JP6888330B2 - High heat resistant material and its manufacturing method - Google Patents

High heat resistant material and its manufacturing method Download PDF

Info

Publication number
JP6888330B2
JP6888330B2 JP2017038759A JP2017038759A JP6888330B2 JP 6888330 B2 JP6888330 B2 JP 6888330B2 JP 2017038759 A JP2017038759 A JP 2017038759A JP 2017038759 A JP2017038759 A JP 2017038759A JP 6888330 B2 JP6888330 B2 JP 6888330B2
Authority
JP
Japan
Prior art keywords
iron
carbide
film
coating
tac film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017038759A
Other languages
Japanese (ja)
Other versions
JP2018145022A (en
Inventor
啓輔 重藤
啓輔 重藤
中村 大輔
大輔 中村
彰敏 鈴村
彰敏 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017038759A priority Critical patent/JP6888330B2/en
Publication of JP2018145022A publication Critical patent/JP2018145022A/en
Application granted granted Critical
Publication of JP6888330B2 publication Critical patent/JP6888330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、等方性黒鉛基材の表面を炭化物被膜で被覆した高耐熱部材等に関する。 The present invention relates to a highly heat-resistant member or the like in which the surface of an isotropic graphite base material is coated with a carbide film.

炭化ケイ素(SiC)や窒化ガリウム(GaN)等の単結晶ウエハを昇華(再結晶)法等によって製造する場合、対向配置した単結晶の種結晶と原料粉末(SiC粉末等)とを不活性雰囲気中で2000〜2400℃で加熱する必要がある。この際、高温に耐え得る部材が必要となり、黒鉛基材からなる黒鉛ヒータや黒鉛ルツボ等の高耐熱部材が利用されている。 When a single crystal wafer such as silicon carbide (SiC) or gallium nitride (GaN) is produced by a sublimation (recrystallization) method or the like, the seed crystals of the single crystals arranged opposite to each other and the raw material powder (SiC powder, etc.) are placed in an inert atmosphere. It is necessary to heat in 2000-2400 ° C. At this time, a member capable of withstanding high temperatures is required, and a highly heat-resistant member such as a graphite heater or a graphite crucible made of a graphite base material is used.

黒鉛基材だけからなる高耐熱部材を高温な還元性雰囲気中で使用すると、黒鉛基材が還元性ガスと反応して目減りするため、その耐久性は著しく低く、また製品(単結晶)に不純物が混入するおそれも高い。 When a highly heat-resistant member made of only a graphite base material is used in a high-temperature reducing atmosphere, the graphite base material reacts with the reducing gas to reduce its durability, resulting in extremely low durability and impurities in the product (single crystal). There is also a high risk of contamination.

そこで、高耐熱部材を構成する黒鉛基材の表面を超高融点の金属炭化物(炭化タンタル等)で被覆することが提案されており、例えば、下記の特許文献に関連した記載がある。 Therefore, it has been proposed to coat the surface of the graphite base material constituting the highly heat-resistant member with a metal carbide having an ultra-high melting point (tantalum carbide or the like), and for example, there is a description related to the following patent documents.

特許5267709号公報Japanese Patent No. 5267709

特許文献1は、等方性黒鉛基材を被覆する炭化タンタル被膜を無配向粒状組織とすることにより、耐久性に優れた高耐熱部材を提供している。しかし、次世代の半導体(SiC、AlN、GaN等からなる基板等)の製造コストをより低減するためには、さらに耐久性を高めた高耐熱部材が求められている。 Patent Document 1 provides a highly heat-resistant member having excellent durability by forming a tantalum carbide coating that coats an isotropic graphite base material with an unoriented granular structure. However, in order to further reduce the manufacturing cost of next-generation semiconductors (such as substrates made of SiC, AlN, GaN, etc.), highly heat-resistant members with even higher durability are required.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法により、耐久性等をより向上させ得る高耐熱部材等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a highly heat-resistant member or the like capable of further improving durability or the like by a method different from the conventional method.

本発明者はこの課題を解決すべく鋭意研究した結果、炭化タンタル被膜中に含まれる鉄量を所定範囲内とすることにより、従来よりも高耐熱部材の耐久性が顕著に向上し得ることを発見した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has found that the durability of the highly heat-resistant member can be remarkably improved by keeping the amount of iron contained in the tantalum carbide coating within a predetermined range. discovered. By developing this result, the present invention described below has been completed.

《高耐熱部材》
(1)本発明の高耐熱部材は、等方性黒鉛基材と、該等方性黒鉛基材の表面を被覆する炭化タンタルからなる炭化物被膜と、を有する高耐熱部材であって、前記炭化物被膜は、20〜1000mass ppmの鉄を含む。
《High heat resistant material》
(1) The highly heat-resistant member of the present invention is a highly heat-resistant member having an isotropic graphite base material and a carbide film made of tantalum carbide that covers the surface of the isotropic graphite base material. The coating contains 20 to 1000 mass ppm of iron.

(2)本発明の高耐熱部材は、例えば、高温で高腐食性の過酷な環境下でも安定的に繰り返し使用可能な顕著な耐久性を発揮する。従って、本発明の高耐熱部材を用いれば、例えばSiC、AlN、GaN等からなる半導体を安定した品質で、より低コストで製造することが可能となる。 (2) The highly heat-resistant member of the present invention exhibits remarkable durability that can be stably and repeatedly used even in a harsh environment of high temperature and high corrosiveness, for example. Therefore, by using the highly heat-resistant member of the present invention, it is possible to manufacture a semiconductor made of, for example, SiC, AlN, GaN, etc. with stable quality and at a lower cost.

(3)本発明の高耐熱部材が優れた耐久性等を発揮する理由は定かではないが、現状、次のように推察される。炭化タンタル粒子(TaC粒子)の粒界に存在する鉄は、TaC粒子同士の結合強度を増し、炭化物被膜(単に「TaC膜」ともいう。)のクラックの発生を抑制すると考えられる。但し、このような効果は、鉄が上述した所定の微量範囲にある場合に限られる。すなわち、鉄が過少ではその効果が得られない。また、鉄が過多になると、鉄はTaC粒子の粒界等で濃化・凝集して、粗大な粒子となり、応力集中点(破壊起点)となり得る。このため、鉄量が増加すると、TaC膜の強度が却って低下し、TaC膜にクラックが発生し易くなると考えられる。 (3) The reason why the highly heat-resistant member of the present invention exhibits excellent durability and the like is not clear, but at present, it is presumed as follows. It is considered that the iron present at the grain boundaries of the tantalum carbide particles (TaC particles) increases the bond strength between the TaC particles and suppresses the occurrence of cracks in the carbide film (also simply referred to as “TaC film”). However, such an effect is limited to the case where iron is in the above-mentioned predetermined trace range. That is, if the amount of iron is too small, the effect cannot be obtained. Further, when the amount of iron becomes excessive, iron is concentrated and aggregated at the grain boundaries of TaC particles and becomes coarse particles, which can be a stress concentration point (fracture starting point). Therefore, when the amount of iron increases, the strength of the TaC film is rather lowered, and it is considered that cracks are likely to occur in the TaC film.

但し、TaC膜(TaC粒子)は等方性黒鉛基材と接合(焼結)しており、2000℃超の超高温下で、その挙動を明確に想定、解明することは困難である。しかも従来は、鉄を単なる不純物として扱っており、高耐熱部材の耐久性の向上に好適な鉄量の範囲が存在することは、当業者の全く想定外のことであった。このような従来の技術常識に反する発見に基づいて完成された本発明は、正に画期的といえる。 However, the TaC film (TaC particles) is bonded (sintered) to an isotropic graphite base material, and it is difficult to clearly assume and elucidate its behavior at an ultra-high temperature of over 2000 ° C. Moreover, conventionally, iron is treated as a mere impurity, and it was completely unexpected by those skilled in the art that there is a range of iron amounts suitable for improving the durability of highly heat-resistant members. It can be said that the present invention, which has been completed based on such a discovery contrary to the conventional technical common sense, is truly epoch-making.

《高耐熱部材の製造方法》
本発明の高耐熱部材はその製造方法を問わないが、例えば、次のような本発明の製造方法により高耐熱部材を得ることができる。すなわち、炭化タンタル粒子を含むスラリーを等方性黒鉛基材の表面に塗布する塗布工程と、該塗布工程後の等方性黒鉛基材を加熱して該炭化タンタル粒子が焼結してできた炭化物被膜を得る成膜工程とを備え、前記スラリーは鉄を含み、前記成膜工程は、第1加熱工程と、該第1加熱工程後に該第1加熱工程よりも高温および/または減圧の雰囲気中で加熱する第2加熱工程とを有する製造方法により、上述した高耐熱部材を得ることもできる。
<< Manufacturing method of high heat resistant material >>
The highly heat-resistant member of the present invention may be manufactured regardless of the manufacturing method thereof. For example, the highly heat-resistant member can be obtained by the following manufacturing method of the present invention. That is, the coating step of applying the slurry containing the tantalum carbide particles to the surface of the isotropic graphite base material and the isotropic graphite base material after the coating step were heated to sinter the tantalum carbide particles. The slurry includes a film forming step for obtaining a carbide film, and the film forming step is an atmosphere of a temperature higher temperature and / or a reduced pressure than that of the first heating step and the first heating step after the first heating step. The above-mentioned highly heat-resistant member can also be obtained by a manufacturing method having a second heating step of heating inside.

《その他》
(1)本明細書でいう鉄濃度(mass ppm)は、TaC膜全体(100mass%)に対する質量割合であり、例えば、グロー放電質量分析法(GDMS)により特定される。TaC膜中における鉄の存在形態は問わない。例えば、鉄単体、鉄化合物、鉄合金等のいずれの形態でTaC膜中に存在していてもよい。また、鉄はTaC膜中で析出していても固溶していてもよい。上述したように、鉄はTaC粒子の粒界に主に存在していると考えられるが、鉄の一部がTaC粒子内に侵入していてもよい。
<< Other >>
(1) The iron concentration (mass ppm) referred to in the present specification is a mass ratio with respect to the entire TaC film (100 mass%), and is specified by, for example, glow discharge mass spectrometry (GDMS). The presence form of iron in the TaC film does not matter. For example, it may be present in the TaC film in any form such as iron simple substance, iron compound, and iron alloy. Further, iron may be precipitated in the TaC film or dissolved in a solid solution. As described above, iron is considered to be mainly present at the grain boundaries of TaC particles, but a part of iron may have penetrated into the TaC particles.

TaC膜中に含まれる鉄濃度は、20〜1000mass ppm、30〜800mass ppmさらには50〜500mass ppmであると好ましい。 The iron concentration contained in the TaC film is preferably 20 to 1000 mass ppm, 30 to 800 mass ppm, and more preferably 50 to 500 mass ppm.

(2)特に断らない限り、本明細書でいう「x〜y」は下限値xおよび上限値yを含む。また本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような数値範囲を新設し得る。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. Further, a numerical range such as "ab" may be newly established as a new lower limit value or upper limit value of any numerical value included in the various numerical values or numerical values described in the present specification.

TaC膜中の鉄濃度と耐久試験に供した試料(高耐熱部材)の繰り返し使用回数との関係を示すグラフである。It is a graph which shows the relationship between the iron concentration in a TaC film, and the number of times of repeated use of a sample (high heat resistant member) subjected to a durability test. その一部を拡大したグラフである。It is an enlarged graph of a part of it. TaC膜中の鉄濃度とアニール試験に供したSiC基板の表面における鉄濃度(汚染濃度)との関係を示すグラフである。It is a graph which shows the relationship between the iron concentration in a TaC film, and the iron concentration (contamination concentration) on the surface of a SiC substrate subjected to an annealing test. 耐久試験に供した反応容器の概要を示す模式図である。It is a schematic diagram which shows the outline of the reaction vessel used for the durability test. アニール試験に供したアニール容器の概要を示す模式図である。It is a schematic diagram which shows the outline of the annealing container used for the annealing test.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の高耐熱部材のみならず、その製造方法にも該当し得る。方法に関する構成要素も物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in the present specification may apply not only to the highly heat-resistant member of the present invention but also to the manufacturing method thereof. A component of a method can also be a component of an object. Which embodiment is the best depends on the target, required performance, and the like.

《炭化物被膜》
炭化物被膜(TaC膜)が所定量の鉄を含むと共に無配向粒状組織からなると、両者が相乗的に作用して、本発明の高耐熱部材はより一層耐久性に優れたものとなる。
<< Carbide coating >>
When the carbide film (TaC film) contains a predetermined amount of iron and is composed of an unoriented granular structure, both act synergistically, and the highly heat-resistant member of the present invention becomes even more durable.

具体的にいうと、本発明に係る炭化物被膜は、(111)面におけるX線回折スペクトルの回折ピークの半値全幅が0.2°以下となる大きさの結晶子が無配向に集積した無配向粒状組織からなると好ましい。特に、炭化物被膜は、X線回折スペクトルに基づいて Lotgering 法により算出される配向度(F)がいずれのミラー(Miller)面についても−0.2〜0.2であると好ましい。以下に、これらの点について詳述する。 Specifically, the carbide coating according to the present invention is unoriented in which crystallites having a size such that the full width at half maximum of the diffraction peak of the X-ray diffraction spectrum on the (111) plane is 0.2 ° or less are accumulated in an unoriented manner. It is preferably composed of a granular structure. In particular, the carbide coating preferably has an orientation degree (F) calculated by the Lotgering method based on the X-ray diffraction spectrum of −0.2 to 0.2 for any mirror (Miller) plane. These points will be described in detail below.

(1)半値全幅
半値全幅により、本発明に係る炭化物被膜を構成する結晶子の大きさが指標される。この半値全幅は、結晶性の低下(アモルファスに近づく)、結晶子の微細化、組成のばらつき等により大きくなるが、本発明の炭化物被膜のように組成が安定的で、結晶性が良好であり、結晶子がある程度大きい場合、半値全幅はある範囲内に収まる。本発明に係る炭化物被膜を特定する一指標として半値全幅は最適である。
(1) Full width at half maximum The full width at half maximum indicates the size of the crystallites constituting the carbide coating according to the present invention. This full width at half maximum increases due to a decrease in crystallinity (approaching amorphous), finer crystallinity, variation in composition, etc., but the composition is stable and the crystallinity is good like the carbide coating of the present invention. If the crystallinity is large to some extent, the full width at half maximum falls within a certain range. The full width at half maximum is optimal as an index for specifying the carbide film according to the present invention.

X線回折における半値全幅(FWHM)は、X線回折スペクトルの(hkl)面による回折ピークを擬フォークト関数によりフィットした時に、ピークの最大値(fmax)の半分の値(fmax/2)における2θの角度差である。本明細書では、後述する実施例を含めて、この方法で半値全幅を特定する。 The full width at half maximum (FWHM) in X-ray diffraction is 2θ at half the maximum value (fmax) of the peak (fmax / 2) when the diffraction peak due to the (hkl) plane of the X-ray diffraction spectrum is fitted by the pseudo Voigt function. The angle difference of. In the present specification, the full width at half maximum is specified by this method, including examples described later.

この半値全幅は、0.2°以下、0.15°以下さらには0.13°以下であると好ましい。半値全幅が過大では、結晶粒が過小でクラック等の伝播を十分に阻止できないか、低結晶性の非晶質組織が高温環境下で結晶化して構造変化を伴うため、好ましくない。半値全幅の下限値は特に限定されないが、0.01°さらには0.03°であると好ましい。半値全幅が過小になると、結晶粒が過大になり、無配向に積層した粒状組織が形成され難くなる。 The full width at half maximum is preferably 0.2 ° or less, 0.15 ° or less, and more preferably 0.13 ° or less. If the full width at half maximum is too large, the crystal grains are too small to sufficiently prevent the propagation of cracks and the like, or the low crystalline amorphous structure crystallizes in a high temperature environment and is accompanied by a structural change, which is not preferable. The lower limit of the full width at half maximum is not particularly limited, but is preferably 0.01 ° or even 0.03 °. If the full width at half maximum is too small, the crystal grains become too large, and it becomes difficult to form a non-oriented granular structure.

(2)配向度(F)
炭化物被膜を構成する結晶組織の配向性は、例えば、X線回折スペクトルに基づいて Lotgering 法により算出される配向度(F)により判定される。結晶組織は、F値が0(ゼロ)に近いほど無配向となり、F値が0から遠ざかるほど配向性が高くなる。例えば、単結晶組織の場合、F値は1となり、完全に無配向な多結晶組織の場合、F値は0となる。本発明に係る炭化物被膜は、その結晶組織の配向度(F)が、(222)面を含めた(111)面について、さらにいうと、いずれのミラー(Miller)面についても−0.2〜0.2、−0.15〜0.15さらには−0.1〜0.1である好ましい。逆に、配向度(F)がこのような範囲内にあるとき、本発明に係る炭化物被膜は「無配向」な結晶組織からなると、客観的にいえる。
(2) Degree of orientation (F)
The orientation of the crystal structure constituting the carbide film is determined by, for example, the degree of orientation (F) calculated by the Lotgering method based on the X-ray diffraction spectrum. The closer the F value is to 0 (zero), the more unoriented the crystal structure is, and the farther the F value is from 0, the higher the orientation. For example, in the case of a single crystal structure, the F value is 1, and in the case of a completely unoriented polycrystalline structure, the F value is 0. The carbide coating according to the present invention has a crystal structure orientation (F) of −0.2 to the (111) plane including the (222) plane, and more specifically, any mirror (Miller) plane. It is preferably 0.2, −0.15 to 0.15, and more preferably −0.1 to 0.1. On the contrary, when the degree of orientation (F) is within such a range, it can be objectively said that the carbide coating according to the present invention has a "non-oriented" crystal structure.

ところで、この配向度(F)は、X線回折スペクトルについて求めたピーク強度の面積比の3点平均値から、Lotgering法により算出される。ここでピーク強度の3点平均値ではなく、ピークの面積比の3点平均値を用いたのは、算出された配向度(F)の客観性を高めるためである。 By the way, this degree of orientation (F) is calculated by the Lotgering method from the three-point average value of the area ratio of the peak intensity obtained for the X-ray diffraction spectrum. Here, the reason why the three-point average value of the area ratio of the peak is used instead of the three-point average value of the peak intensity is to enhance the objectivity of the calculated degree of orientation (F).

配向度(F)の具体的な算出方法は次の通りである。
F =(P−P)/(1−P
ここで、ミラー面(h’k’l’)における各値は次のようにして求まる。
P =I(h’k’l’)/ΣI(hkl)
=I(h’k’l’)/ΣI(hkl)
I(h’k’l’):対象試料(炭化物被膜)のX線回折スペクトルから求めた特定のミラー面(h’k’l’)に関するピーク面積比(またはその総和)
ΣI(hkl):対象試料のX線回折スペクトルに現れた全てのミラー面に関するピーク面積比の総和
(h’k’l’):基準試料(例えば、無配向炭化物)のX線回折スペクトルから求めた特定のミラー面(h’k’l’)に関するピーク面積比(またはその総和)
ΣI(hkl):基準試料のX線回折スペクトルに現れた全てのミラー面に関するピーク面積比の総和
The specific calculation method of the degree of orientation (F) is as follows.
F = (PP 0 ) / (1-P 0 )
Here, each value on the mirror surface (h'k'l') is obtained as follows.
P = I (h'k'l') / ΣI (hkl)
P 0 = I 0 (h'k'l') / ΣI 0 (hkl)
I (h'k'l'): Peak area ratio (or sum of all) with respect to a specific mirror surface (h'k'l') obtained from the X-ray diffraction spectrum of the target sample (carbide coating).
ΣI (hkl): Sum of peak area ratios for all mirror surfaces appearing in the X-ray diffraction spectrum of the target sample I 0 (h'k'l'): X-ray diffraction spectrum of the reference sample (for example, unoriented carbide) Peak area ratio (or sum of them) for a specific mirror surface (h'k'l') obtained from
ΣI 0 (hkl): Sum of peak area ratios for all mirror surfaces appearing in the X-ray diffraction spectrum of the reference sample

なお、「面積比」は、最強ピークの面積に対する各ピークの面積の比である。これは、例えば、最強ピークの面積を100%としたときの各ピークの面積(%)として表される。「3点平均値」は、同一試料内の異なる3点から得られたXRDスペクトルの(hkl)面のピーク面積の和を、3で割った値という意味である。 The "area ratio" is the ratio of the area of each peak to the area of the strongest peak. This is expressed as, for example, the area (%) of each peak when the area of the strongest peak is 100%. The "three-point average value" means a value obtained by dividing the sum of the peak areas of the (hkl) planes of the XRD spectrum obtained from three different points in the same sample by three.

例えば、図1Aに示すような炭化タンタル被膜のX線回折スペクトル(2θ=30°〜80°)が得られた場合において、(200)面における配向度F(200)は次のようにして求まる。
F(200) =(P(200)−P(200))/(1−P(200))
P(200) =I(200)/ΣI(hkl)
(200)=I(200)/ΣI(hkl)
ΣI(hkl) =I(111)+I(200)+I(220)+I(311)+I(222)
ΣI(hkl)=I(111)+I(200)+I(220)+I(311)+I(222)
For example, when the X-ray diffraction spectrum (2θ = 30 ° to 80 °) of the tantalum carbide coating as shown in FIG. 1A is obtained, the degree of orientation F (200) on the plane (200) can be obtained as follows. ..
F (200) = (P (200) -P 0 (200)) / (1-P 0 (200))
P (200) = I (200) / ΣI (hkl)
P 0 (200) = I 0 (200) / ΣI 0 (hkl)
ΣI (hkl) = I (111) + I (200) + I (220) + I (311) + I (222)
ΣI 0 (hkl) = I 0 (111) + I 0 (200) + I 0 (220) + I 0 (311) + I 0 (222)

同様にして、(220)面における配向度F(220)および(311)面における配向度F(311)等も求まる。 Similarly, the degree of orientation F (220) on the (220) plane and the degree of orientation F (311) on the (311) plane can also be obtained.

また(111)面の配向度を求める場合、上記のX線回折スペクトル上には(222)面のピークも現れている。このため、PまたはPを求める際のI(111)またはI(111)には、(111)面のピーク面積比と(222)面のピーク面積比の和を用いる。すなわち、I’(111)=I(111)+I(222)、I’(111)=I(111)+I(222)を用いる。従って、(111)面における配向度F(111)は次のようにして求まる。
F(111) =(P(111)−P(111))/(1−P(111))
P(111) =I’(111) /ΣI(hkl)
(111) =I’(111)/ΣI(hkl)
I’(111) =I(111)+I(222)
’(111)=I(111)+I(222)
Further, when determining the degree of orientation of the (111) plane, a peak of the (222) plane also appears on the X-ray diffraction spectrum. Therefore, for I (111) or I 0 (111) when P or P 0 is obtained, the sum of the peak area ratio of the (111) plane and the peak area ratio of the (222) plane is used. That is, I'(111) = I (111) + I (222) and I 0 '(111) = I 0 (111) + I 0 (222) are used. Therefore, the degree of orientation F (111) on the (111) plane can be obtained as follows.
F (111) = (P (111) -P 0 (111)) / (1-P 0 (111))
P (111) = I'(111) / ΣI (hkl)
P 0 (111) = I 0 '(111) / ΣI 0 (hkl)
I'(111) = I (111) + I (222)
I 0 '(111) = I 0 (111) + I 0 (222)

(h’k’l’)やΣI(hkl)は、例えば、炭化物被膜の原料粉末(特に無配向な結晶粒からなる粉末)を基準試料として測定したX線回折スペクトルから求めることができる。 I 0 (h'k'l') and ΣI 0 (hkl) can be obtained from, for example, an X-ray diffraction spectrum measured using a carbide coating raw material powder (particularly a powder composed of non-oriented crystal grains) as a reference sample. it can.

なお、Lotgering 法による配向度(F)の算出については、例えば、「セラミック誘電体工学」(岡崎清著、学献社、p587)にも詳述されている。また、半値全幅と配向度(F)の算出等について、本明細書に記載していない内容については、既述した特許文献(特許5267709号公報)の記載に依る。 The calculation of the degree of orientation (F) by the Lotgering method is also described in detail in, for example, "Ceramic Dielectric Engineering" (Kiyo Okazaki, Gakushosha, p587). Further, regarding the calculation of the full width at half maximum and the degree of orientation (F), etc., the contents not described in the present specification are based on the description of the above-mentioned patent document (Patent No. 5267709).

(3)炭化物被膜の膜厚
炭化物被膜の膜厚は問わないが、40〜300μmさらには70〜150μmであると好ましい。膜厚が過小では炭化物被膜のガスバリア性が必ずしも十分ではない。膜厚が過大になると、炭化物被膜と黒鉛基材の線膨張係数差によって、両者間に作用する熱応力が大きくなり、炭化物被膜にクラックや剥離等が生じ易くなる。なお、本願明細書でいう炭化物被膜の膜厚は、走査型電子顕微鏡(SEM)による破断面観察により特定される。
(3) Film thickness of carbide film The film thickness of the carbide film is not limited, but is preferably 40 to 300 μm, more preferably 70 to 150 μm. If the film thickness is too small, the gas barrier property of the carbide film is not always sufficient. If the film thickness is excessive, the difference in linear expansion coefficient between the carbide coating and the graphite base material increases the thermal stress acting between the two, and the carbide coating is likely to crack or peel. The film thickness of the carbide coating referred to in the present specification is specified by observing the fracture surface with a scanning electron microscope (SEM).

(4)炭化物
本発明に係る炭化タンタルは、融点が最も高いTaCが主であるが、TaCの他、NbC、NbC、WC、WC、HfC、HfC等の高融点金属炭化物を含んでもよい。炭化物被膜全体を100at%として、TaCが90at%以上、95at%以上さらには98at%以上であると好ましい。逆にいえば、TaC以外の残余物は5at%以下さらには2at%以下であると好ましい。
(4) tantalum carbide according to the carbide present invention has a melting point of primary highest TaC, other Ta 2 C, NbC, Nb 2 C, WC, W 2 C, HfC, high melting point such as Hf 2 C It may contain metal carbides. It is preferable that the TaC is 90 at% or more, 95 at% or more, and further 98 at% or more, assuming that the entire carbide film is 100 at%. Conversely, the residue other than TaC is preferably 5 at% or less, more preferably 2 at% or less.

《等方性黒鉛基材》
本発明に係る等方性黒鉛基材(単に「黒鉛基材」ともいう。)は、例えば、冷間静水圧成形(Cold Isostatic Pressing法/CIP法)により作成される。このような黒鉛基材と上述したTaC膜(特に無配向(等方的)なTaC膜)とが整合し、または相乗的に作用することによって、高耐熱部材の耐久性が一層高まると考えられる。
<< Isotropic graphite base material >>
The isotropic graphite base material (also simply referred to as “graphite base material”) according to the present invention is produced, for example, by cold hydrostatic pressing (Cold Isostatic Pressing method / CIP method). It is considered that the durability of the highly heat-resistant member is further enhanced by the matching or synergistic action between such a graphite base material and the above-mentioned TaC film (particularly non-oriented (isotropic) TaC film). ..

黒鉛基材の線膨張係数は、通常3.5〜8.5x10-6/K(室温〜500℃で測定)程度であるが、炭化物被膜の線膨張係数に近いほど、炭化物被膜との間に作用する熱応力が低減されて好ましい。 The coefficient of linear expansion of the graphite base material is usually about 3.5 to 8.5 x 10-6 / K (measured at room temperature to 500 ° C.), but the closer it is to the coefficient of linear expansion of the carbide coating, the closer it is to the carbide coating. It is preferable because the acting thermal stress is reduced.

《高耐熱部材の製造方法》
(1)塗布工程
塗布工程は、炭化タンタル粒子と鉄を含むスラリーを、黒鉛基材の表面に塗布する工程である。スラリーの塗布方法には、刷毛塗り、噴霧塗布、浸漬塗布などがある。また、回転する耐高温基材の表面上へスラリーを流入させて遠心力でスラリーを基材表面に薄くかつ均一に引き延ばすスピンコート法を用いてもよい。
<< Manufacturing method of high heat resistant material >>
(1) Coating Step The coating step is a step of coating a slurry containing tantalum carbide particles and iron on the surface of a graphite base material. Examples of the slurry coating method include brush coating, spray coating, and immersion coating. Alternatively, a spin coating method may be used in which the slurry is allowed to flow onto the surface of a rotating high temperature resistant base material and the slurry is thinly and uniformly spread on the surface of the base material by centrifugal force.

塗布膜中の炭化タンタル粒子は、粒径が0.1〜5μmさらには0.5〜4μmであると好ましい。粒径が過小では、炭化タンタル粒子の凝集によりTaC膜が割れ易くなる。また粒径が過大では、TaC膜の配向度が高くなり易くなる。 The tantalum carbide particles in the coating film preferably have a particle size of 0.1 to 5 μm, more preferably 0.5 to 4 μm. If the particle size is too small, the TaC film is easily cracked due to the aggregation of tantalum carbide particles. If the particle size is too large, the degree of orientation of the TaC film tends to be high.

炭化タンタル粒子の粒径調整は、所望粒径の原料粉末を用いる他、スラリーの調製中の撹拌によりなされてもよい。例えば、ボールミルや超音波ホモジナイザー等を用いて、粒子同士を衝突させて微粒化させてもよい。 The particle size of the tantalum carbide particles can be adjusted by using a raw material powder having a desired particle size or by stirring during the preparation of the slurry. For example, particles may be collided with each other to be atomized using a ball mill, an ultrasonic homogenizer, or the like.

スラリーに含ませる鉄源として、(純)鉄粉末の他、鉄化合物(炭化物、酸化物、塩化物、硝酸塩、酢酸塩等)粉末、鉄合金粉末等を用いてもよい。また、最終的なTaC膜中の鉄濃度を調整できる限り、原料(炭化物粉末や焼結助剤等)に含まれる鉄不純物、製造過程で混入する鉄不純物を、鉄源の全部または一部として利用してもよい。製造過程で混入する鉄不純物として、例えば、上述したボールミルや超音波ホモジナイザー等の使用中(スラリー調製中)に生じる鉄含有摩耗粉がある。 As the iron source to be contained in the slurry, in addition to (pure) iron powder, iron compound (carbide, oxide, chloride, nitrate, acetate, etc.) powder, iron alloy powder, or the like may be used. In addition, as long as the iron concentration in the final TaC film can be adjusted, iron impurities contained in raw materials (carbide powder, sintering aid, etc.) and iron impurities mixed in the manufacturing process are used as all or part of the iron source. You may use it. As iron impurities mixed in the manufacturing process, for example, there is iron-containing wear powder generated during use (during slurry preparation) of the above-mentioned ball mill, ultrasonic homogenizer, or the like.

スラリーは、炭化タンタル粒子の他、有機バインダー、溶媒(または分散媒)、焼結助剤などを適宜含み、塗布に適した粘度に調整される。炭化タンタル粒子は、スラリー全体を100mass%としたとき、55〜80mass%さらには60〜75mass%であると好ましい。 The slurry contains tantalum carbide particles, an organic binder, a solvent (or a dispersion medium), a sintering aid, and the like as appropriate, and is adjusted to a viscosity suitable for coating. The tantalum carbide particles are preferably 55 to 80 mass%, more preferably 60 to 75 mass%, when the entire slurry is 100 mass%.

有機バインダーは、スラリーの粘度を調整し、スラリーの塗布性や粘着性等を改善する。有機バインダーとして、ポリメタクリル酸メチル(PMMA)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、メチルセルロース、エチルセルロース、アセチルセルロース、フェノール樹脂、ユリア樹脂、メラミン樹脂等が適宜用いられる。有機バインダーは、例えば、スラリー全体を100mass%としたとき0.1〜3mass%とするとよい。 The organic binder adjusts the viscosity of the slurry and improves the coatability and adhesiveness of the slurry. As the organic binder, polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), methyl cellulose, ethyl cellulose, acetyl cellulose, phenol resin, urea resin, melamine resin and the like are appropriately used. The organic binder may be 0.1 to 3 mass%, for example, when the entire slurry is 100 mass%.

溶媒には、ジメチルアセトアミド、メチルエチルケトンおよび1,3−ジオキソラン、ベンジルアルコール、エタノール、α−ターピネオール、トルエンなどの有機溶媒がある。溶媒はスラリーの残部となるが、敢えていうとスラリー全体を100mass%としたときに、合計で20〜40mass%とするとよい。 Solvents include organic solvents such as dimethylacetamide, methyl ethyl ketone and 1,3-dioxolane, benzyl alcohol, ethanol, α-terpineol, toluene and the like. The solvent is the rest of the slurry, but dare to say that when the whole slurry is 100 mass%, the total is 20 to 40 mass%.

TaCの焼結温度以下の融点をもつ遷移金属やその化合物からなる焼結助剤(助剤粉末)を用いてもよい。これにより炭化物被膜の緻密化、安定化または均質化が図られる。焼結助剤は、焼結中(最高焼結温度)に昇華して不純物として残らないものが好ましく、例えば、Ti、Cr、Co、Niやその化合物等である。焼結助剤を用いるときは、例えば、スラリー全体(100mass%)に対して0.3〜5mass%とするとよい。 A sintering aid (auxiliary powder) composed of a transition metal having a melting point equal to or lower than the TaC sintering temperature or a compound thereof may be used. This results in densification, stabilization or homogenization of the carbide coating. The sintering aid is preferably one that sublimates during sintering (maximum sintering temperature) and does not remain as an impurity, and is, for example, Ti, Cr, Co, Ni, a compound thereof, or the like. When a sintering aid is used, for example, it may be 0.3 to 5 mass% with respect to the entire slurry (100 mass%).

(2)成膜工程
成膜工程は、炭化タンタル粒子を焼結させる第1加熱工程(焼結工程)と、炭化タンタル粒子が焼結してできた炭化物被膜中に含まれる鉄量(鉄濃度)を調整する第2加熱工程(純化工程)を備えると好ましい。この際、第2加熱工程は、第1加熱工程よりも、高温および/または減圧(低圧)の雰囲気でなされると好ましい。
(2) Film formation step The film formation step includes a first heating step (sintering step) for sintering tantalum carbide particles and an amount of iron (iron concentration) contained in the carbide film formed by sintering the tantalum carbide particles. ) Is preferably provided with a second heating step (purification step). At this time, it is preferable that the second heating step is performed in a higher temperature and / or reduced pressure (low pressure) atmosphere than the first heating step.

第1加熱工程の加熱温度(T1)は2000〜2700℃さらには2300〜2600℃が好ましい。第2加熱工程の加熱温度(T2)は、第1加熱工程の加熱温度との温度差(ΔT=T2−T1)が30〜200℃さらには50〜150℃となるように調整されると好ましい。 The heating temperature (T1) in the first heating step is preferably 2000 to 2700 ° C., more preferably 2300 to 2600 ° C. The heating temperature (T2) in the second heating step is preferably adjusted so that the temperature difference (ΔT = T2-T1) from the heating temperature in the first heating step is 30 to 200 ° C., more preferably 50 to 150 ° C. ..

第1加熱工程も第2加熱工程も、真空雰囲気または不活性ガス雰囲気でなされると好ましい。第1加熱工程の雰囲気圧力(真空度)は1k〜95kPaさらには3k〜10kPaであると好ましい。第2加熱工程の雰囲気圧力(真空度)は50〜1000Paさらには200〜800Paであると好ましい。 Both the first heating step and the second heating step are preferably performed in a vacuum atmosphere or an inert gas atmosphere. The atmospheric pressure (vacuum degree) in the first heating step is preferably 1 k to 95 kPa, more preferably 3 k to 10 kPa. The atmospheric pressure (vacuum degree) in the second heating step is preferably 50 to 1000 Pa, more preferably 200 to 800 Pa.

第1加熱工程も第2加熱工程も、0.5〜3時間程度なされると十分である。このような第2加熱工程を第1加熱工程に続けて行うことにより、炭化物被膜中の鉄濃度を効率的に調整することができる。 It is sufficient that both the first heating step and the second heating step are performed for about 0.5 to 3 hours. By performing such a second heating step following the first heating step, the iron concentration in the carbide coating can be efficiently adjusted.

《用途》
高耐熱部材は、高温用ルツボ(特に黒鉛ルツボ)、高温用ヒータ、高温用フィラメント、化学気相成長(CVD)用サセプタ等として用いられる。具体的にいうと、耐腐食性雰囲気抵抗加熱ヒータ、昇華法SiC単結晶成長のためのルツボ部材、昇華法AlN単結晶成長のためのルツボ部材、SiCのCVDエピタキシャル成長のためのサセプタ部材、III族窒化物のMOCVDエピタキシャル成長のためのサセプタ部材、電子ビーム蒸着用のハースライナー等に本発明の高耐熱部材は好適である。
《Use》
High heat resistant members are used as high temperature crucibles (particularly graphite crucibles), high temperature heaters, high temperature filaments, chemical vapor deposition (CVD) susceptors, and the like. Specifically, a corrosion-resistant atmospheric resistance heater, a rubbing member for sublimation method SiC single crystal growth, a rut member for sublimation method AlN single crystal growth, a susceptor member for SiC CVD epitaxial growth, group III. The highly heat-resistant member of the present invention is suitable for a susceptor member for MOCVD epitaxial growth of a nitride, a hearth liner for electron beam deposition, and the like.

鉄含有量の異なる複数のスラリーを用いて、市販の等方性黒鉛基材上にTaC膜を成膜した試料(高耐熱部材)を多数製造し、各試料の分析および評価を行った。このような具体例に基づいて、本発明をより詳しく説明する。 A large number of samples (high heat resistant members) in which a TaC film was formed on a commercially available isotropic graphite substrate were produced using a plurality of slurries having different iron contents, and each sample was analyzed and evaluated. The present invention will be described in more detail based on such a specific example.

《試料の製造》
(1)スラリー調製
炭化タンタル(TaC)粒子を分散させたスラリーを次のようにして調製した。各原料の配合割合は、スラリー全体を100mass%(単に「%」とも表記する。)として示した。
《Manufacturing of sample》
(1) Slurry Preparation A slurry in which tantalum carbide (TaC) particles were dispersed was prepared as follows. The blending ratio of each raw material is shown as 100 mass% (also simply referred to as “%”) for the entire slurry.

TaC粉末(純度99.9%/粒子径約2μm):69%、有機バインダーであるポリメタクリル酸メチル(PMMA:Polymethyl methacrylate):0.7%、有機溶媒であるジメチルアセトアミド:6.3%、メチルエチルケトン:12%および1,3−ジオキソラン:12%をそれぞれ秤量して配合した。こうしてTaC粒子を主成分とするスラリーを得た。以下、このスラリーを「基準スラリー」という。 TaC powder (purity 99.9% / particle size about 2 μm): 69%, organic binder polymethylacrylate (PMMA): 0.7%, organic solvent dimethylacetamide: 6.3%, Methyl ethyl ketone: 12% and 1,3-dioxolane: 12% were weighed and blended, respectively. In this way, a slurry containing TaC particles as a main component was obtained. Hereinafter, this slurry is referred to as a "reference slurry".

基準スラリーに、鉄源である(純)鉄粉(純度:99.6%、粒子径約3μm)を表1に示す割合で添加した。鉄粉のスラリーへの添加量は、TaC粉末全体(100mass%)に対する質量割合(mass%)で示した。こうして鉄含有量の異なる複数のスラリーを調製し、各試料の製造に供した。なお、各スラリーは、原料をミキサーで混合した後、超音波ホモジナイザーにより分散させて調製した。TaC粒子および鉄粒子の粒径は、各粒子を光学顕微鏡観察し、切片法により求めた平均粒径である。 (Pure) iron powder (purity: 99.6%, particle size of about 3 μm), which is an iron source, was added to the reference slurry at the ratio shown in Table 1. The amount of iron powder added to the slurry is shown as a mass ratio (mass%) with respect to the entire TaC powder (100 mass%). In this way, a plurality of slurries having different iron contents were prepared and used for the production of each sample. Each slurry was prepared by mixing the raw materials with a mixer and then dispersing them with an ultrasonic homogenizer. The particle size of the TaC particles and the iron particles is an average particle size obtained by observing each particle with an optical microscope and performing a section method.

(2)塗布工程
後述する形状の異なる複数の等方性黒鉛基材(熱膨張係数:6.5x10-6/K)上に、各試料に係るスラリーを噴霧塗布により塗布した。塗布膜の質量を調整することにより、焼結後に得られるTaC膜の厚さが100〜130μmとなるように調整した。塗布膜の質量は、塗布工程前後の質量変化(黒鉛基材に対する質量増分)により求めた。
(2) Coating Step The slurry of each sample was coated by spray coating on a plurality of isotropic graphite substrates (thermal expansion coefficient: 6.5 x 10-6 / K) having different shapes, which will be described later. By adjusting the mass of the coating film, the thickness of the TaC film obtained after sintering was adjusted to be 100 to 130 μm. The mass of the coating film was determined by the mass change (mass increment with respect to the graphite substrate) before and after the coating step.

(3)成膜工程(第1加熱工程と第2加熱工程)
黒鉛基材上の塗布膜を200℃程度で加熱して乾燥させた(乾燥工程)。溶媒が揮発・散逸した塗布膜をさらに加熱して焼結させ、緻密なTaC膜を得た(焼結工程/第1加熱工程)。焼結工程は、高周波加熱炉内を用いて、アルゴン雰囲気(5kPa)中で、焼結温度:2500℃、焼結時間(最高焼結温度での保持時間):1時間として行った。
(3) Film formation process (first heating step and second heating step)
The coating film on the graphite substrate was heated at about 200 ° C. and dried (drying step). The coating film in which the solvent was volatilized and dissipated was further heated and sintered to obtain a dense TaC film (sintering step / first heating step). The sintering step was performed in an argon atmosphere (5 kPa) using a high-frequency heating furnace at a sintering temperature of 2500 ° C. and a sintering time (holding time at the maximum sintering temperature): 1 hour.

焼結工程に続けて、500Paへ減圧したアルゴン雰囲気中で、さらに2600℃へ昇温して1時間保持した(純化工程/第2加熱工程)。純化工程により、TaC膜中に含まれるTaC粒子以外の残余物は殆どが拡散、飛散してTaC膜外へ排出させると共に、TaC膜中に残存する鉄濃度が調整される。但し、表1に示した試料C2は、焼結工程後に純化工程を施さなかった。 Following the sintering step, the temperature was further raised to 2600 ° C. and held for 1 hour in an argon atmosphere reduced to 500 Pa (purification step / second heating step). By the purification step, most of the residue other than the TaC particles contained in the TaC film is diffused and scattered and discharged to the outside of the TaC film, and the concentration of iron remaining in the TaC film is adjusted. However, the sample C2 shown in Table 1 was not subjected to a purification step after the sintering step.

こうして、膜厚100μm程度のほぼ均一なTaC膜が等方性黒鉛基材の表面に形成された種々の試料(高耐熱部材)が得られた。TaC膜の膜厚はマイクロメータにより測定した。 In this way, various samples (high heat resistant members) in which a substantially uniform TaC film having a film thickness of about 100 μm was formed on the surface of the isotropic graphite base material were obtained. The film thickness of the TaC film was measured with a micrometer.

(4)供試材(黒鉛基材の形態)
形状の異なる4種類の等方性黒鉛基材(単に「黒鉛基材」という。)を各試料毎に用意し、上述したTaC膜をそれぞれ成膜した。具体的には次の通りである。
(4) Test material (form of graphite base material)
Four types of isotropic graphite base materials having different shapes (simply referred to as "graphite base materials") were prepared for each sample, and the above-mentioned TaC film was formed on each sample. Specifically, it is as follows.

各試料毎に、TaC膜中に含まれる微量な残存物(鉄を含む)を分析するために、□30×t3mmの黒鉛基材上にTaC膜を成膜した。 For each sample, a TaC film was formed on a graphite substrate of □ 30 × t3 mm in order to analyze a trace amount of residue (including iron) contained in the TaC film.

各試料毎に、各TaC膜の半値全幅および配向度を測定、算出するために、φ100×t3mmの黒鉛基材上にTaC膜を成膜した。 For each sample, a TaC film was formed on a graphite substrate having a diameter of 100 × t3 mm in order to measure and calculate the half-value full width and the degree of orientation of each TaC film.

各試料(高耐熱部材)の耐久性を評価するため、図3に示すように、TaC膜で被覆された黒鉛基材からなる反応容器1を製作した。反応容器1は、有底円筒状の黒鉛基材111(外径φ100mm×内径φ90mm×全高h65mm×深さh55mm)の表面をTaC膜112で被覆した本体11と、円板状の黒鉛基材121(外径φ100mm×t3mm)の表面をTaC膜122で被覆した蓋体12とからなる。反応容器1は、本体11の上部開口が蓋体12で閉塞されることにより密閉状態となる。本体11の底面中央と蓋体12の上面中央には、TaC膜で被覆されていない測温部113と測温部123をそれぞれ設けた。 In order to evaluate the durability of each sample (high heat resistant member), as shown in FIG. 3, a reaction vessel 1 made of a graphite base material coated with a TaC film was produced. The reaction vessel 1 includes a main body 11 in which the surface of a bottomed cylindrical graphite base material 111 (outer diameter φ100 mm × inner diameter φ90 mm × total height h65 mm × depth h55 mm) is coated with a TaC film 112, and a disk-shaped graphite base material 121. It is composed of a lid 12 having a surface (outer diameter φ100 mm × t3 mm) coated with a TaC film 122. The reaction vessel 1 is sealed by closing the upper opening of the main body 11 with the lid 12. At the center of the bottom surface of the main body 11 and the center of the upper surface of the lid 12, a temperature measuring unit 113 and a temperature measuring unit 123 not covered with the TaC film are provided, respectively.

さらに、各試料(高耐熱部材)の汚染度合を評価するため、図4に示すように、TaC膜で被覆された黒鉛基材からなるアニール容器2を製作した。アニール容器2は、有底円筒状の黒鉛基材211(外径φ100mm×内径φ90mm×全高h25mm×深さh15mm)の表面をTaC膜212で被覆した本体21と、円板状の黒鉛基材221(外径φ100mm×t3mm)の表面をTaC膜222で被覆した蓋体22とからなる。アニール容器2は、本体21の上部開口が蓋体22で閉塞されることにより密閉状態となる。蓋体22の上面中央には、TaC膜で被覆されていない測温部223を設けた。 Further, in order to evaluate the degree of contamination of each sample (high heat resistant member), as shown in FIG. 4, an annealing container 2 made of a graphite base material coated with a TaC film was manufactured. The annealing container 2 includes a main body 21 in which the surface of a bottomed cylindrical graphite base material 211 (outer diameter φ100 mm × inner diameter φ90 mm × total height h25 mm × depth h15 mm) is coated with a TaC film 212, and a disk-shaped graphite base material 221. It is composed of a lid 22 having a surface (outer diameter φ100 mm × t3 mm) coated with a TaC film 222. The annealing container 2 is sealed by closing the upper opening of the main body 21 with the lid 22. A temperature measuring unit 223 not covered with a TaC film was provided at the center of the upper surface of the lid 22.

こうして各試料に係る供試材を製造した。各供試材は、試料毎に、同成分のスラリーを用いて同条件で製作しているため、同一試料に係る各供試材は、特性および含有する不純物等が同じTaC膜で黒鉛基材が被覆されたものといえる。 In this way, the test material for each sample was manufactured. Since each test material is manufactured under the same conditions using a slurry of the same component for each sample, each test material related to the same sample is a graphite base material with a TaC film having the same characteristics and impurities contained. Can be said to be covered.

《測定》
(1)鉄濃度
各試料に係るTaC膜中に含まれる微量な残存物(元素)をグロー放電質量分析法(GDMS/ThermoFisher Scientific 製ELEMENT GD PLUS)を用いて分析した。この際、放電ガス:高純度アルゴン、放電面径:φ8mm、放電条件:1kV、12mAとした。これにより得られた各試料に係る鉄濃度を表1に示した。
《Measurement》
(1) Iron Concentration A small amount of residue (element) contained in the TaC film of each sample was analyzed by glow discharge mass spectrometry (GDMS / ELEMENT GD PLUS manufactured by Thermo Fisher Scientific). At this time, the discharge gas was set to high-purity argon, the discharge surface diameter was set to φ8 mm, the discharge conditions were set to 1 kV, and 12 mA. Table 1 shows the iron concentration of each sample obtained as a result.

(2)半値全幅と配向性
各試料に係るTaC膜について、X線回折測定(XRD)を行い、全ミラー面における配向度(F)と、(111)面の半値全幅を求めた。こうして得られた結果を表2に示した。配向度(F)の算出は既述したLotgering法により行った。その他、既述した特許文献1の記載内容に沿って、本実施例に係る測定または算出を行った。
(2) Full width at half maximum and orientation The TaC film related to each sample was subjected to X-ray diffraction measurement (XRD) to determine the degree of orientation (F) on all mirror planes and the full width at half maximum on the (111) plane. The results thus obtained are shown in Table 2. The degree of orientation (F) was calculated by the Lotgering method described above. In addition, the measurement or calculation according to this example was performed according to the contents described in Patent Document 1 described above.

(3)耐久性
各試料(高耐熱部材)の耐久性を評価するため、上述した反応容器1(ルツボ)に窒化アルミニウム(AlN)粉末P1を約30g充填し、80kPaの窒素ガス中で、高周波加熱した。加熱温度は、反応容器1の測温部113、123を放射温度計で測定して求めた。
(3) Durability In order to evaluate the durability of each sample (high heat resistant member), the above-mentioned reaction vessel 1 (crucible) is filled with about 30 g of aluminum nitride (AlN) powder P1 and has a high frequency in 80 kPa of nitrogen gas. It was heated. The heating temperature was determined by measuring the temperature measuring units 113 and 123 of the reaction vessel 1 with a radiation thermometer.

ヒートパターンは次の通りである。先ず、室温から2300℃まで3時間かけて昇温した。この後、AlN粉末がある本体11の底部側(測温部113)を2300℃、蓋体123の上面側(測温部123)を2270℃として、上下方向に僅かな温度勾配を設けた状態で2時間保持した。その後、ヒーターをオフにして、窒素ガスフロー下の加熱炉体内で、反応容器1を7時間かけて冷却した。 The heat pattern is as follows. First, the temperature was raised from room temperature to 2300 ° C. over 3 hours. After that, the bottom side (temperature measuring part 113) of the main body 11 containing the AlN powder is set to 2300 ° C., and the upper surface side (temperature measuring part 123) of the lid 123 is set to 2270 ° C., and a slight temperature gradient is provided in the vertical direction. It was held for 2 hours. Then, the heater was turned off, and the reaction vessel 1 was cooled in a heating furnace under a nitrogen gas flow for 7 hours.

このような加熱試験を繰返し行った。加熱試験を行う毎に、蓋体12のTaC膜122に、剥がれやクラック等の欠陥が生じていないか、目視で確認した。N回目の加熱試験で欠陥が確認されたとき、各試料に係る反応容器1の繰り返し使用回数を(N−1)回とした。但し、繰り返し使用回数の上限は50回とし、51回目の加熱試験後でも欠陥が発見できなかったときは、繰り返し使用回数を50回超(>50)とした。こうして得られた各試料に係る繰り返し使用回数を表1に併せて示した。 Such a heating test was repeated. Every time the heating test was performed, it was visually confirmed whether or not the TaC film 122 of the lid 12 had defects such as peeling and cracks. When a defect was confirmed in the Nth heating test, the number of times of repeated use of the reaction vessel 1 for each sample was set to (N-1) times. However, the upper limit of the number of times of repeated use was set to 50 times, and when no defect was found even after the 51st heating test, the number of times of repeated use was set to more than 50 times (> 50). Table 1 also shows the number of times of repeated use for each sample thus obtained.

ちなみに、ここで行った加熱試験(耐久試験)は、昇華法によるAlN成長環境を模したものである。AlNは2000℃以上の高温で昇華し、次式(1)に示す反応を起こして、腐食性が非常に強いAlガスを発生させる。
AlN(solid) ⇔ Al(gas)+ 1/2 N(gas) (1)
Incidentally, the heating test (durability test) performed here imitates the AlN growth environment by the sublimation method. AlN sublimates at a high temperature of 2000 ° C. or higher and causes a reaction represented by the following formula (1) to generate Al gas having extremely strong corrosiveness.
AlN (solid) ⇔ Al (gas) + 1/2 N 2 (gas) (1)

TaC膜にクラック等の欠陥が生じると、その欠陥からAlガスが黒鉛基材へ侵入し、黒鉛基材は次式(2)に示すような反応等を起こして激しく浸食される。このため、上述した加熱試験後のTaC膜を観察することにより、TaC膜の品質やガスバリア性等を適切に評価できる。従って、上述した加熱試験は、高耐熱部材の耐久試験として好適である。
2Al(gas)+2C(solid) ⇔ Al(gas)(2)
When a defect such as a crack occurs in the TaC film, Al gas invades the graphite substrate from the defect, and the graphite substrate undergoes a reaction or the like shown in the following formula (2) and is violently eroded. Therefore, by observing the TaC film after the heating test described above, the quality of the TaC film, the gas barrier property, and the like can be appropriately evaluated. Therefore, the above-mentioned heating test is suitable as a durability test for a highly heat-resistant member.
2Al (gas) + 2C (solid ) ⇔ Al 2 C 2 (gas) (2)

(4)耐汚染性
各試料に係るTaC膜による汚染度合を評価するため、市販のSiC基板P2(4H−SiC、φ2inch)を各試料に係るアニール容器2へそれぞれ入れて、80kPaのArガス中で加熱(アニール)した。この際、アニール温度:1750℃、アニール時間:30分間とした。なお、アニール温度は、アニール容器2の測温部223を放射温度計で測定して求めた。
(4) Stain resistance In order to evaluate the degree of contamination by the TaC film of each sample, a commercially available SiC substrate P2 (4H-SiC, φ2 inch) was placed in the annealing container 2 of each sample and contained in 80 kPa of Ar gas. Heated (annealed) in. At this time, the annealing temperature was 1750 ° C. and the annealing time was 30 minutes. The annealing temperature was determined by measuring the temperature measuring unit 223 of the annealing container 2 with a radiation thermometer.

アニール前・後のSiC基板の表面を、それぞれ全反射蛍光X線分析装置(TXRF/Technos社製TREX 630 III)を用いて分析した。この際、検出領域:基板の中心部φ10mm、X線源:W封入管型、40kV、40mAとした。 The surfaces of the SiC substrate before and after annealing were analyzed using a total internal reflection fluorescent X-ray analyzer (TXRF / TREX 630 III manufactured by Technos). At this time, the detection area was set to φ10 mm at the center of the substrate, and the X-ray source: W-encapsulated tube type, 40 kV, 40 mA.

アニール後のSiC基板表面を分析して得られた鉄濃度を表1に併せて示した。なお、アニール前のSiC基板表面の分析は、一般的な半導体洗浄であるRCA(SCl、SC、希フッ酸)による洗浄を施した後に行った。いずれのSiC基板も、アニール前の鉄濃度は0.48〜0.61(×1010 atoms/cm)であることを確認した。 Table 1 also shows the iron concentration obtained by analyzing the surface of the SiC substrate after annealing. The surface of the SiC substrate before annealing was analyzed after cleaning with RCA (SCl, SC 2 , dilute hydrofluoric acid), which is a general semiconductor cleaning. It was confirmed that the iron concentration of all the SiC substrates before annealing was 0.48 to 0.61 (× 10 10 atoms / cm 2).

《評価》
(1)耐久性
表1に示したTaC膜中の鉄濃度と、反応容器1(高耐熱部材)の繰り返し使用回数との関係を図1Aおよび図1B(両者を併せて単に「図1」という。)に示した。図1Bは、図1Aに示したグラフの一部(低濃度側)を拡大したものである。
《Evaluation》
(1) Durability The relationship between the iron concentration in the TaC membrane shown in Table 1 and the number of times of repeated use of the reaction vessel 1 (high heat resistant member) is shown in FIGS. 1A and 1B (both are simply referred to as "FIG. 1"). .)Pointing out toungue. FIG. 1B is an enlarged view of a part (low concentration side) of the graph shown in FIG. 1A.

図1から明らかなように、TaC膜中の鉄濃度が20〜1200mass ppmさらには30〜1100mass ppmにあるとき、AlNの昇華ガスに曝される過酷な環境下でも、その耐久性が著しく高まることがわかった。 As is clear from FIG. 1, when the iron concentration in the TaC film is 20 to 1200 mass ppm and even 30 to 1100 mass ppm, its durability is significantly increased even in a harsh environment exposed to sublimation gas of AlN. I understood.

(2)耐汚染性
表1に示したTaC膜中の鉄濃度と、SiC基板表面の鉄濃度(汚染濃度)との関係を図2に示した。表1および図2から明らかなように、TaC膜中の鉄濃度が増加すると、汚染濃度も増加する傾向にあるが、TaC膜中の鉄濃度が1200mass ppm以下であれば、汚染濃度は十分に抑制されることがわかった。特に、TaC膜中の鉄濃度が1050mass ppm以下、900mass ppm以下さらには800mass ppm以下である場合、アニール前後で汚染濃度が殆ど変化せず、TaC膜中に含まれる鉄による実質的な汚染がないことも明らかとなった。
(2) Stain resistance The relationship between the iron concentration in the TaC film shown in Table 1 and the iron concentration (contamination concentration) on the surface of the SiC substrate is shown in FIG. As is clear from Table 1 and FIG. 2, as the iron concentration in the TaC film increases, the contamination concentration tends to increase, but if the iron concentration in the TaC film is 1200 mass ppm or less, the contamination concentration is sufficient. It turned out to be suppressed. In particular, when the iron concentration in the TaC film is 1050 mass ppm or less, 900 mass ppm or less, and further 800 mass ppm or less, the contamination concentration hardly changes before and after annealing, and there is no substantial contamination by iron contained in the TaC film. It also became clear.

なお、図3に示した試料6と試料C2(TaC膜中の鉄濃度が1011mass ppmと1532mass ppmとなる2点)の結果に基づいて内挿すると、およそ1200mass ppm程度でSiC基板表面の鉄濃度(汚染濃度)が1012(atoms/cm)程度になると見積れる。この汚染濃度は、SiC基板汚染度合として一般的な許容レベル(例えば、ユニポーラデバイスの動作に問題を生じないとされる程度)である。 When interpolated based on the results of sample 6 and sample C2 (two points where the iron concentration in the TaC film is 1011 mass ppm and 1532 mass ppm) shown in FIG. 3, the iron concentration on the surface of the SiC substrate is about 1200 mass ppm. It is estimated that the (contamination concentration) will be about 10 12 (atoms / cm 2). This contamination concentration is a generally acceptable level as the degree of contamination of the SiC substrate (for example, a degree that does not cause a problem in the operation of the unipolar device).

(3)無配向性
表2から明らかなように、いずれの試料に係るTaC膜も無配向粒状組織からなるといえる。しかし、例えば、試料2〜6と試料1・C1とを比較すると明らかなように、TaC膜が無配向粒状組織からなっても、TaC膜中の鉄濃度により、耐久性や耐汚染性に大きな相違が生じることも明らかとなった。特許文献1の記載も考慮すると、TaC膜が無配向粒状組織からなることが好ましいが、TaC膜中に含まれる鉄濃度が所定範囲内にあることが、高耐熱部材の耐久性向上等にとってより重要であるといえる。
(3) Unorientedness As is clear from Table 2, it can be said that the TaC film of any sample has an unoriented granular structure. However, for example, as is clear when comparing Samples 2 to 6 with Samples 1 and C1, even if the TaC film is composed of an unoriented granular structure, the durability and stain resistance are large depending on the iron concentration in the TaC film. It was also clear that there would be a difference. Considering the description of Patent Document 1, it is preferable that the TaC film has an unoriented granular structure, but the iron concentration contained in the TaC film is within a predetermined range in order to improve the durability of the highly heat-resistant member. It can be said that it is important.

(4)総合評価
以上を踏まえて、各試料に係る耐久性と汚染度合の評価を表1に、配向度の評価を表2に、それぞれ〇・×で示した(〇:優、×:劣)。各試料の総合的な評価も表1に同様に示した。これらからもわかるように、TaC膜中に含まれる鉄濃度が本発明で規定する範囲内にあるとき、著しく優れた耐久性や耐汚染性を示す高耐熱部材が得られることが明らかとなった。
(4) Comprehensive evaluation Based on the above, the evaluation of the durability and the degree of contamination of each sample is shown in Table 1 and the evaluation of the degree of orientation is shown in Table 2, respectively (○: excellent, ×: inferior). ). The comprehensive evaluation of each sample is also shown in Table 1. As can be seen from these, it has been clarified that when the iron concentration contained in the TaC film is within the range specified in the present invention, a highly heat-resistant member exhibiting remarkably excellent durability and stain resistance can be obtained. ..

ちなみに、このような所定濃度の鉄による特異な挙動は、鉄を単なる不純物と把握して、できるだけ焼結中に飛散・散逸させ、残存させないようにしていた従来の技術常識からは、到底、予想されるものではない。また、このような特異な現象は、Co等には観られないものであり、理由は定かではないが、鉄特有なものと考えられる。 By the way, such a peculiar behavior due to iron of a predetermined concentration is expected from the conventional technical common sense that iron is regarded as a mere impurity and is scattered and dissipated during sintering as much as possible so as not to remain. It is not something that is done. Moreover, such a peculiar phenomenon is not seen in Co and the like, and although the reason is not clear, it is considered to be peculiar to iron.

Figure 0006888330
Figure 0006888330

Figure 0006888330
Figure 0006888330

Claims (4)

等方性黒鉛基材と、
該等方性黒鉛基材の表面を被覆する炭化タンタルからなる炭化物被膜と、
を有する高耐熱部材であって、
前記炭化物被膜は、20〜1000mass ppmの鉄を含む高耐熱部材。
With an isotropic graphite substrate,
A carbide film made of tantalum carbide that covers the surface of the isotropic graphite substrate, and
It is a highly heat-resistant member with
The carbide coating is a highly heat-resistant member containing 20 to 1000 mass ppm of iron.
前記炭化物被膜は、(111)面におけるX線回折スペクトルの回折ピークの半値全幅が0.2°以下となる大きさの結晶子が無配向に集積した無配向粒状組織からなる請求項1に記載の高耐熱部材。 The one according to claim 1, wherein the carbide coating is composed of an unoriented granular structure in which crystallites having a size such that the full width at half maximum of the diffraction peak of the X-ray diffraction spectrum on the (111) plane is 0.2 ° or less are accumulated in an unoriented manner. High heat resistant material. 前記炭化物被膜は、前記X線回折スペクトルに基づいて Lotgering 法により算出される配向度(F)がいずれのミラー(Miller)面についても−0.2〜0.2である請求項2に記載の高耐熱部材。 The carbide film according to claim 2, wherein the degree of orientation (F) calculated by the Lotgering method based on the X-ray diffraction spectrum is −0.2 to 0.2 for any mirror (Miller) plane. High heat resistant material. 炭化タンタル粒子を含むスラリーを等方性黒鉛基材の表面に塗布する塗布工程と、
該塗布工程後の等方性黒鉛基材を加熱して該炭化タンタル粒子が焼結してできた炭化物被膜を得る成膜工程とを備え、
前記スラリーは鉄を含み、
前記成膜工程は、第1加熱工程と、該第1加熱工程後に該第1加熱工程よりも高温および/または減圧の雰囲気中で加熱する第2加熱工程とを有し、
請求項1〜3のいずれかに記載した高耐熱部材の製造方法。
A coating process in which a slurry containing tantalum carbide particles is applied to the surface of an isotropic graphite substrate, and
It is provided with a film forming step of heating the isotropic graphite base material after the coating step to obtain a carbide film formed by sintering the tantalum carbide particles.
The slurry contains iron
The film forming step includes a first heating step and a second heating step of heating in an atmosphere of a higher temperature and / or reduced pressure than the first heating step after the first heating step.
The method for producing a highly heat-resistant member according to any one of claims 1 to 3.
JP2017038759A 2017-03-01 2017-03-01 High heat resistant material and its manufacturing method Active JP6888330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017038759A JP6888330B2 (en) 2017-03-01 2017-03-01 High heat resistant material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017038759A JP6888330B2 (en) 2017-03-01 2017-03-01 High heat resistant material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018145022A JP2018145022A (en) 2018-09-20
JP6888330B2 true JP6888330B2 (en) 2021-06-16

Family

ID=63590684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038759A Active JP6888330B2 (en) 2017-03-01 2017-03-01 High heat resistant material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6888330B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056637B2 (en) 2019-11-26 2022-04-19 株式会社豊田中央研究所 Heat resistant material
US11130152B2 (en) 2019-11-28 2021-09-28 National Chung-Shan Institute Of Science And Technology Method for the formation of tantalum carbides on graphite substrate
JP6849779B1 (en) * 2019-12-06 2021-03-31 國家中山科學研究院 Method of forming tantalum carbide on a graphite substrate
WO2022264884A1 (en) * 2021-06-15 2022-12-22 三井金属鉱業株式会社 Fireproof member and method for manufacturing same
CN117069516A (en) * 2023-08-18 2023-11-17 杭州乾晶半导体有限公司 Preparation method of TaC coating, graphite structural component and silicon carbide crystal growth device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498477B2 (en) * 1997-03-04 2010-07-07 東洋炭素株式会社 Carbon composite material for reducing atmosphere furnace and method for producing the same
JP3938361B2 (en) * 2002-06-28 2007-06-27 イビデン株式会社 Carbon composite material
JP5275567B2 (en) * 2005-02-14 2013-08-28 東洋炭素株式会社 Tantalum carbide-coated carbon material and method for producing the same
JP5267709B2 (en) * 2011-09-14 2013-08-21 株式会社豊田中央研究所 High heat resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot
JP5403092B2 (en) * 2012-03-22 2014-01-29 株式会社豊田中央研究所 High heat resistant member and manufacturing method thereof
JP6205997B2 (en) * 2013-08-29 2017-10-04 株式会社豊田中央研究所 Heat-resistant graphite member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018145022A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6888330B2 (en) High heat resistant material and its manufacturing method
JP5267709B2 (en) High heat resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot
US8535600B2 (en) High temperature-resistant article, method for producing the same, and high temperature-resistant adhesive
US9245775B2 (en) Heating device
US20130235507A1 (en) Electrostatic chuck
JP6489891B2 (en) Method for producing SiC raw material used in sublimation recrystallization method
JP5403092B2 (en) High heat resistant member and manufacturing method thereof
Nakamura et al. Tantalum carbide coating via wet powder process: From slurry design to practical process tests
TW202117107A (en) Sic wafer, preperation method of sic wafer
JP5331263B1 (en) Silicon carbide material and method for producing silicon carbide material
Tynell et al. Deposition of thermoelectric strontium hexaboride thin films by a low pressure CVD method
JP6332225B2 (en) Heat-resistant graphite member and manufacturing method thereof
Wang et al. Residual stress and ablation behavior of CVD TaC coatings on graphite
Wang et al. Fabrication of high thermal conductive Al–cBN ceramic sinters by high temperature high pressure method
JP6731147B2 (en) Oxide sputtering target material
JP2008115056A (en) Crucible for melting silicon and mold-releasing material used in the crucible
Lee et al. Microstructure and density of sintered ZnO ceramics prepared by magnetic pulsed compaction
JP2015044719A (en) Heat-resistant graphite member and production method thereof
WO2022025033A1 (en) Cr-Si-C-BASED SINTERED BODY
CN112851404B (en) Heat-resistant member
Nakamura et al. Porosity-controlled multilayer TaC coatings prepared via wet powder process for multi-functional reactor components in GaN crystal growth system
TWI747238B (en) Silicon carbide materials and method for manufacturing the same
TWI616401B (en) Micropowder and method for manufacturing the same
JP2023147721A (en) Heat-resistant member
JPH1081569A (en) Highly heat-conductive aluminum nitride sintered product and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R150 Certificate of patent or registration of utility model

Ref document number: 6888330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150