JP6901913B2 - Opaque quartz glass - Google Patents

Opaque quartz glass Download PDF

Info

Publication number
JP6901913B2
JP6901913B2 JP2017124155A JP2017124155A JP6901913B2 JP 6901913 B2 JP6901913 B2 JP 6901913B2 JP 2017124155 A JP2017124155 A JP 2017124155A JP 2017124155 A JP2017124155 A JP 2017124155A JP 6901913 B2 JP6901913 B2 JP 6901913B2
Authority
JP
Japan
Prior art keywords
quartz glass
opaque quartz
bubbles
less
opaque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017124155A
Other languages
Japanese (ja)
Other versions
JP2019006636A (en
Inventor
哲司 上田
哲司 上田
学 内海
学 内海
藤井 健司
健司 藤井
片岡 正篤
正篤 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2017124155A priority Critical patent/JP6901913B2/en
Publication of JP2019006636A publication Critical patent/JP2019006636A/en
Application granted granted Critical
Publication of JP6901913B2 publication Critical patent/JP6901913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Description

本発明は、不透明石英ガラスに関する。 The present invention relates to opaque quartz glass.

不透明石英ガラスは、石英ガラス中に微細気泡を多数含有させた材料であり、微細気泡により光を散乱させ、輻射による熱伝導を抑制するという機能を有する。不透明石英ガラスは、保温材、遮熱材として広く用いられており、特に、半導体製造装置や、石英ガラス製造装置等の保温材、遮熱材として広く用いられている。 Opaque quartz glass is a material in which a large number of fine bubbles are contained in the quartz glass, and has a function of scattering light by the fine bubbles and suppressing heat conduction due to radiation. Opaque quartz glass is widely used as a heat insulating material and a heat insulating material, and in particular, it is widely used as a heat insulating material and a heat insulating material for semiconductor manufacturing equipment and quartz glass manufacturing equipment.

従来の不透明石英ガラスは、光の散乱性を高めるために、気泡径を小さくすることを主眼において開発されてきた。 The conventional opaque quartz glass has been developed mainly for reducing the bubble diameter in order to enhance the light scattering property.

例えば、特許文献1では、かさ密度が0.8〜2.1g/cm、空隙率が5〜64%、含まれる独立気泡の平均径が10〜80μm、独立気泡数が2×10〜6×10個/cmである微細気泡含有不透明石英ガラス及びその製造方法が例示されている。 For example, Patent Document 1, bulk density 0.8~2.1g / cm 3, a porosity of 5-64%, the average diameter of closed cells that contain 10 to 80 [mu] m, closed cell number 2 × 10 6 ~ An example shows an opaque quartz glass containing fine bubbles of 6 × 10 7 pieces / cm 3 and a method for producing the same.

また、特許文献2において、独立気泡の平均気泡径が1〜10μm、密度が1.98〜2.15g/cmである不透明石英ガラスが例示されており、近年においても熱線遮断性を高めるために気泡径を小さくする技術開発が進められている。 Further, Patent Document 2 exemplifies opaque quartz glass having an average cell diameter of 1 to 10 μm and a density of 1.98 to 2.15 g / cm 3 of closed cells, and in recent years, in order to improve heat ray blocking property. Technology development to reduce the bubble diameter is underway.

特開平10−203839号公報Japanese Unexamined Patent Publication No. 10-2083839 特開2014−88286号公報Japanese Unexamined Patent Publication No. 2014-88286 特開平7−335583号公報Japanese Unexamined Patent Publication No. 7-335583

上記のように、従来の不透明石英ガラスは、光の散乱性を高めるために、気泡径を小さくすることを主眼において開発されてきた。しかしながら、不透明石英ガラス部材は、その高い遮熱性に起因して、使用中の部材内に強い温度分布を生じることが多い。特に、急冷、急加熱などの熱衝撃が加わる用途では、高温部位と低温部位との温度差が線膨張の差となって強い応力が生じ、破損に至ることがある。 As described above, the conventional opaque quartz glass has been developed mainly for reducing the bubble diameter in order to enhance the light scattering property. However, the opaque quartz glass member often produces a strong temperature distribution in the member in use due to its high heat-shielding property. In particular, in applications where thermal shock such as rapid cooling or rapid heating is applied, the temperature difference between the high temperature portion and the low temperature portion becomes a difference in linear expansion, which causes strong stress and may lead to breakage.

このため、不透明石英ガラス部材を用いた加熱装置の運転では、不透明石英ガラス部位の急加熱を避けることが必要であった。とりわけ、バーナー加熱など、高温の火炎が不透明石英ガラス部材と直接接触する用途では、不透明石英ガラス部材の破損を防ぐために長時間の予備加熱が必要であり、設備生産性を落とす要因となっていた。 Therefore, in the operation of the heating device using the opaque quartz glass member, it is necessary to avoid rapid heating of the opaque quartz glass portion. In particular, in applications such as burner heating where a high-temperature flame comes into direct contact with the opaque quartz glass member, long-term preheating is required to prevent damage to the opaque quartz glass member, which has been a factor in reducing equipment productivity. ..

本発明は、これらの課題を解決することを目的としてなされたものであり、適度の遮熱性と耐熱衝撃性を備えた不透明石英ガラスを提供することを目的とする。 The present invention has been made for the purpose of solving these problems, and an object of the present invention is to provide an opaque quartz glass having appropriate heat shielding properties and thermal shock resistance.

本発明は、上記課題を解決するためになされたもので、気泡を含有する不透明石英ガラスであって、前記気泡の平均気泡径が200μm以上500μm以下であり、前記不透明石英ガラスにおける体積1cm当たりの前記気泡の数が5×10個以上8×10個以下であることを特徴とする不透明石英ガラスを提供する。 The present invention has been made to solve the above problems, an opaque quartz glass containing bubbles, the average bubble diameter of the bubbles is at 200μm or more 500μm or less, the volume 1 cm 3 per in opaque quartz glass Provided is an opaque quartz glass characterized in that the number of the bubbles is 5 × 10 3 or more and 8 × 10 4 or less.

このような平均気泡径と気泡の数(気泡密度)を備える不透明石英ガラスは、適度の遮熱性と耐熱衝撃性を備える。 The opaque quartz glass having such an average bubble diameter and the number of bubbles (bubble density) has appropriate heat shielding property and heat impact resistance.

この場合、前記不透明石英ガラスのかさ密度が1.0g/cm以上1.8g/cm以下であることが好ましい。 In this case, the bulk density of the opaque quartz glass is preferably 1.0 g / cm 3 or more and 1.8 g / cm 3 or less.

このようなかさ密度を有する不透明石英ガラスは、加熱による変形を抑制しつつ、不透明石英ガラス中の気泡空間を十分確保できるため、保温性を向上させることができる。 The opaque quartz glass having such a bulk density can sufficiently secure the bubble space in the opaque quartz glass while suppressing deformation due to heating, so that the heat retention can be improved.

また、波長2μmの光に対する厚さ1mm当たりの透過率が2%以上10%以下であることが好ましい。 Further, it is preferable that the transmittance per 1 mm of thickness for light having a wavelength of 2 μm is 2% or more and 10% or less.

このような透過率(赤外透過率)を有する不透明石英ガラスは、急加熱時の破損が防止されており、より高い保温性も備える。 The opaque quartz glass having such a transmittance (infrared transmittance) is prevented from being damaged at the time of rapid heating, and also has higher heat retention.

また、前記不透明石英ガラスのOH基濃度が5質量ppm以下であることが好ましい。 Further, the OH group concentration of the opaque quartz glass is preferably 5 mass ppm or less.

このようなOH基濃度とすることにより、不透明石英ガラスの粘性を高くして高温加熱時の変形を防止することができる。 By setting such an OH group concentration, it is possible to increase the viscosity of the opaque quartz glass and prevent deformation during high-temperature heating.

本発明の不透明石英ガラスは、適度の遮熱性と耐熱衝撃性を備え、特に急冷、急加熱される火炎加熱用保温材料、火炎加熱用遮熱材料として優れている。 The opaque quartz glass of the present invention has appropriate heat-shielding properties and heat-impact resistance, and is particularly excellent as a heat-retaining material for flame heating and a heat-shielding material for flame heating, which are rapidly cooled and rapidly heated.

本発明の不透明石英ガラスの一例の拡大写真である。It is an enlarged photograph of an example of the opaque quartz glass of the present invention.

以下、本発明に係る不透明石英ガラスを具体的に説明する。 Hereinafter, the opaque quartz glass according to the present invention will be specifically described.

本発明の不透明石英ガラスは、気泡(泡)を含有し、この気泡の平均気泡径が200μm以上500μm以下である。さらに、不透明石英ガラスにおける体積1cm当たりの気泡の数が5×10個以上8×10個以下である。 The opaque quartz glass of the present invention contains bubbles, and the average bubble diameter of the bubbles is 200 μm or more and 500 μm or less. Furthermore, the number of bubbles per volume 1 cm 3 in the opaque quartz glass is 5 × 10 3 or more 8 × is 10 4 or less.

このような平均気泡径と気泡の数(気泡密度)を備える不透明石英ガラスは、適度の遮熱性と耐熱衝撃性を備える。不透明石英ガラスに含まれる気泡の平均径が200μmより小さいと、熱線遮断性が高すぎて、急加熱時に強い温度分布ができ、破損しやすくなる。また、気泡の平均径が500μmより大きいと、熱線遮断性が低すぎて十分な保温性を示さなくなる。また、気泡の個数が体積1cm当たり5×10個より少ないと、熱線遮断性が劣るため、十分な保温性を示せなくなる。また、気泡の個数が体積1cm当たり8×10個より多いと、熱線遮断性が高すぎることによって強い温度分布を生じ、破損しやすくなる。従って、上記のような本発明の不透明石英ガラスは、遮熱性と耐熱衝撃性を兼ね備えた不透明石英ガラスとなる。また、気泡の平均径が260μm以上420μm以下であると、より好適なバランスで遮熱性と耐熱衝撃性を兼ね備えた不透明石英ガラスとなるので好ましい。 The opaque quartz glass having such an average bubble diameter and the number of bubbles (bubble density) has appropriate heat shielding property and heat impact resistance. If the average diameter of the bubbles contained in the opaque quartz glass is smaller than 200 μm, the heat ray blocking property is too high, a strong temperature distribution is formed at the time of rapid heating, and the bubbles are easily damaged. On the other hand, if the average diameter of the bubbles is larger than 500 μm, the heat ray blocking property is too low to show sufficient heat retention. Further, if the number of bubbles is less than 5 × 10 3 cells per volume 1 cm 3, since the heat ray shielding property is inferior, not Shimese sufficient warmth. Further, if the number of bubbles is more than 8 × 10 4 cells per volume 1 cm 3, it generates a strong temperature distribution by heat ray shielding property is too high, easily broken. Therefore, the opaque quartz glass of the present invention as described above is an opaque quartz glass having both heat-shielding property and thermal shock resistance. Further, when the average diameter of the bubbles is 260 μm or more and 420 μm or less, it is preferable that the opaque quartz glass has a more suitable balance of heat shielding property and heat impact resistance.

本発明の不透明石英ガラスは、かさ密度が1.0g/cm以上1.8g/cm以下であることが好ましい。不透明石英ガラスのかさ密度が1.0g/cm以上であれば、加熱による変形を効果的に抑制できる。また、かさ密度が1.8g/cm以下であれば、不透明石英ガラス中の気泡空間を十分確保できるため、保温性を向上させることができる。加熱変形の抑制及び保温性の観点から、不透明石英ガラスのかさ密度は1.1g/cm以上1.65g/cm以下であることがさらに好ましい。 The opaque quartz glass of the present invention preferably has a bulk density of 1.0 g / cm 3 or more and 1.8 g / cm 3 or less. When the bulk density of the opaque quartz glass is 1.0 g / cm 3 or more, deformation due to heating can be effectively suppressed. Further, when the bulk density is 1.8 g / cm 3 or less, a sufficient bubble space in the opaque quartz glass can be sufficiently secured, so that the heat retention can be improved. From the viewpoint of suppression and warmth of heat deformation, and further preferably opaque bulk density of the quartz glass is 1.1 g / cm 3 or more 1.65 g / cm 3 or less.

また、本発明の不透明石英ガラスは、波長2μmの光に対する厚さ1mm当たりの透過率が2%以上10%以下であることが好ましい。波長2μmの光は赤外線であり、また、熱線でもあるため、波長2μmの光に対する透過率は、「赤外透過率」や、「熱線透過率」とも呼ばれる。赤外透過率(熱線透過率)は遮熱性の指標であり、熱線遮断性が高すぎると不透明石英ガラス内の温度分布が大きくなりすぎるが、赤外透過率が2%以上であれば、不透明石英ガラスの熱線遮断性を適度な範囲とすることができるため、急加熱時に破損することを防止できる。また、透過率が10%以下であれば、遮熱性が十分確保されているため、保温性を十分有する不透明石英ガラスとすることができる。上記の赤外透過率は、3%以上6%以下であることがさらに好ましく、この範囲であれば、急加熱時の破損をより効果的に防止することができ、かつ、高い保温性も備えた、より好適な不透明石英ガラスになる。 Further, the opaque quartz glass of the present invention preferably has a transmittance of 2% or more and 10% or less per 1 mm of thickness with respect to light having a wavelength of 2 μm. Since light having a wavelength of 2 μm is infrared rays and is also a heat ray, the transmittance for light having a wavelength of 2 μm is also called “infrared transmittance” or “heat ray transmittance”. Infrared transmittance (heat ray transmittance) is an index of heat shielding property. If the heat ray transmittance is too high, the temperature distribution in the opaque quartz glass becomes too large, but if the infrared transmittance is 2% or more, it is opaque. Since the heat ray blocking property of the quartz glass can be set in an appropriate range, it can be prevented from being damaged during rapid heating. Further, when the transmittance is 10% or less, the heat-shielding property is sufficiently secured, so that the opaque quartz glass having sufficient heat-retaining property can be obtained. The above infrared transmittance is more preferably 3% or more and 6% or less, and within this range, damage during rapid heating can be prevented more effectively, and high heat retention is also provided. It also becomes a more suitable opaque quartz glass.

なお、特許文献3において、非透明部位の気泡含有量が、直径10〜250μmの気泡を20000個/cm以上、好ましくは40000個/cm以上である反応容器が提案されている。しかしながら、この不透明石英ガラスは、特定の範囲の径の気泡数を規定したものであり、その平均気泡径は不明である。また、特許文献3の[0029]段落の例示に依ると、非透明部位は7mmの肉厚において熱線透過率が10%以下となっている。この透過率を肉厚1mmあたりの透過率に換算すると、72%以下という広い範囲であり、熱線遮断性の点で大幅に劣るものである。そのため、特許文献3に例示されている反応容器の非透明部は、本発明の不透明石英ガラスの範囲内の平均気泡径及び気泡密度を有していない。 In Patent Document 3, a reaction vessel having a non-transparent portion having a bubble content of 10 to 250 μm in diameter of 20000 bubbles / cm 3 or more, preferably 40,000 bubbles / cm 3 or more is proposed. However, this opaque quartz glass defines the number of bubbles having a diameter in a specific range, and the average bubble diameter thereof is unknown. Further, according to the example in paragraph [0029] of Patent Document 3, the non-transparent portion has a heat ray transmittance of 10% or less at a wall thickness of 7 mm. When this transmittance is converted into the transmittance per 1 mm of wall thickness, it is in a wide range of 72% or less, which is significantly inferior in terms of heat ray blocking property. Therefore, the non-transparent portion of the reaction vessel exemplified in Patent Document 3 does not have the average cell diameter and cell density within the range of the opaque quartz glass of the present invention.

本発明の不透明石英ガラスのOH基濃度は、5質量ppm以下であることが好ましい。このようなOH基濃度とすることにより、不透明石英ガラスの粘性を高くして高温加熱時の変形を防止することができる。 The OH group concentration of the opaque quartz glass of the present invention is preferably 5 mass ppm or less. By setting such an OH group concentration, it is possible to increase the viscosity of the opaque quartz glass and prevent deformation during high-temperature heating.

本発明の不透明石英ガラスは、不純物として含有されるLi、Na、K、Cuの濃度がそれぞれ1質量ppm以下であると好ましい。これらの金属元素は高温での拡散が速い。そのため、上記のような不純物濃度であれば、本発明の不透明石英ガラスが熱処理に晒されている間も、不透明石英ガラスから発せられたこれらの元素が、近傍で加熱されている石英ガラス材料を汚染することを抑制することができる。 In the opaque quartz glass of the present invention, the concentrations of Li, Na, K, and Cu contained as impurities are preferably 1 mass ppm or less, respectively. These metallic elements diffuse quickly at high temperatures. Therefore, if the impurity concentration is as described above, even while the opaque quartz glass of the present invention is exposed to heat treatment, these elements emitted from the opaque quartz glass can be heated in the vicinity of the quartz glass material. Contamination can be suppressed.

本発明の不透明石英ガラスを製造する方法としては、シリカ粉を加熱溶融する方法、シリカ粉末と窒化ケイ素粉末の混合粉を用意し、これを加熱溶融する方法、シリカ粉をアンモニア処理した後に加熱溶融する方法等があるが、本発明の不透明石英ガラスを製造するにあたり、製造方法は特に限定されない。 As a method for producing the opaque quartz glass of the present invention, a method of heating and melting silica powder, a method of preparing a mixed powder of silica powder and silicon nitride powder and heating and melting this, and a method of heating and melting the silica powder after ammonia treatment are performed. However, in producing the opaque quartz glass of the present invention, the production method is not particularly limited.

本発明の不透明石英ガラスの気泡径及び気泡数を制御する方法は、製造方法によって異なるが、目標とする平均気泡径及び気泡数が与えられれば、不透明石英ガラスの物性をその数値に制御することは可能である。シリカ粉末と窒化ケイ素粉末の混合粉を用意し、これを加熱溶融する方法においては、混合する窒化ケイ素の量や、加熱時間を調整することにより、制御が可能である。その他、シリカ粉の粒度の調整、加熱時の炉内ガス圧力や物理的な荷重の調整によっても制御できる。 The method of controlling the bubble diameter and the number of bubbles of the opaque quartz glass of the present invention differs depending on the manufacturing method, but if the target average bubble diameter and the number of bubbles are given, the physical properties of the opaque quartz glass are controlled to the numerical values. Is possible. In a method of preparing a mixed powder of silica powder and silicon nitride powder and heating and melting the powder, control is possible by adjusting the amount of silicon nitride to be mixed and the heating time. In addition, it can be controlled by adjusting the particle size of silica powder, adjusting the gas pressure in the furnace during heating, and adjusting the physical load.

本発明の不透明石英ガラス製造に用いるシリカ粉は、Li、Na、K、Cuの濃度がそれぞれ1質量ppm以下であると好ましい。シリカ粉中にこれらの不純物が多いと、これを溶融して製造される不透明石英ガラスに残留する不純物もそれに応じて多くなるためである。また、シリカ粉に含有されるOH基濃度は、100質量ppm以下であるとよい。OH基濃度が100質量ppm以下であれば、加熱溶融後の不透明石英ガラスに含有されるOH基濃度を低く制御しやすく、特に、5質量ppm以下に制御しやすい。 The silica powder used for producing the opaque quartz glass of the present invention preferably has a concentration of Li, Na, K, and Cu of 1 mass ppm or less, respectively. This is because if the silica powder contains a large amount of these impurities, the amount of impurities remaining in the opaque quartz glass produced by melting the silica powder also increases accordingly. The concentration of OH groups contained in the silica powder is preferably 100 mass ppm or less. When the OH group concentration is 100 mass ppm or less, the OH group concentration contained in the opaque quartz glass after heating and melting can be easily controlled to be low, and particularly to 5 mass ppm or less.

シリカ粉の粒度は、体積基準の50%径が50μm以上、1000μm以下であるとよい。シリカ粉の粒度を細かくしすぎずに体積基準の50%径を50μm以上にすることにより、粉の流動性を確保して、充填効率を向上させることができる。また、粒度を大きくしすぎずに体積基準の50%径を1000μm以下にすることにより、加熱溶融時のガス抜けを抑制し、不透明石英ガラス中に気泡を残しやすくすることができる。 The particle size of the silica powder is preferably such that the 50% diameter based on the volume is 50 μm or more and 1000 μm or less. By setting the volume-based 50% diameter to 50 μm or more without making the particle size of the silica powder too fine, the fluidity of the powder can be ensured and the filling efficiency can be improved. Further, by setting the 50% diameter based on the volume to 1000 μm or less without making the particle size too large, it is possible to suppress gas escape during heating and melting, and it is possible to easily leave bubbles in the opaque quartz glass.

シリカ粉の形態は、ガラス粉、結晶粉のいずれでもよく、それぞれの溶融特性に合わせて加熱溶融条件を決定すればよい。 The form of the silica powder may be either glass powder or crystal powder, and the heating and melting conditions may be determined according to the melting characteristics of each.

窒化ケイ素は、シリカ粉中に満遍なく分散された方がよく、平均粒径10μm以下の粉末状窒化ケイ素を用いるとよい。窒化ケイ素の純度については、作製する不透明石英ガラスの純度に影響を与えることから純度が高い方がよく、99質量%以上であると好ましく、99.9質量%以上だとより好ましい。 The silicon nitride should be evenly dispersed in the silica powder, and powdered silicon nitride having an average particle size of 10 μm or less should be used. Regarding the purity of silicon nitride, it is preferable that the purity is high because it affects the purity of the opaque quartz glass to be produced, and it is preferably 99% by mass or more, and more preferably 99.9% by mass or more.

本発明の不透明石英ガラスの形状は特に限定されず、ブロック状、板状、円筒状、容器状、その他用途に応じて適宜選定される。 The shape of the opaque quartz glass of the present invention is not particularly limited, and is appropriately selected depending on the block shape, plate shape, cylindrical shape, container shape, and other uses.

本発明の不透明石英ガラスは、適度の遮熱性と耐熱衝撃性を備え、特に急冷、急加熱される火炎加熱用保温材料、火炎加熱用遮熱材料として優れている。 The opaque quartz glass of the present invention has appropriate heat-shielding properties and heat-impact resistance, and is particularly excellent as a heat-retaining material for flame heating and a heat-shielding material for flame heating, which are rapidly cooled and rapidly heated.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.

(実施例1)
まず、体積基準の10%径が350μm、50%径が500μm、90%径が680μmである石英ガラス粉10kgと、純度99.9%以上である粉末状窒化ケイ素粉5gとをVミキサーを用いて30分間撹拌混合した。次に、この混合粉を、内部形状が幅30mm、奥行き200mm、高さ600mmのグラファイト容器に、高さ400mmまで充填した。このグラファイト容器をグラファイト炉に設置し、圧力1Pa以下まで減圧した後に真空排気を続けながら1000℃まで120分かけて加熱昇温し、次いで窒素を導入して大気圧とし、大気圧を維持しながら1800℃まで300分かけて加熱昇温し、大気圧のまま1800℃にて30分加熱保持した後、加熱を終了した。
(Example 1)
First, using a V mixer, 10 kg of quartz glass powder having a volume-based 10% diameter of 350 μm, a 50% diameter of 500 μm, and a 90% diameter of 680 μm and 5 g of powdered silicon nitride powder having a purity of 99.9% or more are used. Was stirred and mixed for 30 minutes. Next, this mixed powder was filled in a graphite container having an internal shape of 30 mm in width, 200 mm in depth and 600 mm in height up to a height of 400 mm. This graphite container is installed in a graphite furnace, and after depressurizing to a pressure of 1 Pa or less, the temperature is raised to 1000 ° C. over 120 minutes while continuing vacuum exhaust, and then nitrogen is introduced to make the atmospheric pressure, while maintaining the atmospheric pressure. The temperature was raised by heating to 1800 ° C. over 300 minutes, and the temperature was kept at atmospheric pressure at 1800 ° C. for 30 minutes, and then the heating was completed.

この加熱処理により、30mm×200mm×350mmの不透明石英ガラスを得た。この不透明石英ガラスの平均気泡径、1cmあたりの気泡の個数、かさ密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を測定した。各数値の測定方法は以下の通りであり、他の実施例及び比較例でも同様である。 By this heat treatment, an opaque quartz glass having a size of 30 mm × 200 mm × 350 mm was obtained. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, bulk density, transmittance per 1mm thick at a wavelength of 2 [mu] m, was measured OH group concentration. The measurement method of each numerical value is as follows, and is the same in other Examples and Comparative Examples.

平均気泡径、1cmあたりの気泡数:
デジタルマイクロスコープを用いて視野内の気泡の直径および数をカウントした。評価位置を変えながら20視野において評価を行い、その結果から、平均気泡径および1cmあたりの気泡数を求めた。気泡数は、20視野の気泡数の平均に基づいて求めた。
Average bubble diameter, number of bubbles per 1 cm 3:
The diameter and number of bubbles in the field of view were counted using a digital microscope. Evaluation was performed in 20 fields of view while changing the evaluation position, and the average bubble diameter and the number of bubbles per 1 cm 3 were obtained from the results. The number of bubbles was determined based on the average number of bubbles in 20 fields of view.

かさ密度:
アルキメデス法により計測した。
Bulk density:
It was measured by the Archimedes method.

波長2μmにおける透過率:
作製した不透明石英ガラスから、縦横が30mm×30mmの試料を切出し、厚さ1mmに両面鏡面研磨後、分光光度計を用いて測定した。
Transmittance at a wavelength of 2 μm:
A sample having a length and width of 30 mm × 30 mm was cut out from the produced opaque quartz glass, double-sided mirror-polished to a thickness of 1 mm, and then measured using a spectrophotometer.

OH基濃度:
赤外分光光度法により測定した。具体的には、フーリエ変換赤外分光光度法にて波長の吸光係数より求めた。但し、換算式としてOH基濃度(質量ppm)=[3670cm−1における吸光係数×100]を用いた。
OH group concentration:
It was measured by infrared spectrophotometry. Specifically, it was obtained from the extinction coefficient of the wavelength by the Fourier transform infrared spectrophotometric method. However, as a conversion formula, OH group concentration (mass ppm) = [ absorption coefficient at 3670 cm-1 × 100] was used.

このようにして測定した、不透明石英ガラスの平均気泡径、1cmあたりの気泡の個数、かさ密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示した。 The thus measured exhibited an average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, bulk density, transmittance per 1mm thick at a wavelength of 2 [mu] m, the OH group concentration in Table 1.

また、実施例1の不透明石英ガラスのデジタルマイクロスコープ画像を図1に示した。 Moreover, the digital microscope image of the opaque quartz glass of Example 1 is shown in FIG.

次に、この不透明石英ガラスの熱衝撃評価を行ったが、破損および変形はなかった。このときの評価方法は以下の通りであり、他の実施例及び比較例でも同様である。 Next, the thermal shock evaluation of this opaque quartz glass was performed, but there was no breakage or deformation. The evaluation method at this time is as follows, and the same applies to other examples and comparative examples.

熱衝撃試験:
3辺が200mm×200mm×30mmの不透明石英ガラスを5000Kcal/hのプロパン−酸素火炎で5分間予備加熱した後、火力を100000Kcal/hまで上げて5分間本加熱を行い、本加熱中の破損、変形の有無を評価した。
Thermal shock test:
Opaque quartz glass with three sides of 200 mm x 200 mm x 30 mm was preheated with a propane-oxygen flame of 5000 Kcal / h for 5 minutes, then the heating power was increased to 100,000 Kcal / h and the main heating was performed for 5 minutes. The presence or absence of deformation was evaluated.

(実施例2)
混合する窒化ケイ素粉の量を2.5gとし、1000℃から1800℃への昇温時間を250分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×320mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。
(Example 2)
Opaque with three sides of 30 mm × 200 mm × 320 mm in the same manner as in Example 1 except that the amount of silicon nitride powder to be mixed was 2.5 g and the heating time from 1000 ° C. to 1800 ° C. was 250 minutes. Quartz glass was prepared. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1.

また、この不透明石英ガラスの熱衝撃評価を行ったが、破損および変形はなかった。 Moreover, the thermal shock evaluation of this opaque quartz glass was performed, but there was no breakage or deformation.

(実施例3)
1000℃から1800℃への昇温時間を400分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×290mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。
(Example 3)
An opaque quartz glass having three sides of 30 mm × 200 mm × 290 mm was produced by the same method as in Example 1 except that the temperature rising time from 1000 ° C. to 1800 ° C. was set to 400 minutes. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1.

この不透明石英ガラスの熱衝撃評価を行ったが、破損および変形はなかった。 Thermal shock evaluation of this opaque quartz glass was performed, but there was no breakage or deformation.

(実施例4)
混合する窒化ケイ素粉の量を2gとし、1000℃から1800℃への昇温時間を200分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×480mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。
(Example 4)
Opaque quartz glass having three sides of 30 mm × 200 mm × 480 mm in the same manner as in Example 1 except that the amount of silicon nitride powder to be mixed was 2 g and the heating time from 1000 ° C. to 1800 ° C. was 200 minutes. Was produced. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1.

この不透明石英ガラスの熱衝撃評価を行ったところ、クラックの発生はなく、実用上は問題がない程度のわずかな変形が生じた。 When the thermal shock evaluation of this opaque quartz glass was performed, no cracks were generated and slight deformation was generated to the extent that there was no problem in practical use.

(実施例5)
・混合する窒化ケイ素粉の量を10gとし、1000℃から1800℃への昇温時間を420分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×320mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。
(Example 5)
-Opaque quartz having three sides of 30 mm x 200 mm x 320 mm in the same manner as in Example 1 except that the amount of silicon nitride powder to be mixed was 10 g and the heating time from 1000 ° C. to 1800 ° C. was set to 420 minutes. Glass was made. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1.

この不透明石英ガラスの熱衝撃評価を行ったが、破損および変形はなかった。 Thermal shock evaluation of this opaque quartz glass was performed, but there was no breakage or deformation.

(比較例1)
1000℃から1800℃への昇温時間を500分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×240mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。
(Comparative Example 1)
An opaque quartz glass having three sides of 30 mm × 200 mm × 240 mm was produced by the same method as in Example 1 except that the temperature rising time from 1000 ° C. to 1800 ° C. was set to 500 minutes. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1.

この不透明石英ガラスの熱衝撃評価を行ったところ、本加熱開始から60秒後にクラックが発生した。 When the thermal shock evaluation of this opaque quartz glass was performed, cracks were generated 60 seconds after the start of the main heating.

(比較例2)
混合する窒化ケイ素粉の量を1gとし、1000℃から1800℃への昇温時間を120分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×590mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。赤外透過率が高く、保温性が劣る不透明石英ガラスであった。
(Comparative Example 2)
Opaque quartz glass having three sides of 30 mm × 200 mm × 590 mm in the same manner as in Example 1 except that the amount of silicon nitride powder to be mixed was 1 g and the heating time from 1000 ° C. to 1800 ° C. was 120 minutes. Was produced. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1. It was an opaque quartz glass with high infrared transmittance and poor heat retention.

この不透明石英ガラスの熱衝撃評価を行ったところ、クラックの発生は無かったものの、著しく変形した。 When the thermal shock evaluation of this opaque quartz glass was performed, no cracks were generated, but the glass was significantly deformed.

(比較例3)
混合する窒化ケイ素粉の量を1gとした他は、実施例1と同様の方法で、3辺が30mm×200mm×250mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。赤外透過率が高く、保温性が劣る不透明石英ガラスであった。
(Comparative Example 3)
An opaque quartz glass having three sides of 30 mm × 200 mm × 250 mm was produced by the same method as in Example 1 except that the amount of silicon nitride powder to be mixed was 1 g. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1. It was an opaque quartz glass with high infrared transmittance and poor heat retention.

この不透明石英ガラスの熱衝撃評価を行ったところ、クラックの発生は無かった。 When the thermal shock evaluation of this opaque quartz glass was performed, no cracks were generated.

(比較例4)
混合する窒化ケイ素粉の量を30gとし、1000℃から1800℃への昇温時間を500分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×340mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。
(Comparative Example 4)
Opaque quartz glass having three sides of 30 mm × 200 mm × 340 mm in the same manner as in Example 1 except that the amount of silicon nitride powder to be mixed was 30 g and the heating time from 1000 ° C. to 1800 ° C. was 500 minutes. Was produced. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1.

この不透明石英ガラスの熱衝撃評価を行ったところ、本加熱開始から30秒後にクラックが発生した。 When the thermal shock evaluation of this opaque quartz glass was performed, cracks were generated 30 seconds after the start of the main heating.

(比較例5)
混合する窒化ケイ素粉の量を1.5gとし、1000℃から1800℃への昇温時間を150分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×390mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。赤外透過率が高く、保温性が劣る不透明石英ガラスであった。
(Comparative Example 5)
Opaque with three sides of 30 mm × 200 mm × 390 mm in the same manner as in Example 1 except that the amount of silicon nitride powder to be mixed was 1.5 g and the heating time from 1000 ° C. to 1800 ° C. was 150 minutes. Quartz glass was prepared. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1. It was an opaque quartz glass with high infrared transmittance and poor heat retention.

この不透明石英ガラスの熱衝撃評価を行ったところ、クラックの発生は無かった。 When the thermal shock evaluation of this opaque quartz glass was performed, no cracks were generated.

(比較例6)
混合する窒化ケイ素粉の量を20gとし、1000℃から1800℃への昇温時間を420分とした他は、実施例1と同様の方法で、3辺が30mm×200mm×450mmの不透明石英ガラスを作製した。この不透明石英ガラスの平均気泡径、1cmあたりの気泡数、密度、波長2μmにおける厚さ1mmあたりの透過率、OH基濃度を表1に示す。
(Comparative Example 6)
Opaque quartz glass having three sides of 30 mm × 200 mm × 450 mm in the same manner as in Example 1 except that the amount of silicon nitride powder to be mixed was 20 g and the heating time from 1000 ° C. to 1800 ° C. was 420 minutes. Was produced. The average cell diameter of the opaque quartz glass, the number of bubbles per 1 cm 3, the density, transmittance per 1mm thick at a wavelength of 2 [mu] m, an OH group concentration shown in Table 1.

この不透明石英ガラスの熱衝撃評価を行ったところ、本加熱開始から80秒後にクラックが発生した。 When the thermal shock evaluation of this opaque quartz glass was performed, cracks were generated 80 seconds after the start of the main heating.

Figure 0006901913
Figure 0006901913

実施例1〜5、比較例1〜6からわかるように、気泡の平均気泡径が200μm以上500μm以下、体積1cm当たりの気泡の数が5×10個以上8×10個以下である不透明石英ガラスは、適度の遮熱性と耐熱衝撃性を備えたものであった。また、気泡の平均気泡径が260μm以上420μm以下である実施例1、2は特に良好な結果であった。 Examples 1-5, as can be seen from Comparative Example 1-6, the average cell diameter of the bubbles is 200μm or more 500μm or less, the number of bubbles per volume 1 cm 3 is at 5 × 10 3 or more 8 × 10 4 or less The opaque quartz glass had appropriate heat shielding properties and thermal shock resistance. Further, Examples 1 and 2 in which the average bubble diameter of the bubbles was 260 μm or more and 420 μm or less were particularly good results.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is merely an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention.

Claims (4)

気泡を含有する不透明石英ガラスであって、
前記気泡の平均気泡径が200μm以上500μm以下であり、
前記不透明石英ガラスにおける体積1cm当たりの前記気泡の数が5×10個以上8×10個以下であり、
前記不透明石英ガラスのかさ密度が1.0g/cm 以上1.8g/cm 以下であることを特徴とする不透明石英ガラス。
Opaque quartz glass containing air bubbles
The average bubble diameter of the bubbles is 200 μm or more and 500 μm or less.
Ri number 5 × 10 3 or more 8 × 10 4 pieces der following the bubble per volume 1 cm 3 in the opaque quartz glass,
An opaque quartz glass having a bulk density of 1.0 g / cm 3 or more and 1.8 g / cm 3 or less .
波長2μmの光に対する厚さ1mm当たりの透過率が2%以上10%以下であることを特徴とする請求項1に記載の不透明石英ガラス。 The opaque quartz glass according to claim 1, wherein the transmittance per 1 mm thickness with respect to light having a wavelength of 2 μm is 2% or more and 10% or less. 前記不透明石英ガラスのOH基濃度が5質量ppm以下であることを特徴とする請求項1又は請求項2に記載の不透明石英ガラス。 The opaque quartz glass according to claim 1 or 2 , wherein the OH group concentration of the opaque quartz glass is 5 mass ppm or less. 前記不透明石英ガラスが、火炎加熱用保温材料又は火炎加熱用遮熱材料として用いられるものであることを特徴とする請求項1から請求項3のいずれか1項に記載の不透明石英ガラス。The opaque quartz glass according to any one of claims 1 to 3, wherein the opaque quartz glass is used as a heat insulating material for flame heating or a heat insulating material for flame heating.
JP2017124155A 2017-06-26 2017-06-26 Opaque quartz glass Active JP6901913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017124155A JP6901913B2 (en) 2017-06-26 2017-06-26 Opaque quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017124155A JP6901913B2 (en) 2017-06-26 2017-06-26 Opaque quartz glass

Publications (2)

Publication Number Publication Date
JP2019006636A JP2019006636A (en) 2019-01-17
JP6901913B2 true JP6901913B2 (en) 2021-07-14

Family

ID=65025763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124155A Active JP6901913B2 (en) 2017-06-26 2017-06-26 Opaque quartz glass

Country Status (1)

Country Link
JP (1) JP6901913B2 (en)

Also Published As

Publication number Publication date
JP2019006636A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
Wang et al. Preparation of Ce: YAG glass‐ceramics with low SiO2
TWI652240B (en) Opaque quartz glass and method of manufacturing same
Breneman et al. Kinetics of cristobalite formation in sintered silica
US20110129784A1 (en) Low thermal expansion doped fused silica crucibles
Chen et al. Synthesis and characterization of CBS glass/ceramic composites for LTCC application
CN105753316A (en) Thermooptic effect-free phosphate laser neodymium glass
CN108395102B (en) LTCC substrate material with low thermal expansion coefficient and preparation method thereof
Zhang et al. Effect of Al2O3 addition on the flexural strength and light‐transmission properties of bone china
Son et al. Fabrication of translucent AlN ceramics with MgF2 additive by spark plasma sintering
JP5751744B2 (en) Glass
JP6901913B2 (en) Opaque quartz glass
WO2018163759A1 (en) Glass material and method for manufacturing same
US2937100A (en) Glass compositions and glass-to-metal seals
JP6686386B2 (en) Glass material and manufacturing method thereof
JP6897113B2 (en) Glass material and its manufacturing method
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
Xue et al. Microwave dielectric characterization and thermal analysis of B2O3-La2O3-ZnO glass-ceramic/Al2O3 composites for LTCC applications
Jia et al. Comparative analyses of the influence of tetraethoxysilane additives on the sintering kinetics of Nd: YAG transparent ceramics
CN108996902B (en) Low-temperature co-fired ceramic material and preparation method thereof
CN112876068A (en) Gamma-ray irradiation darkening resistant germanate glass and preparation method and application thereof
JP6897114B2 (en) Glass material and its manufacturing method
Wan et al. Influence of alkali metal ions on thermal stability of Bi-activated NIR-emitting alkali-aluminoborosilicate glasses
JP6897112B2 (en) Glass material and its manufacturing method
US3084055A (en) Cadmium phosphate glass
Liu et al. Crystallization and Optical Properties of Sr3Al2O6-SrAl2O4 Eutectic Glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210618

R150 Certificate of patent or registration of utility model

Ref document number: 6901913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250