成することは、第1のベアラIDおよび第2のベアラIDをコンテキスト応答内に含めることを含む。ステップ810において、5G CN104は、コンテキスト応答を送信する。
図9は、いくつかの実施形態による、プロセス900を示すフローチャートである。プロセス900はステップ902において始まり得、UE101は、TAU要求を送るという判断を行う。ステップ904において、UE101は、第1のベアラ識別子(ID)をUEのための第1のQoSフローに割り当てる。ステップ906において、UE101は、第2のベアラIDをUEのための第2のQoSフローに割り当てる。ステップ908において、UE101はTAU要求を生成し、TAU要求を生成することは、第1のベアラIDがQoSフローに割り当てられ、第2のベアラIDがQoSフローに割り当てられることを識別する情報をTAU要求内に含めることを含む。ステップ910において、UE101は、TAU要求を送信する。
図10は、いくつかの実施形態による、ノード102/104のブロック図である。図10に示されているように、ネットワークノード102/104は、1つまたは複数のプロセッサ(P)1055(たとえば、汎用マイクロプロセッサ、および/または、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)など、1つまたは複数の他のプロセッサ)を含み得るデータ処理システム(DPS)1002と、ネットワークインターフェース1048であって、ネットワークノード102/104が、ネットワークインターフェース1048が接続されるネットワーク110(たとえば、インターネットプロトコル(IP)ネットワーク)に接続された他のノードにデータを送信し、他のノードからデータを受信することを可能にするための送信機(Tx)1045および受信機(Rx)1047を備える、ネットワークインターフェース1048と、1つまたは複数の不揮発性記憶デバイスおよび/または1つまたは複数の揮発性記憶デバイス(たとえば、ランダムアクセスメモリ(RAM))を含み得るローカル記憶ユニット(別名「データ記憶システム」)1008とを備え得る。ネットワークノード102/104が汎用マイクロプロセッサを含む実施形態では、コンピュータプログラム製品(CPP)1041が与えられ得る。CPP1041はコンピュータ可読媒体(CRM)1042を含み、CRM1042は、コンピュータ可読命令(CRI)1044を含むコンピュータプログラム(CP)1043を記憶する。CRM1042は、限定はしないが、磁気媒体(たとえば、ハードディスク)、光媒体(たとえば、DVD)、メモリデバイス(たとえば、ランダムアクセスメモリ)など、非一時的コンピュータ可読媒体であり得る。いくつかの実施形態では、コンピュータプログラム1043のCRI1044は、データ処理システム1002によって実行されたとき、CRIが、ネットワークノード102/104に、上記で説明されたステップ(たとえば、フローチャートを参照しながら上記で説明されたステップ)を実施させるように設定される。他の実施形態では、ネットワークノード102/104は、コードの必要なしに本明細書で説明されるステップを実施するように設定され得る。すなわち、たとえば、データ処理システム1002は、単に1つまたは複数のASICからなり得る。したがって、本明細書で説明される実施形態の特徴は、ハードウェアおよび/またはソフトウェアにおいて実装され得る。
図11は、いくつかの実施形態による、UE101のブロック図である。図11に示されているように、UE101は、1つまたは複数のプロセッサ1155(たとえば、汎用マイクロプロセッサ、および/または、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)など、1つまたは複数の他のプロセッサ)を含み得るデータ処理システム(DPS)1102と、無線アクセスネットワーク(RAN)ノード(たとえば、TRP)と無線通信する際に使用するためのアンテナ1122に結合された送信機1105および受信機1106と、1つまたは複数の不揮発性記憶デバイスおよび/または1つまたは複数の揮発性記憶デバイス(たとえば、ランダムアクセスメモリ(RAM))を含み得るローカル記憶ユニット(別名「データ記憶システム」)1108とを備え得る。UE101が汎用マイクロプロセッサを含む実施形態では、コンピュータプログラム製品(CPP)1141が与えられ得る。CPP1141はコンピュータ可読媒体(CRM)1142を含み、CRM1142は、コンピュータ可読命令(CRI)1144を含むコンピュータプログラム(CP)1143を記憶する。CRM1142は、限定はしないが、磁気媒体(たとえば、ハードディスク)、光媒体(たとえば、DVD)、メモリデバイス(たとえば、ランダムアクセスメモリ)など、非一時的コンピュータ可読媒体であり得る。いくつかの実施形態では、コンピュータプログラム1143のCRI1144は、データ処理システム1102によって実行されたとき、CRIが、UE101に、上記で説明されたステップ(たとえば、フローチャートを参照しながら上記で説明されたステップ)を実施させるように設定される。他の実施形態では、UE101は、コードの必要なしに本明細書で説明されるステップを実施するように設定され得る。すなわち、たとえば、データ処理システム1102は、単に1つまたは複数のASICからなり得る。したがって、本明細書で説明される実施形態の特徴は、ハードウェアおよび/またはソフトウェアにおいて実装され得る。
図12Aは、いくつかの実施形態による、ネットワークノード(たとえば、ネットワークノード102またはネットワークノード104)の機能ユニットを示す図である。ノードは、UE101のための5G QoSフローを4Gベアラにマッピングするための変換方法を選択するように設定された選択ユニット1202と、第1のベアラIDをUEのための第1のQoSフローに割り当て、第2のベアラIDをUEのための第2のQoSフローに割り当てるように設定された割り当てユニット1204と、ハンドオーバメッセージを生成するように設定された生成ユニット1206と、ハンドオーバメッセージを送信するために送信機を用いるように設定された送信ユニット1208とを含む。生成ユニット1206は、第1のベアラIDおよび第2のベアラIDをハンドオーバメッセージ中に含めることを含むプロセスを実施することによってハンドオーバメッセージを生成するように適応される。
図12Bは、いくつかの実施形態による、ネットワークノード104の機能ユニットを示す図である。図12Bに示されているように、ネットワークノード104は、第2のコアネットワークノード(たとえば、ネットワークノード105)によって送信されたコンテキスト要求を受信するように適応された受信ユニット1212であって、第2のコアネットワークノードが、UE(たとえば、UE101)に関係するTAU要求を受信した後にコンテキスト応答を送信した、受信ユニット1212と、第1のベアラIDをUEのための第1のQoSフローに割り当て、第2のベアラIDをUEのための第2のQoSフローに割り当てるように設定された割り当てユニット1214と、コンテキスト応答を生成するように設定された生成ユニット1216と、コンテキスト応答を送信するために送信機を用いるように設定された送信ユニット1218とを含み、生成ユニット1216は、第1のベアラIDおよび第2のベアラIDをコンテキスト応答内に含めることを含むプロセスを実施することによってコンテキスト応答を生成するように適応される。
図13Aは、いくつかの実施形態による、UE(たとえば、UE101)の機能ユニットを示す図である。図13Aに示されているように、UEは、UEを4G−RAN103にハンドオーバするための、5G−RAN102によって送信されたハンドオーバメッセージを受信するために受信機を用いるように設定された受信ユニット1302と、UEのための5G QoSフローを4Gベアラにマッピングするための変換方法を選択するように設定された選択ユニット1304と、第1のベアラIDをUEのための第1のQoSフローに割り当て、第2のベアラIDをUEのための第2のQoSフローに割り当てるように設定された割り当てユニット1306とを含む。
図13Bは、いくつかの実施形態による、UE(たとえば、UE101)の機能ユニットを示す図である。図13Aに示されているように、UEは、TAU要求を送るという判断を行うように動作可能である判断ユニット1312と、第1のベアラIDをUEのための第1のQoSフローに割り当て、第2のベアラIDをUEのための第2のQoSフローに割り当てるように設定された割り当てユニット1314と、TAU要求を生成するように設定された生成ユニット1316と、TAU要求を送信するために送信機を用いるように設定された送信ユニット1318とを含み、生成ユニット1316は、第1のベアラIDがQoSフローに割り当てられ、第2のベアラIDがQoSフローに割り当てられることを識別する情報をTAU要求内に含めることを含むプロセスを実施することによってTAU要求を生成するように設定される。
本開示の様々な実施形態が(もしあれば、添付の書類を含む)本明細書で説明されたが、それらの実施形態は、限定ではなく、例として提示されたにすぎないことを理解されたい。したがって、本開示の広さおよび範囲は、上記で説明された例示的な実施形態のいずれによっても限定されるべきでない。その上、本明細書で別段に指示されていない限り、またはコンテキストによって明確に否定されていない限り、上記で説明されたエレメントのそれらのすべての考えられる変形形態における任意の組合せが、本開示によって包含される。
さらに、上記で説明され、図面に示されたプロセスは、ステップのシーケンスとして示されたが、これは、説明のためにのみ行われた。したがって、いくつかのステップが追加され得、いくつかのステップが省略され得、ステップの順序が並べ替えられ得、いくつかのステップが並行して実施され得ることが企図される。

Claims (11)

  1. 5G無線アクセスネットワーク(5G−RAN)(102)から4G−RAN(103)へのハンドオーバのための、ネットワークノードによって実施される方法(600)であって、
    ユーザ機器(UE)(101)のための5Gサービス品質(QoS)フローを4Gベアラにマッピングするための変換方法を選択すること(602)と、
    第1のベアラ識別子(ID)をUEのための少なくとも第1のQoSフローに割り当てること(604)と、
    第2のベアラIDを前記UEのための少なくとも第2のQoSフローに割り当てること(606)と、
    ハンドオーバメッセージを生成すること(608)と、
    前記ハンドオーバメッセージを送信すること(610)と
    を含み、
    前記ハンドオーバメッセージを生成することが、前記第1のベアラIDおよび前記第2のベアラIDを前記ハンドオーバメッセージ中に含めることを含み、
    前記変換方法を選択することが、5Gコアネットワークノード(CN)(104)によって選択された前記変換方法を識別するメッセージを前記5G CN(104)から受信することによって、前記5G CN(104)によって選択された前記変換方法を決定することを含む、方法(600)。
  2. 前記方法が前記5G−RAN(102)の前記ネットワークノードによって実施される、請求項に記載の方法。
  3. 前記ハンドオーバメッセージを生成することが、前記4G−RAN(103)のためのトランスペアレントコンテナを生成することを含み、
    前記第1のベアラIDおよび前記第2のベアラIDが、前記トランスペアレントコンテナのE−RAB情報リスト情報エレメント(IE)中に含まれるE−RAB IDである、請求項1または2に記載の方法。
  4. 前記ハンドオーバメッセージは、
    前記第1のベアラID、および前記第1のベアラIDが割り当てられる前記第1のQoSフローを識別する少なくとも第1のQoSフローIDと、
    前記第2のベアラID、および前記第2のベアラIDが割り当てられる前記第2のQoSフローを識別する少なくとも第2のQoSフローIDと
    をさらに含む、請求項に記載の方法。
  5. 前記第1のQoSフローがデフォルトQoSフローであり、
    前記第2のQoSフローが保証ビットレート(GBR)QoSフローである、
    請求項1からのいずれか一項に記載の方法。
  6. 前記方法が、前記割り当てるステップを実施することより前に保証ビットレート(GBR)QoSフローの順序セットを作成することをさらに含み、GBR QoSフローの前記順序セットが、第1のGBR QoSフローであって、前記順序セット中の第1のGBR QoSフローである、第1のGBR QoSフローと、第2のGBR QoSフローであって、前記順序セット中の第2のGBR QoSフローである、第2のGBR QoSフローとを含み、
    前記第1のQoSフローがデフォルトQoSフローであり、
    前記第2のQoSフローが前記第1のGBR QoSフローである、
    請求項1からのいずれか一項に記載の方法。
  7. ネットワークノードであって、
    UEのための5Gサービス品質(QoS)フローを4Gベアラにマッピングするための変換方法を選択するように設定された選択モジュール(1202)と、
    第1のベアラ識別子(ID)をUEのための第1のQoSフローに割り当て、第2のベアラIDを前記UEのための第2のQoSフローに割り当てるように設定された割り当てモジュール(1204)と、
    ハンドオーバメッセージを生成するように設定された生成モジュール(1206)と、
    前記ハンドオーバメッセージを送信するために送信機を用いるように設定された送信モジュール(1208)と
    を備え、
    前記生成モジュールが、前記第1のベアラIDおよび前記第2のベアラIDを前記ハンドオーバメッセージ中に含めることを含むプロセスを実施することによって前記ハンドオーバメッセージを生成するように適応され
    前記変換方法を選択することが、5Gコアネットワークノード(CN)によって選択された前記変換方法を識別するメッセージを前記5G CN(104)から受信することによって、前記5G CN(104)によって選択された前記変換方法を決定することを含む、ネットワークノード。
  8. 5G−RAN(102)および4G−RAN(103)と通信することが可能なユーザ機器(UE)(101)によって実施される方法(700)であって、
    前記UEが、前記UEを4G−RANにハンドオーバするための、5G−RANによって送信されたハンドオーバメッセージを受信すること(702)と、
    前記UEが、前記UEのための5Gサービス品質(QoS)フローを4Gベアラにマッピングするための変換方法を選択すること(704)と、
    前記UEが第1のベアラ識別子(ID)を前記UEのための第1のQoSフローに割り当てること(706)と、
    前記UEが第2のベアラIDを前記UEのための第2のQoSフローに割り当てること(708)と
    を含み、
    前記変換方法を選択することが、5Gコアネットワークノード(CN)によって選択された前記変換方法を識別するメッセージを前記5G CN(104)から受信することによって、前記5G CN(104)によって選択された前記変換方法を決定することを含む、方法(700)。
  9. 前記UEが、前記UEによってサポートされる、5G QoSフローを4Gベアラにマッピングするための1つまたは複数の変換方法のセットを識別する情報を含む登録要求メッセージを送信することをさらに含む、請求項に記載の方法。
  10. 前記登録要求メッセージが、i)非アクセス層(NAS)登録要求およびii)NASトラッキングエリア更新要求のうちの1つである、請求項に記載の方法。
  11. ユーザ機器(UE)(101)であって、
    前記UEを4G−RANにハンドオーバするための、5G−RANによって送信されたハンドオーバメッセージを受信するように設定された受信モジュール(1302)と、
    前記UEのための5Gサービス品質(QoS)フローを4Gベアラにマッピングするための変換方法を選択するように設定された選択モジュール(1304)と、
    第1のベアラ識別子(ID)を前記UEのための第1のQoSフローに割り当て、第2のベアラIDを前記UEのための第2のQoSフローに割り当てるように設定された割り当てモジュール(1306)
    を備え
    前記変換方法を選択することが、5Gコアネットワークノード(CN)によって選択された前記変換方法を識別するメッセージを前記5G CN(104)から受信することによって、前記5G CN(104)によって選択された前記変換方法を決定することを含む、ユーザ機器(UE)(101)。
JP2019541802A 2017-02-07 2018-02-06 ベアラ変換 Active JP6905065B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762455696P 2017-02-07 2017-02-07
US62/455,696 2017-02-07
PCT/EP2018/052853 WO2018146056A1 (en) 2017-02-07 2018-02-06 Bearer translation

Publications (2)

Publication Number Publication Date
JP2020505877A JP2020505877A (ja) 2020-02-20
JP6905065B2 true JP6905065B2 (ja) 2021-07-21

Family

ID=61189444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019541802A Active JP6905065B2 (ja) 2017-02-07 2018-02-06 ベアラ変換

Country Status (5)

Country Link
US (1) US11223987B2 (ja)
EP (1) EP3580959B1 (ja)
JP (1) JP6905065B2 (ja)
CO (1) CO2019007851A2 (ja)
WO (1) WO2018146056A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791353B2 (ja) 2017-03-17 2020-11-25 日本電気株式会社 端末、第1のネットワーク装置、及び第2のネットワーク装置
US10326576B2 (en) * 2017-04-28 2019-06-18 Qualcomm Incorporated Reusing long-term evolution (LTE) reference signals for nested system operations
CN110651499B (zh) 2017-05-02 2022-07-12 株式会社Ntt都科摩 用户装置、无线通信***以及无线通信方法
JP2019004406A (ja) * 2017-06-19 2019-01-10 シャープ株式会社 ユーザ装置、amf、コアネットワーク装置、p−cscf、及び通信制御方法
CN109548093B (zh) * 2017-08-02 2021-02-12 中兴通讯股份有限公司 网络切换的方法、装置及***
CN116419349A (zh) * 2017-08-11 2023-07-11 北京三星通信技术研究有限公司 支持切换的方法及相应设备
CN109392042B (zh) * 2017-08-14 2021-10-26 华为技术有限公司 一种会话管理方法、异***互操作的方法及网络装置
CN109803329B (zh) * 2017-11-16 2021-01-22 电信科学技术研究院 数据前转隧道确定方法、接入和移动性管理设备及基站
JP2019125845A (ja) * 2018-01-12 2019-07-25 シャープ株式会社 ユーザ装置
US11089527B2 (en) * 2018-01-17 2021-08-10 T-Mobile Usa, Inc. Telecommunications network bearer allocation and deallocation
US20210258385A1 (en) * 2018-10-19 2021-08-19 Nokia Solutions And Networks Oy Configuring quality of service
CN109451463B (zh) * 2018-11-22 2021-06-22 中通服咨询设计研究院有限公司 一种基于5g网络的电动自行车防盗***
CN109391978A (zh) * 2018-12-13 2019-02-26 中国联合网络通信集团有限公司 终端切换方法及装置
US11153925B2 (en) * 2019-01-14 2021-10-19 Mediatek Inc. Handling of QoS flow description without valid EPS bearer context
CN111586886B (zh) * 2019-02-15 2022-05-13 华为技术有限公司 一种无线回传链路的控制方法及装置
EP3949306A1 (en) * 2019-04-02 2022-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Ims registration
US11265753B2 (en) * 2019-08-30 2022-03-01 Cisco Technology, Inc. Guaranteed bit rate adjustability
CN112469024B (zh) * 2019-09-09 2022-03-29 华为技术有限公司 一种会话管理的方法及装置
CN115551030A (zh) * 2019-11-08 2022-12-30 华为技术有限公司 一种通信方法及其装置
US20210329499A1 (en) * 2020-06-24 2021-10-21 Necati Canpolat Enhanced quality of service for 5g wireless communications
WO2022000470A1 (en) * 2020-07-03 2022-01-06 Qualcomm Incorporated Method and apparatus for managing inter-rat cell handover

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2036382T3 (pl) * 2006-06-16 2020-02-28 Nokia Technologies Oy Urządzenie i sposób przesyłania informacji o kontekście protokołu danych pakietowych dla terminala w przypadku przełączania między systemami
EP2361484B1 (en) 2008-11-21 2013-07-17 Telefonaktiebolaget L M Ericsson (publ) Gateway configured to provide a handover, converting and routing function
US8787172B2 (en) * 2010-06-21 2014-07-22 Qualcomm Incorporated Method and apparatus for QoS context transfer during inter radio access technology handover in a wireless communication system
WO2015160329A1 (en) * 2014-04-15 2015-10-22 Nokia Solutions And Networks Oy Interworking with bearer-based system
EP3251407A4 (en) * 2015-01-30 2018-07-04 Nokia Solutions and Networks Oy Improvements in handovers between different access networks
WO2016175690A1 (en) 2015-04-30 2016-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Relaxed measurement reporting with control plane dual connectivity
KR102160007B1 (ko) * 2016-07-05 2020-09-25 엘지전자 주식회사 차세대 이동통신 네트워크에서 액세스 제어를 수행하는 방법 및 사용자 장치
US11910258B2 (en) * 2016-08-10 2024-02-20 Nec Corporation Radio access network node, radio terminal, core network node, and method therefor
WO2018029933A1 (ja) * 2016-08-10 2018-02-15 日本電気株式会社 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
WO2018084678A2 (en) * 2016-11-04 2018-05-11 Samsung Electronics Co., Ltd. Method and apparatus for provisioning quality of service in next radio
CN110651499B (zh) * 2017-05-02 2022-07-12 株式会社Ntt都科摩 用户装置、无线通信***以及无线通信方法
KR102331114B1 (ko) 2017-05-25 2021-11-26 삼성전자 주식회사 무선 통신 시스템에서 서비스의 품질 보장 방법 및 장치
US10917939B2 (en) * 2018-02-16 2021-02-09 Intel Corporation Data radio bearer (DRB) identifier assignment for multi-radio access technology dual connectivity (MR-DC)

Also Published As

Publication number Publication date
EP3580959A1 (en) 2019-12-18
CO2019007851A2 (es) 2019-07-31
US20200267617A1 (en) 2020-08-20
WO2018146056A1 (en) 2018-08-16
JP2020505877A (ja) 2020-02-20
US11223987B2 (en) 2022-01-11
EP3580959B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6905065B2 (ja) ベアラ変換
US11224079B2 (en) Method and apparatus for operating wireless communication system having separated mobility management and session management
CN109417695B (zh) 一种通信路径转换方法及设备
US10708824B2 (en) Method and apparatus for supporting session continuity for 5G cellular network
US11076317B2 (en) Radio access network node, core network node, radio terminal, and methods therefor
KR102221747B1 (ko) 스위칭 방법 및 장치
KR102395384B1 (ko) 셀룰러망의 효율적 pdu 세션 활성화 및 비활성화 방안
KR20200017523A (ko) 세션 관리 방법, 상호 연동 방법, 및 네트워크 장치
US11683723B2 (en) Methods and system for offloading data traffic
EP3913963B1 (en) Method and device for transmitting data in wireless communication system
US11219073B2 (en) Session connection establishment method and control plane network element
JP7273052B2 (ja) 異なるアクセスネットワーク間で移動体通信装置のハンドオーバを実行する方法およびシステム
KR102232787B1 (ko) 무선 통신 시스템에서 서비스 연속성을 제어하는 방법 및 장치
US20160157155A1 (en) Selective Bearer Splitting in Cell System
US9980152B2 (en) Method of indication of available radio resources
US10791484B2 (en) User equipment handover method and device
CN109845389B (zh) 一种通信方法及装置
US20170086186A1 (en) Method and apparatus for providing network access to a user equipment requesting voice service
US20230239940A1 (en) Data transmission method and apparatus
WO2014183619A1 (zh) 一种邻近通信的实现方法和装置
WO2022052851A1 (zh) 一种服务质量QoS的监测方法
KR20200099956A (ko) 무선 통신 시스템에서 데이터를 전송하기 위한 방법 및 장치
WO2020034344A1 (en) Ultra reliable communication using multiple packet data unit sessions
WO2015170630A1 (ja) 移動局、基地局、上りリンクデータ量報告方法及び上りリンクデータのリソース割り当て方法
US20180077112A1 (en) Ip address allocation method in d2d communication and user equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210624

R150 Certificate of patent or registration of utility model

Ref document number: 6905065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150