JP6892062B2 - Manufacturing method of rust preventive material for lightweight cellular concrete reinforcing bars - Google Patents

Manufacturing method of rust preventive material for lightweight cellular concrete reinforcing bars Download PDF

Info

Publication number
JP6892062B2
JP6892062B2 JP2017181627A JP2017181627A JP6892062B2 JP 6892062 B2 JP6892062 B2 JP 6892062B2 JP 2017181627 A JP2017181627 A JP 2017181627A JP 2017181627 A JP2017181627 A JP 2017181627A JP 6892062 B2 JP6892062 B2 JP 6892062B2
Authority
JP
Japan
Prior art keywords
rust preventive
raw material
reinforcing bars
cellular concrete
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017181627A
Other languages
Japanese (ja)
Other versions
JP2019056149A (en
Inventor
隆臣 日置
隆臣 日置
Original Assignee
住友金属鉱山シポレックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山シポレックス株式会社 filed Critical 住友金属鉱山シポレックス株式会社
Priority to JP2017181627A priority Critical patent/JP6892062B2/en
Publication of JP2019056149A publication Critical patent/JP2019056149A/en
Application granted granted Critical
Publication of JP6892062B2 publication Critical patent/JP6892062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は軽量気泡コンクリート補強鉄筋用防錆材の製造方法に関する。 The present invention relates to a method for producing a rust preventive material for lightweight cellular concrete reinforcing bars.

軽量気泡コンクリート(以下、ALCとも称する)は内部に気孔を含むため、絶乾かさ比重が0.5程度と非常に軽量でありながら、比較的高い強度を有している。ALCは更に耐火性、断熱性、及び施工性にも優れており、ALCパネルの形態で壁、屋根、床などの建築部材として広く使用されている。このALCパネルは、板厚100mmを標準とする板厚75〜125mmのパネル形状が主流であるが、板厚37〜50mmの住宅用うす型のパネルや、板厚150mm以上のパネルも作製されている。 Since lightweight cellular concrete (hereinafter, also referred to as ALC) contains pores inside, it has a relatively high strength while being extremely lightweight with an absolute dryness specific gravity of about 0.5. ALC is also excellent in fire resistance, heat insulation, and workability, and is widely used as a building member such as a wall, a roof, and a floor in the form of an ALC panel. The mainstream of this ALC panel is a panel shape with a plate thickness of 75 to 125 mm with a plate thickness of 100 mm as a standard, but thin-shaped panels for houses with a plate thickness of 37 to 50 mm and panels with a plate thickness of 150 mm or more are also manufactured. There is.

上記のALCパネルは、一般に珪石や珪砂などの珪酸質原料と、セメントや生石灰などの石灰質原料とを主原料とし、これに石膏や界面活性剤などの添加物を繰り返し原料と共に加え、更に適量の水と発泡剤であるアルミニウム粉末とを加えて反応させることで作製することができる。具体的には、これら全ての原料を鋳込ミキサーで攪拌混合し、得られたスラリーを補強用の鉄筋が設けられた型枠内に流し込む。型枠内に流し込まれたスラリーは、アルミニウム粉末の反応で発生した水素ガスによって徐々に膨張し、更にセメント及び生石灰がスラリー中の水を取り込んで水和物を生成することによって硬化していく。これにより、スラリーは型枠内で徐々に流動性のないケーキ状の半硬化体に変化する。なお、発生した水素ガスは気泡安定剤により球状の気泡として安定化する。 The above ALC panel generally uses a siliceous raw material such as silica stone or silica sand and a calcareous raw material such as cement or fresh lime as main raw materials, and additives such as gypsum and surfactant are repeatedly added together with the raw materials to further add an appropriate amount. It can be produced by adding water and aluminum powder which is a foaming agent and reacting them. Specifically, all of these raw materials are stirred and mixed with a casting mixer, and the obtained slurry is poured into a mold provided with reinforcing bars. The slurry poured into the mold gradually expands due to the hydrogen gas generated by the reaction of the aluminum powder, and the cement and quicklime take in the water in the slurry to form hydrate and harden. As a result, the slurry gradually changes into a cake-like semi-cured body having no fluidity in the mold. The generated hydrogen gas is stabilized as spherical bubbles by the bubble stabilizer.

この半硬化体を型枠から取り出してオートクレーブに装入し、180℃、10気圧の高温高圧水蒸気で数時間かけて養生する。この養生過程において珪石などの珪酸質原料とセメントや生石灰などの石灰質原料から、珪酸カルシウム水和物のトバモライトが生成され、機械的強度の高いALCが生成する。このようにして作製されるALCパネルは、内部に気孔を有し且つ鉄筋で補強されているので軽量で且つ高い強度を有している。しかし、一般的にALCパネルは体積の80%程度を気孔が占めているため、この気孔を経由して外部の水分がパネル内部に侵入しやすいうえ、ALCは通常のコンクリートとは異なり弱アルカリ性であるため、ALCパネル内部に埋設されている補強用鉄筋は腐食されやすい状態にある。 This semi-cured product is taken out from the mold, charged into an autoclave, and cured with high-temperature high-pressure steam at 180 ° C. and 10 atm for several hours. In this curing process, tovamorite, which is a calcium silicate hydrate, is produced from a siliceous raw material such as silica stone and a calcareous raw material such as cement and quicklime, and ALC having high mechanical strength is produced. The ALC panel produced in this manner has pores inside and is reinforced with reinforcing bars, so that it is lightweight and has high strength. However, since pores occupy about 80% of the volume of ALC panels in general, external moisture easily penetrates into the panel through these pores, and ALC is weakly alkaline unlike ordinary concrete. Therefore, the reinforcing bars embedded inside the ALC panel are in a state of being easily corroded.

そこで、補強用鉄筋には予め表面に防錆処理が施されている。防錆処理は補強鉄筋を防錆液に浸漬させて防錆膜を形成する方法が一般的であるため、防錆液は防錆性に優れていることに加えて粘度やチクソトロピー性などの特性が経時変化しにくい優れた安定性を有していることが望ましい。このような安定性や防錆性に優れた防錆材の製造方法として、例えば特許文献1には防錆材のチクソトロピーインデックス値を1.8〜2.5の範囲内に規定した軽量気泡コンクリート補強鉄筋用防錆材の製造方法が開示されている。また、特許文献2には平均粒子径8〜30μm、空気透過法による比表面積2,000〜50,000cm/gの炭酸カルシウム粉末を用いることで粉末骨材の粒径を規定した軽量気泡コンクリート補強鉄筋用防錆材の製造方法が開示されている。 Therefore, the surface of the reinforcing bar is rust-proofed in advance. Since the rust preventive treatment is generally performed by immersing the reinforcing bar in the rust preventive liquid to form a rust preventive film, the rust preventive liquid has excellent rust preventive properties as well as characteristics such as viscosity and thixotropic properties. Is desirable to have excellent stability that does not easily change over time. As a method for producing a rust preventive material having such excellent stability and rust preventive properties, for example, Patent Document 1 defines a thixotropy index value of the rust preventive material in the range of 1.8 to 2.5, which is a lightweight cellular concrete. A method for producing a rust preventive material for reinforcing bars is disclosed. Further, in Patent Document 2, lightweight cellular concrete in which the particle size of powdered aggregate is defined by using calcium carbonate powder having an average particle size of 8 to 30 μm and a specific surface area of 2,000 to 50,000 cm 2 / g by an air permeation method. A method for producing a rust preventive material for reinforcing bars is disclosed.

特開2015−218385号公報Japanese Unexamined Patent Publication No. 2015-218385 特開2009−102700号公報JP-A-2009-102700

しかしながら、防錆剤は粘度等の物性がばらつきやすく、従来の製造方法で作製した防錆材で塗膜した防錆膜を有する鉄筋で補強されたALCは品質が大きくばらつくことがあった。本発明はかかる従来のALCパネル補強用鉄筋用防錆材製造が抱える問題点に鑑みてなされたものであり、安定性や防錆性に優れた軽量気泡コンクリート補強鉄筋用防錆材を提供することを目的としている。 However, the rust preventives tend to vary in physical properties such as viscosity, and the quality of ALC reinforced with reinforcing bars having a rust preventive film coated with a rust preventive material produced by a conventional manufacturing method may vary greatly. The present invention has been made in view of the problems of the conventional production of a rust preventive material for reinforcing bars for ALC panels, and provides a rust preventive material for lightweight cellular concrete reinforcing bars having excellent stability and rust prevention properties. The purpose is.

上記目的を達成するため、本発明者はALCパネル補強用鉄筋用防錆材の製造方法において鋭意研究を重ねた結果、混合のベースとなる液体原料に液体分の原料と固形分の原料とを別々に添加し、それぞれ異なる撹拌速度でせん断作用を有する撹拌機を用いて撹拌混合することで安定性や防錆性に優れた軽量気泡コンクリート補強鉄筋用防錆材を製造できることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventor has conducted extensive research on a method for producing a rust preventive material for reinforcing bars for ALC panels, and as a result, has added a liquid raw material and a solid raw material to the liquid raw material as the base of mixing. We have found that a rust preventive material for lightweight cellular concrete reinforcing bars with excellent stability and rust prevention can be produced by adding them separately and stirring and mixing them using a stirrer having a shearing action at different stirring speeds. Has been completed.

すなわち、本発明の軽量気泡コンクリート補強鉄筋用防錆材の製造方法は、せん断作用を有する撹拌機で撹拌が行われているアスファルト水性エマルジョンに対して、液体分原料のSBR水性エマルジョン及び粘度調整用の水を添加して混合した後に固形分原料の骨材粉末及びpH調整用の添加剤を添加して混合する軽量気泡コンクリート補強鉄筋用防錆材の製造方法であって、前記液体分原料の混合時の撹拌速度を120〜200rpmの範囲内とし、この液体分原料の混合時の撹拌速度よりも前記固形分原料の混合時の撹拌速度を40〜50rpm速くすることを特徴とする。 That is, the method for producing a rust preventive material for lightweight cellular concrete reinforced reinforcing bars of the present invention is for adjusting the viscosity of an aqueous emulsion of SBR as a raw material for a liquid component, as opposed to an aqueous emulsion of asphalt that is stirred by a stirrer having a shearing action. This is a method for producing a rust preventive material for a lightweight cellular concrete reinforced reinforcing bar, which is obtained by adding and mixing aggregate powder of a solid content raw material and an additive for pH adjustment after adding and mixing the water of the above liquid content raw material. The stirring speed at the time of mixing is set in the range of 120 to 200 rpm, and the stirring speed at the time of mixing the solid content raw material is 40 to 50 rpm faster than the stirring speed at the time of mixing the liquid component raw material.

本発明によれば、安定性や防錆性に優れた軽量気泡コンクリート補強鉄筋用防錆材を製造することができる。 According to the present invention, it is possible to manufacture a rust preventive material for lightweight aerated concrete reinforcing reinforcing bars having excellent stability and rust preventive properties.

以下、本発明の軽量気泡コンクリート補強鉄筋用防錆材の製造方法の実施形態について具体的に説明する。この本発明の実施形態の防錆材の製造方法は、スチレンブタジエンゴム(以降SBRと称する)を主成分とするSBR水性エマルジョンと、アスファルトを主成分とするアスファルト水性エマルジョンと、骨材粉末とを主原料として用い、更に消石灰などのpH調整用の添加剤と粘度調整用の水とを副原料として用いる。これら原料を所定の配合割合で撹拌混合することで防錆材を作製することができる。 Hereinafter, embodiments of the method for producing a rust preventive material for lightweight cellular concrete reinforcing bars of the present invention will be specifically described. In the method for producing a rust preventive material according to the embodiment of the present invention, an SBR aqueous emulsion containing styrene-butadiene rubber (hereinafter referred to as SBR) as a main component, an asphalt aqueous emulsion containing asphalt as a main component, and an aggregate powder are used. It is used as a main raw material, and further, an additive for adjusting pH such as slaked lime and water for adjusting viscosity are used as auxiliary raw materials. A rust preventive material can be produced by stirring and mixing these raw materials at a predetermined blending ratio.

上記のSBR水性エマルジョン、アスファルト水性エマルジョン、及びpH調整用の添加物の具体的な種類には特に限定がなく、市販のものを用いることができる。また、上記の骨材粉末としては、例えば炭酸カルシウム、珪石、ポルトランドセメント、珪藻土から選ばれた少なくとも1種を用いることが好ましく、また、骨材粉末の粒径は、0.1μm以上500μm以下であるのが好ましい。この粒径が0.1μm未満では防錆材の骨材としての機能を発揮せず過剰に増粘するおそれがあり、逆に500μmを超えると防錆膜に骨材の塊が付着して発錆等の原因となるおそれがある。 The specific types of the above-mentioned SBR aqueous emulsion, asphalt aqueous emulsion, and additive for pH adjustment are not particularly limited, and commercially available ones can be used. Further, as the above-mentioned aggregate powder, it is preferable to use at least one selected from, for example, calcium carbonate, silica stone, Portland cement and diatomaceous earth, and the particle size of the aggregate powder is 0.1 μm or more and 500 μm or less. It is preferable to have it. If this particle size is less than 0.1 μm, the rust preventive material does not function as an aggregate and may become excessively thickened. On the contrary, if it exceeds 500 μm, a lump of aggregate adheres to the rust preventive film and occurs. It may cause rust.

上記した原料の配合割合としては、固形分原料の骨材粉末100質量部に対して、液体分原料のSBR水性エマルジョンが25〜26質量部、液体分原料のアスファルト水性エマルジョンが25〜26重量部、液体分原料の粘度調整用の水が20〜25質量部、及び固形分原料のpH調整用の添加物が3〜4質量部とすることが好ましい。 As for the mixing ratio of the above-mentioned raw materials, 25 to 26 parts by mass of the SBR aqueous emulsion of the liquid content raw material and 25 to 26 parts by weight of the asphalt aqueous emulsion of the liquid content raw material are used with respect to 100 parts by mass of the aggregate powder of the solid content raw material. It is preferable that the amount of water for adjusting the viscosity of the liquid material is 20 to 25 parts by mass, and the amount of the additive for adjusting the pH of the solid material is 3 to 4 parts by mass.

このSBR水性エマルジョンの配合割合が25質量部未満では造膜性が悪くなって防錆膜が剥がれ易くなり、逆に26質量部を超えると樹脂分が過剰になるため防錆膜にヒビ割れが生じやすくなるので好ましくない。また、アスファルト水性エマルジョンの配合割合が25質量部未満では防錆膜に靭性がなくなってヒビ割れし易くなり、逆に26質量部を超えるとpH調整が困難になるので好ましくない。また、粘度調整用の水の配合割合が20質量部未満では防錆材の粘度が高くなり過ぎるため造膜時に厚膜になりやすく、逆に25質量部を超えると防錆材の粘度が低くなり過ぎるため造膜時に薄膜になりやすいので好ましくない。 If the blending ratio of this SBR aqueous emulsion is less than 25 parts by mass, the film-forming property deteriorates and the rust-preventive film is easily peeled off. On the contrary, if it exceeds 26 parts by mass, the resin content becomes excessive and the rust-preventive film cracks. It is not preferable because it tends to occur. Further, if the blending ratio of the asphalt aqueous emulsion is less than 25 parts by mass, the rust preventive film loses toughness and easily cracks, and conversely, if it exceeds 26 parts by mass, it becomes difficult to adjust the pH, which is not preferable. Further, if the mixing ratio of water for adjusting the viscosity is less than 20 parts by mass, the viscosity of the rust preventive material becomes too high, so that a thick film tends to be formed during film formation, and conversely, if it exceeds 25 parts by mass, the viscosity of the rust preventive material is low. It is not preferable because it becomes too thin and tends to become a thin film during film formation.

本発明の実施形態の防錆材の製造方法では、上記混合時のベースとなる液体分原料のアスファルト水性エマルジョンに対して、タービン翼等の強いせん断力を発生させる作用を有する撹拌機を用いて撹拌しながら、該アスファルト水性エマルジョンに液体分原料及び固形分原料をこの順に投入して混合する。その際、液体分原料を投入して混合する時の撹拌速度よりも固形分原料を投入して混合する時の撹拌速度を速くする。具体的には、液体分原料の混合時の撹拌速度を120〜200rpmの範囲内とし、この液体分原料の混合時の撹拌速度よりも固形分原料の混合時の撹拌速度を40〜50rpm速くする。これにより安定性及び防錆性に優れた防錆材を作製することができる。 In the method for producing a rust preventive material according to the embodiment of the present invention, a stirrer having an action of generating a strong shearing force such as a turbine blade is used for the asphalt aqueous emulsion of the liquid component raw material which is the base at the time of mixing. While stirring, the liquid component raw material and the solid content raw material are added to the asphalt aqueous emulsion in this order and mixed. At that time, the stirring speed when the solid raw material is charged and mixed is made faster than the stirring speed when the liquid raw material is charged and mixed. Specifically, the stirring speed at the time of mixing the liquid component material is set in the range of 120 to 200 rpm, and the stirring speed at the time of mixing the solid content raw material is 40 to 50 rpm faster than the stirring speed at the time of mixing the liquid component raw material. .. As a result, a rust preventive material having excellent stability and rust preventive properties can be produced.

ベースとなる液体分原料を攪拌機で撹拌しながら液体分原料及び固形分原料をこの順で投入して調合する際の当該撹拌機の回転数を種々に変えて複数の軽量気泡コンクリート補強鉄筋用防錆材を作製し、それらの各々が塗膜された補強用鉄筋を内部に含むALCパネルを作製してその防錆性を評価した。具体的に説明すると、先ず固形分原料の骨材粉末100質量部に対して、液体分原料のSBR水性エマルジョンが25質量部、液体分原料のアスファルト水性エマルジョンが25質量部、液体分原料の粘度調整用の水が20質量部、固形分原料のpH調整用の消石灰が3質量部の配合割合となるようにそれぞれ秤量された原料を用意した。 While stirring the base liquid raw material with a stirrer, the liquid component raw material and the solid content raw material are added in this order and mixed, and the rotation speed of the stirrer is variously changed to prevent a plurality of lightweight cellular concrete reinforcing bars. A rust material was prepared, and an ALC panel containing reinforcing bars coated with each of them was prepared and its rust prevention property was evaluated. Specifically, first, with respect to 100 parts by mass of aggregate powder as a solid content material, 25 parts by mass of an SBR aqueous emulsion as a liquid component, 25 parts by mass as an asphalt aqueous emulsion as a liquid material, and the viscosity of the liquid material. Raw materials were weighed so that 20 parts by mass of water for adjustment and 3 parts by mass of slaked lime for adjusting the pH of the solid content raw material were mixed.

なお、SBR水性エマルジョンには株式会社イーテック製の商品名KT9600Cを用い、アスファルト水性エマルジョンには東亜道路工業株式会社製の商品名SM乳剤を用い、骨材粉末には菱光石灰株式会社製の重質炭酸カルシウム粉末を用いた。次に、混合時のベースとなるアスファルト水性エマルジョンを容器に入れて株式会社井上製作所製の撹拌機(型番:DHC)で撹拌しながら上記の液体分原料及び固形分原料を順次投入して軽量気泡コンクリート補強鉄筋用の防錆材を製造した。 The SBR aqueous emulsion uses the trade name KT9600C manufactured by E-Tech Co., Ltd., the asphalt aqueous emulsion uses the trade name SM emulsion manufactured by Toa Road Industry Co., Ltd., and the aggregate powder uses the heavy weight manufactured by Ryoko Lime Co., Ltd. Quality Calcium carbonate powder was used. Next, the asphalt aqueous emulsion, which is the base for mixing, is placed in a container, and the above liquid and solid raw materials are sequentially added while stirring with a stirrer (model number: DHC) manufactured by Inoue Seisakusho Co., Ltd. to create lightweight cells. Manufactured a rust preventive material for concrete reinforcing bars.

その際、液体分原料を投入して混合する際の撹拌機の回転数は50〜250rpmの範囲内で変化させ、固形分原料を投入して混合する際の撹拌機の回転数は液体分原料を投入して混合する時よりも40〜150rpm速くした。このようにして試料1〜6の軽量気泡コンクリート補強鉄筋用防錆材を調合した。得られた各試料の防錆材の粘度及びチクソトロピー性をリオン株式会社製の回転粘度計であるビスコテスターVT−04Kを用いて測定し、貯蔵安定性について7日間の静置の後の沈降性(すなわち沈降による相分離の有無)を目視にて確認することで評価した。 At that time, the rotation speed of the stirrer when the liquid raw material is charged and mixed is changed within the range of 50 to 250 rpm, and the rotation speed of the stirrer when the solid raw material is charged and mixed is the liquid raw material. Was 40 to 150 rpm faster than when the mixture was added and mixed. In this way, the rust preventive materials for the lightweight cellular concrete reinforcing bars of Samples 1 to 6 were prepared. The viscosity and thixotropy of the rust preventive material of each obtained sample were measured using a viscometer VT-04K, which is a rotational viscometer manufactured by Rion Co., Ltd., and the storage stability was measured after standing for 7 days. (That is, the presence or absence of phase separation due to sedimentation) was visually confirmed for evaluation.

なお、チクソトロピー性とは、静置状態ではゲル状で流動性をもたないが、振動、撹拌、振り混ぜ等の外力を加えるとゲル状の物質が流動性を示すゾル状に変化し、これを放置しておくと再びゲル状にもどる性質を意味する。この現象は、外力によってゲルの内部構造が破壊されて流動性が増すが、静置すると粒子間の結合が再現するため起こるとされている。本実施例では、チクソトロピー性の指標としてチクソトロピーインデックス値(TI値)を採用した。すなわち、回転粘度計で測定した6rpmにおける見掛け粘度(mPa・s)を60rpmにおける見掛け粘度(mPa・s)で除すことによりTI値を求め、このTI値が1.5以上のものをチクソトロピー性有り、1.5未満のものをチクソトロピー性無しと評価した。 The thixotropy is a gel-like substance that does not have fluidity in a stationary state, but when an external force such as vibration, stirring, or shaking is applied, the gel-like substance changes to a sol-like substance that exhibits fluidity. It means that if left unattended, it will return to a gel state again. It is said that this phenomenon occurs because the internal structure of the gel is destroyed by an external force and the fluidity is increased, but when the gel is allowed to stand, the bonds between the particles are reproduced. In this example, the thixotropy index value (TI value) was adopted as an index of thixotropy. That is, the TI value is obtained by dividing the apparent viscosity (mPa · s) at 6 rpm measured by a rotational viscometer by the apparent viscosity (mPa · s) at 60 rpm, and those having a TI value of 1.5 or more are thixotropic. Yes, those less than 1.5 were evaluated as having no thixotropy.

次に、6組の補強用鉄筋をそれぞれ上記試料1〜6の防錆材に浸漬することで防錆膜を形成した後、これら6組の補強用鉄筋がそれぞれ埋設された6枚のALCパネルを作製した。具体的には、珪石45質量部、石灰質原料として生石灰5質量部、セメント30質量部、繰り返し原料20質量部を混合し、これらの固体原料合計100質量部に水60質量部とALC用アルミニウム粉末及び界面活性剤を加えてから混練してスラリーを作成した。このスラリーを各補強用鉄筋が配されている型枠内に流し込み、石灰質原料の水和により半硬化させた。 Next, after forming a rust preventive film by immersing each of the six sets of reinforcing bars in the rust preventive materials of Samples 1 to 6, six ALC panels in which these six sets of reinforcing bars are embedded respectively. Was produced. Specifically, 45 parts by mass of siliceous stone, 5 parts by mass of fresh lime as a calcareous raw material, 30 parts by mass of cement, and 20 parts by mass of a repeating raw material are mixed, and 60 parts by mass of water and aluminum powder for ALC are mixed with a total of 100 parts by mass of these solid raw materials. And a surfactant was added and then kneaded to prepare a slurry. This slurry was poured into a mold in which each reinforcing bar was arranged, and was semi-cured by hydration of a calcareous raw material.

得られた半硬化体を型枠から外してオートクレーブに装入し、180℃、10気圧の高温高圧水蒸気で6時間かけて養生させ、厚さ100mmのALCパネルを作製した。得られた防錆性能試験用のALCパネルに対して、JIS環境変化法であるJIS−A5416(軽量気泡コンクリート)に記載の防錆材の防錆性能試験に従い防錆性能を評価した。すなわち、補強鉄筋の表面積に対する発生した錆の面積により発錆率(%)を求めた。その評価結果を上記した試料1〜6の防錆材の作製時の撹拌速度並びに粘度及びチクソトロピー性と共に下記表1に示す。 The obtained semi-cured product was removed from the mold and charged into an autoclave, and cured with high-temperature high-pressure steam at 180 ° C. and 10 atm for 6 hours to prepare an ALC panel having a thickness of 100 mm. The obtained ALC panel for rust prevention performance test was evaluated for rust prevention performance according to the rust prevention performance test of the rust preventive material described in JIS-A5416 (lightweight cellular concrete), which is a JIS environmental change method. That is, the rust rate (%) was determined from the area of rust generated with respect to the surface area of the reinforcing bar. The evaluation results are shown in Table 1 below together with the stirring speed, viscosity and thixotropy of the rust preventive materials of Samples 1 to 6 described above.

Figure 0006892062
Figure 0006892062

上記表1より、試料1は試料3〜5と比較すると粘度が高く、またチクソトロピー性は無しと評価された。その結果、試料1は貯蔵安定性が悪く、防錆性ではJIS環境変化法の規格値5.0%以内を大幅に超える36.7%の発錆率となった。このように安定性及び防錆性が悪くなった理由は、試料1は液体分原料及び固形分原料の混合時の撹拌速度がいずれも本発明の要件より低いため混合が不十分となり、防錆材としての基本性能が発揮されなかったためと考えられる。 From Table 1 above, it was evaluated that Sample 1 had a higher viscosity than Samples 3 to 5 and had no thixotropic property. As a result, the storage stability of Sample 1 was poor, and the rust prevention rate was 36.7%, which greatly exceeded the standard value of 5.0% of the JIS Environmental Change Law. The reason why the stability and the rust prevention property are deteriorated in this way is that the mixing speed of the sample 1 at the time of mixing the liquid component raw material and the solid content raw material is lower than the requirement of the present invention, so that the mixing becomes insufficient and the rust prevention property occurs. It is probable that the basic performance as a material was not exhibited.

試料2は粘度及びチクソトロピー性が共に試料3〜5とほぼ同程度であったが、貯蔵安定性の評価では静置後に固形原料が沈降した。このため、発錆率は上記規格値を超えて9.3%となった。一方、試料3〜5については粘度が3.6〜4.5dPa・secと良好であって且つチクソトロピー性は有りと評価された。その結果、貯蔵安定性が良好となり、また、発錆率も試料3が0.0%、試料4が0.2%、試料5が0.0%であり、JIS環境変化法の規格値5.0%を大幅に下回っていた。 Sample 2 had almost the same viscosity and thixotropy as Samples 3 to 5, but the solid raw material settled after standing in the evaluation of storage stability. Therefore, the rusting rate exceeded the above standard value and became 9.3%. On the other hand, it was evaluated that the viscosities of Samples 3 to 5 were as good as 3.6 to 4.5 dPa · sec and that they had thixotropy. As a result, the storage stability is good, and the rust rate is 0.0% for sample 3, 0.2% for sample 4, and 0.0% for sample 5, which is the standard value 5 of the JIS Environmental Change Law. It was well below .0%.

試料6については液体分及び固形分の混合時の撹拌速度が試料3〜5の場合よりも速いため、良好な防錆材が作製できると予想していた。しかし、粘度が非常に高くなり、試料1の場合と同様に防錆材としての基本性能が発揮されていない状態となった。この原因について調査した結果、撹拌速度が速すぎたためせん断力が強く作用し過ぎ、エマルジョン(乳化剤)が破壊されたことが主原因と判明した。また、試料6の防錆材はチクソトロピーインデックス値が非常に高く、ブレードの摩擦熱が防錆材の温度を上昇させ、粘度上昇を引き起こしていた。加えて、エマルジョン(乳化剤)は元来熱に弱く、壊れ易い状態にあったため、液性状が著しく悪化したと考えられる。 As for sample 6, since the stirring speed at the time of mixing the liquid content and the solid content was faster than that in the case of samples 3 to 5, it was expected that a good rust preventive material could be produced. However, the viscosity became very high, and as in the case of Sample 1, the basic performance as a rust preventive material was not exhibited. As a result of investigating the cause, it was found that the main cause was that the shearing force acted too strongly because the stirring speed was too fast, and the emulsion (emulsifier) was destroyed. Further, the rust preventive material of Sample 6 had a very high thixotropy index value, and the frictional heat of the blade raised the temperature of the rust preventive material, causing an increase in viscosity. In addition, since the emulsion (emulsifier) was originally vulnerable to heat and was in a fragile state, it is considered that the liquid properties were significantly deteriorated.

以上の結果より、ALCパネルの補強用鉄筋の防錆材の原料の調合では、液体分の混合時はせん断力を有する高速撹拌機の回転数を120〜200rpmの範囲内とし、固形分原料の混合時の撹拌速度は上記の液体分原料の混合時の撹拌速度よりも40〜50rpm速くすることで、安定性や防錆性に優れた防錆材を製造できることが分かる。 Based on the above results, in the preparation of the raw material for the rust preventive material for the reinforcing reinforcement of the ALC panel, the rotation speed of the high-speed stirrer having a shearing force was set within the range of 120 to 200 rpm when the liquid component was mixed, and the solid content raw material was prepared. It can be seen that a rust preventive material having excellent stability and rust prevention can be produced by increasing the stirring speed at the time of mixing by 40 to 50 rpm higher than the stirring speed at the time of mixing the above-mentioned liquid component raw materials.

Claims (2)

せん断作用を有する撹拌機で撹拌が行われているアスファルト水性エマルジョンに対して、液体分原料のSBR水性エマルジョン及び粘度調整用の水を添加して混合した後に固形分原料の骨材粉末及びpH調整用の添加剤を添加して混合する軽量気泡コンクリート補強鉄筋用防錆材の製造方法であって、前記液体分原料の混合時の撹拌速度を120〜200rpmの範囲内とし、この液体分原料の混合時の撹拌速度よりも前記固形分原料の混合時の撹拌速度を40〜50rpm速くすることを特徴とする軽量気泡コンクリート補強鉄筋用防錆材の製造方法。 To the asphalt aqueous emulsion that is being agitated by a stirrer having a shearing action, the SBR aqueous emulsion of the liquid component and the water for adjusting the viscosity are added and mixed, and then the aggregate powder and the pH of the solid component are adjusted. This is a method for producing a rust preventive material for a lightweight cellular concrete reinforced reinforcing bar, which is mixed by adding an additive for the liquid component, wherein the stirring speed at the time of mixing the liquid component raw material is within the range of 120 to 200 rpm, and the liquid component raw material is used. A method for producing a rust preventive material for lightweight cellular concrete reinforced reinforcing bars, which comprises making the stirring speed of the solid content raw material at the time of mixing 40 to 50 rpm faster than the stirring speed at the time of mixing. 前記せん断力を有する撹拌機の撹拌翼がタービン翼であることを特徴とする、請求項1に記載の軽量気泡コンクリート補強鉄筋用防錆材の製造方法。 The method for producing a rust preventive material for lightweight cellular concrete reinforcing bars according to claim 1, wherein the stirring blade of the stirrer having a shearing force is a turbine blade.
JP2017181627A 2017-09-21 2017-09-21 Manufacturing method of rust preventive material for lightweight cellular concrete reinforcing bars Active JP6892062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017181627A JP6892062B2 (en) 2017-09-21 2017-09-21 Manufacturing method of rust preventive material for lightweight cellular concrete reinforcing bars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181627A JP6892062B2 (en) 2017-09-21 2017-09-21 Manufacturing method of rust preventive material for lightweight cellular concrete reinforcing bars

Publications (2)

Publication Number Publication Date
JP2019056149A JP2019056149A (en) 2019-04-11
JP6892062B2 true JP6892062B2 (en) 2021-06-18

Family

ID=66107047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181627A Active JP6892062B2 (en) 2017-09-21 2017-09-21 Manufacturing method of rust preventive material for lightweight cellular concrete reinforcing bars

Country Status (1)

Country Link
JP (1) JP6892062B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1085087B (en) * 1976-06-28 1985-05-28 Grace W R & Co METHOD FOR PROTECTION AGAINST CORROSION OF METAL REINFORCEMENTS FOR CONCRETE, AND PRODUCT OBTAINED
JPS5560058A (en) * 1978-10-30 1980-05-06 Ube Industries Rust proofing coating forming agent for iron reinforcing lightweight foamed concrete
JPS57190835A (en) * 1981-05-15 1982-11-24 Konoike Constr Ltd Depositing method for prepacked concrete
JPS624887A (en) * 1985-06-28 1987-01-10 Sumitomo Metal Mining Co Ltd Rust preventive for iron rod reinforcing lightweight gas concrete cured with steam
JPS62241882A (en) * 1986-04-11 1987-10-22 西村 義和 Water permeable ready mixed concrete composition and manufacture
FR2604102B1 (en) * 1986-09-18 1988-11-10 Air Liquide HIGH POROSITY SILICOCALCARY MASS FOR GAS STORAGE, AND MANUFACTURING METHOD
JPH101341A (en) * 1996-06-17 1998-01-06 Mitsubishi Chem Corp Short fiber strand and short fiber reinforced concrete
JP4837483B2 (en) * 2006-08-04 2011-12-14 住友大阪セメント株式会社 Silica fume slurry for high-strength concrete
JP2015218385A (en) * 2014-05-21 2015-12-07 住友金属鉱山シポレックス株式会社 Rust preventive material for lightweight foam concrete reinforcing steel bar

Also Published As

Publication number Publication date
JP2019056149A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
CN106278093A (en) Fast hard Waterproof ceramic tile adhesive agent
JP2005521621A (en) High molecular weight additives for calcined gypsum and cementitious compositions
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
JP2019172536A (en) Self-levelling material and concrete floor structure
US10730795B2 (en) Aqueous foam carrier and method of making the same
JP2014037350A (en) Lightweight foam concrete and method for producing the same
JP6236899B2 (en) Ground conditioner
JP6892062B2 (en) Manufacturing method of rust preventive material for lightweight cellular concrete reinforcing bars
CN111517740A (en) Cement-based composite material for 3D printing and preparation method thereof
JP5298677B2 (en) Hydraulic composition
JP4945777B2 (en) Method for producing cellular concrete
CN107540308B (en) High-fluidity concrete and preparation method thereof
WO2019221914A1 (en) Aqueous foam carrier and method of making the same
JPS6131434A (en) Emulsion for modifying inorganic molded article and preparation thereof
CN110015879B (en) Soft soil foundation curing agent and preparation method thereof
TWI794309B (en) Additive for hydraulic composition and hydraulic composition
JP2015218385A (en) Rust preventive material for lightweight foam concrete reinforcing steel bar
CN106630871A (en) Bed mortar for filling gap between prefabricated members and preparation method thereof
KR101372312B1 (en) Underwater concrete composition and artificial reef using the same
JP5169368B2 (en) Self-healing hydrated cured product and low-reactivity active cement material
CN111302751A (en) Wall material composite material
JP6456693B2 (en) Underwater inseparable concrete composition and cured product thereof, and method for producing underwater inseparable concrete composition
AU2013201582B2 (en) Product
KR102177100B1 (en) Gelation method and cement composition and concrete composition using gelation method
Hilal et al. On Production of Pre-Formed Foamed Geopolymer Concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210517

R150 Certificate of patent or registration of utility model

Ref document number: 6892062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150