JP6904281B2 - Directional electrical steel sheet - Google Patents

Directional electrical steel sheet Download PDF

Info

Publication number
JP6904281B2
JP6904281B2 JP2018041109A JP2018041109A JP6904281B2 JP 6904281 B2 JP6904281 B2 JP 6904281B2 JP 2018041109 A JP2018041109 A JP 2018041109A JP 2018041109 A JP2018041109 A JP 2018041109A JP 6904281 B2 JP6904281 B2 JP 6904281B2
Authority
JP
Japan
Prior art keywords
steel sheet
strain
strain introduction
iron loss
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018041109A
Other languages
Japanese (ja)
Other versions
JP2019157152A (en
Inventor
岡部 誠司
誠司 岡部
大村 健
大村  健
博貴 井上
博貴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018041109A priority Critical patent/JP6904281B2/en
Publication of JP2019157152A publication Critical patent/JP2019157152A/en
Application granted granted Critical
Publication of JP6904281B2 publication Critical patent/JP6904281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、主に変圧器の鉄心に用いられる方向性電磁鋼板に関するものである。 The present invention relates mainly to grain-oriented electrical steel sheets used for iron cores of transformers.

従来、方向性電磁鋼板(以下、単に鋼板と示す)の鉄損低減方法として、鋼板に線状の歪みを圧延方向へ繰り返し導入する、いわゆる磁区細分化処理が知られている。歪みを導入するには、レーザ、電子ビーム、プラズマ炎等を照射する方法などがある。歪みの導入は、鋼板の片面のみに行われるのが一般的であるが、例えば、特許文献1には、鋼板の表裏面(両面)に歪みを導入することにより、鉄損の低減効果をより大きくする技術が提案されている。 Conventionally, as a method for reducing iron loss of grain-oriented electrical steel sheets (hereinafter, simply referred to as steel sheets), a so-called magnetic domain subdivision process is known in which linear strain is repeatedly introduced into a steel sheet in the rolling direction. To introduce distortion, there is a method of irradiating a laser, an electron beam, a plasma flame, or the like. Generally, the strain is introduced only on one side of the steel sheet. For example, in Patent Document 1, the effect of reducing iron loss is further improved by introducing the strain on the front and back surfaces (both sides) of the steel sheet. Technology to increase the size has been proposed.

この技術では、両面の歪みの相対的な位置によって鋼板の鉄損が大きく変化するため、歪みが上下で対になるように、しかもその圧延方向のずれが0.3mmよりも小さくなるように制御する必要がある。しかし、鋼板の表面と裏面とで別々の装置で歪みを導入するため、その位置を表裏面で正確に対になるように制御するのは容易ではない。その実現方法として特許文献1の図7には、表と裏を対にして同時にレーザを照射する方法が示されているが、この装置の構成でも両者の位置を0.3mmよりも小さくなるように合わせてそれを維持するためには非常に精密な調整が必要である。また、鋼板の下側にある照射装置には粉塵が落下して付着しやすいために、装置の整備の頻度が高くなる。さらに、鋼板に穴が発生した場合は、反対面の装置にレーザが当たって破損させる、おそれがある。 In this technology, the iron loss of the steel sheet changes greatly depending on the relative position of the strain on both sides, so the strain is controlled so that it is paired vertically and the deviation in the rolling direction is smaller than 0.3 mm. There is a need. However, since strain is introduced by different devices on the front surface and the back surface of the steel sheet, it is not easy to control the positions so that they are paired accurately on the front and back surfaces. As a method for realizing this, FIG. 7 of Patent Document 1 shows a method of irradiating a laser at the same time with the front and back facing each other, but even in the configuration of this device, the positions of both are set to be smaller than 0.3 mm. Very precise adjustment is required to maintain it together. In addition, since dust easily falls and adheres to the irradiation device under the steel plate, the frequency of maintenance of the device increases. Further, if a hole is formed in the steel sheet, the laser may hit the device on the opposite surface and damage the steel sheet.

特開2002−12918号公報Japanese Unexamined Patent Publication No. 2002-12918

本発明は、鋼板の表裏面に線状の歪み導入部を付与するに当たり、歪み導入部の鋼板表裏面における相対的な位置関係を適正化することにより、鉄損を効率的に低減する技術について提供することを目的とする。 The present invention relates to a technique for efficiently reducing iron loss by optimizing the relative positional relationship between the front and back surfaces of a steel sheet for providing a linear strain introduction portion on the front and back surfaces of the steel sheet. The purpose is to provide.

本発明では、歪み導入部を鋼板の表裏面間で固定された位置関係の対にするのではなく、両者が鋼板の表裏面間で互いに交わるようにして鋼板全体が良好な条件を平均的に満たすようにすることによって、磁気特性が場所により変動することを抑制する。すなわち、本発明の要旨構成は、次の通りである。 In the present invention, the strain introduction portion is not paired with a fixed positional relationship between the front and back surfaces of the steel sheet, but the two intersect each other between the front and back surfaces of the steel sheet so that the entire steel sheet is in good condition on average. By satisfying the requirements, it is possible to prevent the magnetic properties from fluctuating from place to place. That is, the gist structure of the present invention is as follows.

1.方向性電磁鋼板の表裏面の各々に、該鋼板の圧延方向を横切る向きに延びる、線状の歪み導入部の複数本を前記圧延方向へ間隔を置いて有し、前記鋼板の表面と裏面との間において、前記歪み導入部が相互に交差する配置を有する方向性電磁鋼板。 1. 1. Each of the front and back surfaces of the directional electromagnetic steel sheet has a plurality of linear strain introduction portions extending in a direction crossing the rolling direction of the steel sheet at intervals in the rolling direction, and the front surface and the back surface of the steel sheet have a plurality of linear strain introduction portions. A directional electromagnetic steel sheet having an arrangement in which the strain introduction portions intersect with each other.

2.前記歪み導入部の交差配置は、各歪み導入部上における隣接する交点の間隔が10mm以上100mm以下である前記1に記載の方向性電磁鋼板。 2. The grain-oriented electrical steel sheet according to 1 above, wherein the crossing arrangement of the strain introduction portions is such that the distance between adjacent intersections on each strain introduction portion is 10 mm or more and 100 mm or less.

3.前記歪み導入部の交差配置における交差角が1〜30°である前記1または2に記載の方向性電磁鋼板。 3. 3. The grain-oriented electrical steel sheet according to 1 or 2 above, wherein the intersection angle in the intersection arrangement of the strain introduction portions is 1 to 30 °.

本発明によれば、鋼板の表裏面間の歪み導入部の対応関係が適正化されるため、鉄損を安定的に低減した方向性電磁鋼板を提供することができる。 According to the present invention, since the correspondence between the front and back surfaces of the steel sheet is optimized, it is possible to provide a grain-oriented electrical steel sheet in which iron loss is stably reduced.

鋼板における歪導入部の配置を示す図である。It is a figure which shows the arrangement of the strain introduction part in a steel plate. 鋼板における歪導入部の配置を示す図である。It is a figure which shows the arrangement of the strain introduction part in a steel plate. 鋼板における歪導入部の配置を示す図である。It is a figure which shows the arrangement of the strain introduction part in a steel plate. 鋼板における歪導入部の配置を示す図である。It is a figure which shows the arrangement of the strain introduction part in a steel plate. 歪導入部の交点間隔と鉄損との関係を示すグラフである。It is a graph which shows the relationship between the intersection interval of a strain introduction part and iron loss.

本発明の対象は方向性電磁鋼板である。特に、厚さが0.23mm以下で高配向性の方向性電磁鋼板は、磁区細分化処理による鉄損の低減量が大きく有効である。
本発明で用いる磁区細分化を生じさせるための歪みの導入方法には、レーザ照射、電子ビーム照射又は熱プラズマ照射等の公知の方法を用いることができる。鋼板の表面と裏面とで別の方法を用いても構わない。
The object of the present invention is a grain-oriented electrical steel sheet. In particular, for grain-oriented electrical steel sheets having a thickness of 0.23 mm or less and high orientation, the amount of reduction of iron loss by magnetic domain subdivision treatment is large and effective.
As a method for introducing strain for causing magnetic domain subdivision used in the present invention, a known method such as laser irradiation, electron beam irradiation, or thermal plasma irradiation can be used. Different methods may be used for the front surface and the back surface of the steel sheet.

この際、導入する歪の量を適当に調整する。例えば、レーザ照射の場合はレーザの出力、ビームスポット形状およびビームの走査速度等によって、電子ビーム照射の場合は加速電圧、ビーム電流、ビームスポット形状およびビームの走査速度等によって、熱プラズマ照射の場合はプラズマ電流、ガス流量、プラズマ炎形状、トーチと鋼板の間隔およびトーチの走査速度等によって、導入する歪量を調整する。導入する歪が大きすぎる場合は、鉄損の増大、磁歪の増大および/または絶縁被膜の損傷等の不良が生じ、歪が小さすぎる場合は磁区細分化による鉄損低減効果が小さくなる。
以上の手法に従って磁区細分化処理を行うことによって、幅が0.01〜0.5mm程度の線状に深さが0.01mm以上板厚未満程度の歪導入部を形成する。
At this time, the amount of strain to be introduced is appropriately adjusted. For example, in the case of laser irradiation, the laser output, beam spot shape, beam scanning speed, etc., and in the case of electron beam irradiation, the acceleration voltage, beam current, beam spot shape, beam scanning speed, etc., in the case of thermal plasma irradiation. Adjusts the amount of strain to be introduced according to the plasma current, the gas flow rate, the shape of the plasma flame, the distance between the torch and the steel plate, the scanning speed of the torch, and the like. If the strain to be introduced is too large, defects such as an increase in iron loss, an increase in magnetostriction and / or damage to the insulating coating occur, and if the strain is too small, the effect of reducing iron loss by subdividing the magnetic domain becomes small.
By performing the magnetic domain subdivision treatment according to the above method, a strain introduction portion having a width of about 0.01 to 0.5 mm and a depth of 0.01 mm or more and less than a plate thickness is formed.

上記した手法によって、鋼板の表面に、該鋼板の圧延方向を横切る向き、好ましくは圧延方向と直交する方向(以下、圧延直交方向とも示す)または圧延直交方向に近い向きに延びる、歪導入部を圧延方向に繰り返し形成する。すなわち、図1に、鋼板1の表面側に形成する歪導入部2を実線として、および裏面側に形成する歪導入部3を鎖線として、それぞれ示すように、歪導入部2は、鋼板1表面の圧延方向RDを横切る向きに圧延方向に繰り返し形成され、同様に、歪導入部3は鋼板1裏面に形成される。これら歪導入部2および3の鋼板の圧延方向RDでの間隔tは3mm以上30mm以下の範囲が好ましく、この範囲において導入する歪の大きさに応じて適当な間隔tに調整する。ただし、間隔tが3mmよりも小さい場合はヒステリシス損の増大や磁歪の増大を招き、一方30mmよりも大きい場合は磁区細分化による鉄損低減の効果が小さいことから、間隔tは3mm以上30mm以下とすることが好ましい。 By the above method, a strain introduction portion extending on the surface of the steel sheet in a direction crossing the rolling direction of the steel sheet, preferably in a direction orthogonal to the rolling direction (hereinafter, also referred to as a rolling orthogonal direction) or in a direction close to the rolling orthogonal direction. It is repeatedly formed in the rolling direction. That is, as shown in FIG. 1, the strain introduction portion 2 formed on the front surface side of the steel plate 1 is a solid line, and the strain introduction portion 3 formed on the back surface side is a chain line. The strain introduction portion 3 is repeatedly formed in the rolling direction in the direction crossing the rolling direction RD of the steel sheet 1, and similarly, the strain introducing portion 3 is formed on the back surface of the steel sheet 1. The distance t between the strain introduction portions 2 and 3 in the rolling direction RD of the steel sheet is preferably in the range of 3 mm or more and 30 mm or less, and is adjusted to an appropriate distance t according to the magnitude of the strain to be introduced in this range. However, if the interval t is smaller than 3 mm, the hysteresis loss increases and the magnetostriction increases, while if it is larger than 30 mm, the effect of reducing the iron loss by subdividing the magnetic domain is small, so the interval t is 3 mm or more and 30 mm or less. Is preferable.

一方、鋼板1の裏面についても、好ましくは上記と同様の間隔tの範囲内にて歪導入部3を形成する。但し、歪導入部3は、歪導入部2と交差する向きに形成することが肝要である。そのためには、歪導入部2および3のいずれか少なくとも一方は圧延直交方向Lからずれている必要があり、好ましくは、圧延直交方向Lに対してα:30°以内の向きに形成する。 On the other hand, on the back surface of the steel sheet 1, the strain introduction portion 3 is preferably formed within the same interval t as described above. However, it is important that the strain introducing portion 3 is formed in a direction intersecting with the strain introducing portion 2. For that purpose, at least one of the strain introducing portions 2 and 3 needs to be deviated from the rolling orthogonal direction L, and is preferably formed in a direction within α: 30 ° with respect to the rolling orthogonal direction L.

ここで、図1に示す事例は、歪導入部2および3の上記した間隔tおよび角度αが同じ場合を示しているが、この事例に限らず、例えば図2や図3に示す歪導入部2および3の配置であっても良い。
すなわち、図2に示す事例は、上記した間隔tおよび角度αがともに、歪導入部2と歪導入部3とで異なる場合であり、図3に示す事例は、同様に間隔tおよび角度αがともに、歪導入部2と歪導入部3とで異なり、かつ歪導入部2の角度αが0°の場合である。これらは典型的な事例を示しているものであり、歪導入部2と歪導入部3とが交差する配置であれば様々な変形が可能である。その中でも特に、鋼板の表面と裏面の間隔の差が50%以下の交差配置が、低い鉄損値を鋼板内でばらつきなく実現するのに有効である。
Here, the case shown in FIG. 1 shows a case where the above-mentioned intervals t and angles α of the strain introduction parts 2 and 3 are the same, but the case is not limited to this case, and for example, the strain introduction parts shown in FIGS. 2 and 3 are shown. The arrangement may be 2 and 3.
That is, the case shown in FIG. 2 is a case where the above-mentioned interval t and the angle α are both different between the strain introduction section 2 and the strain introduction section 3, and in the case shown in FIG. 3, the interval t and the angle α are similarly different. In both cases, the strain introduction unit 2 and the strain introduction unit 3 are different, and the angle α of the strain introduction unit 2 is 0 °. These show typical cases, and various deformations are possible as long as the strain introducing portion 2 and the strain introducing portion 3 are arranged so as to intersect with each other. Among them, the crossing arrangement in which the difference between the front surface and the back surface of the steel sheet is 50% or less is particularly effective for achieving a low iron loss value within the steel sheet without variation.

かように鋼板の表裏面間で歪導入部2および3が相互に交差する配置とすることによって、表裏面の線同士が同じパターンになったり、互いに平行となるなどの、歪導入部の相互配置が排除され、表裏面間の歪導入部相互の間隔によって鉄損が大きく変動することを防ぐことができ、安定した品質の電磁鋼板を得られる。 By arranging the strain introducing portions 2 and 3 intersecting each other between the front and back surfaces of the steel sheet in this way, the lines on the front and back surfaces have the same pattern or are parallel to each other. The arrangement is eliminated, it is possible to prevent the iron loss from fluctuating greatly depending on the distance between the strain introduction portions between the front and back surfaces, and an electromagnetic steel sheet of stable quality can be obtained.

さらに、鋼板の表裏面間で歪導入部2および3が相互に交差する配置とするに当たり、鋼板の表裏面間での歪導入部の交点の同一歪導入部上での間隔を規制することが好ましい。具体的には、図1に歪導入部2における交点P間隔をD2および歪導入部3における交点P間隔をD3として示すように、これらD2およびD3が所定の範囲にあることが好ましい。
すなわち、歪導入部2における交点Pの間隔D2および歪導入部3における交点Pの間隔D3は、狭すぎると鉄損の増大が生じ、一方、この間隔が広いと、鋼板の幅方向の鉄損に変動が生じやすくなる。電力用の変圧器に用いる方向性電磁鋼板は幅100mm程度の細い幅で用いることも多く、このような幅方向の鉄損の変動は製造される変圧器の特性にばらつきを生じる。従って、上記した間隔D2および間隔D3は10mm以上100mm以下にすることが望ましい。
Further, in arranging the strain introduction portions 2 and 3 to intersect each other between the front and back surfaces of the steel sheet, it is possible to regulate the interval between the front and back surfaces of the steel plate at the intersection of the strain introduction portions on the same strain introduction portion. preferable. Specifically, as shown in FIG. 1 as D2 for the intersection P interval in the strain introduction section 2 and D3 for the intersection P interval in the strain introduction section 3, it is preferable that these D2 and D3 are in a predetermined range.
That is, if the interval D2 of the intersection points P in the strain introduction portion 2 and the interval D3 of the intersection points P in the strain introduction portion 3 are too narrow, the iron loss increases, while if this interval is wide, the iron loss in the width direction of the steel sheet Is likely to fluctuate. Electrical steel sheets used for transformers for electric power are often used with a narrow width of about 100 mm, and such fluctuations in iron loss in the width direction cause variations in the characteristics of the transformers to be manufactured. Therefore, it is desirable that the above-mentioned spacing D2 and spacing D3 be 10 mm or more and 100 mm or less.

なお、歪導入部は鋼板の幅方向で複数の区画に分割して形成する場合があるが、その場合はそれぞれの分割された区画毎に上記の条件を満たしていればよい。 The strain introduction portion may be divided into a plurality of sections in the width direction of the steel sheet, and in that case, the above conditions may be satisfied for each of the divided sections.

なお、本発明において、方向性電磁鋼板の成分組成や製造条件は特に限定する必要はなく、いずれも方向性電磁鋼板の一般に従うものでよい。 In the present invention, the component composition and the manufacturing conditions of the grain-oriented electrical steel sheet are not particularly limited, and all of them may follow the general rules of grain-oriented electrical steel sheets.

鋼板の表裏面に形成したフォルステライト被膜の上に張力コーティングを焼付けた、板厚:0.23mm、磁束密度B:1.94Tおよび鉄損W17/50:0.85W/kgの方向性電磁鋼板を作製し、該鋼板を500mm角に切断して試験片とした。この試験片の片面(表面とする)に加速電圧150kV、スポット径0.15mmの電子ビームを圧延直交方向に80m/sで走査すること形成した歪導入部を圧延方向に8mmの間隔tで繰り返して形成した。次に、反対側の面(裏面とする)に同様に電子ビームを圧延直交方向に対して0°から30°の種々の角度αをつけて、圧延方向に同じ間隔tで繰り返して導入した。 A directional electromagnetic steel sheet with a thickness of 0.23 mm, magnetic flux density B 8 : 1.94 T and iron loss W 17/50 : 0.85 W / kg, which is obtained by baking a tension coating on the forsterite film formed on the front and back surfaces of the steel sheet. The steel sheet was prepared and cut into 500 mm square pieces to prepare test pieces. A strain introduction portion formed by scanning an electron beam having an acceleration voltage of 150 kV and a spot diameter of 0.15 mm at 80 m / s in the rolling orthogonal direction on one side (the surface) of this test piece is repeated at intervals t of 8 mm in the rolling direction. Formed. Next, the electron beam was similarly introduced on the opposite surface (the back surface) at various angles α from 0 ° to 30 ° with respect to the direction orthogonal to the rolling, and repeatedly introduced in the rolling direction at the same interval t.

この角度αが0°の場合は表面での歪導入部と裏面での歪導入部は交差せず(図4参照)、0°を超える場合は交差する(図3参照)。角度αが0°の場合は、表面に形成する歪導入部は試験片に対して常に一定の位置とし、裏面に形成する歪導入部は表面の歪導入部に対して圧延方向の相対位置(間隔t’)を0mmから4mmまで1mm刻みで5段階に変更した。さらに、すべてのパターンでビーム電流は10mAとした。 When this angle α is 0 °, the strain introduction portion on the front surface and the strain introduction portion on the back surface do not intersect (see FIG. 4), and when the angle exceeds 0 °, they intersect (see FIG. 3). When the angle α is 0 °, the strain introduction portion formed on the front surface is always at a constant position with respect to the test piece, and the strain introduction portion formed on the back surface is at a relative position in the rolling direction with respect to the strain introduction portion on the front surface ( The interval t') was changed from 0 mm to 4 mm in 5 steps in 1 mm increments. Furthermore, the beam current was set to 10 mA for all patterns.

その結果を表1に示す通り、歪導入部が交差しない場合には表面と裏面との歪導入部の位置ずれによって鉄損が変動するが、交差させた場合には安定して低鉄損にすることができた。すなわち、交差させた場合には、αによらず、鉄損が安定して0.71W/kgまで低減されたが、交差がない場合は0.71W/kgから0.79W/kgに変動した。 As shown in Table 1, when the strain introduction parts do not intersect, the iron loss fluctuates due to the misalignment of the strain introduction parts between the front surface and the back surface, but when they intersect, the iron loss is stable and low. We were able to. That is, when crossed, the iron loss was stably reduced to 0.71 W / kg regardless of α, but when there was no crossing, it fluctuated from 0.71 W / kg to 0.79 W / kg.

Figure 0006904281
Figure 0006904281

実施例1と同じ方向性電磁鋼板の500mm角の試験片の片面(表面とする)に加速電圧150kVおよびスポット径0.15mmの電子ビームを圧延直交方向から角度α:2.5°から20°の範囲で傾けた方向に80m/sで走査することによって、歪導入部を圧延方向に3mmから10mmの間隔tにて繰り返して形成した。 Rolling an electron beam with an acceleration voltage of 150 kV and a spot diameter of 0.15 mm on one side (surface) of a 500 mm square test piece of the same directional electromagnetic steel plate as in Example 1 in an angle α: 2.5 ° to 20 ° from the orthogonal direction. By scanning at 80 m / s in the tilted direction, the strain introduction portion was repeatedly formed at intervals t of 3 mm to 10 mm in the rolling direction.

次に、反対側の面(裏面とする)に同様に電子ビームを圧延直交方向に対して表面における角度αをマイナスにした角度−αをつけて、表面と同じ間隔tで圧延方向に繰り返して歪導入部を形成した。その際、表裏面間での歪導入部の交点間隔を種々に変化させた。全ての条件でビーム電流は5mAから20mAまで2mA刻みで変更して照射し、鉄損が最小になる条件を調査した。 Next, the electron beam is similarly applied to the opposite surface (the back surface) with an angle −α obtained by subtracting the angle α on the surface with respect to the direction orthogonal to the rolling, and repeated in the rolling direction at the same interval t as the surface. A strain introduction portion was formed. At that time, the interval between the intersections of the strain introduction portions between the front and back surfaces was changed in various ways. Under all conditions, the beam current was changed from 5 mA to 20 mA in 2 mA increments for irradiation, and the conditions for minimizing iron loss were investigated.

その結果を図5に示す通り、交点の間隔が10mmから100mmの間で最も鉄損が小さくなった。さらに、上記試験片を幅100mmの5枚の試験片に切り分けてそれぞれの鉄損を調査したところ、交点の間隔が10mmから100mmの間では5枚の試験片の鉄損のばらつきは0.005W/kg程度であったが、交点の間隔が100mmを超えると鉄損のばらつきが0.01W/kg以上と大きくなり、表面の線と裏面の線が交差する箇所が少なくなると幅方向での鉄損に差が生じていることがわかった。 As the result is shown in FIG. 5, the iron loss was the smallest when the interval between the intersections was between 10 mm and 100 mm. Furthermore, when the above test pieces were cut into five test pieces with a width of 100 mm and the iron loss of each was investigated, the variation in iron loss of the five test pieces was 0.005 W / when the interval between the intersections was between 10 mm and 100 mm. It was about kg, but if the distance between the intersections exceeds 100 mm, the variation in iron loss becomes as large as 0.01 W / kg or more, and if the number of intersections between the front and back lines decreases, the iron loss in the width direction becomes large. It turned out that there was a difference.

1 鋼板
2、3 歪導入部
P 交点
1 Steel plate 2, 3 Strain introduction part P intersection

Claims (2)

方向性電磁鋼板の表裏面の各々に、該鋼板の圧延方向を横切る向きに延びる、線状の歪み導入部の複数本を前記圧延方向へ間隔を置いて有し、前記鋼板の表面と裏面との間において、前記歪み導入部が相互に交差する配置を有し、前記歪み導入部の交差配置は、各歪み導入部上における隣接する交点の間隔が10mm以上100mm以下である方向性電磁鋼板(ただし、表裏面に溝を有するものを除く)Each of the front and back surfaces of the directional electromagnetic steel sheet has a plurality of linear strain introduction portions extending in a direction crossing the rolling direction of the steel sheet at intervals in the rolling direction, and the front surface and the back surface of the steel sheet. in between, said a distortion introduction section an arrangement intersecting with each other, the cross-arrangement of the strain introduction portion, oriented magnetic steel sheet spacing adjacent intersection points of each of the strain introduction section on is 10mm or more than 100mm ( However, those with grooves on the front and back surfaces are excluded) . 前記歪み導入部の交差配置における圧延直交方向と歪み導入部とが交差する角度が1〜30°である請求項1に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1, wherein the angle at which the rolling orthogonal direction and the strain introduction portion intersect in the cross arrangement of the strain introduction portions is 1 to 30 °.
JP2018041109A 2018-03-07 2018-03-07 Directional electrical steel sheet Active JP6904281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041109A JP6904281B2 (en) 2018-03-07 2018-03-07 Directional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041109A JP6904281B2 (en) 2018-03-07 2018-03-07 Directional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2019157152A JP2019157152A (en) 2019-09-19
JP6904281B2 true JP6904281B2 (en) 2021-07-14

Family

ID=67995696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041109A Active JP6904281B2 (en) 2018-03-07 2018-03-07 Directional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6904281B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102276850B1 (en) * 2019-12-19 2021-07-12 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105424A (en) * 1980-01-25 1981-08-21 Nippon Steel Corp Directional magnetic steel plate with excellent magnetic property
JPH07320922A (en) * 1994-03-31 1995-12-08 Kawasaki Steel Corp One directional electromagnetic steel sheet at low iron loss
JP4319715B2 (en) * 1998-10-06 2009-08-26 新日本製鐵株式会社 Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof
KR20090093487A (en) * 2008-02-29 2009-09-02 (주)제이씨빅툴즈 Apparatus for Forming Permanent Micro Magnetic Domain, Method for Manufacturing Low Core Loss Grain-oriented Electrical Steel Sheet, and Low Core Loss Grain-oriented Electrical Steel Sheet
CN107502723A (en) * 2017-09-15 2017-12-22 武汉钢铁有限公司 The method that iron loss of oriented silicon steel by utilizing is reduced by laser double-surface indentation
JP7052391B2 (en) * 2018-02-08 2022-04-12 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2019157152A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
WO2016136176A1 (en) Grain-oriented electrical steel sheet and production method therefor
CA2284466C (en) Grain-oriented electrical steel sheet excellent in magnetic properties, and production method thereof
JP5594439B1 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
KR20160070843A (en) Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
KR101961175B1 (en) Grain-oriented electrical steel sheet and process for producing same
JP6904281B2 (en) Directional electrical steel sheet
JP6160376B2 (en) Directional electrical steel sheet for transformer core and method of manufacturing the same
KR101484878B1 (en) Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet
JP5870580B2 (en) Method for producing grain-oriented electrical steel sheet
JP5594440B1 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
MX2022001182A (en) Method for forming linear groove, and method for forming grain-oriented electrical steel sheet.
JP2012036443A (en) Electron beam irradiation method
WO2022050053A1 (en) Grain-oriented electromagnetic steel sheet
WO2021132378A1 (en) Grain-oriented electromagnetic steel sheet and production method therefor
JP2017106117A (en) Oriented electromagnetic steel sheet for transformer iron core and manufacturing method therefor
JPWO2019189859A1 (en) Transformer core
JP2021163943A (en) Winding iron core, manufacturing method of winding iron core, and winding iron core manufacturing device
JPWO2019189857A1 (en) Transformer core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210413

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210421

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6904281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250