JP6895864B2 - Duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel with excellent corrosion resistance on sheared surfaces - Google Patents

Duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel with excellent corrosion resistance on sheared surfaces Download PDF

Info

Publication number
JP6895864B2
JP6895864B2 JP2017195887A JP2017195887A JP6895864B2 JP 6895864 B2 JP6895864 B2 JP 6895864B2 JP 2017195887 A JP2017195887 A JP 2017195887A JP 2017195887 A JP2017195887 A JP 2017195887A JP 6895864 B2 JP6895864 B2 JP 6895864B2
Authority
JP
Japan
Prior art keywords
less
duplex stainless
content
stainless steel
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017195887A
Other languages
Japanese (ja)
Other versions
JP2018059207A (en
Inventor
修幸 岡田
修幸 岡田
裕 田所
裕 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Publication of JP2018059207A publication Critical patent/JP2018059207A/en
Application granted granted Critical
Publication of JP6895864B2 publication Critical patent/JP6895864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、せん断加工面の耐食性が、圧延面のそれに比べて劣化しないフェライト相とオーステナイト相とからなる二相ステンレス鋼に関する。特に、本発明は、せん断加工のまま、せん断加工面に対して研磨等の加工処理を行わずに使用される用途に供して好適な、せん断加工面の耐食性に優れた二相ステンレス鋼、鋼板及び線状鋼材に関する。
本願は、2016年10月6日に、日本に出願された特願2016−198220号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a two-phase stainless steel composed of a ferrite phase and an austenite phase in which the corrosion resistance of the sheared surface does not deteriorate as compared with that of the rolled surface. In particular, the present invention is a duplex stainless steel or steel sheet having excellent corrosion resistance on a sheared surface, which is suitable for applications where the sheared surface is used without polishing or other processing while it is being sheared. And linear steel materials.
The present application claims priority based on Japanese Patent Application No. 2016-198220 filed in Japan on October 6, 2016, the contents of which are incorporated herein by reference.

二相ステンレス鋼はフェライト相(α相)とオーステナイト相(γ相)とからなる二相組織を有し、強度と耐食性とに優れた材料として幅広い分野に使用されている。このような二相ステンレス鋼の製造過程では、その利便性からせん断加工による打ち抜き、切断が行われることが多い。その一方で、二相ステンレス鋼は強度が高いため、フェライト系ステンレス鋼やオーステナイト系ステンレス鋼よりも加工性が劣る。加工性を改善した二相ステンレス鋼の例として、特許文献1(特許第3720223号公報)では、ドリル加工性(被削性)に着目した二相ステンレス鋼が開示されている。 Two-phase stainless steel has a two-phase structure consisting of a ferrite phase (α phase) and an austenite phase (γ phase), and is used in a wide range of fields as a material having excellent strength and corrosion resistance. In the manufacturing process of such duplex stainless steel, punching and cutting by shearing are often performed because of its convenience. On the other hand, since two-phase stainless steel has high strength, its workability is inferior to that of ferritic stainless steel and austenitic stainless steel. As an example of duplex stainless steel with improved workability, Patent Document 1 (Patent No. 3720223) discloses a duplex stainless steel focusing on drill workability (workability).

二相ステンレス鋼のせん断加工面の表面状態は、形状によってせん断面、破断面、バリに分類される。これらは切断ままでは平滑ではなく、特に破断面には被さりが生じ、微細なすきまが形成される。ステンレス鋼では、すきま内部は平滑な面よりも腐食が生じやすい。そのため、すきまの存在するせん断加工面の耐食性は、平滑な圧延面と比較して耐食性が劣る。先述の特許文献1は二相ステンレス鋼の加工性の改善を意図するものであり、耐食性については検討されていない。 The surface condition of the sheared surface of duplex stainless steel is classified into sheared surface, fracture surface, and burr according to the shape. These are not smooth as they are cut, and in particular, the fracture surface is covered and fine gaps are formed. In stainless steel, the inside of the gap is more susceptible to corrosion than a smooth surface. Therefore, the corrosion resistance of the sheared surface having a gap is inferior to that of the smooth rolled surface. The above-mentioned Patent Document 1 is intended to improve the workability of duplex stainless steel, and its corrosion resistance has not been studied.

そのため、加工面が腐食環境に曝される場合、研磨等によりせん断面、破断面、バリを除去し平滑とするか、耐食性向上のため合金成分の多い高価な鋼種を適用する必要があった。こういった背景から、特許文献2(特許第5375069号公報)のように、端面のバリの性状に着目し耐食性を確保しようとするステンレス鋼板が開示されているが、二相ステンレス鋼は先述の通りフェライト系ステンレス鋼よりも強度が高く、せん断加工面の性状が大きく異なる。このため、上記特許文献2に記載の方法では二相ステンレス鋼のせん断加工面の耐食性を改善するには不十分である。 Therefore, when the machined surface is exposed to a corrosive environment, it is necessary to remove the sheared surface, fracture surface, and burrs by polishing or the like to make it smooth, or to apply an expensive steel grade having a large alloy component in order to improve corrosion resistance. Against this background, as in Patent Document 2 (Patent No. 5375069), stainless steel sheets are disclosed that focus on the properties of burrs on the end faces to ensure corrosion resistance, but duplex stainless steels are described above. As you can see, it has higher strength than ferritic stainless steel, and the properties of the sheared surface are significantly different. Therefore, the method described in Patent Document 2 is insufficient to improve the corrosion resistance of the sheared surface of duplex stainless steel.

特許第3720223号公報Japanese Patent No. 3720223 特許第5375069号公報Japanese Patent No. 5375069

フェライト系ステンレス鋼は比較的せん断加工性に優れ、加工面の被さりは軽減されるものの、Niが添加されていないため耐すきま腐食性が十分ではなく、発銹しやすい。これに対し、Moを含有することで耐すきま腐食性を改善したフェライト系ステンレス鋼が提供されているが、Moは高価であるため、合金コストの上昇につながる。オーステナイト系ステンレス鋼はNiを多量に含むため、フェライト系ステンレス鋼と比較して耐すきま腐食性は高いものの、靭性が高い上、加工硬化を生じやすい性質を有する。そのため、加工面の被さりが発生し、すきまが形成されやすい。また高価なNiを多量に含むため、合金コストが高価である。
二相ステンレス鋼は、オーステナイト系ステンレス鋼と比較して省Niでありながら、Cr量およびN量が多く、耐すきま腐食性が高く、フェライト系ステンレス鋼よりも靭性に優れ、またこれらのステンレス鋼と比較して強度が高い。しかしその一方で、二相ステンレス鋼は強度が高いため、加工性が低下し、すきま腐食の起点となる被さりが発生しやすい。そのため、従来のせん断加工面の耐食性の改善方法のみでは不十分であり、腐食発生の問題が残存している。
Ferritic stainless steel has relatively excellent shearing workability, and although the covering of the machined surface is reduced, the crevice corrosion resistance is not sufficient because Ni is not added, and it is easy to rust. On the other hand, ferritic stainless steels having improved crevice corrosion resistance by containing Mo have been provided, but Mo is expensive, which leads to an increase in alloy cost. Since austenitic stainless steel contains a large amount of Ni, it has higher crevice corrosion resistance than ferritic stainless steel, but has high toughness and is prone to work hardening. Therefore, covering of the processed surface is generated, and a gap is likely to be formed. Moreover, since a large amount of expensive Ni is contained, the alloy cost is high.
Two-phase stainless steels are Ni-saving compared to austenite stainless steels, but have a large amount of Cr and N, high crevice corrosion resistance, and superior toughness to ferritic stainless steels. Higher strength than. However, on the other hand, since duplex stainless steel has high strength, workability is lowered, and covering which is a starting point of crevice corrosion is likely to occur. Therefore, the conventional method for improving the corrosion resistance of the sheared surface is not sufficient, and the problem of corrosion occurrence remains.

本発明は上記の問題を有利に解決するもので、せん断加工面が研磨等の処理を行われることなく腐食環境に曝される用途に適用可能な、せん断加工面の耐食性劣化が生じない二相ステンレス鋼、鋼板及び線状鋼材を提供することを目的とする。 The present invention advantageously solves the above-mentioned problems, and is applicable to applications in which the sheared surface is exposed to a corrosive environment without being subjected to a treatment such as polishing, and is a duplex stainless steel surface that does not deteriorate in corrosion resistance. It is an object of the present invention to provide stainless steel, steel plate and linear steel material.

発明者らは、二相ステンレス鋼としての鋼板または線状鋼材のせん断加工面の耐食性の改善を図るべく種々の検討を加えた。その結果、破断面の表面粗さを軽減させることで被さりが低減され、せん断加工面の耐食性が劣化しなくなり、高価なNi、Moの含有量を低減させつつ腐食発生を防止できることを見出した。 The inventors have made various studies to improve the corrosion resistance of the sheared surface of a steel plate or linear steel as a duplex stainless steel. As a result, it has been found that by reducing the surface roughness of the fracture surface, the covering is reduced, the corrosion resistance of the sheared surface is not deteriorated, and the occurrence of corrosion can be prevented while reducing the contents of expensive Ni and Mo.

さらに検討を進めた結果、破断面の表面粗さの軽減については、フェライト/オーステナイト相界面間の距離を適切に制御し、フェライト相及びオーステナイト相を適切に分布させることが有効であるとの知見を得た。 As a result of further studies, it was found that it is effective to appropriately control the distance between the ferrite / austenite phase interfaces and to appropriately distribute the ferrite phase and the austenite phase in order to reduce the surface roughness of the fracture surface. Got

加えて、加工面の耐すきま腐食性と添加元素量の関係について、種々添加元素量を変更した試験片を作製し腐食試験により調査した。その結果、各元素の耐すきま腐食性向上効果を定量化し、必要な元素量に関する知見を得た。 In addition, the relationship between the crevice corrosion resistance of the processed surface and the amount of added elements was investigated by preparing test pieces with various added element amounts changed and conducting a corrosion test. As a result, the effect of improving the crevice corrosion resistance of each element was quantified, and the knowledge on the required element amount was obtained.

本発明の要旨とするところは以下の通りである。 The gist of the present invention is as follows.

(1)質量%で、
C:0.030%以下、
Si:0.10〜2.00%、
Mn:6.00%以下、
P:0.050%以下、
S:0.0050%以下、
Ni:1.00〜5.00%、
Cr:18.00〜25.00%、
Mo:0.01〜1.00%、
Cu:0.30〜4.00%、
W:0.005〜1.00%、
N:0.100〜0.250%、
Al:0.003〜0.050%及び
O:0.0070%以下を含有し、
残部がFe及び不可避的不純物からなり、
下記式(1)および下記式(2)を満たし、
圧延方向に垂直な断面において、フェライト/オーステナイト相界面間の距離の最大値が、フェライト相において100μm以下、オーステナイト相において30μm以下であることを特徴とするせん断加工面の耐食性に優れた二相ステンレス鋼。
[Cr]+3[Mo]+1.5[W]+2[Cu]+0.5[Ni]+20[N]≧25.0 ・・・ (1)
551−462([C]+[N])−9.2[Si]−8.1[Mn]−29([Ni]+[Cu])−13.7[Cr]−18.5[Mo]≦80.0 ・・・ (2)
なお、上記式(1)および(2)中の[]付き元素は、当該元素の鋼中の含有質量%を表す。
(2)さらに以下の群のうち少なくとも1群以上を含有することを特徴とする(1)に記載のせん断加工面の耐食性に優れた二相ステンレス鋼。
第1群:
質量%で、
Nb:0.005〜0.20%、
Ti:0.005〜0.20%、
Co:0.005〜0.25%及び
V:0.005〜0.15%
から選択される1種または2種以上。
第2群:
質量%で、
Sn:0.005〜0.20%、
Sb:0.005〜0.20%、
Ga:0.001〜0.050%、
Zr:0.005〜0.50%、
Ta:0.005〜0.100%、
B:0.0002〜0.0050%、
Ca:0.0002〜0.0050%及び
Mg:0.0002〜0.0050%
から選択される1種または2種以上。
(3)C、Mn、Cr、Ni及びNのうちいずれか1種以上の元素の含有量が、質量%で、C:0.007〜0.025%、Mn:0.50〜5.00%、Cr:20.00〜23.00%、Ni:1.30〜4.70%、N:0.110〜0.240%の範囲を満たし、
下記式(1a)を満たし、
圧延方向に垂直な断面において、フェライト/オーステナイト相界面間の距離の最大値が、フェライト相において80μm以下、オーステナイト相において25μm以下を満たすことを特徴とする(1)または(2)に記載のせん断加工面の耐食性に優れた二相ステンレス鋼。
[Cr]+3[Mo]+1.5[W]+2[Cu]+0.5[Ni]+20[N]≧30.0 ・・・ (1a)
なお、上記式(1a)中の[]付き元素は、当該元素の鋼中の含有質量%を表す。
(4)前記二相ステンレス鋼が二相ステンレス鋼板であることを特徴とする(1)乃至(3)の何れか一項に記載のせん断加工面の耐食性に優れた二相ステンレス鋼板。
(5)前記二相ステンレス鋼が二相ステンレス線状鋼材であることを特徴とする(1)乃至(3)の何れか一項に記載のせん断加工面の耐食性に優れた二相ステンレス線状鋼材。
なお、上記の圧延方向について、圧延方向が複数ある場合の圧延方向は、最も圧下量の大きい圧延を施した際の圧延方向とする。
(1) By mass%
C: 0.030% or less,
Si: 0.10 to 2.00%,
Mn: 6.00% or less,
P: 0.050% or less,
S: 0.0050% or less,
Ni: 1.00 to 5.00%,
Cr: 18.0 to 25.00%,
Mo: 0.01-1.00%,
Cu: 0.30 to 4.00%,
W: 0.005-1.00%,
N: 0.100 to 0.250%,
Al: 0.003 to 0.050% and O: 0.0070% or less,
The rest consists of Fe and unavoidable impurities,
Satisfy the following formula (1) and the following formula (2),
A two-phase stainless steel having excellent corrosion resistance on a sheared surface, characterized in that the maximum value of the distance between the ferrite / austenite phase interfaces is 100 μm or less in the ferrite phase and 30 μm or less in the austenite phase in the cross section perpendicular to the rolling direction. steel.
[Cr] +3 [Mo] +1.5 [W] +2 [Cu] +0.5 [Ni] +20 [N] ≧ 25.0 ・ ・ ・ (1)
551-462 ([C] + [N])-9.2 [Si] -8.1 [Mn] -29 ([Ni] + [Cu]) -13.7 [Cr] -18.5 [Mo] ] ≤ 80.0 ・ ・ ・ (2)
The element with [] in the above formulas (1) and (2) represents the mass% of the element contained in the steel.
(2) The duplex stainless steel having excellent corrosion resistance on the sheared surface according to (1), which further contains at least one group among the following groups.
Group 1:
By mass%
Nb: 0.005 to 0.20%,
Ti: 0.005 to 0.20%,
Co: 0.005-0.25% and V: 0.005-0.15%
One or more selected from.
Group 2:
By mass%
Sn: 0.005 to 0.20%,
Sb: 0.005 to 0.20%,
Ga: 0.001 to 0.050%,
Zr: 0.005 to 0.50%,
Ta: 0.005 to 0.100%,
B: 0.0002 to 0.0050%,
Ca: 0.0002 to 0.0050% and Mg: 0.0002 to 0.0050%
One or more selected from.
(3) The content of any one or more of C, Mn, Cr, Ni and N is mass%, C: 0.007 to 0.025%, Mn: 0.50 to 5.00. %, Cr: 20.00 to 23.00%, Ni: 1.30 to 4.70%, N: 0.110 to 0.240%.
Satisfy the following formula (1a)
The shear according to (1) or (2), wherein the maximum value of the distance between the ferrite / austenite phase interfaces is 80 μm or less in the ferrite phase and 25 μm or less in the austenite phase in the cross section perpendicular to the rolling direction. Duplex stainless steel with excellent corrosion resistance on the machined surface.
[Cr] +3 [Mo] +1.5 [W] +2 [Cu] +0.5 [Ni] +20 [N] ≧ 30.0 ・ ・ ・ (1a)
The element with [] in the above formula (1a) represents the mass% of the element contained in the steel.
(4) The duplex stainless steel sheet having excellent corrosion resistance on the sheared surface according to any one of (1) to (3), wherein the duplex stainless steel is a duplex stainless steel sheet.
(5) A duplex stainless wire having excellent corrosion resistance on a sheared surface according to any one of (1) to (3), wherein the duplex stainless steel is a duplex stainless wire. Steel material.
Regarding the above rolling directions, when there are a plurality of rolling directions, the rolling direction is the rolling direction when the rolling with the largest rolling amount is performed.

本発明の二相ステンレス鋼によれば、せん断加工面が研磨等の処理を行われることなく腐食環境に曝される用途に適用される二相ステンレス鋼において、高価なNi、Moの含有量を低減させつつ、せん断加工面の耐食性劣化が生じず腐食発生を防止することができる。その結果、このような用途に適するステンレス鋼板及び線状鋼材を安価に得ることができる。 According to the duplex stainless steel of the present invention, the content of expensive Ni and Mo in the duplex stainless steel applied to the application in which the sheared surface is exposed to a corrosive environment without being subjected to a treatment such as polishing. While reducing the amount, corrosion resistance of the sheared surface does not deteriorate and corrosion can be prevented. As a result, stainless steel sheets and linear steel materials suitable for such applications can be obtained at low cost.

以下に本発明を詳細に説明する。
まず、本実施形態に係る二相ステンレス鋼、二相ステンレス鋼板および二相ステンレス線状鋼材(以下、単に二相ステンレス鋼と記載する場合がある)の成分組成を限定した理由について説明する。なお、成分を示す%は質量%を意味する。
The present invention will be described in detail below.
First, the reason for limiting the component composition of the duplex stainless steel, the duplex stainless steel plate and the duplex stainless linear steel (hereinafter, may be simply referred to as duplex stainless steel) according to the present embodiment will be described. In addition,% indicating a component means mass%.

C:0.030%以下
C含有量が0.030%を超えると、Cr炭化物析出により耐食性が低下する。従ってC含有量は少ない方が望ましいが、0.030%以下までは許容できるため、これを上限とする。耐食性改善の観点から、好ましいC含有量の上限は0.025%以下である。下限は特に限定しないが、コストの観点から0.001%以上とすることが好ましく、より好ましくは0.007%以上である。好ましいC含有量は、0.007〜0.025%である。
C: 0.030% or less If the C content exceeds 0.030%, the corrosion resistance is lowered due to the precipitation of Cr carbides. Therefore, it is desirable that the C content is low, but since 0.030% or less is acceptable, this is the upper limit. From the viewpoint of improving corrosion resistance, the upper limit of the preferable C content is 0.025% or less. The lower limit is not particularly limited, but is preferably 0.001% or more, and more preferably 0.007% or more from the viewpoint of cost. The preferred C content is 0.007 to 0.025%.

Si:0.10〜2.00%
Siは、脱酸のため0.10%以上の含有量が必要である。そのため、Si含有量の下限を0.10%以上とする。しかし、2.00%を超えて含有させると靭性が低下し、信頼性が損なわれるので、Si含有量の上限を2.00%以下とする。Si含有量の下限は0.30%以上が好ましく、上限は1.50%未満が好ましい。したがって、好ましいSi含有量は0.30〜1.50%未満である。
Si: 0.10 to 2.00%
Si needs to have a content of 0.10% or more for deoxidation. Therefore, the lower limit of the Si content is set to 0.10% or more. However, if the content exceeds 2.00%, the toughness is lowered and the reliability is impaired. Therefore, the upper limit of the Si content is set to 2.00% or less. The lower limit of the Si content is preferably 0.30% or more, and the upper limit is preferably less than 1.50%. Therefore, the preferred Si content is less than 0.30 to 1.50%.

Mn:6.00%以下
Mnは比較的安価な元素でありながら、鋼中のγ相量を増加させ、さらに窒素の固溶度を上げることで、Cr窒化物の析出を抑制する効果がある。一方で、Crを過度に含有させると耐食性劣化の原因となるため、Cr含有量の上限を6.00%以下とする。Mn含有量の下限は0.50%以上が好ましく、上限は5.00%以下が好ましい。したがって、好ましいMn含有量は0.50〜5.00%である。
Mn: 6.00% or less Although Mn is a relatively inexpensive element, it has the effect of suppressing the precipitation of Cr nitrides by increasing the amount of γ-phase in steel and further increasing the solid solubility of nitrogen. .. On the other hand, if Cr is excessively contained, it causes deterioration of corrosion resistance, so the upper limit of the Cr content is set to 6.00% or less. The lower limit of the Mn content is preferably 0.50% or more, and the upper limit is preferably 5.00% or less. Therefore, the preferred Mn content is 0.50 to 5.00%.

P:0.050%以下
Pは、鋼中に不可避的に含有される元素であるが、熱間加工性を劣化させるため、P含有量の上限は0.050%以下とする。P含有量の好ましい上限は0.040%以下である。P含有量の下限は特に限定しないが、コストの観点から0.005%以上とすることが好ましい。
P: 0.050% or less P is an element that is inevitably contained in steel, but the upper limit of the P content is 0.050% or less because it deteriorates hot workability. The preferable upper limit of the P content is 0.040% or less. The lower limit of the P content is not particularly limited, but is preferably 0.005% or more from the viewpoint of cost.

S:0.0050%以下
SはPと同様に鋼中に不可避的に含有される元素であるが、熱間加工性、靭性、耐食性を劣化させるため、S含有量の上限は0.0050%以下とする。好ましくは0.0020%以下である。S含有量の下限は特に限定しないが、コストの観点から0.0001%以上とすることが好ましい。より好ましいS含有量の下限は0.0007%以上である。
S: 0.0050% or less S is an element that is inevitably contained in steel like P, but the upper limit of S content is 0.0050% because it deteriorates hot workability, toughness, and corrosion resistance. It is as follows. It is preferably 0.0020% or less. The lower limit of the S content is not particularly limited, but is preferably 0.0001% or more from the viewpoint of cost. The lower limit of the more preferable S content is 0.0007% or more.

Ni:1.00〜5.00%
Niは、ステンレス鋼の耐すきま腐食性を向上させる元素である。すきま腐食は、すきま内部のpHが低下し不働態皮膜が維持できなくなることにより発生する腐食であるが、Niは低pH環境でのステンレス鋼の溶解を抑制する効果がある。Ni含有量が過少では耐すきま腐食性を向上する効果が得られない。一方、Niを過剰に含有させると、コストが上昇するだけでなく、鋼中のγ相が過剰となり熱間加工性が低下する。このため、Ni含有量の下限は1.00%以上とし、上限は5.00%以下とする。したがって、Ni含有量は1.00〜5.00%とする。Ni含有量の下限は1.30%以上が好ましく、上限は4.70%以下が好ましい。したがって、好ましいNi含有量は1.30〜4.70%である。上限は更に好ましくは4.50%以下であり、より好ましいNi含有量は1.30〜4.50%である。
Ni: 1.00 to 5.00%
Ni is an element that improves the crevice corrosion resistance of stainless steel. Gap corrosion is corrosion that occurs when the pH inside the crevice drops and the passive film cannot be maintained. Ni has the effect of suppressing the dissolution of stainless steel in a low pH environment. If the Ni content is too low, the effect of improving the crevice corrosion resistance cannot be obtained. On the other hand, if Ni is excessively contained, not only the cost increases, but also the γ phase in the steel becomes excessive and the hot workability is lowered. Therefore, the lower limit of the Ni content is 1.00% or more, and the upper limit is 5.00% or less. Therefore, the Ni content is set to 1.00 to 5.00%. The lower limit of the Ni content is preferably 1.30% or more, and the upper limit is preferably 4.70% or less. Therefore, the preferred Ni content is 1.30 to 4.70%. The upper limit is more preferably 4.50% or less, and the more preferable Ni content is 1.30 to 4.50%.

Cr:18.00〜25.00%
Crは、ステンレス鋼の耐食性を向上させる元素である。特に本実施形態に係る二相ステンレス鋼は高価なMoの量を低減させているため、Crによる耐食性確保が必要となる。このため、Cr含有量の下限は18.00%以上とする。好ましいCr含有量の下限は19.00%以上である。更に好ましいCr量の下限は20.00%以上である。一方、Crはα相を増加させる元素であり、過剰に含有させると鋼中のα相が過剰になり、靭性が劣化する。このためCr含有量の上限は25.00%以下とする。好ましいCr含有量の上限は24.50%以下である。更に好ましいCr含有量の上限は23.00%以下である。
Cr: 18.0 to 25.00%
Cr is an element that improves the corrosion resistance of stainless steel. In particular, since the duplex stainless steel according to the present embodiment reduces the amount of expensive Mo, it is necessary to secure corrosion resistance by Cr. Therefore, the lower limit of the Cr content is set to 18.00% or more. The lower limit of the preferable Cr content is 19.00% or more. A more preferable lower limit of the amount of Cr is 20.00% or more. On the other hand, Cr is an element that increases the α phase, and if it is contained in excess, the α phase in the steel becomes excessive and the toughness deteriorates. Therefore, the upper limit of the Cr content is 25.00% or less. The upper limit of the preferable Cr content is 24.50% or less. A more preferable upper limit of the Cr content is 23.000% or less.

Mo:0.01〜1.00%
Moは、Crを超える高い耐食性向上効果を有するが、非常に高価な元素であり、またMo含有量が過剰だと硬質化を招き加工性を劣化させる。このため、Mo量の上限は1.00%以下とする。なお、好ましいMo含有量の上限は0.85%以下である。Moの耐食性を向上させる効果は、Mo含有量が0.01%未満では、その添加効果に乏しいため、Mo含有量の下限を0.01%以上とする。Mo含有量の下限は0.05%以上が好ましく、更に好ましくは0.20%以上である。
Mo: 0.01-1.00%
Mo has a high corrosion resistance improving effect exceeding Cr, but is a very expensive element, and if the Mo content is excessive, it causes hardening and deteriorates workability. Therefore, the upper limit of the amount of Mo is set to 1.00% or less. The upper limit of the preferable Mo content is 0.85% or less. As for the effect of improving the corrosion resistance of Mo, if the Mo content is less than 0.01%, the effect of adding the Mo is poor, so the lower limit of the Mo content is set to 0.01% or more. The lower limit of the Mo content is preferably 0.05% or more, more preferably 0.20% or more.

Cu:0.30〜4.00%
Cuは、Niと同様に低pH環境でのステンレス鋼の溶解を抑制する効果がある。ただし、Cuを過剰に含有させた場合、熱間加工性が著しく損なわれる。そのため、Cu含有量の上限は4.00%以下とする。好ましいCu含有量の上限は3.50%以下である。一方、Cu含有量が0.30%未満では上記効果が十分に発揮されない。したがって、Cu含有量の下限を0.30%以上とする。Cu含有量の下限は、好ましくは0.50%以上であり、更に好ましくは0.70%以上である。Cuを多量に含有すると熱間加工性の低下が生じる場合がある。そのため、熱間加工性を抑制する観点からは、Cu含有量の上限を1.50%以下とすることが好ましく、1.20%以下とすることが更に好ましい。
Cu: 0.30 to 4.00%
Like Ni, Cu has the effect of suppressing the melting of stainless steel in a low pH environment. However, when Cu is contained in an excessive amount, the hot workability is significantly impaired. Therefore, the upper limit of the Cu content is set to 4.00% or less. The upper limit of the preferable Cu content is 3.50% or less. On the other hand, if the Cu content is less than 0.30%, the above effect is not sufficiently exhibited. Therefore, the lower limit of the Cu content is set to 0.30% or more. The lower limit of the Cu content is preferably 0.50% or more, and more preferably 0.70% or more. If a large amount of Cu is contained, the hot workability may be deteriorated. Therefore, from the viewpoint of suppressing hot workability, the upper limit of the Cu content is preferably 1.50% or less, and more preferably 1.20% or less.

W:0.005〜1.00%
Wは、耐食性を向上させる効果がある。しかしWは、高価である上、過剰に含有させるとσ相の析出を促進することで耐食性の低下を招く。そのため、W含有量の上限は1.00%以下とする。なお、好ましいW含有量の上限は0.85%以下である。しかしながら、W含有量が0.005%未満では、上記効果は得られないため、W含有量の下限を0.005%以上とする。W含有量の下限は、好ましくは0.020%以上である。一方、Wの含有量が増えると、硬質化を招き、加工性を低下させるため、加工性の観点からは、W量の上限を0.50%以下とすることが好ましく、0.20%以下とすることがさらに好ましい。
W: 0.005 to 1.00%
W has the effect of improving corrosion resistance. However, W is expensive, and if it is contained in an excessive amount, it promotes the precipitation of the σ phase, resulting in a decrease in corrosion resistance. Therefore, the upper limit of the W content is set to 1.00% or less. The upper limit of the preferable W content is 0.85% or less. However, if the W content is less than 0.005%, the above effect cannot be obtained. Therefore, the lower limit of the W content is set to 0.005% or more. The lower limit of the W content is preferably 0.020% or more. On the other hand, if the W content increases, it causes hardening and lowers workability. Therefore, from the viewpoint of workability, the upper limit of the W content is preferably 0.50% or less, and 0.20% or less. Is more preferable.

N:0.100〜0.250%
Nは、耐食性を著しく高め、γ相量を高める効果がある。この効果を得るためには、0.100%以上の含有量が必要である。したがって、N含有量の下限を0.100%以上とする。好ましいN含有量の下限は0.110%以上である。しかし、N含有量が0.250%を超えると、鋼中に窒化物を形成して耐食性や靭性を低下させる。そのため、N含有量の上限を0.250%以下とする。好ましいN含有量の上限は0.240%以下である。
N: 0.100 to 0.250%
N has the effect of significantly increasing corrosion resistance and increasing the amount of γ phase. In order to obtain this effect, a content of 0.100% or more is required. Therefore, the lower limit of the N content is set to 0.100% or more. The lower limit of the preferable N content is 0.110% or more. However, when the N content exceeds 0.250%, a nitride is formed in the steel to reduce corrosion resistance and toughness. Therefore, the upper limit of the N content is set to 0.250% or less. The upper limit of the preferable N content is 0.240% or less.

Al:0.003〜0.050%
Alは、強力な脱酸作用を持つため、鋼中の酸素低減のため0.003%以上の含有量が必要である。したがって、Al含有量の下限を0.003%以上とする。しかし、AlはNとの間で窒化物を形成しやすく、窒化物が形成されると靭性が大きく低下する。そのため、Al含有量の上限を0.050%以下とする。したがって、Al含有量は0.003〜0.050%とする。また、Al含有量の下限は0.005%以上が好ましく、上限は0.040%以下が好ましい。したがって、好ましいAl含有量は0.005〜0.040%である。
Al: 0.003 to 0.050%
Since Al has a strong deoxidizing action, a content of 0.003% or more is required to reduce oxygen in steel. Therefore, the lower limit of the Al content is set to 0.003% or more. However, Al easily forms a nitride with N, and when the nitride is formed, the toughness is greatly reduced. Therefore, the upper limit of the Al content is set to 0.050% or less. Therefore, the Al content is set to 0.003 to 0.050%. The lower limit of the Al content is preferably 0.005% or more, and the upper limit is preferably 0.040% or less. Therefore, the preferred Al content is 0.005 to 0.040%.

O:0.0070%以下
Oは、鋼中に過剰に存在すると酸化物を生成し、靭性を低下させる。そのため、O含有量の上限を0.0070%以下とする。好ましいO含有量の上限は0.0050%以下である。O含有量の下限は特に限定しないが、コストの観点から0.0005%以上とすることが好ましい。
O: 0.0070% or less O, when excessively present in steel, forms an oxide and lowers toughness. Therefore, the upper limit of the O content is set to 0.0070% or less. The upper limit of the preferable O content is 0.0050% or less. The lower limit of the O content is not particularly limited, but is preferably 0.0005% or more from the viewpoint of cost.

以上、本実施形態に係る二相ステンレス鋼の基本成分について説明したが、本実施形態に係る二相ステンレス鋼では、上述した基本元素の他にも耐食性改善のために、以下に述べる第1群および第2群のうち、少なくとも1群以上を含有させることができる。第1群および第2群の元素は、含有させてもよく、含有させなくてもよい。含有させない場合のそれぞれの元素の下限は0%である。
まず、第1群の元素について以下に説明する。第1群は、Nb:0.005〜0.20%、Ti:0.005〜0.20%、Co:0.005〜0.25%及びV:0.005〜0.15%から選択される1種または2種以上からなる。それぞれの元素について以下に説明する。
The basic components of the duplex stainless steel according to the present embodiment have been described above. However, in the duplex stainless steel according to the present embodiment, in addition to the above-mentioned basic elements, the first group described below is used for improving corrosion resistance. And at least one or more of the second group can be contained. The elements of the first group and the second group may or may not be contained. The lower limit of each element when not contained is 0%.
First, the elements of the first group will be described below. The first group is selected from Nb: 0.005 to 0.25%, Ti: 0.005 to 0.25%, Co: 0.005 to 0.25% and V: 0.005 to 0.15%. Consists of one or more species. Each element will be described below.

Nb:0.005〜0.20%
Nbは、C、Nを固定して、Cr炭化物の析出による耐食性低下を防ぎ、耐食性を向上させる元素である。しかしながら、Nb含有量が0.005%未満では、その添加効果が乏しいため、Nb含有量の下限を0.005%以上とする。一方、Nb含有量が0.20%を超えると、固溶強化によりα相が硬質化して加工性を低下させるため、Nb含有量の上限を0.20%以下とする。そのため、Nb量は0.005〜0.20%とすることが好ましい。
Nb: 0.005 to 0.20%
Nb is an element that fixes C and N, prevents deterioration of corrosion resistance due to precipitation of Cr carbides, and improves corrosion resistance. However, if the Nb content is less than 0.005%, the effect of adding the Nb content is poor, so the lower limit of the Nb content is set to 0.005% or more. On the other hand, when the Nb content exceeds 0.20%, the α phase is hardened by solid solution strengthening and the workability is lowered. Therefore, the upper limit of the Nb content is set to 0.20% or less. Therefore, the amount of Nb is preferably 0.005 to 0.20%.

Ti:0.005〜0.20%
Tiは、C、Nを固定して、Cr炭化物の析出による鋭敏化を防ぎ、耐食性を向上させる元素である。しかしながらTi含有量が0.005%未満では、その添加効果が乏しいため、Ti含有量の下限を0.005%以上とする。一方、Ti含有量が0.20%を超えると、α相の硬質化を招き、靱性を低下させ、さらにTi系析出物により表面粗さの低下を招く。そのため、Ti含有量の上限を0.20%以下とする。従って、Ti含有量を0.005〜0.20%とすることが好ましい。
Ti: 0.005 to 0.20%
Ti is an element that fixes C and N, prevents sensitization due to precipitation of Cr carbides, and improves corrosion resistance. However, if the Ti content is less than 0.005%, the effect of adding the Ti content is poor, so the lower limit of the Ti content is set to 0.005% or more. On the other hand, when the Ti content exceeds 0.20%, the α phase is hardened, the toughness is lowered, and the surface roughness is lowered due to the Ti-based precipitate. Therefore, the upper limit of the Ti content is set to 0.20% or less. Therefore, the Ti content is preferably 0.005 to 0.20%.

Co:0.005〜0.25%
Coは、Cr炭化物の析出を抑制し、耐食性の低下を抑制する効果がある。この効果は、0.005%以上のCoの添加によって認められるため、Co含有量の下限を0.005%以上とする。Niとの共存により微量のCoを添加しても、その効果を発現するが、Co量が0.005%未満では、その効果は認められない。一方、Coは稀少な元素であり高価であることから、多量のCoの添加は過大なコスト増加を招く。そのため、Co含有量の上限を0.25%以下とする。より好ましいCo含有量の上限は0.12%以下である。
Co: 0.005-0.25%
Co has the effect of suppressing the precipitation of Cr carbides and suppressing the decrease in corrosion resistance. Since this effect is observed by adding 0.005% or more of Co, the lower limit of the Co content is set to 0.005% or more. Even if a small amount of Co is added due to coexistence with Ni, the effect is exhibited, but when the amount of Co is less than 0.005%, the effect is not recognized. On the other hand, since Co is a rare element and expensive, the addition of a large amount of Co causes an excessive cost increase. Therefore, the upper limit of the Co content is set to 0.25% or less. A more preferable upper limit of the Co content is 0.12% or less.

V:0.005〜0.15%
Vは、強力な炭化物生成元素である。そのため、高温域で炭化物を形成しやすいVを添加すると、Cr炭化物の析出を抑制し、耐食性低下を抑制する効果が得られる。この効果は、0.005%以上のVの添加によって認められるため、V含有量の下限を0.005%以上とする。一方、過剰な量のVの添加は硬質化を招くため、V含有量の上限を0.15%以下とする。
V: 0.005 to 0.15%
V is a strong carbide-forming element. Therefore, when V, which easily forms carbides in a high temperature range, is added, the effect of suppressing the precipitation of Cr carbides and suppressing the deterioration of corrosion resistance can be obtained. Since this effect is observed by adding 0.005% or more of V, the lower limit of the V content is set to 0.005% or more. On the other hand, since the addition of an excessive amount of V causes hardening, the upper limit of the V content is set to 0.15% or less.

次に、第2群の元素について説明する。第2群は、Sn:0.005〜0.20%、Sb:0.005〜0.20%、Ga:0.001〜0.050%、Zr:0.005〜0.50%、Ta:0.005〜0.100%、B:0.0002〜0.0050%、Ca:0.0002〜0.0050%及びMg:0.0002〜0.0050%から選択される1種または2種以上からなる。それぞれの元素について以下に説明する。 Next, the elements of the second group will be described. In the second group, Sn: 0.005 to 0.20%, Sb: 0.005 to 0.20%, Ga: 0.001 to 0.050%, Zr: 0.005 to 0.50%, Ta One or 2 selected from: 0.005 to 0.100%, B: 0.0002 to 0.0050%, Ca: 0.0002 to 0.0050% and Mg: 0.0002 to 0.0050%. Consists of more than seeds. Each element will be described below.

Sn:0.005〜0.20%、Sb:0.005〜0.20%
Sn、Sbは耐食性を向上させる元素であるが、α相の固溶強化元素でもあり、加工性の低下を招く元素でもある。そのため、Sn、Sbのそれぞれの含有量の上限を0.20%以下とする。Sn、Sbのいずれかの含有量が0.005%以上の場合、耐食性を向上させる効果が発揮されるため、Sn、Sbのそれぞれの含有量の下限を0.005%以上とする。したがって、Sn、Sbのそれぞれの含有量を0.005〜0.20%とすることが好ましい。Sn、Sbのそれぞれの含有量の下限は、好ましくは0.030%以上である。Sn、Sbのそれぞれの含有量の上限は、好ましくは0.10%以下である。
Sn: 0.005 to 0.20%, Sb: 0.005 to 0.20%
Sn and Sb are elements that improve corrosion resistance, but they are also α-phase solid solution strengthening elements and elements that cause a decrease in processability. Therefore, the upper limit of the respective contents of Sn and Sb is set to 0.20% or less. When the content of either Sn or Sb is 0.005% or more, the effect of improving the corrosion resistance is exhibited. Therefore, the lower limit of the content of each of Sn and Sb is set to 0.005% or more. Therefore, it is preferable that the respective contents of Sn and Sb are 0.005 to 0.20%. The lower limit of the respective contents of Sn and Sb is preferably 0.030% or more. The upper limit of the respective contents of Sn and Sb is preferably 0.10% or less.

Ga:0.001〜0.050%
Gaは、耐食性を向上する効果がある元素である。Ga含有量が0.001%以上で、上記効果が発現する。そのため、Ga含有量の下限を0.001%以上とする。Ga含有量が0.050%を超えると、上記効果が飽和するため、Ga含有量の上限を0.050%以下とする。そのため、0.001〜0.050%の範囲の量でGaを含有させることができる。
Ga: 0.001 to 0.050%
Ga is an element that has the effect of improving corrosion resistance. The above effect is exhibited when the Ga content is 0.001% or more. Therefore, the lower limit of the Ga content is set to 0.001% or more. If the Ga content exceeds 0.050%, the above effect is saturated, so the upper limit of the Ga content is set to 0.050% or less. Therefore, Ga can be contained in an amount in the range of 0.001 to 0.050%.

Zr:0.005〜0.50%
Zrは、耐食性を向上する効果がある元素である。Zr含有量が0.005%以上で、上記効果が発現する。そのため、Zr含有量の下限を0.005%以上とする。Zr含有量が0.50%を超えると、上記効果が飽和するため、Zr含有量の上限を0.50%以下とする。そのため、0.005〜0.50%の範囲の含有量でZrを含有させることができる。
Zr: 0.005 to 0.50%
Zr is an element that has the effect of improving corrosion resistance. When the Zr content is 0.005% or more, the above effect is exhibited. Therefore, the lower limit of the Zr content is set to 0.005% or more. If the Zr content exceeds 0.50%, the above effect is saturated, so the upper limit of the Zr content is set to 0.50% or less. Therefore, Zr can be contained in a content in the range of 0.005 to 0.50%.

Ta:0.005〜0.100%
Taは、介在物の改質により耐食性を向上させる効果があり、必要に応じて含有してもよい。0.005%以上の量のTaによって上記効果が発揮されるため、Ta含有量の下限を0.005%以上とすれば良い。ただし、Ta含有量が0.100%を超えると、常温での延性の低下や靭性の低下を招く。このため、Ta含有量の上限を0.100%以下とする。Ta含有量の好ましい上限は0.050%以下である。また、少量のTa含有量によって上記効果を発現させる場合には、Ta含有量の上限を0.020%以下とすることが好ましい。
Ta: 0.005 to 0.100%
Ta has the effect of improving corrosion resistance by modifying inclusions, and may be contained if necessary. Since the above effect is exhibited by an amount of Ta of 0.005% or more, the lower limit of the Ta content may be set to 0.005% or more. However, if the Ta content exceeds 0.100%, the ductility and toughness at room temperature are lowered. Therefore, the upper limit of the Ta content is set to 0.100% or less. The preferable upper limit of the Ta content is 0.050% or less. Further, when the above effect is exhibited by a small amount of Ta content, the upper limit of the Ta content is preferably 0.020% or less.

B:0.0002〜0.0050%
Bは、2次加工脆化や熱間加工性の劣化を防止するのに有用な元素であり、耐食性には影響を与えない元素である。そのため、B含有量の下限を0.0002%以上としてBを含有させることができる。しかし、B含有量が0.0050%を超えると、かえって熱間加工性が劣化するので、B含有量の上限を0.0050%以下とする。B含有量の上限は、好ましくは0.0020%以下である。
B: 0.0002 to 0.0050%
B is an element useful for preventing secondary processing embrittlement and deterioration of hot workability, and is an element that does not affect corrosion resistance. Therefore, B can be contained by setting the lower limit of the B content to 0.0002% or more. However, if the B content exceeds 0.0050%, the hot workability deteriorates, so the upper limit of the B content is set to 0.0050% or less. The upper limit of the B content is preferably 0.0020% or less.

Ca:0.0002〜0.0050%
Caは、熱間加工性を改善するのに有用な元素である。そのため、Ca含有量の下限を0.0002%以上としてCaを含有させることができる。しかし、Ca含有量が0.0050%を超えると、かえって熱間加工性が劣化するので、Ca含有量の上限を0.0050%以下とする。Ca含有量の下限は、好ましくは0.0005%以上である。
Ca: 0.0002 to 0.0050%
Ca is an element useful for improving hot workability. Therefore, Ca can be contained by setting the lower limit of the Ca content to 0.0002% or more. However, if the Ca content exceeds 0.0050%, the hot workability deteriorates, so the upper limit of the Ca content is set to 0.0050% or less. The lower limit of the Ca content is preferably 0.0005% or more.

Mg:0.0002〜0.0050%
Mgは、熱間加工性を改善するのに有用な元素である。そのため、Mg含有量の下限を0.0002%以上としてMgを含有させることができる。しかし、Mg含有量が0.0050%を超えると、かえって熱間加工性が劣化するので、Mg含有量の上限を0.0050%以下とする。Mg含有量の下限は、好ましくは0.0005%以上である。
Mg: 0.0002 to 0.0050%
Mg is an element useful for improving hot workability. Therefore, Mg can be contained by setting the lower limit of the Mg content to 0.0002% or more. However, if the Mg content exceeds 0.0050%, the hot workability deteriorates, so the upper limit of the Mg content is set to 0.0050% or less. The lower limit of the Mg content is preferably 0.0005% or more.

本実施形態に係る二相ステンレス鋼は、上述した元素以外の残部は、Fe及び不可避的不純物であるが、上述した各元素以外の他の元素も、本実施形態の効果を損なわない範囲で含有させることが出来る。 In the duplex stainless steel according to the present embodiment, the balance other than the above-mentioned elements is Fe and unavoidable impurities, but elements other than the above-mentioned elements are also contained within a range that does not impair the effects of the present embodiment. Can be made to.

次に、本実施形態に係る二相ステンレス鋼は、加工面の耐すきま腐食性確保のために、下記の添加元素量の式(1)を満たす必要がある。下記式(1)の左辺で表されるCCRIは、「鉄と鋼」Vol.63 No.11 p.396に記載されている成分式に、発明者らがN及びWの効果を確認し追加したものである。耐すきま腐食性を高める元素の添加量が小さい場合、すなわち下記式(1)の左辺で表されるCCRIが25.0未満の場合、母材素地の耐食性が劣化するため、加工面においてすきま腐食が発生する。なお、耐すきま腐食性をより向上させるためには、下記式(1a)を満たすことがより好ましい。下記式(1)および下記式(1a)中の[Cr]、[Mo]、[W]、[Cu]、[Ni]及び[N]は、当該元素の鋼中の含有質量%を表す。 Next, the duplex stainless steel according to the present embodiment needs to satisfy the following formula (1) of the amount of added elements in order to secure the crevice corrosion resistance of the processed surface. The CCRI represented by the left side of the following equation (1) is "Iron and Steel" Vol. 63 No. 11 p. The inventors have confirmed and added the effects of N and W to the component formula described in 396. If the amount of the element that enhances the crevice corrosion resistance is small, that is, if the CCRI represented by the left side of the following formula (1) is less than 25.0, the corrosion resistance of the base metal base material deteriorates, and crevice corrosion occurs on the processed surface. Occurs. In addition, in order to further improve the crevice corrosion resistance, it is more preferable to satisfy the following formula (1a). [Cr], [Mo], [W], [Cu], [Ni] and [N] in the following formula (1) and the following formula (1a) represent the mass% of the element contained in the steel.

[Cr]+3[Mo]+1.5[W]+2[Cu]+0.5[Ni]+20[N]≧25.0 ・・・ (1)
[Cr]+3[Mo]+1.5[W]+2[Cu]+0.5[Ni]+20[N]≧30.0 ・・・ (1a)
[Cr] +3 [Mo] +1.5 [W] +2 [Cu] +0.5 [Ni] +20 [N] ≧ 25.0 ・ ・ ・ (1)
[Cr] +3 [Mo] +1.5 [W] +2 [Cu] +0.5 [Ni] +20 [N] ≧ 30.0 ・ ・ ・ (1a)

下記式(2)の左辺で表されるMd30は、一般にオーステナイト系ステンレス鋼において、加工誘起マルテンサイトによる加工硬化の度合いを示す成分式として知られており、「鉄と鋼」Vol.63 No.5 p.772等に記載されている。一般に合金元素の添加量が少ないほどMd30が高くなり、加工硬化しやすくなる傾向にある。本発明鋼は二相ステンレス鋼であるが、省合金タイプのためγ相は従来の二相ステンレス鋼より加工硬化しやすいと考えられる。加工硬化が大きい場合、破断面の表面粗さが大きくなり、すきまが形成され耐食性が劣化する。そのため、本実施形態に係る二相ステンレス鋼、二相ステンレス鋼板および二相ステンレス線状鋼材では、破断面の表面粗さを良好とするために、下記式(2)の左辺で表されるMd30を80.0以下とする。なお、下記式(2)中の[C]、[N]、[Si]、[Mn]、[Ni][Cu]、[Cr]および[Mo]は、当該元素の鋼中の含有質量%を表す。 Md30 represented by the left side of the following formula (2) is generally known as a component formula indicating the degree of work hardening due to work-induced martensite in austenitic stainless steel, and is described in "Iron and Steel" Vol. 63 No. 5 p. It is described in 772 and the like. Generally, the smaller the amount of the alloying element added, the higher the Md30, and the easier it is to work harden. Although the steel of the present invention is a duplex stainless steel, it is considered that the γ phase is easier to work harden than the conventional duplex stainless steel because it is an alloy-saving type. When work hardening is large, the surface roughness of the fracture surface becomes large, gaps are formed, and corrosion resistance deteriorates. Therefore, in the duplex stainless steel, duplex stainless steel plate, and duplex stainless linear steel material according to the present embodiment, Md30 represented by the left side of the following formula (2) is used in order to improve the surface roughness of the fracture surface. Is 80.0 or less. In addition, [C], [N], [Si], [Mn], [Ni] [Cu], [Cr] and [Mo] in the following formula (2) are the mass% of the element contained in the steel. Represents.

551−462([C]+[N])−9.2[Si]−8.1[Mn]−29([Ni]+[Cu])−13.7[Cr]−18.5[Mo]≦80.0 ・・・ (2) 551-462 ([C] + [N])-9.2 [Si] -8.1 [Mn] -29 ([Ni] + [Cu]) -13.7 [Cr] -18.5 [Mo] ] ≤ 80.0 ・ ・ ・ (2)

本実施形態に係る二相ステンレス鋼、二相ステンレス鋼板および二相ステンレス線状鋼材は、圧延方向に垂直な断面において、α/γ相界面間の距離の最大値が、α相において100μm以下、γ相において30μm以下であることを特徴とする。ここで、上記の圧延方向について、圧延方向が複数ある場合の圧延方向は、最も圧下量の大きい圧延を施した際の圧延方向とする。
α相及びγ相からなる二相ステンレス鋼では、せん断に伴う割れはα相とγ相を交互に進展する。本発明者らは、耐食性試験及びミクロ組織観察を行い、α相、γ相のいずれの相においても、結晶粒径とは無関係に、単一の相を連続して貫通する距離が長くなると、表面粗さが大きくなって破断面にすきまが形成され、耐食性が劣化することを見出した。さらに詳細に解析を進めた結果、α/γ相界面間の距離の最大値が、α相において100μm、γ相において30μmを超えた場合に耐食性が劣化することを見出した。そのため、本実施形態に係る二相ステンレス鋼、二相ステンレス鋼板および二相ステンレス線状鋼材では、α/γ相界面間の距離の最大値を、α相において100μm以下、γ相において30μm以下とする。より好ましいα/γ相界面間の距離の最大値は、α相において80μm以下、γ相において25μm以下である。
In the duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel material according to the present embodiment, the maximum value of the distance between the α / γ phase interfaces is 100 μm or less in the α phase in the cross section perpendicular to the rolling direction. It is characterized in that it is 30 μm or less in the γ phase. Here, regarding the above-mentioned rolling directions, when there are a plurality of rolling directions, the rolling direction is the rolling direction when rolling with the largest rolling amount is performed.
In duplex stainless steel composed of α phase and γ phase, cracks due to shearing progress alternately between α phase and γ phase. The present inventors conducted a corrosion resistance test and microstructure observation, and found that in either the α phase or the γ phase, when the distance through which a single phase is continuously penetrated becomes long regardless of the crystal grain size. It was found that the surface roughness becomes large, a gap is formed in the fracture surface, and the corrosion resistance deteriorates. As a result of further detailed analysis, it was found that the corrosion resistance deteriorates when the maximum value of the distance between the α / γ phase interfaces exceeds 100 μm in the α phase and 30 μm in the γ phase. Therefore, in the duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel material according to the present embodiment, the maximum value of the distance between the α / γ phase interfaces is set to 100 μm or less in the α phase and 30 μm or less in the γ phase. To do. The maximum value of the distance between the α / γ phase interfaces is more preferably 80 μm or less in the α phase and 25 μm or less in the γ phase.

本実施形態に係る二相ステンレス鋼、二相ステンレス鋼板および二相ステンレス線状鋼材では、上述した化学組成を満たし、さらにC、Mn、Cr、Ni及びNのうちいずれか1種以上の元素の含有量が、C:0.007〜0.025%、Mn:0.50〜5.00%、Cr:20.00〜23.00%、Ni:1.30〜4.70%及びN:0.110〜0.240%の範囲を満たし、上記式(1a)および(2)を満たし、更に圧延方向に垂直な断面において、フェライト/オーステナイト相界面間の距離の最大値が、フェライト相において80μm以下、オーステナイト相において25μm以下を満たすことで、より耐食性を向上させることができる。 The duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel according to the present embodiment satisfy the above-mentioned chemical composition and further contain one or more elements of C, Mn, Cr, Ni and N. The contents are C: 0.007 to 0.025%, Mn: 0.50 to 5.00%, Cr: 20.00 to 23.00%, Ni: 1.30 to 4.70% and N: In the ferrite phase, the maximum value of the distance between the ferrite / austenite phase interfaces is in the cross section perpendicular to the rolling direction, satisfying the range of 0.110 to 0.240% and satisfying the above formulas (1a) and (2). Corrosion resistance can be further improved by satisfying 80 μm or less and 25 μm or less in the austenite phase.

次に、本実施形態に係る二相ステンレス鋼、二相ステンレス鋼板および二相ステンレス線状鋼材の製造方法について説明する。
α/γ相界面間の距離を上記の範囲に制御するためには、熱間圧延において適切な条件を選ぶことが重要である。熱間圧延前の鋳片加熱温度について、1300℃以上とするとα相が過剰に成長し、α相での相界面間の距離が大きくなる。一方、1050℃未満では圧延時の変形抵抗が過大となり製造が困難となる。このため、熱間圧延前の鋳片加熱温度を1050℃以上1300℃未満とする。好ましい熱間圧延前の鋳片加熱温度の下限は1100℃以上である。また、加熱時間が長いとα相が過剰に成長し、α相での相界面間の距離が大きくなるため、所定の温度に到達した後の保定時間は360min以下とする。
Next, a method for producing a duplex stainless steel, a duplex stainless steel plate, and a duplex stainless linear steel material according to the present embodiment will be described.
In order to control the distance between the α / γ phase interfaces within the above range, it is important to select appropriate conditions for hot rolling. When the slab heating temperature before hot rolling is 1300 ° C. or higher, the α phase grows excessively and the distance between the phase interfaces in the α phase becomes large. On the other hand, if the temperature is lower than 1050 ° C., the deformation resistance during rolling becomes excessive, which makes manufacturing difficult. Therefore, the slab heating temperature before hot rolling is set to 1050 ° C. or higher and lower than 1300 ° C. The lower limit of the slab heating temperature before hot rolling is preferably 1100 ° C. or higher. Further, if the heating time is long, the α phase grows excessively and the distance between the phase interfaces in the α phase becomes large. Therefore, the retention time after reaching a predetermined temperature is set to 360 min or less.

熱間圧延では、適切な圧下量を選ぶことが重要である。具体的には、鋼板ではパス数を少なくとも10パス以上とし、3パス目までは各パス毎に圧延前板厚/圧延後板厚≦1.05となるよう圧下し、最終パスから数えて3パス以内の少なくとも1パス以上で圧延前板厚/圧延後板厚>1.25となるように圧下し、鋳片厚さ/製品厚さ≧5.0となるように圧下することで、α相、γ相それぞれの界面間の距離が上述の範囲となる組織が得られる。また、線状鋼材では、パス数を少なくとも10パス以上とし、3パス目までは各パス毎に圧延前断面積/圧延後断面積≦1.02となるよう圧下し、最終パスから数えて3パス以内の少なくとも1パス以上で圧延前断面積/圧延後断面積>1.12となるよう圧下し、鋳片断面積/製品断面積≧2.2となるよう圧下することで、α相、γ相それぞれの界面間の距離が上述の範囲となる組織が得られる。なお、鋳片厚さ/製品厚さ、鋳片断面積/製品断面積は、圧減比という場合がある。また、熱間圧延時における3パス目までの各パス毎の圧減比を初期3パス圧減比という場合があり、最終パスから数えて3パス以内の各パス毎の圧減比を最終3パス圧減比という場合がある。 In hot rolling, it is important to select an appropriate rolling reduction amount. Specifically, for steel sheets, the number of passes is at least 10 passes or more, and up to the third pass, each pass is reduced so that the pre-rolling plate thickness / post-rolling plate thickness ≤ 1.05, and counting from the final pass is 3 By reducing the thickness to 1.25 before rolling / thickness after rolling in at least one pass within the pass, and by reducing the thickness to slab thickness / product thickness ≥ 5.0, α A structure is obtained in which the distance between the interfaces of the phase and the γ phase is within the above range. For linear steel materials, the number of passes is at least 10 passes or more, and each pass is reduced to a pre-rolling cross-sectional area / post-rolling cross-sectional area ≤ 1.02 up to the third pass, counting from the final pass to 3. By reducing the pre-rolling cross-sectional area / post-rolling cross-sectional area> 1.12 and slab cross-sectional area / product cross-sectional area ≥ 2.2 in at least one pass within the pass, α-phase and γ A structure is obtained in which the distance between the interfaces of each phase is within the above range. The slab thickness / product thickness and the slab cross-sectional area / product cross-sectional area may be referred to as a reduction ratio. In addition, the pressure reduction ratio for each pass up to the third pass during hot rolling may be referred to as the initial 3-pass pressure reduction ratio, and the pressure reduction ratio for each pass within 3 passes counting from the final pass is the final 3. Sometimes called the pass pressure reduction ratio.

パス数について、本願所定範囲の組織を得るためには圧下量を大きくする必要があるが、1パスあたりの圧下量が大きいと鋼材形状の悪化や割れを招く。そのため、鋼板では、パス数は10パス以上とし、板厚が大きい圧延初期(具体的には3パス目まで)は各パス毎の圧減比を圧延前板厚/圧延後板厚≦1.05として1パスあたりの圧下量を小さくする。すなわち鋼板では、初期3パス圧減比の最大値を1.05以下とする。線状鋼材では、パス数は10パス以上とし、断面積が大きい圧延初期(具体的には3パス目まで)は各パス毎の圧減比を圧延前断面積/圧延後断面積≦1.02として1パスあたりの圧下量を小さくする。すなわち線状鋼材では、初期3パス圧減比の最大値を1.02以下とする。
また、圧延時にはγ相の再結晶及び粒成長により、圧延後期(具体的には最終パスから数えて4パス目終了時点)ではγ相での相界面の距離が本願の範囲より大きくなる。また、熱間圧延後の固溶化熱処理においてもγ相の再結晶及び粒成長が生じ、γ相での相界面の距離が大きくなる。そこで、鋼板および線状鋼材のいずれにおいても、最終パスから数えて3パス以内で上記の圧下をそれぞれ行うことにより、γ相での相界面の距離が本願所定範囲に入り、鋼材の特性を発現できる。すなわち鋼板では、最終3パス圧減比の最大値を1.25超とし、線状鋼材では、最終3パス圧減比の最大値を1.12超とする。
鋼板における鋳片厚さ/製品厚さ(圧減比)について、より好ましい範囲は鋳片厚さ/製品厚さ≧7.0である。線状鋼材における鋳片断面積/製品断面積(圧減比)について、より好ましい範囲は鋳片断面積/製品断面積≧2.7である。熱間圧延後の固溶化熱処理条件は、通常の範囲(900〜1100℃、2〜40分)とすれば良い。固溶化熱処理後の冷却方法は、γ相が過剰に成長して、γ相での相界面の距離が大きくなることを防ぐため水冷とする。具体的には水中浸漬等を選択すれば良い。
Regarding the number of passes, it is necessary to increase the reduction amount in order to obtain a structure within the predetermined range of the present application, but if the reduction amount per pass is large, the shape of the steel material is deteriorated and cracks are caused. Therefore, for steel sheets, the number of passes is 10 or more, and at the initial stage of rolling (specifically, up to the third pass) where the plate thickness is large, the reduction ratio for each pass is set to pre-rolling plate thickness / post-rolling plate thickness ≤ 1. As 05, the rolling amount per pass is reduced. That is, for steel sheets, the maximum value of the initial 3-pass pressure reduction ratio is 1.05 or less. For linear steel materials, the number of passes is 10 or more, and at the initial stage of rolling (specifically, up to the 3rd pass) where the cross-sectional area is large, the reduction ratio for each pass is the pre-rolling cross-sectional area / post-rolling cross-sectional area ≤ 1. As 02, the rolling amount per pass is reduced. That is, for linear steel materials, the maximum value of the initial 3-pass pressure reduction ratio is 1.02 or less.
Further, during rolling, due to recrystallization and grain growth of the γ phase, the distance of the phase interface in the γ phase becomes larger than the range of the present application in the latter stage of rolling (specifically, at the end of the fourth pass counting from the final pass). Further, in the solution heat treatment after hot rolling, recrystallization and grain growth of the γ phase occur, and the distance between the phase interfaces in the γ phase becomes large. Therefore, in both the steel plate and the linear steel material, by performing the above reduction within 3 passes counting from the final pass, the distance of the phase interface in the γ phase falls within the predetermined range of the present application, and the characteristics of the steel material are exhibited. it can. That is, for steel sheets, the maximum value of the final 3-pass pressure reduction ratio is more than 1.25, and for linear steel materials, the maximum value of the final 3-pass pressure reduction ratio is more than 1.12.
A more preferable range for the slab thickness / product thickness (pressure reduction ratio) of the steel sheet is slab thickness / product thickness ≥ 7.0. A more preferable range for the slab cross-sectional area / product cross-sectional area (pressure reduction ratio) in the linear steel material is slab cross-sectional area / product cross-sectional area ≥ 2.7. The solution heat treatment conditions after hot rolling may be in the normal range (900 to 1100 ° C., 2 to 40 minutes). The cooling method after the solution heat treatment is water cooling in order to prevent the γ phase from growing excessively and increasing the distance between the phase interfaces in the γ phase. Specifically, immersion in water or the like may be selected.

上記の製造方法で得られた熱間圧延鋼板は、さらに冷間圧延、焼鈍、酸洗を行ってもよい。これらの工程については特に制限はなく、条件は適宜選択すれば良い。 The hot-rolled steel sheet obtained by the above manufacturing method may be further cold-rolled, annealed, and pickled. There are no particular restrictions on these steps, and the conditions may be appropriately selected.

上記の製造方法で得られた熱間圧延線状鋼材は、さらに冷間加工、焼鈍、酸洗を行ってもよい。これらの工程については特に制限はなく、条件は適宜選択すれば良い。 The hot-rolled linear steel material obtained by the above-mentioned production method may be further cold-worked, annealed, and pickled. There are no particular restrictions on these steps, and the conditions may be appropriately selected.

以下に本発明の実施例について説明する。
表1及び表2に示す組成の鋼を溶製した。表中のCCRIは下記式の値を示す。
CCRI=[Cr]+3[Mo]+1.5[W]+2[Cu]+0.5[Ni]+20[N]
なお、上記式(1)中の[]付き元素は、当該元素の鋼中の含有質量%を表す。
Examples of the present invention will be described below.
The steels having the compositions shown in Tables 1 and 2 were melted. CCRI in the table shows the value of the following formula.
CCRI = [Cr] +3 [Mo] +1.5 [W] +2 [Cu] +0.5 [Ni] +20 [N]
The element with [] in the above formula (1) represents the mass% of the element contained in the steel.

表1(鋼種1〜21)及び表2(鋼種a〜w)に示す組成の鋼を溶製した。次に表1に示す組成の鋼を、鋼板は表3(No.1〜21)及び表4(No.22〜27)、線状鋼材は表5(No.28〜48)及び表6(No.49〜54)に示す条件で熱間圧延(圧延前加熱時間300min)を施し、その後、いずれも固溶化熱処理(1030℃、8min、水冷)を行うことにより製造した。
また、表2に示す組成の鋼を、鋼板は表7(No.55〜77)、線状鋼材は表8(No.78〜100)の条件で熱間圧延(圧延前加熱時間300min)をし、その後、いずれも固溶化熱処理(1030℃、8min、水冷)を行うことにより製造した。表3〜8中の圧減比は、鋼板(表3、4、7)では鋳片厚さ/製品厚さ、線状鋼材(表5、6、8)では鋳片断面積/製品断面積の値を示す。固溶化熱処理を行った全ての鋼板および線状鋼材をスケール除去のため酸洗した。なお、表1〜8中の下線は本発明の範囲外であること、もしくは製造条件が好ましくないことを示す。なお、表3〜8の圧延前加熱温度は、熱間圧延前の鋳片加熱温度を意味する。
The steels having the compositions shown in Table 1 (steel grades 1 to 21) and Table 2 (steel grades a to w) were melted. Next, the steels having the compositions shown in Table 1 are shown in Tables 3 (No. 1 to 21) and Table 4 (No. 22 to 27) for steel sheets, and Tables 5 (No. 28 to 48) and Table 6 (No. 28 to 48) for linear steel materials. It was manufactured by hot rolling (heating time before rolling 300 min) under the conditions shown in No. 49 to 54), and then solidification heat treatment (1030 ° C., 8 min, water cooling).
Further, the steel having the composition shown in Table 2 was hot-rolled (heating time before rolling 300 min) under the conditions of Table 7 (No. 55-77) for the steel plate and Table 8 (No. 78-100) for the linear steel material. After that, all of them were produced by performing solidification heat treatment (1030 ° C., 8 min, water cooling). The reduction ratios in Tables 3 to 8 are the slab thickness / product thickness for steel sheets (Tables 3, 4 and 7) and the slab cross-sectional area / product cross-sectional area for linear steel materials (Tables 5, 6 and 8). Indicates the value. All steel sheets and linear steel materials that had undergone solution heat treatment were pickled to remove scale. The underline in Tables 1 to 8 indicates that the product is outside the scope of the present invention or that the production conditions are not preferable. The pre-rolling heating temperature in Tables 3 to 8 means the slab heating temperature before hot rolling.

上記の製造方法で得られた鋼板及び線状鋼材を圧延方向に対して垂直な方向に切断し、切断面を鏡面研磨した。この研磨面において、鋼板であれば板厚中心からの距離≦0.5mmかつ板幅中心からの距離≦20mm、線状鋼材であれば中心からの距離≦0.5mmとなる範囲で、走査型電子顕微鏡を用いて電子線後方散乱回折(EBSD)法によりα相とγ相を分離した組織図を得た。これらの組織図上で、鋼板であれば圧延方向に対して垂直な方向に長さ0.25mmの直線を0.3mm以上の間隔を開けて10カ所、線状鋼材であれば中心から長さ0.25mmの直線を20°以上の角度を開けて10カ所選び、これらの直線上における各相でのα/γ相界面間の距離の最大値を測定した。なお、いずれかの直線上においてα/γ相界面が1個以下となる場合は、α相もしくはγ相において単一の相を連続して貫通する距離が長いことを示すものであり、本発明の範囲外とした。α/γ相界面間の距離の最大値の測定結果を表3〜8に示す。表中のLα及びLγは、それぞれα相及びγ相におけるα/γ相界面間の距離の最大値を示す。なお、EBSD法による相の同定では加速電圧を25kV、ステップサイズを0.5μmとした。 The steel plate and the linear steel material obtained by the above manufacturing method were cut in a direction perpendicular to the rolling direction, and the cut surface was mirror-polished. On this polished surface, if it is a steel plate, the distance from the center of the plate thickness is ≤0.5 mm, the distance from the center of the plate width is ≤20 mm, and if it is a linear steel material, the distance from the center is ≤0.5 mm. A microstructure diagram in which the α phase and the γ phase were separated was obtained by the electron backscatter diffraction (EBSD) method using an electron microscope. On these structure diagrams, 10 straight lines with a length of 0.25 mm in the direction perpendicular to the rolling direction with an interval of 0.3 mm or more for steel plates, and the length from the center for linear steel materials. Ten straight lines of 0.25 mm were selected at an angle of 20 ° or more, and the maximum value of the distance between the α / γ phase interfaces in each phase on these straight lines was measured. When the number of α / γ phase interfaces is one or less on any of the straight lines, it indicates that the distance through which a single phase is continuously penetrated in the α phase or the γ phase is long. It was out of the range of. Tables 3 to 8 show the measurement results of the maximum value of the distance between the α / γ phase interfaces. Lα and Lγ in the table indicate the maximum value of the distance between the α / γ phase interfaces in the α phase and the γ phase, respectively. In the phase identification by the EBSD method, the acceleration voltage was 25 kV and the step size was 0.5 μm.

耐食性試験の試験片は、鋼板は20mm×40mmの大きさ、線状鋼材は30mmの長さにシャーにより切り出した後、せん断加工面を除く全面を#600まで湿式研磨し、アセトンにより脱脂したものを用いた。傾き75°でサイクル試験機に試験片を設置した。JASO M 609−91に準拠したサイクル腐食試験を6サイクル行い、せん断加工面において×10のルーペを用いて目視にて観察し、錆の有無を評価した結果を表3〜8に示す。なお錆発生量の基準として、点銹の発生のないもの(SUS316Lと同等以上)を◎、加工面全体にわずかに点銹が生じたもの(SUS304と同等以上)を○、明確に点銹が発生したものを×とした。 The test piece for the corrosion resistance test is a steel plate with a size of 20 mm x 40 mm and a linear steel material with a length of 30 mm, which is cut out with a shear, then wet-polished to # 600 on the entire surface except the sheared surface, and degreased with acetone. Was used. The test piece was installed in the cycle tester at an inclination of 75 °. Tables 3 to 8 show the results of 6 cycles of cycle corrosion tests conforming to JASO M 609-91, visual observation using a loupe of × 10 on the sheared surface, and evaluation of the presence or absence of rust. As a standard for the amount of rust generated, those without rust (equal to or higher than SUS316L) are ◎, those with slight rust on the entire machined surface (equal to or higher than SUS304) are ○, and the rust is clearly marked. What occurred was marked with x.

各試験片のα/γ相界面間の距離の最大値と耐食性試験の結果を表3〜8に示す。表3(No.1〜21)、表5(No.28〜48)から、鋼の化学組成、CCRI、Md30及びα/γ相界面間の距離の最大値(Lα及びLγ)が本発明の範囲を満足していれば、鋼板および線状鋼材においてもせん断加工面の耐食性が良好となることがわかる。特に、C、Mn、Cr、Ni及びNのうちいずれか1種以上の含有量が、C:0.007〜0.025%、Mn:0.50〜5.00%、Cr:20.00〜23.00%、Ni:1.30〜4.70%、N:0.110〜0.240%となる条件を満たし、さらに、CRRIが30.0以上、Md30が80.0以下、Lαが80μm以下、Lγが25μm以下の全ての条件を満たす表3のNo.1、18、表5のNo.28、43、45、46で、点銹の発生がないことがわかる。 Tables 3 to 8 show the maximum value of the distance between the α / γ phase interfaces of each test piece and the results of the corrosion resistance test. From Tables 3 (No. 1 to 21) and Table 5 (No. 28 to 48), the maximum values (Lα and Lγ) of the chemical composition of steel and the distance between CCRI, Md30 and the α / γ phase interface are the present invention. It can be seen that if the range is satisfied, the corrosion resistance of the sheared surface is good even in the steel plate and the linear steel material. In particular, the content of any one or more of C, Mn, Cr, Ni and N is C: 0.007 to 0.025%, Mn: 0.50 to 5.00%, Cr: 20.00. It satisfies the conditions of ~ 23.00%, Ni: 1.30 to 4.70%, N: 0.110 to 0.240%, and further, CRRI is 30.0 or more, Md30 is 80.0 or less, and Lα. No. in Table 3 satisfying all the conditions of 80 μm or less and Lγ of 25 μm or less. Nos. 1, 18 and 5 in Table 5. At 28, 43, 45, and 46, it can be seen that no rust was generated.

一方、表4および6から、好ましくない製造条件により、LαまたはLγが本発明の範囲から外れると錆が発生することがわかり、表7、8から、化学組成、CCRIまたはMd30が本発明の範囲から外れると錆が発生することがわかる。なお、表4のNo.23と表6のNo.50は、熱間圧延前の鋳片加熱温度(以下、圧延前加熱温度と記載する)が低く、変形抵抗が大きく圧延できなかったため、製造を中止した。また、表4のNo.27と表6のNo.54は、厚減比が小さかったため、いずれもLαおよびLγが本発明の範囲外となり、錆が発生した。 On the other hand, from Tables 4 and 6, it was found that rust was generated when Lα or Lγ was out of the scope of the present invention due to unfavorable production conditions, and from Tables 7 and 8, the chemical composition, CCRI or Md30 was the scope of the present invention. It can be seen that rust is generated when the material is removed from the above. No. in Table 4 No. 23 and Table 6 No. No. 50 was discontinued because the slab heating temperature before hot rolling (hereinafter referred to as the pre-rolling heating temperature) was low and the deformation resistance was so large that rolling could not be performed. In addition, No. in Table 4 No. 27 and No. 6 in Table 6. In 54, since the thickness reduction ratio was small, Lα and Lγ were out of the range of the present invention, and rust was generated.

表4において、No.22は、圧延前加熱温度が高かったため、Lγが本発明の範囲外となり、錆が発生した例である。
No.24は、熱間圧延のパス数が少なかったため、LαおよびLγが本発明の範囲外となり、錆が発生した例である。
No.25は、初期3パスにおける圧減比の最大値が高く、鋼板の形状が悪化し、また割れが発生したため、製造を中止した例である。
No.26は、最終3パスにおける圧減比の最大値が小さかったため、Lγが本発明の範囲外となり、錆が発生した例である。
In Table 4, No. Reference numeral 22 denotes an example in which Lγ is out of the range of the present invention and rust is generated because the heating temperature before rolling is high.
No. Reference numeral 24 denotes an example in which Lα and Lγ are out of the scope of the present invention and rust is generated because the number of hot rolling passes is small.
No. Reference numeral 25 denotes an example in which the production was discontinued because the maximum value of the reduction ratio in the initial three passes was high, the shape of the steel sheet deteriorated, and cracks occurred.
No. No. 26 is an example in which Lγ is out of the range of the present invention and rust is generated because the maximum value of the pressure reduction ratio in the final 3 passes is small.

表6において、No.49は、圧延前加熱温度が高かったため、Lγが本発明の範囲外となり、錆が発生した例である。
No.51は、熱間圧延のパス数が少なかったため、Lγが本発明の範囲外となり、錆が発生した例である。
No.52は、初期3パスにおける圧減比の最大値が高く、鋼板の形状が悪化し、また割れが発生したため、製造を中止した例である。
No.53は、最終3パスにおける圧減比の最大値が小さかったため、Lγが本発明の範囲外となり、錆が発生した例である。
In Table 6, No. Reference numeral 49 denotes an example in which Lγ was out of the range of the present invention and rust was generated because the heating temperature before rolling was high.
No. Reference numeral 51 denotes an example in which Lγ is out of the scope of the present invention and rust is generated because the number of hot rolling passes is small.
No. Reference numeral 52 denotes an example in which the production was discontinued because the maximum value of the reduction ratio in the initial three passes was high, the shape of the steel sheet deteriorated, and cracks occurred.
No. Reference numeral 53 denotes an example in which Lγ was out of the scope of the present invention and rust was generated because the maximum value of the pressure reduction ratio in the final three passes was small.

表7において、No.55〜75は、含有元素のいずれかが本発明の範囲外であったため、いずれの鋼板においても錆が発生した例である。
No.76は、CCRIが本発明の範囲外であったため、錆が発生した例であり、No.77は、Md30が本発明の範囲外であったため、錆が発生した例である。
In Table 7, No. Reference numerals 55 to 75 are examples in which rust was generated on any of the steel sheets because any of the contained elements was outside the scope of the present invention.
No. No. 76 is an example in which rust was generated because CCRI was outside the scope of the present invention. 77 is an example in which rust is generated because Md30 is outside the scope of the present invention.

表8において、No.78〜98は、含有元素のいずれかが本発明の範囲外であったため、いずれの線状鋼材においても錆が発生した例である。
No.99は、CCRIが本発明の範囲外であったため、錆が発生した例であり、No.100は、Md30が本発明の範囲外であったため、錆が発生した例である。
In Table 8, No. Nos. 78 to 98 are examples in which rust was generated in any of the linear steel materials because any of the contained elements was outside the scope of the present invention.
No. No. 99 is an example in which rust was generated because CCRI was outside the scope of the present invention. Reference numeral 100 denotes an example in which rust was generated because Md30 was outside the scope of the present invention.

次に、表1に示す供試材を表3に示す条件で熱間圧延を行って得られた鋼板に、表9(No.101〜121)に示す条件で冷間圧延を行い、950℃で焼鈍した後酸洗を行った。なお、表9中のパラメータ(圧延前加熱温度、パス数、初期3パス圧減比最大値、最終3パス圧減比最大値および圧減比)は、熱間圧延時のものである。すなわち、表9中の上記パラメータは、表3のものと同一である。
このようにして得られた鋼板について上述の耐食性試験を行った結果、いずれの試験片においてもせん断加工面に明確な点銹は発生しなかった。特に、C、Mn、Cr、Ni及びNのうちいずれか1種以上の含有量が、C:0.007〜0.025%、Mn:0.50〜5.00%、Cr:20.00〜23.00%、Ni:1.30〜4.70%、N:0.110〜0.240%となる条件を満たし、さらに、CRRIが30.0以上、Md30が80.0以下、Lαが80μm以下、Lγが25μm以下の全て条件を満たす表9のNo.101、102、104、108、110、111、116、118および119で、点銹の発生がないことがわかる。
Next, the test material shown in Table 1 was hot-rolled under the conditions shown in Table 3, and the steel sheet obtained was cold-rolled under the conditions shown in Table 9 (No. 101-121) at 950 ° C. After annealing in, pickling was performed. The parameters in Table 9 (heating temperature before rolling, number of passes, initial 3-pass pressure reduction ratio maximum value, final 3-pass pressure reduction ratio maximum value, and pressure reduction ratio) are those at the time of hot rolling. That is, the above parameters in Table 9 are the same as those in Table 3.
As a result of conducting the above-mentioned corrosion resistance test on the steel sheet thus obtained, no clear rust spots were generated on the sheared surface in any of the test pieces. In particular, the content of any one or more of C, Mn, Cr, Ni and N is C: 0.007 to 0.025%, Mn: 0.50 to 5.00%, Cr: 20.00. It satisfies the conditions of ~ 23.00%, Ni: 1.30 to 4.70%, N: 0.110 to 0.240%, and further, CRRI is 30.0 or more, Md30 is 80.0 or less, and Lα. No. in Table 9 which satisfies all the conditions of 80 μm or less and Lγ of 25 μm or less. It can be seen that no rust was generated at 101, 102, 104, 108, 110, 111, 116, 118 and 119.

さらに表1に示す供試材を表5に示す条件で熱間圧延を行って得られた線状鋼材に、表10(No.122〜142)に示す条件で冷間加工を行い、950℃で焼鈍した後酸洗を行った。なお、表10中のパラメータ(圧延前加熱温度、パス数、初期3パス圧減比最大値、最終3パス圧減比最大値および圧減比)は、熱間圧延時のものである。すなわち、表10中の上記パラメータは、表5のものと同一である。
このようにして得られた線状鋼材について上述の耐食性試験を行った結果、いずれの試験片においてもせん断加工面に明確な点銹は発生しなかった。特に、C、Mn、Cr、Ni及びNのうちいずれか1種以上の含有量が、C:0.007〜0.025%、Mn:0.50〜5.00%、Cr:20.00〜23.00%、Ni:1.30〜4.70%、N:0.110〜0.240%となる条件を満たし、さらに、CRRIが30.0以上、Md30が80.0以下、Lαが80μm以下、Lγが25μm以下の全て条件を満たす表10のNo.122、123、125、129、131、132、137、139、140で、点銹の発生がないことがわかる。
Further, the linear steel material obtained by hot rolling the test material shown in Table 1 under the conditions shown in Table 5 was cold-worked under the conditions shown in Table 10 (No. 122 to 142) to obtain 950 ° C. After annealing with, pickling was performed. The parameters in Table 10 (heating temperature before rolling, number of passes, initial 3-pass pressure reduction ratio maximum value, final 3-pass pressure reduction ratio maximum value, and pressure reduction ratio) are those at the time of hot rolling. That is, the above parameters in Table 10 are the same as those in Table 5.
As a result of conducting the above-mentioned corrosion resistance test on the linear steel material thus obtained, no clear rust spots were generated on the sheared surface in any of the test pieces. In particular, the content of any one or more of C, Mn, Cr, Ni and N is C: 0.007 to 0.025%, Mn: 0.50 to 5.00%, Cr: 20.00. It satisfies the conditions of ~ 23.00%, Ni: 1.30 to 4.70%, N: 0.110 to 0.240%, and further, CRRI is 30.0 or more, Md30 is 80.0 or less, and Lα. No. in Table 10 which satisfies all the conditions of 80 μm or less and Lγ of 25 μm or less. It can be seen that no rust was generated at 122, 123, 125, 129, 131, 132, 137, 139, and 140.

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

Figure 0006895864
Figure 0006895864

本発明の二相ステンレス鋼によれば、高価なNi、Moの含有量を低減させつつ、せん断加工面の耐食性劣化が生じないため、研磨等の処理を行われることなく腐食環境に曝される用途に適用可能な二相ステンレス鋼板及び二相ステンレス線状鋼材を提供できる。本発明の二相ステンレス鋼によって得られる二相ステンレス鋼板及び二相ステンレス線状鋼材は、タンク、配管、チャンバー、屋根材、ローラーチェーン、パンチングメタル、通風パネル等の様々な用途に対し好適に使用できる。 According to the duplex stainless steel of the present invention, the content of expensive Ni and Mo is reduced, and the corrosion resistance of the sheared surface is not deteriorated, so that the steel is exposed to a corrosive environment without being subjected to a treatment such as polishing. Duplex stainless steel sheets and duplex stainless linear steels applicable to the application can be provided. Duplex stainless steel sheets and duplex stainless linear steels obtained from duplex stainless steels of the present invention are suitably used for various applications such as tanks, pipes, chambers, roofing materials, roller chains, punching metals, and ventilated panels. it can.

Claims (5)

質量%で、
C:0.030%以下、
Si:0.10〜2.00%、
Mn:6.00%以下、
P:0.050%以下、
S:0.0050%以下、
Ni:1.00〜5.00%、
Cr:18.00〜25.00%、
Mo:0.01〜1.00%、
Cu:0.30〜4.00%、
W:0.005〜1.00%、
N:0.100〜0.250%、
Al:0.003〜0.050%及び
O:0.0070%以下を含有し、
残部がFe及び不可避的不純物からなり、
下記式(1)および下記式(2)を満たし、
圧延方向に垂直な断面において、フェライト/オーステナイト相界面間の距離の最大値が、フェライト相において100μm以下、オーステナイト相において30μm以下であることを特徴とするせん断加工面の耐食性に優れた二相ステンレス鋼。
[Cr]+3[Mo]+1.5[W]+2[Cu]+0.5[Ni]+20[N]≧25.0 ・・・ (1)
551−462([C]+[N])−9.2[Si]−8.1[Mn]−29([Ni]+[Cu])−13.7[Cr]−18.5[Mo]≦80.0 ・・・ (2)
なお、上記式(1)および(2)中の[]付き元素は、当該元素の鋼中の含有質量%を表す。
By mass%
C: 0.030% or less,
Si: 0.10 to 2.00%,
Mn: 6.00% or less,
P: 0.050% or less,
S: 0.0050% or less,
Ni: 1.00 to 5.00%,
Cr: 18.0 to 25.00%,
Mo: 0.01-1.00%,
Cu: 0.30 to 4.00%,
W: 0.005-1.00%,
N: 0.100 to 0.250%,
Al: 0.003 to 0.050% and O: 0.0070% or less,
The rest consists of Fe and unavoidable impurities,
Satisfy the following formula (1) and the following formula (2),
A two-phase stainless steel having excellent corrosion resistance on a sheared surface, characterized in that the maximum value of the distance between the ferrite / austenite phase interfaces is 100 μm or less in the ferrite phase and 30 μm or less in the austenite phase in the cross section perpendicular to the rolling direction. steel.
[Cr] +3 [Mo] +1.5 [W] +2 [Cu] +0.5 [Ni] +20 [N] ≧ 25.0 ・ ・ ・ (1)
551-462 ([C] + [N])-9.2 [Si] -8.1 [Mn] -29 ([Ni] + [Cu]) -13.7 [Cr] -18.5 [Mo] ] ≤ 80.0 ・ ・ ・ (2)
The element with [] in the above formulas (1) and (2) represents the mass% of the element contained in the steel.
さらに以下の群のうち少なくとも1群以上を含有することを特徴とする請求項1に記載のせん断加工面の耐食性に優れた二相ステンレス鋼。
第1群:
質量%で、
Nb:0.005〜0.20%、
Ti:0.005〜0.20%、
Co:0.005〜0.25%及び
V:0.005〜0.15%
から選択される1種または2種以上。
第2群:
質量%で、
Sn:0.005〜0.20%、
Sb:0.005〜0.20%、
Ga:0.001〜0.050%、
Zr:0.005〜0.50%、
Ta:0.005〜0.100%、
B:0.0002〜0.0050%、
Ca:0.0002〜0.0050%及び
Mg:0.0002〜0.0050%
から選択される1種または2種以上。
The duplex stainless steel according to claim 1, further comprising at least one of the following groups, which has excellent corrosion resistance on the sheared surface.
Group 1:
By mass%
Nb: 0.005 to 0.20%,
Ti: 0.005 to 0.20%,
Co: 0.005-0.25% and V: 0.005-0.15%
One or more selected from.
Group 2:
By mass%
Sn: 0.005 to 0.20%,
Sb: 0.005 to 0.20%,
Ga: 0.001 to 0.050%,
Zr: 0.005 to 0.50%,
Ta: 0.005 to 0.100%,
B: 0.0002 to 0.0050%,
Ca: 0.0002 to 0.0050% and Mg: 0.0002 to 0.0050%
One or more selected from.
C、Mn、Cr、Ni及びNのうちいずれか1種以上の元素の含有量が、質量%で、C:0.007〜0.025%、Mn:0.50〜5.00%、Cr:20.00〜23.00%、Ni:1.30〜4.70%、N:0.110〜0.240%の範囲を満たし、
下記式(1a)を満たし、
圧延方向に垂直な断面において、フェライト/オーステナイト相界面間の距離の最大値が、フェライト相において80μm以下、オーステナイト相において25μm以下を満たすことを特徴とする請求項1または請求項2に記載のせん断加工面の耐食性に優れた二相ステンレス鋼。
[Cr]+3[Mo]+1.5[W]+2[Cu]+0.5[Ni]+20[N]≧30.0 ・・・ (1a)
なお、上記式(1a)中の[]付き元素は、当該元素の鋼中の含有質量%を表す。
The content of any one or more of C, Mn, Cr, Ni and N is by mass%, C: 0.007 to 0.025%, Mn: 0.50 to 5.00%, Cr. : 20.00 to 23.00%, Ni: 1.30 to 4.70%, N: 0.110 to 0.240%.
Satisfy the following formula (1a)
The shear according to claim 1 or 2, wherein the maximum value of the distance between the ferrite / austenite phase interfaces satisfies 80 μm or less in the ferrite phase and 25 μm or less in the austenite phase in the cross section perpendicular to the rolling direction. Duplex stainless steel with excellent corrosion resistance on the machined surface.
[Cr] +3 [Mo] +1.5 [W] +2 [Cu] +0.5 [Ni] +20 [N] ≧ 30.0 ・ ・ ・ (1a)
The element with [] in the above formula (1a) represents the mass% of the element contained in the steel.
前記二相ステンレス鋼が二相ステンレス鋼板であることを特徴とする請求項1乃至請求項3の何れか一項に記載のせん断加工面の耐食性に優れた二相ステンレス鋼板。 The duplex stainless steel sheet having excellent corrosion resistance on a sheared surface according to any one of claims 1 to 3, wherein the duplex stainless steel is a duplex stainless steel sheet. 前記二相ステンレス鋼が二相ステンレス線状鋼材であることを特徴とする請求項1乃至請求項3の何れか一項に記載のせん断加工面の耐食性に優れた二相ステンレス線状鋼材。 The duplex stainless wire having excellent corrosion resistance on the sheared surface according to any one of claims 1 to 3, wherein the duplex stainless steel is a duplex stainless wire.
JP2017195887A 2016-10-06 2017-10-06 Duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel with excellent corrosion resistance on sheared surfaces Active JP6895864B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016198220 2016-10-06
JP2016198220 2016-10-06

Publications (2)

Publication Number Publication Date
JP2018059207A JP2018059207A (en) 2018-04-12
JP6895864B2 true JP6895864B2 (en) 2021-06-30

Family

ID=61908749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195887A Active JP6895864B2 (en) 2016-10-06 2017-10-06 Duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel with excellent corrosion resistance on sheared surfaces

Country Status (1)

Country Link
JP (1) JP6895864B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7266976B2 (en) * 2018-07-27 2023-05-01 日鉄ステンレス株式会社 Ferrite-Austenite Duplex Stainless Steel Sheet with Excellent Strength and Corrosion Resistance at Spot Welds and Manufacturing Method Thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271262B2 (en) * 1994-12-16 2002-04-02 住友金属工業株式会社 Duplex stainless steel with excellent corrosion resistance
EP1867748A1 (en) * 2006-06-16 2007-12-19 Industeel Creusot Duplex stainless steel
JP5288980B2 (en) * 2008-10-02 2013-09-11 新日鐵住金ステンレス株式会社 Duplex stainless steel with excellent impact toughness and its manufacturing method
JP5511208B2 (en) * 2009-03-25 2014-06-04 新日鐵住金ステンレス株式会社 Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
US10000832B2 (en) * 2011-09-06 2018-06-19 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel
ES2773868T3 (en) * 2015-03-26 2020-07-15 Nippon Steel & Sumikin Sst Ferritic-austenitic stainless steel sheet with excellent corrosion resistance of the sheared end face

Also Published As

Publication number Publication date
JP2018059207A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
EP3124635B1 (en) Rolled ferritic stainless steel sheet, method for producing the same, and flange part
JP5315811B2 (en) Ferritic stainless steel plate with excellent resistance to sulfuric acid corrosion
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
JP5021901B2 (en) Austenitic and ferritic stainless steel with excellent intergranular corrosion resistance
JP6379282B2 (en) Ferritic / austenitic stainless steel sheet with excellent corrosion resistance on the shear end face
WO2011067979A1 (en) Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
CN102741445B (en) Highly corrosion-resistant cold-rolled ferrite stainless steel sheet having excellent toughness, and process for production thereof
EP1340829B1 (en) Duplex stainless steel for urea manufacturing plants
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
CN102725432A (en) Highly corrosion-resistant hot-rolled ferrite stainless steel sheet having excellent toughness
KR101850231B1 (en) Ferritic stainless steel and method for producing same
WO2018198834A1 (en) Ferritic stainless steel sheet, and production method therefor
JP4808598B2 (en) Corrosion-resistant steel with excellent bare rust resistance
JP6140856B1 (en) Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same
JP6895864B2 (en) Duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel with excellent corrosion resistance on sheared surfaces
JP2023085560A (en) Two-phase stainless steel and manufacturing method therefor
JP2010137344A (en) Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JP2020143309A (en) Ferritic stainless steel sheet
JP7483049B2 (en) Duplex stainless steel sheet, hot-rolled duplex stainless steel sheet, and method for manufacturing duplex stainless steel sheet
JP2001003144A (en) High purity ferritic stainless steel sheet excellent in secondary working brittleness after deep drawing
JP2023113375A (en) Duplex stainless steel shapes and method for producing the same
JP2023118656A (en) Duplex stainless steel and method for manufacturing duplex stainless steel
JP2023089963A (en) Duplex stainless steel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6895864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250