JP6883461B2 - Underwater survey system and underwater survey method using unmanned aircraft - Google Patents

Underwater survey system and underwater survey method using unmanned aircraft Download PDF

Info

Publication number
JP6883461B2
JP6883461B2 JP2017077011A JP2017077011A JP6883461B2 JP 6883461 B2 JP6883461 B2 JP 6883461B2 JP 2017077011 A JP2017077011 A JP 2017077011A JP 2017077011 A JP2017077011 A JP 2017077011A JP 6883461 B2 JP6883461 B2 JP 6883461B2
Authority
JP
Japan
Prior art keywords
measuring unit
underwater
unmanned
water
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017077011A
Other languages
Japanese (ja)
Other versions
JP2018176905A (en
Inventor
克則 山木
克則 山木
完幸 秋山
完幸 秋山
彰 松岡
彰 松岡
正則 芝田
正則 芝田
田中 秀夫
秀夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2017077011A priority Critical patent/JP6883461B2/en
Publication of JP2018176905A publication Critical patent/JP2018176905A/en
Application granted granted Critical
Publication of JP6883461B2 publication Critical patent/JP6883461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

本発明は、海や湖、河川など水中の工事現場における水中の地形や水質などの調査のための、無人飛行体を用いた水中調査システム及び方法に関する。 The present invention relates to an underwater survey system and method using an unmanned flying object for surveying underwater topography and water quality at underwater construction sites such as the sea, lakes, and rivers.

従来、海や湖、河川などの水中の工事を行う際の事前調査として、その対象水域における水中の各種調査、例えば、水質調査、水深調査や、水底の状況調査等を行っているが、これらの調査は、船から調査機器を懸架させての手作業で実施することが多かった。 Conventionally, various underwater surveys in the target water area, such as water quality surveys, water depth surveys, and bottom condition surveys, have been conducted as preliminary surveys when conducting underwater construction of the sea, lakes, rivers, etc. The survey was often carried out manually by suspending the survey equipment from the ship.

一定の規模、広さのリーフ上、海域や湖、ダム湖などで面的な調査を行う場合、目的とする調査箇所は、複数存在することが多い。その際、調査点に移動するための時間が掛かり、これらの複数の調査箇所の調査を、同一の潮汐や日照条件下で行うために、同時刻帯で調査しようとすると、複数の船や人員が必要な場合があった。 When conducting a face-to-face survey on a reef of a certain size and size, in a sea area, lake, dam lake, etc., there are often multiple target survey points. At that time, it takes time to move to the survey point, and if you try to survey at the same time zone in order to survey these multiple survey points under the same tide and sunshine conditions, multiple ships and personnel Was sometimes required.

特に、リーフ等の浅瀬や、リーフに囲まれた海面には、船が進入することができないため、手漕ぎのボート等で調査点に移動して測定せざるを得ず、極めて非効率であった。そこですばやく移動でき、簡易で、人員を要しないシステムが望まれている。 In particular, since ships cannot enter shallow waters such as reefs and the sea surface surrounded by reefs, it is inevitable to move to the survey point by rowing boat etc. and measure it, which is extremely inefficient. It was. Therefore, a system that can move quickly, is simple, and does not require personnel is desired.

一方、近年、ドローンなど遠隔操作の無人飛行体が上空からの写真撮影や物品の輸送等様々な分野で活用されている。このような水質の調査の分野でも、水中に設置された調査用の探査機の回収に無人飛行体を用いた回収方法が、特許文献1に紹介されている。すなわち、特許文献1は、水面に浮遊可能なブイに索体で繋がれた水中無人機を母船に回収する方法として、ブイまたは索体に係止可能なフックと、フックにつながれた回収索と、フック及び回収索を搬送可能な飛行体とを備えた回収装置を用い、飛行体をブイが浮遊する場所まで移動させ、フックをブイ又は索体に係止させて、それらに繋がれた水中無人機を引き上げて回収する方法を紹介している。 On the other hand, in recent years, remote-controlled unmanned aerial vehicles such as drones have been used in various fields such as photography from the sky and transportation of goods. In the field of water quality investigation as well, Patent Document 1 introduces a recovery method using an unmanned air vehicle for recovery of a spacecraft for investigation installed in water. That is, Patent Document 1 describes, as a method of recovering an underwater unmanned aerial vehicle connected to a buoy that can float on the water surface with a rope, to a mother ship, a hook that can be locked to the buoy or the rope, and a recovery rope that is connected to the hook. Using a recovery device equipped with a hook and a recovery device capable of transporting the recovery rope, the flying body is moved to a place where the buoy floats, the hook is locked to the buoy or the rope, and the underwater connected to them is used. Introducing how to pull up and collect the unmanned aerial vehicle.

しかし、特許文献1の方法では、無人の探査機を水中に設置しておくため、水中の様々な項目の調査が可能だが、探査機の設置、調査、回収を含めた調査サイクルが長くなり、特に複数地点での調査を1台の探査機で行うには時間が掛かるという問題が想定される。複数地点での調査を同時間帯に行うためには、複数の探査機を用意する必要があり、コストが高くなる場合があると考えられる。また、回収時においては、母船から直接回収するよりも効率が上がるものの、探査機の設置は、別途母船からの投入によって行うため、特に浅瀬等船が近づけない場所への設置が困難である等の問題が想定される。 However, in the method of Patent Document 1, since the unmanned spacecraft is installed underwater, it is possible to investigate various items in the water, but the investigation cycle including the installation, investigation, and recovery of the spacecraft becomes long. In particular, it is assumed that it takes time to conduct a survey at multiple points with a single spacecraft. In order to conduct surveys at multiple points at the same time, it is necessary to prepare multiple spacecraft, which may increase the cost. In addition, although the efficiency is higher than when collecting directly from the mother ship, it is difficult to install the spacecraft in places where the ship cannot approach, such as shallow water, because the spacecraft is installed separately from the mother ship. Problem is assumed.

特開2017−24630号公報Japanese Unexamined Patent Publication No. 2017-24630

本発明は、上記問題を解決するためになされたものであり、様々な場所における複数箇所の水中の調査を、迅速かつ容易に行うことができる水中調査システム及び水中調査方法を提供することをその目的とする。 The present invention has been made to solve the above problems, and to provide an underwater survey system and an underwater survey method capable of quickly and easily performing underwater surveys at a plurality of locations at various locations. The purpose.

前記課題を解決するために、本発明による水中調査システムは、遠隔操作により飛行が可能な無人飛行体と、前記無人飛行体に結合された計測部と、前記無人飛行体及び前記計測部のうち、少なくとも前記計測部を水面に浮遊させる浮体と、を含んで構成され、前記計測部は、水面に浮遊した状態で、水中カメラ画像及び水深のうち少なくとも1つを含む水中地形情報、及び、水温、塩分濃度、濁度及びpHのうち少なくとも1つを含む水質情報、の少なくとも一方を計測可能であるとともに、その計測結果を記録又は伝送可能であることを特徴とする。
また、前記無人飛行体と前記計測部とは、水面上で分離及び結合が可能であり、前記計測部は、前記無人飛行体と結合した状態、及び前記無人飛行体から分離した状態のいずれにおいても、水面に浮遊して前記水中地形情報及び前記水質情報の少なくとも一方を計測可能であることを特徴とする。
In order to solve the above problems, the underwater survey system according to the present invention includes an unmanned flying object capable of flying by remote control, a measuring unit coupled to the unmanned flying object, the unmanned flying object and the measuring unit. The measuring unit includes, at least, a floating body that floats the measuring unit on the water surface, and the measuring unit includes underwater camera images and underwater terrain information including at least one of the water depth in a state of floating on the water surface, and water temperature. , At least one of water quality information including at least one of salinity, turbidity and pH can be measured, and the measurement result can be recorded or transmitted.
Further, the unmanned vehicle and the measuring unit can be separated and combined on the water surface, and the measuring unit can be separated from the unmanned vehicle or separated from the unmanned vehicle. Also, it is characterized in that it can float on the water surface and measure at least one of the underwater topographical information and the water quality information.

本発明による水中調査方法は、遠隔操作により飛行が可能な無人飛行体と、前記無人飛行体に結合された計測部と、前記無人飛行体及び前記計測部のうち、少なくとも前記計測部を水面に浮遊させる浮体とを含んで構成される水中調査システムを用い、前記計測部を前記無人飛行体により調査箇所へ移動させ、前記計測部を水面に浮遊させた状態で、水中カメラ画像及び水深のうち少なくとも1つを含む水中地形情報、及び、水温、塩分濃度、濁度及びpHのうち少なくとも1つを含む水質情報、の少なくとも一方を計測し、その計測結果を記録又は伝送することを特徴とする。
また、前記無人飛行体と前記計測部とは、水面上で分離及び結合が可能であり、前記計測部を、前記無人飛行体と結合させた状態、又は前記無人飛行体から分離した状態で、水面に浮遊させて前記水中地形情報及び前記水質情報の少なくとも一方を計測することを特徴とする。
In the underwater survey method according to the present invention, an unmanned flying object capable of flying by remote operation, a measuring unit coupled to the unmanned flying object, and at least the measuring unit among the unmanned flying object and the measuring unit are placed on the water surface. Using an underwater survey system including a floating body, the measuring unit is moved to the survey location by the unmanned flying object, and the measuring unit is suspended on the water surface in the underwater camera image and the water depth. It is characterized in that at least one of underwater topographical information including at least one and water quality information including at least one of water temperature, salinity, turbidity and pH is measured, and the measurement result is recorded or transmitted. ..
Further, the unmanned air vehicle and the measurement unit can be separated and combined on the water surface, and the measurement unit is in a state of being combined with the unmanned air vehicle or in a state of being separated from the unmanned air vehicle. It is characterized in that it floats on a water surface and measures at least one of the underwater topographical information and the water quality information.

本発明の水中調査システム及び水中調査方法によれば、計測部を無人飛行体により調査箇所へ移動させ、一箇所での調査後、他の箇所へ移動して調査することにより、迅速に複数箇所の調査が可能になった。さらに、飛行して調査箇所へ移動するので、浅瀬等、船では近づけない場所でも容易に調査が可能になった。これにより、様々な場所における複数箇所の水中の調査を、迅速かつ容易に行うことができるようになった。 According to the underwater survey system and the underwater survey method of the present invention, the measuring unit is moved to the survey location by an unmanned flying object, and after the survey is performed at one location, the measurement unit is moved to another location to investigate, so that a plurality of locations can be quickly investigated. It became possible to investigate. Furthermore, since it flies and moves to the survey location, it has become possible to easily survey even in places that cannot be approached by ship, such as shallow water. This has made it possible to quickly and easily conduct underwater surveys at multiple locations in various locations.

第1の実施形態の水中調査システムを示す概念図Conceptual diagram showing the underwater survey system of the first embodiment 図1の水中調査システムの底面図Bottom view of the underwater survey system of FIG. 図1の水中調査システムの計測部の詳細を示す概略断面図Schematic cross-sectional view showing the details of the measurement unit of the underwater survey system of FIG. 第1の実施形態の水中調査システムの制御系を示すブロック図Block diagram showing the control system of the underwater survey system of the first embodiment 第2の実施形態の水中調査システムを示す概念図Conceptual diagram showing the underwater survey system of the second embodiment 第2の実施形態の水中調査システムの制御系を示すブロック図Block diagram showing the control system of the underwater survey system of the second embodiment

以下、本発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

<第1の実施形態>
図1は、第1の実施形態の水中調査システムを示す概念図であり、図2は図1の水中調査システムの底面図である。この水中調査システム1は、無人飛行体100と、計測部200とを含む。
<First Embodiment>
FIG. 1 is a conceptual diagram showing the underwater survey system of the first embodiment, and FIG. 2 is a bottom view of the underwater survey system of FIG. The underwater survey system 1 includes an unmanned flying object 100 and a measuring unit 200.

無人飛行体100は、計測基地2からの遠隔操作により飛行が可能な無人の飛行体で、本実施形態では、ドローンの形態を有し、本体部101と、この本体部101から略水平方向に放射状に延設された複数(例えば8本)のアーム102と、各アーム102の先端側に上下方向に配置された電動モータ103と、この電動モータ103により回転可能に設けられた回転翼(ロータ)104とを有する。各回転翼104は、それらの回転面が同一水平面上になるように設けられている。各電動モータ103により各回転翼104の回転速度を調節することにより、無人飛行体100を上昇、飛行及び下降させることができるようになっている。 The unmanned aerial vehicle 100 is an unmanned aerial vehicle capable of flying by remote control from the measurement base 2. In the present embodiment, the unmanned aerial vehicle 100 has a drone form, and is substantially horizontal from the main body 101 and the main body 101. A plurality of (for example, eight) arms 102 extending radially, an electric motor 103 arranged in the vertical direction on the tip side of each arm 102, and a rotary blade (rotor) rotatably provided by the electric motor 103. ) 104 and. The rotary blades 104 are provided so that their rotating surfaces are on the same horizontal plane. By adjusting the rotation speed of each rotor 104 by each electric motor 103, the unmanned vehicle 100 can be raised, flown, and lowered.

尚、無人飛行体100は、必ずしもドローンでなくてもよく、ラジコン飛行機やラジコンヘリコプター等、遠隔操作又はプログラムによる自律動作での飛行が可能な飛行体であればよい。また、原動機も電動モータに限られず、ガソリンエンジン等内燃機関を用いたものでもよい。 The unmanned aerial vehicle 100 does not necessarily have to be a drone, and may be any aircraft such as a radio-controlled aerial vehicle or a radio-controlled helicopter that can fly by remote control or autonomous operation by a program. Further, the prime mover is not limited to the electric motor, and may use an internal combustion engine such as a gasoline engine.

また、計測基地2は、母船上又は地上に設置されて無人飛行体100を遠隔操作し、計測データを受信するものである。計測基地2は、必ずしも大掛かりな装置や施設でなくてもよく、無人飛行体を遠隔操作して発着させるオペレータが携帯する操作ユニットであってもよい。 Further, the measurement base 2 is installed on the mother ship or on the ground to remotely control the unmanned aerial vehicle 100 and receive the measurement data. The measurement base 2 does not necessarily have to be a large-scale device or facility, and may be an operation unit carried by an operator who remotely controls an unmanned aerial vehicle to arrive and depart.

無人飛行体100の本体部101の側面には、浮体130が取付けられている。この浮体130は、無人飛行体100が着水したとき計測部200を含む無人飛行体100全体が水面Wに浮くように浮力を提供するものである。浮体130の構造は、船のハルのような中空構造であってもよく、水より比重の小さい中実部材であってもよい。浮体130は、無人飛行体100が波をかぶっても転覆することなく安定して水面Wに浮遊できるように、バランスよく、1または複数設けられる。 A floating body 130 is attached to the side surface of the main body 101 of the unmanned flying object 100. The floating body 130 provides buoyancy so that when the unmanned flying body 100 lands on the water, the entire unmanned flying body 100 including the measuring unit 200 floats on the water surface W. The structure of the floating body 130 may be a hollow structure such as a hull of a ship, or may be a solid member having a specific density smaller than that of water. The floating body 130 is provided one or more in a well-balanced manner so that the unmanned flying object 100 can stably float on the water surface W without capsizing even if it is covered with waves.

また、浮体130の形状は、離水時に離水抵抗が小さくなるように、なるべく水平方向の着水面積が小さいことが望ましい。無人飛行体100のパワーが小さくても済むからである。本実施形態では、水平方向にリング形状を有する浮体130を用いて、浮遊時の安定性の向上と離水抵抗の低減を図っている。但し、浮体130の形状はリング状に限られず、浮遊時の安定性と低い離水抵抗が実現できれば、いずれでもよい。例えば、1又は複数の円形の浮体や直線状の浮体、枠状の浮体などを用いてもよい。 Further, it is desirable that the shape of the floating body 130 has as small a landing area in the horizontal direction as possible so that the water separation resistance becomes small at the time of water separation. This is because the power of the unmanned aircraft 100 can be small. In the present embodiment, a floating body 130 having a ring shape in the horizontal direction is used to improve stability during floating and reduce water separation resistance. However, the shape of the floating body 130 is not limited to the ring shape, and any shape may be used as long as stability during floating and low water separation resistance can be realized. For example, one or more circular floating bodies, linear floating bodies, frame-shaped floating bodies, and the like may be used.

無人飛行体100の本体部101の下面には、計測部200が取付けられている。計測部200は、防水ケースからなる計測部本体201と、この計測部本体201の下面に取付けられて、水中調査を行うカメラ212と、1以上のセンサ202とからなる。無人飛行体100が水面Wに浮遊しているときに、カメラ212と各センサ202の少なくとも検知部分が水中に潜るように構成され、それにより、水中調査ができるようになっている。 A measuring unit 200 is attached to the lower surface of the main body 101 of the unmanned aircraft 100. The measuring unit 200 includes a measuring unit main body 201 made of a waterproof case, a camera 212 attached to the lower surface of the measuring unit main body 201 to perform an underwater survey, and one or more sensors 202. When the unmanned vehicle 100 is floating on the water surface W, at least the detection portion of the camera 212 and each sensor 202 is configured to be submerged, whereby underwater investigation can be performed.

カメラ212は、カメラ用姿勢制御装置(ジンバル)213を介して取付けられており、計測部200を含む無人飛行体100の飛行中は外部の画像を撮影し、水面W浮遊中は、水中の画像を撮影して水中地形情報を収集する。尚、本明細書で「画像」とは、静止画像のみならず映像をも含む。このように、本実施形態では、計測部200のカメラ212を水中撮影用と飛行時の外部撮影用との共用としているが、この計測部200のカメラ212とは別に、無人飛行体100にも飛行時の外部撮影専用のカメラを別途設けても良い。 The camera 212 is attached via a camera attitude control device (gimbal) 213, and takes an external image during flight of the unmanned vehicle 100 including the measuring unit 200, and an underwater image while floating on the water surface W. To collect underwater terrain information. In the present specification, the "image" includes not only a still image but also a moving image. As described above, in the present embodiment, the camera 212 of the measurement unit 200 is shared for underwater photography and external photography during flight. However, apart from the camera 212 of the measurement unit 200, the unmanned vehicle 100 is also used. A camera dedicated to external shooting during flight may be provided separately.

センサ202としては、水中地形情報の1つとして水深を計測するためのスキャンソナー等の水深センサが挙げられる。また、水質情報を計測するために水温、塩分濃度、濁度、pH、などの水質センサが挙げられる。これらのセンサは、防水加工が施された市販の海洋観測用のセンサを用いてもよい。これら以外に、流速センサなどを取付けてもよい。 Examples of the sensor 202 include a water depth sensor such as a scan sonar for measuring the water depth as one of the underwater topographical information. In addition, water quality sensors such as water temperature, salinity, turbidity, and pH are used to measure water quality information. As these sensors, a commercially available sensor for ocean observation that has been waterproofed may be used. In addition to these, a flow velocity sensor or the like may be attached.

図3は、計測部200の詳細を示す概略断面図である。前記カメラ212及びセンサ202の各ケーブル203は、各コネクタ220を通して計測部本体201内部に導入される。各ケーブル203も防水加工されたものを用いる。コネクタ220内部にはケーブル203の径に合わせて交換可能な防水リング(図示省略)が配置され、この防水リングがケーブル203にフィットして水が計測部本体201内部に浸みこまないようになっている。このコネクタ220の構造により、センサ202の交換が容易で、様々な計測に対応できるようになっている。 FIG. 3 is a schematic cross-sectional view showing the details of the measuring unit 200. Each cable 203 of the camera 212 and the sensor 202 is introduced into the measuring unit main body 201 through each connector 220. Each cable 203 is also waterproof. A waterproof ring (not shown) that can be replaced according to the diameter of the cable 203 is placed inside the connector 220, and this waterproof ring fits the cable 203 to prevent water from seeping inside the measuring unit main body 201. ing. Due to the structure of the connector 220, the sensor 202 can be easily replaced and can be used for various measurements.

図4は、第1の実施形態の水中調査システム1の制御系を示すブロック図である。無人飛行体100は、その制御系として、情報伝送部110と、飛行制御部120とを有する。 FIG. 4 is a block diagram showing a control system of the underwater survey system 1 of the first embodiment. The unmanned aircraft 100 has an information transmission unit 110 and a flight control unit 120 as its control system.

情報伝送部110は、母船又は地上の計測基地2との通信機能を有し、計測基地2から無人飛行体100の上昇、目的地への移動、下降などの指令信号を受信するとともに、計測部200のカメラ212で撮影された外部の画像や、GPS(Grobal Positioning System)端末121で把握された現在の位置情報等を、リアルタイムで計測基地2に伝送するものである。さらに、水面での水中調査中は、計測部のカメラ212で撮影された水中の画像や、各センサ202の計測結果等を、計測基地へ伝送することができる。通信周波数は、2.4GHzや5GHz等が一般的に用いられるが、衛星通信等、他の通信回線を用いてもよい。 The information transmission unit 110 has a communication function with the mother ship or the measurement base 2 on the ground, receives command signals from the measurement base 2 such as ascending, moving to the destination, and descending the unmanned vehicle 100, and also receives the measurement unit. External images taken by the 200 cameras 212, current position information grasped by the GPS (Global Positioning System) terminal 121, and the like are transmitted to the measurement base 2 in real time. Further, during the underwater survey on the water surface, the underwater image taken by the camera 212 of the measurement unit, the measurement result of each sensor 202, and the like can be transmitted to the measurement base. The communication frequency is generally 2.4 GHz, 5 GHz or the like, but other communication lines such as satellite communication may be used.

飛行制御部120は、GPS端末121を有するとともに、前記各電動モータ103(図1参照)の回転速度を制御し、無人飛行体100の上昇、目的地への移動、下降などを、プログラムに従って自動で、または、前記情報伝送部110を経由して計測基地2から受信した指令信号に従って、行うものである。無人飛行体100は、自律機能を有し、母船等の計測基地2との通信範囲外にいる場合でも、GPS端末121の位置情報と内蔵プログラムに従って、自律的に調査位置まで移動して、調査後、計測基地2に帰還することができる。 The flight control unit 120 has a GPS terminal 121, controls the rotation speed of each of the electric motors 103 (see FIG. 1), and automatically ascends, moves to, and descends the unmanned vehicle 100 according to a program. Or, according to the command signal received from the measurement base 2 via the information transmission unit 110. The unmanned aircraft 100 has an autonomous function, and even when it is out of the communication range with the measurement base 2 such as the mother ship, it autonomously moves to the investigation position according to the position information of the GPS terminal 121 and the built-in program to investigate. After that, it is possible to return to the measurement base 2.

無人飛行体100は電源122を有する。この電源122は、リチウムイオン電池等、充電式の電池を用いるのが一般的だが、燃料電池や太陽電池を用いて電源としてもよい。 The unmanned aircraft 100 has a power supply 122. The power supply 122 generally uses a rechargeable battery such as a lithium ion battery, but a fuel cell or a solar cell may be used as the power source.

図4の破線の範囲内は、計測部200内の制御系を示す。カメラ212及びセンサ202は、メモリ部204に接続され、カメラ212で撮影された画像及び各センサ202で測定された各種計測データは、GPS端末121で測定された無人飛行体100の位置情報とともに、このメモリ部204に記録(保存)され、計測基地2に帰還後に再生することもできる。また、リアルタイムで、または計測基地2からの指令に応じて、情報伝送部110を通して計測基地2へ送信される。 The range of the broken line in FIG. 4 indicates the control system in the measuring unit 200. The camera 212 and the sensor 202 are connected to the memory unit 204, and the image taken by the camera 212 and various measurement data measured by each sensor 202 are together with the position information of the unmanned vehicle 100 measured by the GPS terminal 121. It can be recorded (stored) in the memory unit 204 and reproduced after returning to the measurement base 2. Further, it is transmitted to the measurement base 2 through the information transmission unit 110 in real time or in response to a command from the measurement base 2.

前記カメラ212の向きは、カメラ用姿勢制御装置(ジンバル)213を用いて、無人飛行体100の姿勢に拘らず所望の方向に向くように制御されている。 The orientation of the camera 212 is controlled by using the camera attitude control device (gimbal) 213 so as to face in a desired direction regardless of the attitude of the unmanned flying object 100.

次に、このように構成された第1の実施形態の水中調査システム1を用いた水中調査の例について説明する。 Next, an example of an underwater survey using the underwater survey system 1 of the first embodiment configured in this way will be described.

無人飛行体100は、計測基地2からの指令に従って、またはプログラムに従って自動的に、計測基地2から離れ、飛行して所定の調査箇所へ移動し、その水面に着水する。 The unmanned vehicle 100 automatically leaves the measurement base 2 according to a command from the measurement base 2 or according to a program, flies to a predetermined survey location, and lands on the water surface thereof.

無人飛行体100が水面に着水すると、計測部200のカメラ212及びセンサ202が水に潜り、様々な水質調査が可能になる。例えば、カメラ212により水中の様子を調査するとともに、ソナー等の水深センサによる水深の測定も可能である。また、水温、塩分濃度、濁度、pH、などの水質センサによる水質測定も可能である。調査により得られた水中の画像や水質等のデータは、計測基地2との通信可能な範囲にいる場合は、計測基地2にリアルタイムで伝送するが、その範囲外にいる場合は、計測データ等を計測部200のメモリ部204に保存し、計測基地2に帰還したときに取り出すことができる。 When the unmanned flying object 100 lands on the surface of the water, the camera 212 and the sensor 202 of the measuring unit 200 are submerged in the water, and various water quality surveys become possible. For example, it is possible to investigate the state of water with a camera 212 and measure the water depth with a water depth sensor such as a sonar. It is also possible to measure water quality using water quality sensors such as water temperature, salinity, turbidity, and pH. Underwater images, water quality, and other data obtained from the survey are transmitted in real time to the measurement base 2 if they are within the communicable range with the measurement base 2, but if they are outside that range, the measurement data, etc. Can be stored in the memory unit 204 of the measurement unit 200 and taken out when returning to the measurement base 2.

一箇所での計測を終えた無人飛行体100は、離水して飛行し、次の調査箇所で測定を行ない、所定の数の箇所での調査終了後に計測基地2に帰還する。 The unmanned vehicle 100 that has completed the measurement at one location flies away from the water, performs measurement at the next survey location, and returns to the measurement base 2 after the survey at a predetermined number of locations is completed.

尚、多くの調査箇所がある場合、その付近の水上や岩礁に無人飛行体100の電源122用の充電設備を設けておけば、充電のために計測基地2に帰還しなくても、その充電設備に着地して充電し、さらに調査を続けることができる。そのような、充電設備としては、水(特に海水)による腐食を考慮すると、非接触給電方式(電磁誘導方式、電波受信方式、電界・磁気共鳴方式など)のものが望ましい。 If there are many survey points, if a charging facility for the power supply 122 of the unmanned aircraft 100 is provided on the water or reef in the vicinity, the charging can be performed without returning to the measurement base 2 for charging. You can land on the equipment, charge it, and continue your investigation. As such a charging facility, a non-contact power feeding method (electromagnetic induction method, radio wave receiving method, electric field / magnetic resonance method, etc.) is desirable in consideration of corrosion by water (particularly seawater).

また、天候の悪化等に対処するために、局所的に無人飛行体100の退避設備を岩礁や人工構造物に設けてもよい。 Further, in order to deal with the deterioration of the weather and the like, an evacuation facility for the unmanned aircraft 100 may be locally provided on a reef or an artificial structure.

このように、第1の実施形態の水中調査システム1では、計測部200を無人飛行体100により調査箇所へ移動させ、一箇所での調査後、他の箇所へ移動させて調査することにより、迅速に複数箇所の調査が可能になった。さらに、飛行して調査箇所へ移動するので、浅瀬等、船では近づけない場所でも容易に調査が可能になった。 As described above, in the underwater survey system 1 of the first embodiment, the measurement unit 200 is moved to the survey location by the unmanned flying object 100, and after the survey at one location, it is moved to another location to investigate. It has become possible to quickly investigate multiple locations. Furthermore, since it flies and moves to the survey location, it has become possible to easily survey even in places that cannot be approached by ship, such as shallow water.

<第2の実施形態>
次に、本発明の第2の実施形態の水中調査システムについて説明する。
<Second embodiment>
Next, the underwater investigation system of the second embodiment of the present invention will be described.

図5は、第2の実施形態の水中調査システム3を示す概念図である。この水中調査システム3では、無人飛行体300と計測部400とは、水面上で分離及び結合が可能であり、計測部400は、無人飛行体300と結合した状態、及び前記無人飛行体300から分離して水面に浮遊した状態のいずれにおいても、水中地形情報及び水質情報の少なくとも一方を計測可能としている。分離した調査の終了後には、空の無人飛行体300が飛来して、計測部400を回収することが可能である。図5は無人飛行体300と計測部400とが分離した状態を示している。 FIG. 5 is a conceptual diagram showing the underwater survey system 3 of the second embodiment. In this underwater survey system 3, the unmanned vehicle 300 and the measurement unit 400 can be separated and combined on the water surface, and the measurement unit 400 is in a state of being combined with the unmanned vehicle 300 and from the unmanned vehicle 300. At least one of the underwater topographical information and the water quality information can be measured in any of the separated and floating states. After the separation of the investigation is completed, the unmanned flying object 300 in the sky can fly in and recover the measuring unit 400. FIG. 5 shows a state in which the unmanned flying object 300 and the measuring unit 400 are separated.

無人飛行体300は、第1の実施形態と同様に、本体部301、アーム302、電動モータ303、回転翼304を有する他、計測部400を結合・離脱する着脱手段305を有する。この着脱手段305は、公知の任意の手段でよく、例えば物流用ドローンの梱包箱を抱えるアームなどの機構、あるいは、電磁石による着脱手段などあってもよい。但し、着水、着艦時の衝撃や、波の力によって離脱しないように計測部400を無人飛行体300にしっかりと固定・位置決めできる手段であること、また、回収時には水面Wに浮遊している計測部400を確実に拾い上げることができることが必要である。 Similar to the first embodiment, the unmanned vehicle 300 has a main body 301, an arm 302, an electric motor 303, and a rotary wing 304, and also has a detachable means 305 for connecting and detaching the measuring unit 400. The attachment / detachment means 305 may be any known means, for example, a mechanism such as an arm holding a packing box of a distribution drone, or an attachment / detachment means using an electromagnet. However, it is a means that can firmly fix and position the measuring unit 400 to the unmanned aircraft 300 so that it will not be separated due to the impact of landing or landing or the force of waves, and it floats on the water surface W at the time of recovery. It is necessary to be able to reliably pick up the measuring unit 400.

本実施形態の無人飛行体300は、計測部400と分離した状態で飛行する場合もあるので、後述する計測部のカメラ412とは別の外部撮影用のカメラ312が、カメラ用姿勢制御装置313を介して本体部301に接続されている。 Since the unmanned flying object 300 of the present embodiment may fly in a state of being separated from the measuring unit 400, a camera 312 for external shooting different from the camera 412 of the measuring unit, which will be described later, is used as a camera attitude control device 313. It is connected to the main body 301 via.

無人飛行体300の本体部301の側面には、第1の実施形態と同様の浮体330が取付けられている。 A floating body 330 similar to that of the first embodiment is attached to the side surface of the main body 301 of the unmanned aircraft 300.

計測部400は、無人飛行体300の本体部301の下面に対し、前記着脱手段305により着脱可能に構成され、第1の実施形態と同様に、防水ケースからなる計測部本体401と、この計測部本体401の下面に取付けられて水中調査を行うカメラ412と、1以上のセンサ402とからなる。無人飛行体300が水面Wに浮遊しているときに、カメラ412と各センサ402の少なくとも検知部分が水中に潜るように構成され、それにより、水中調査ができるようになっている。 The measuring unit 400 is configured to be detachable from the lower surface of the main body 301 of the unmanned flying object 300 by the attachment / detachment means 305, and as in the first embodiment, the measuring unit main body 401 formed of a waterproof case and the measurement thereof. It consists of a camera 412 that is attached to the lower surface of the main body 401 and conducts an underwater survey, and one or more sensors 402. When the unmanned vehicle 300 is floating on the water surface W, at least the detection portion of the camera 412 and each sensor 402 is configured to be submerged, whereby underwater investigation can be performed.

本実施形態では、計測部400には、浮体430が取付けられ、無人飛行体300から分離された後、水面Wに浮遊できるようになっている。この浮体430は、第1の実施形態の無人飛行体100の浮体130(図1参照)と同様、船のハルのような中空構造であってもよく、水より比重の小さい中実部材であってもよい。浮体430は、計測部400が波をかぶっても転覆することなく安定して水面Wに浮遊できるように、バランスよく、1または複数設けられる。 In the present embodiment, the floating body 430 is attached to the measuring unit 400 so that the floating body 430 can float on the water surface W after being separated from the unmanned flying body 300. Like the floating body 130 (see FIG. 1) of the unmanned flying object 100 of the first embodiment, the floating body 430 may have a hollow structure like a hull of a ship, and is a solid member having a specific density smaller than that of water. You may. The floating body 430 is provided one or more in a well-balanced manner so that the measuring unit 400 can stably float on the water surface W without capsizing even if it is covered with waves.

浮体430の形状は、離水時に離水抵抗が小さくなるように、なるべく水平方向の着水面積が小さいことが望ましい。無人飛行体300のパワーが小さくても済むからである。本実施形態では、水平方向にリング状を成す浮体430を用いて、浮遊時の安定性向上と離水抵抗の低減を図っている。尚、浮体430の形状はリング状に限られず、浮遊時の安定性と低い離水抵抗が実現できれば、いずれでもよい。防水ケースからなる計測部本体401を軽量化して浮力機能を持たせ、浮体430と兼用としてもよい。 It is desirable that the shape of the floating body 430 has as small a landing area in the horizontal direction as possible so that the water separation resistance becomes small at the time of water separation. This is because the power of the unmanned aircraft 300 can be small. In the present embodiment, a floating body 430 forming a ring shape in the horizontal direction is used to improve stability during floating and reduce water separation resistance. The shape of the floating body 430 is not limited to the ring shape, and may be any shape as long as stability during floating and low water separation resistance can be realized. The measuring unit main body 401 made of a waterproof case may be made lighter to have a buoyancy function, and may also be used as a floating body 430.

図6は、第2の実施形態の水中調査システム3の制御系を示すブロック図である。
無人飛行体300は、その制御系として、第1の実施形態と同様に、情報伝送部310と、飛行制御部320とを有する。
FIG. 6 is a block diagram showing a control system of the underwater survey system 3 of the second embodiment.
The unmanned vehicle 300 has an information transmission unit 310 and a flight control unit 320 as its control system, as in the first embodiment.

情報伝送部310は、第1の実施形態と同様に、計測基地4との通信機能を有し、計測基地4から指令信号を受信するとともに、各種計測データ等を計測基地4に伝送するものである。本実施形態では、無人飛行体300が計測部400と分離した状態で飛行する場合もあるので、情報伝送部310には、後述する計測部のカメラ412とは別のカメラ312がカメラ用姿勢制御装置313及びメモリ314を介して接続されている。 Similar to the first embodiment, the information transmission unit 310 has a communication function with the measurement base 4, receives a command signal from the measurement base 4, and transmits various measurement data and the like to the measurement base 4. is there. In the present embodiment, the unmanned flying object 300 may fly in a state of being separated from the measuring unit 400. Therefore, in the information transmission unit 310, a camera 312 different from the camera 412 of the measuring unit described later is used for camera posture control. It is connected via the device 313 and the memory 314.

情報伝送部310には、計測部400と無線通信するための通信インターフェース315が接続されている。無人飛行体300と計測部400の相互の通信は、両者の結合・離脱の際に着脱されるコネクタを介して有線で行ってもよいが、水(特に海水)による腐食を考慮すると、赤外線やBluetooth(登録商標)やWi−Fi(登録商標)等の無線通信で行うことが望ましいからである。 A communication interface 315 for wireless communication with the measurement unit 400 is connected to the information transmission unit 310. Mutual communication between the unmanned vehicle 300 and the measuring unit 400 may be performed by wire via a connector that is attached and detached when connecting and disconnecting the two, but considering corrosion by water (especially seawater), infrared rays or This is because it is desirable to perform wireless communication such as Bluetooth (registered trademark) or Wi-Fi (registered trademark).

飛行制御部320は、第1の実施形態と同様に、GPS端末321を有するとともに、各電動モータ303(図5参照)の回転速度を制御しすることにより、無人飛行体300の飛行を制御するものである。無人飛行体300は、さらに第1の実施形態と同様の電源322を有する。 Similar to the first embodiment, the flight control unit 320 controls the flight of the unmanned flying object 300 by having the GPS terminal 321 and controlling the rotation speed of each electric motor 303 (see FIG. 5). It is a thing. The unmanned vehicle 300 further has a power supply 322 similar to that of the first embodiment.

図6の破線の範囲内は、計測部400の制御系を示す。カメラ412がカメラ用姿勢制御装置413を介してメモリ部404に接続され、センサ402もメモリ部404に接続されている。このカメラ412は、無人飛行体300のカメラ312とは別の水中撮影用のカメラである。ここで、計測部400は、無人飛行体300から切り離された状態でも、自律的に水中調査を継続できるように、独自の電源405、制御部406、GPS端末407、さらに、無人飛行体300と無線通信するための通信インターフェース408を有している。電源405としては、リチウムイオン電池等の充電式電池のみでもよいが、水面は通常日当たりが良いので、太陽電池と充電式電池を組み合わせたもの等が望ましい。 The range of the broken line in FIG. 6 shows the control system of the measuring unit 400. The camera 412 is connected to the memory unit 404 via the camera attitude control device 413, and the sensor 402 is also connected to the memory unit 404. This camera 412 is a camera for underwater photography different from the camera 312 of the unmanned flying object 300. Here, the measurement unit 400 includes a unique power supply 405, a control unit 406, a GPS terminal 407, and an unmanned vehicle 300 so that the underwater survey can be autonomously continued even when the measurement unit 400 is separated from the unmanned vehicle 300. It has a communication interface 408 for wireless communication. The power source 405 may be only a rechargeable battery such as a lithium ion battery, but since the water surface is usually sunny, a combination of a solar cell and a rechargeable battery is desirable.

この構成により、カメラ412で撮影された画像や、各センサ402で計測された各種計測データは、GPS端末407で測定された計測部400の位置情報とともに、メモリ部404に保存される。また、リアルタイムで、または計測基地4からの指令に応じて、通信インターフェース408、315及び無人飛行体300の情報伝送部310を通して計測基地4へ送信されるようにしてもよい。 With this configuration, the image taken by the camera 412 and various measurement data measured by each sensor 402 are stored in the memory unit 404 together with the position information of the measurement unit 400 measured by the GPS terminal 407. Further, it may be transmitted to the measurement base 4 in real time or in response to a command from the measurement base 4 through the communication interface 408, 315 and the information transmission unit 310 of the unmanned aircraft 300.

次に、このように構成された第2の実施形態の水中調査システムを用いた水中調査の例について説明する。 Next, an example of an underwater survey using the underwater survey system of the second embodiment configured in this way will be described.

計測部400が結合された無人飛行体300は、計測基地4の指令に従って、またはプログラムに従って自動的に、計測基地4から離れ、飛行して所定の調査箇所へ移動し、その水面に着水する。無人飛行体300が水面に着水すると、計測部400の水中調査用のカメラ412及びセンサ402が水に潜り、様々な水中調査が可能になる。 The unmanned vehicle 300 to which the measurement unit 400 is connected automatically leaves the measurement base 4 according to the command of the measurement base 4 or according to the program, flies to a predetermined survey location, and lands on the water surface. .. When the unmanned flying object 300 lands on the surface of the water, the underwater survey camera 412 and the sensor 402 of the measuring unit 400 are submerged in the water, and various underwater surveys are possible.

調査が短時間で済む場合は、第1の実施形態と同様に、無人飛行体300に計測部400を結合させたまま水中調査を行ない、一箇所での調査を終えた無人飛行体300は、離水して飛行し、次の箇所で調査を行ない、所定の数の調査箇所での調査終了後に計測基地4に帰還する。 When the survey can be completed in a short time, as in the first embodiment, the unmanned flying vehicle 300 is subjected to an underwater survey with the measuring unit 400 connected to the unmanned flying vehicle 300, and the survey is completed at one location. It takes off water, flies, conducts a survey at the next location, and returns to the measurement base 4 after completing the survey at a predetermined number of survey locations.

一方、長時間の水中調査の場合には、無人飛行体300は、計測部400を調査箇所の水面上で分離し、水面上に浮遊させて水中調査を行わせ、完了後に空の無人飛行体300が飛来して、計測部400を回収する。計測部400が水面上で水中調査を行っている間に無人飛行体300は、例えば、他の調査箇所で他の計測部400を設置又は回収する作業を並行して行なうことができる。 On the other hand, in the case of a long-time underwater survey, the unmanned vehicle 300 separates the measurement unit 400 on the water surface of the survey location, floats it on the water surface to perform an underwater survey, and after completion, the unmanned vehicle in the sky. 300 arrives and collects the measuring unit 400. While the measuring unit 400 is conducting an underwater survey on the water surface, the unmanned flying object 300 can perform, for example, the work of installing or collecting another measuring unit 400 at another survey location in parallel.

このように、第2の実施形態の水中調査システム3では、調査が短時間で済む場合は、第1の実施形態と同様に、無人飛行体300に計測部400を結合させたまま水中の調査を行い、一方、長時間の長時間の場合には、無人飛行体300から計測部400を分離して調査を行い、その間に無人飛行体300は、他の作業ができるので、無人飛行体300及び計測部400のフレキシブルな運用が可能になる。 As described above, in the underwater survey system 3 of the second embodiment, when the survey can be completed in a short time, the underwater survey is carried out with the measuring unit 400 connected to the unmanned flying object 300 as in the first embodiment. On the other hand, in the case of a long time, the measurement unit 400 is separated from the unmanned aviation body 300 and investigated, and the unmanned aviation body 300 can perform other work during that time, so that the unmanned aviation body 300 can perform other work. And the flexible operation of the measurement unit 400 becomes possible.

尚、第1及び第2の実施形態において、計測部200、400は、所定の水深域の水を採水できる手段を備えていてもよい。これをサンプルとして計測基地2、4に持ち帰ることにより、さらなる水質等の調査が可能になる。水を採取する機構としては、例えば、計測部本体201、401からホースを垂下してポンプで水を吸い上げる機構でもよく、索の先端に取付けられたコップ状の容器を垂下して引き上げて水をすくい取る機構でもよく、公知の機構を採用できる。 In the first and second embodiments, the measuring units 200 and 400 may be provided with means capable of collecting water in a predetermined depth range. By taking this as a sample and returning it to the measurement bases 2 and 4, further investigation of water quality and the like becomes possible. The mechanism for collecting water may be, for example, a mechanism in which a hose is hung from the measuring unit main bodies 201 and 401 and the water is sucked up by a pump. A scooping mechanism may be used, and a known mechanism can be adopted.

また、上記各実施形態では各センサ202、402は計測部本体201、401の底部に固定されているが、これらのセンサ202、402の昇降機構を設けることにより、センサ202、402を計測部本体201、401から所定の水深まで降下させ、その水深の水質等を調査できるようにしてもよい。 Further, in each of the above embodiments, the sensors 202 and 402 are fixed to the bottoms of the measuring unit main bodies 201 and 401, but by providing the elevating mechanism of these sensors 202 and 402, the sensors 202 and 402 can be moved to the measuring unit main body. It may be possible to lower the water from 201 and 401 to a predetermined water depth so that the water quality and the like at that water depth can be investigated.

また、水流の速い場所の水面に計測部200、400と結合した無人飛行体100、300又は分離した計測部400が一定時間留まって水中調査を行えるように、無人飛行体100、300又は計測部200、400から、アンカー(図示省略)を水底まで垂下させて無人飛行体100、300や分離した計測部400を係留する機能を設けても良く、また、GPS端末121、321をモニタしながら無人飛行体100、300の回転翼104、304の回転により水面上を移動して位置を補正できる機能を設けてもよい。 In addition, the unmanned aircraft 100, 300 or the measuring unit is provided so that the unmanned aircraft 100, 300 combined with the measuring units 200, 400 or the separated measuring unit 400 stays on the water surface in a place where the water flow is fast for a certain period of time to perform an underwater survey. An anchor (not shown) may be hung from the 200 and 400 to the bottom of the water to moor the unmanned aircraft 100 and 300 and the separated measurement unit 400, and the GPS terminals 121 and 321 may be monitored and unmanned. A function that can move on the water surface and correct the position by rotating the rotary blades 104 and 304 of the flying objects 100 and 300 may be provided.

また、生物による計測への影響を回避するために、無人飛行体100、300や計測部200、400の表面は、魚類、鳥の接近を忌避させる発光、臭い、塗料、形状、色を有するようにしてもよい。 In addition, in order to avoid the influence of living things on the measurement, the surfaces of the unmanned flying objects 100, 300 and the measuring units 200, 400 should have light emission, odor, paint, shape, and color that repel the approach of fish and birds. It may be.

また、浮体の離水抵抗が大きくて再飛行できない場合の無人飛行体100、300の回収方法としては、パワーのある水面滑走ドローンを用いて、浮遊している無人飛行体100、300を母船又は地上の計測基地2、4まで曳航してもよい。 In addition, as a method of recovering the unmanned aerial vehicles 100 and 300 when the floating body has a large water separation resistance and cannot be re-flighted, a powerful water surface sliding drone is used to collect the floating unmanned aerial vehicles 100 and 300 on the mother ship or on the ground. You may tow to the measurement bases 2 and 4 of.

また、上記各実施形態では、無人飛行体100、300及び計測部400の自己の位置を把握する手段としてGPS端末121、321、407を用いたが、代わりに地上の複数の基地局からの電波から自己の位置を把握する方法を用いてもよい。 Further, in each of the above embodiments, GPS terminals 121, 321, and 407 are used as means for grasping the self-positions of the unmanned flying objects 100, 300 and the measuring unit 400, but instead, radio waves from a plurality of base stations on the ground are used. You may use the method of grasping the position of oneself from.

また、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。 Moreover, the illustrated embodiment is merely an example of the present invention, and the present invention includes various improvements and improvements made by those skilled in the art within the scope of claims, in addition to those directly shown by the described embodiments. It goes without saying that it involves changes.

1…水中調査システム(第1の実施形態)
2…計測基地
3…水中調査システム(第2の実施形態)
4…計測基地
100…無人飛行体
101…本体部
102…アーム
103…電動モータ
104…回転翼
110…情報伝送部
120…飛行制御部
121…GPS端末
122…電源
130…浮体
200…計測部
201…計測部本体
202…センサ
203…ケーブル
204…メモリ部
212…カメラ
213…カメラ用姿勢制御装置(ジンバル)
220…コネクタ
300…無人飛行体
301…本体部
302…アーム
303…電動モータ
304…回転翼
305…着脱手段
310…情報伝送部
312…カメラ
313…カメラ用姿勢制御装置(ジンバル)
314…メモリ
315…通信インターフェース
320…飛行制御部
321…GPS端末
322…電源
400…計測部
401…計測部本体
402…センサ
404…メモリ部
405…電源
406…制御部
407…GPS端末
408…通信インターフェース
412…カメラ
413…カメラ用姿勢制御装置(ジンバル)
430…浮体
W…水面
1 ... Underwater survey system (first embodiment)
2 ... Measurement base 3 ... Underwater survey system (second embodiment)
4 ... Measurement base 100 ... Unmanned flying object 101 ... Main body 102 ... Arm 103 ... Electric motor 104 ... Rotor 110 ... Information transmission unit 120 ... Flight control unit 121 ... GPS terminal 122 ... Power supply 130 ... Floating body 200 ... Measuring unit 201 ... Measuring unit main unit 202 ... Sensor 203 ... Cable 204 ... Memory unit 212 ... Camera 213 ... Camera attitude control device (gimbal)
220 ... Connector 300 ... Unmanned flying object 301 ... Main body 302 ... Arm 303 ... Electric motor 304 ... Rotor 305 ... Detachable means 310 ... Information transmission unit 312 ... Camera 313 ... Camera attitude control device (gimbal)
314 ... Memory 315 ... Communication interface 320 ... Flight control unit 321 ... GPS terminal 322 ... Power supply 400 ... Measurement unit 401 ... Measurement unit main unit 402 ... Sensor 404 ... Memory unit 405 ... Power supply 406 ... Control unit 407 ... GPS terminal 408 ... Communication interface 412 ... Camera 413 ... Camera posture control device (gimbal)
430 ... Floating body W ... Water surface

Claims (5)

遠隔操作により飛行が可能な無人飛行体と、
前記無人飛行体に結合された計測部と、
前記無人飛行体及び前記計測部のうち、少なくとも前記計測部を水面に浮遊させる浮体と、
を含んで構成され、
前記計測部は、水面に浮遊した状態で、水中カメラ画像及び水深のうち少なくとも1つを含む水中地形情報、及び、水温、塩分濃度、濁度及びpHのうち少なくとも1つを含む水質情報、の少なくとも一方を計測可能であるとともに、その計測結果を記録又は伝送可能であり、
前記無人飛行体と前記計測部とは、水面上で分離及び結合が可能であり、
前記計測部は、前記無人飛行体と結合した状態、及び前記無人飛行体から分離した状態のいずれにおいても、水面に浮遊して前記水中地形情報及び前記水質情報の少なくとも一方を計測可能であることを特徴とする、水中調査システム。
An unmanned aerial vehicle that can fly by remote control,
The measuring unit connected to the unmanned aircraft and
Of the unmanned flying object and the measuring unit, at least a floating body that floats the measuring unit on the water surface.
Consists of, including
The measuring unit is in a state of floating on the water surface, and includes underwater camera images and underwater topographical information including at least one of water depth, and water quality information including at least one of water temperature, salinity, turbidity and pH. together can be measured at least one, Ri recorded or transmitted allows der the measurement results,
The unmanned aircraft and the measuring unit can be separated and combined on the water surface.
The measuring unit can measure at least one of the underwater topographical information and the water quality information while floating on the water surface in either the state of being combined with the unmanned vehicle or the state of being separated from the unmanned vehicle. An underwater survey system featuring.
前記浮体は、前記無人飛行体及び前記計測部に別々に設けられて、それぞれに結合されていることを特徴とする、請求項1に記載の水中調査システム。 The underwater survey system according to claim 1 , wherein the floating body is separately provided in the unmanned flying object and the measuring unit and is coupled to each other. 前記浮体は、水平面内にてリング形状を有することを特徴とする、請求項1又は2に記載の水中調査システム。 The underwater survey system according to claim 1 or 2 , wherein the floating body has a ring shape in a horizontal plane. 前記計測部は、所定の水深域の水を採水できる手段を備えていることを特徴とする、請求項1〜のいずれか1項に記載の水中調査システム。 The underwater survey system according to any one of claims 1 to 3 , wherein the measuring unit is provided with a means capable of collecting water in a predetermined depth region. 遠隔操作により飛行が可能な無人飛行体と、前記無人飛行体に結合された計測部と、前記無人飛行体及び前記計測部のうち、少なくとも前記計測部を水面に浮遊させる浮体とを含んで構成される水中調査システムを用い、
前記計測部を前記無人飛行体により調査箇所へ移動させ、
前記計測部を水面に浮遊させた状態で、水中カメラ画像及び水深のうち少なくとも1つを含む水中地形情報、及び、水温、塩分濃度、濁度及びpHのうち少なくとも1つを含む水質情報、の少なくとも一方を計測し、
その計測結果を記録又は伝送し、
前記無人飛行体と前記計測部とは、水面上で分離及び結合が可能であり、
前記計測部を、前記無人飛行体と結合させた状態、又は前記無人飛行体から分離した状態で、水面に浮遊させて前記水中地形情報及び前記水質情報の少なくとも一方を計測することを特徴とする、水中調査方法。
It includes an unmanned aerial vehicle capable of flying by remote control, a measuring unit coupled to the unmanned aerial vehicle, and a floating body of the unmanned aerial vehicle and the measuring unit that floats at least the measuring unit on the water surface. Using the underwater survey system
The measuring unit is moved to the survey location by the unmanned flying object,
With the measuring unit suspended on the water surface, underwater camera image and underwater topographical information including at least one of water depth, and water quality information including at least one of water temperature, salinity, turbidity and pH. Measure at least one and
Recording or transmitting the measurement result,
The unmanned aircraft and the measuring unit can be separated and combined on the water surface.
The measuring unit is floated on a water surface in a state of being combined with the unmanned vehicle or separated from the unmanned vehicle, and measures at least one of the underwater topography information and the water quality information. , Underwater survey method.
JP2017077011A 2017-04-07 2017-04-07 Underwater survey system and underwater survey method using unmanned aircraft Active JP6883461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017077011A JP6883461B2 (en) 2017-04-07 2017-04-07 Underwater survey system and underwater survey method using unmanned aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077011A JP6883461B2 (en) 2017-04-07 2017-04-07 Underwater survey system and underwater survey method using unmanned aircraft

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020205509A Division JP7053774B2 (en) 2020-12-11 2020-12-11 Underwater survey system and underwater survey method using unmanned aircraft

Publications (2)

Publication Number Publication Date
JP2018176905A JP2018176905A (en) 2018-11-15
JP6883461B2 true JP6883461B2 (en) 2021-06-09

Family

ID=64282240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077011A Active JP6883461B2 (en) 2017-04-07 2017-04-07 Underwater survey system and underwater survey method using unmanned aircraft

Country Status (1)

Country Link
JP (1) JP6883461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102390569B1 (en) * 2021-10-14 2022-04-27 (주)지트 Geospatial information survey system using drone

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013802B1 (en) * 2019-01-30 2019-08-27 대한민국 System for Surveying Geospatial Information of River bottom using drone and Driving Method thereof
CN111661327B (en) * 2019-03-05 2023-04-07 上海科技大学 Many rotors of flexible fuselage flight device
JP7401201B2 (en) * 2019-06-17 2023-12-19 株式会社フジタ Underwater bottom shape measuring device
JP7086144B2 (en) * 2019-07-26 2022-06-17 国立大学法人信州大学 Mobiles, exploration surveyors and exploration survey methods
JP7339482B2 (en) * 2019-08-21 2023-09-06 公立大学法人大阪 Control device, control system, flying object, control method, and program
CN110478918B (en) * 2019-09-10 2020-09-08 包松强 Manned underwater vehicle robot
JP7378891B2 (en) * 2019-09-20 2023-11-14 株式会社フジタ Underwater bottom shape measuring device
CN110736449B (en) * 2019-10-11 2021-07-06 北京师范大学 Static water average water depth estimation method based on low altitude remote sensing
CN110672524A (en) * 2019-10-22 2020-01-10 浙江卓锦环保科技股份有限公司 Water body turbidity detection method suitable for intelligent water environment
JP7325309B2 (en) * 2019-11-19 2023-08-14 株式会社フジタ Underwater measuring device and underwater measuring method
JP7330072B2 (en) * 2019-11-19 2023-08-21 株式会社フジタ Bottom shape measuring device and bottom shape measuring method
KR102303276B1 (en) * 2020-01-13 2021-09-15 광운대학교 산학협력단 Flexible pH Sensor Based on Nanocomposite of Single-Wall Carbon Nanotube and Nafion Fabricated by Screen-Printing Process
IT202000001339A1 (en) * 2020-01-23 2021-07-23 Neabotics Srl ROBOTIC SYSTEM AND PROCEDURE FOR THE MONITORING AND EVALUATION OF ENVIRONMENTAL DATA OF SURFACE AND DEEP WATERS
US20220090992A1 (en) * 2020-09-22 2022-03-24 Terra Vigilis, Inc. Sampler Apparatus for an Unmanned Aerial Vehicle
KR102297661B1 (en) * 2020-10-30 2021-09-06 한국건설기술연구원 System for measuring river topography using drone and method thereof
CN112987751B (en) * 2021-03-18 2022-10-11 中冶华天工程技术有限公司 System and method for quickly detecting hidden sewage draining outlet in automatic cruising mode
CN115123474B (en) * 2022-08-30 2022-12-30 山东博远视讯信息技术有限公司 A safe buoy platform for stopping unmanned aerial vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145574A (en) * 2002-10-23 2004-05-20 Noboru Nomura Life-saving system
JP2012184932A (en) * 2011-03-03 2012-09-27 Nippon Steel Engineering Co Ltd Heavy machine control apparatus
JP2013189036A (en) * 2012-03-12 2013-09-26 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Flying object for measuring
US9321529B1 (en) * 2013-04-09 2016-04-26 The United States Of America, As Represented By The Secretary Of The Navy Hybrid mobile buoy for persistent surface and underwater exploration
CN105874397A (en) * 2014-11-28 2016-08-17 深圳市大疆创新科技有限公司 Unmanned aerial vehicle and water sample detection method thereof
JP6084675B1 (en) * 2015-12-07 2017-02-22 高木 賀子 Transportation system using unmanned air vehicle
JP6063595B1 (en) * 2016-06-10 2017-01-18 株式会社緑星社 Fish school search system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102390569B1 (en) * 2021-10-14 2022-04-27 (주)지트 Geospatial information survey system using drone

Also Published As

Publication number Publication date
JP2018176905A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6883461B2 (en) Underwater survey system and underwater survey method using unmanned aircraft
JP7053774B2 (en) Underwater survey system and underwater survey method using unmanned aircraft
US11453466B2 (en) Water vehicles
US20200385093A1 (en) Data Retrieval and Transmitting Marine Exploration Vessel Systems
JP6797145B2 (en) Underwater exploration system and remote control device
US9417351B2 (en) Marine seismic surveys using clusters of autonomous underwater vehicles
US10691993B2 (en) System and method for autonomous tracking and imaging of a target
KR101779376B1 (en) Marine Observation System Using Drone
KR101710613B1 (en) Real-time wave and current measurement using Waterproof Drone equipped with hydrofoil
Hobson et al. The development and ocean testing of an AUV docking station for a 21" AUV
KR101835107B1 (en) A Fish Detecting Drone
KR102229294B1 (en) Smart station system for unmanned moving objects for ocean observation
US8297162B2 (en) Method and a device for identifying and neutralizing an undersea mine
US20220185436A1 (en) Autonomous navigation type marine buoy and marine information system using the same
WO2019181750A1 (en) Real-time underwater surveying using wide-area underwater survey submersible robot via haps
WO2014180590A1 (en) System and method for seafloor exploration
US20200255145A1 (en) System and method for underwater deployment of a payload
Manley et al. Unmanned Surface Vessels (USVs) as tow platforms: Wave Glider experience and results
JP2021041863A (en) Underwater survey apparatus
KR102129899B1 (en) Drone containment and method using marine light buoy
Piskura et al. Development of a robust Line Capture, Line Recovery (LCLR) technology for autonomous docking of AUVs
JP2022145659A (en) Coupling system between water surface relay machine and underwater vehicle, and operation method for the same
JP7195582B2 (en) Method for lifting and recovering a plurality of underwater vehicles, and system for lifting and recovering a plurality of underwater vehicles
JP6568615B1 (en) Autonomous navigation type ocean buoy and ocean information system using it
Watanabe et al. Development of a floating LBL system and a lightweight ROV for sky to water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6883461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250