JP6882683B2 - Mobile body for measurement, mobile base station, position control method, and control device - Google Patents

Mobile body for measurement, mobile base station, position control method, and control device Download PDF

Info

Publication number
JP6882683B2
JP6882683B2 JP2017153871A JP2017153871A JP6882683B2 JP 6882683 B2 JP6882683 B2 JP 6882683B2 JP 2017153871 A JP2017153871 A JP 2017153871A JP 2017153871 A JP2017153871 A JP 2017153871A JP 6882683 B2 JP6882683 B2 JP 6882683B2
Authority
JP
Japan
Prior art keywords
base station
measurement
mobile base
radio wave
mobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153871A
Other languages
Japanese (ja)
Other versions
JP2019033409A (en
Inventor
勇太郎 里見
勇太郎 里見
資典 乾
資典 乾
展行 縫村
展行 縫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017153871A priority Critical patent/JP6882683B2/en
Publication of JP2019033409A publication Critical patent/JP2019033409A/en
Application granted granted Critical
Publication of JP6882683B2 publication Critical patent/JP6882683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

本発明は、測定用移動体、移動基地局、位置制御方法、及び制御装置に関する。 The present invention relates to a mobile body for measurement, a mobile base station, a position control method, and a control device.

近年、通信インフラの整備が進み、多くの場所に無線基地局が設置されたことで通信可能なエリア(通信エリア)が拡大している。また、無線基地局の性能向上に伴い、通信エリアに収容可能なユーザ数が増加している。その結果、様々な場所で良好な無線環境が実現されている。但し、災害などにより特定地域にある無線基地局の機能が停止した場合や、イベント開催などにより特定地域に膨大な数のユーザが集中した場合には、その特定地域における通信品質の劣化や通信の断絶などの通信障害が生じうる。 In recent years, the development of communication infrastructure has progressed, and the area where communication is possible (communication area) has expanded due to the installation of wireless base stations in many places. Further, as the performance of wireless base stations is improved, the number of users that can be accommodated in the communication area is increasing. As a result, a good wireless environment is realized in various places. However, if the function of a wireless base station in a specific area stops due to a disaster, or if a huge number of users are concentrated in a specific area due to an event, etc., the communication quality in that specific area will deteriorate or communication will be affected. Communication failure such as disconnection may occur.

通信障害が生じると、災害時の安否確認や混雑したイベント会場における仲間同士の連絡などが困難になるため、無線環境の素早い復旧が望まれる。特定地域で通信障害が生じた場合に無線環境を素早く復旧させる方法としては、無線基地局の機能を搭載した車両などの移動基地局を特定地域に派遣し、その移動基地局により特定地域に臨時の無線環境を構築する方法がある。但し、がれきが散乱する災害現場や河原などの屋外イベント会場などへ移動基地局を派遣することが難しい場合がある。 When a communication failure occurs, it becomes difficult to confirm the safety in the event of a disaster and to communicate with friends at a crowded event venue, so quick restoration of the wireless environment is desired. As a method of quickly recovering the wireless environment in the event of a communication failure in a specific area, a mobile base station such as a vehicle equipped with a wireless base station function is dispatched to the specific area, and the mobile base station temporarily dispatches the mobile base station to the specific area. There is a way to build a wireless environment. However, it may be difficult to dispatch a mobile base station to a disaster site where debris is scattered or an outdoor event venue such as a riverbank.

なお、移動基地局として小型飛行物を利用する方法が提案されている。この方法では、小型飛行物同士や、小型飛行物と無線基地局との間の間隔に基づいて小型飛行物が配置される。また、無線基地局から送信される無線信号の検出結果に基づいて、無線基地局の位置及び無線基地局から電波が到達する範囲を示す電波マップを生成する方法が提案されている。また、地上部から係留索を介して空中に係留される空中部を有し、空中部からデータを送信する通信システムが提案されている。 A method of using a small flying object as a mobile base station has been proposed. In this method, small flying objects are arranged based on the distance between the small flying objects and between the small flying objects and the radio base station. Further, a method of generating a radio wave map showing the position of the radio base station and the range in which the radio wave reaches from the radio base station has been proposed based on the detection result of the radio signal transmitted from the radio base station. Further, a communication system has been proposed which has an aerial portion moored in the air from the above-ground portion via a mooring line and transmits data from the aerial portion.

特開2004-336408号公報Japanese Unexamined Patent Publication No. 2004-336408 特開2014-241550号公報Japanese Unexamined Patent Publication No. 2014-241550 特開2012-235439号公報Japanese Unexamined Patent Publication No. 2012-235439

上記の提案方法のように、空中を飛行する飛行物を移動基地局として利用すれば、車両の進入が困難な特定地域に移動基地局を配備することが可能になる。但し、移動基地局を配備する位置によっては特定地域に好適な無線環境を提供できないことがある。他方、特定地域に好適な無線環境を提供可能な移動基地局の位置を決定するのに時間がかかると、移動基地局による無線環境の復旧が遅延する。なお、移動基地局が飛行物以外の場合でも、移動基地局の位置を短時間で決定できれば、素早い無線環境の復旧に寄与する。 By using a flying object flying in the air as a mobile base station as in the above proposed method, it is possible to deploy the mobile base station in a specific area where it is difficult for vehicles to enter. However, depending on the location where the mobile base station is deployed, it may not be possible to provide a suitable wireless environment for a specific area. On the other hand, if it takes time to determine the position of the mobile base station that can provide a wireless environment suitable for a specific area, the restoration of the wireless environment by the mobile base station is delayed. Even if the mobile base station is not a flying object, if the position of the mobile base station can be determined in a short time, it will contribute to the quick restoration of the wireless environment.

1つの側面によれば、本発明の目的は、無線環境の復旧にかかる時間を短縮できる測定用移動体、移動基地局、位置制御方法、及び制御装置を提供することにある。 According to one aspect, an object of the present invention is to provide a measuring mobile body, a mobile base station, a position control method, and a control device capable of shortening the time required for restoration of a wireless environment.

一態様によれば、移動基地局が複数の無線端末と通信するための電波を出力し、複数の無線端末の上空を飛行する測定用移動体が電波の状況を検出し、測定用移動体が複数の無線端末の分布を検出し、電波の状況と複数の無線端末の分布とに基づいて移動位置を決定し、決定した移動位置に移動基地局を移動させる位置制御方法が提供される。 According to one aspect, the mobile base station outputs radio waves for communicating with a plurality of wireless terminals, the measuring mobile body flying over the plurality of wireless terminals detects the radio wave condition, and the measuring mobile body detects the radio wave condition. Provided is a position control method for detecting the distribution of a plurality of wireless terminals, determining a moving position based on the radio wave condition and the distribution of the plurality of wireless terminals, and moving the mobile base station to the determined moving position.

短時間で複数の無線端末にして好適な無線環境となるように移動基地局を配置できる。 Mobile base stations can be arranged so that a plurality of wireless terminals can be converted into a suitable wireless environment in a short time.

第1実施形態に係る無線通信システムの一例を示した図である。It is a figure which showed an example of the wireless communication system which concerns on 1st Embodiment. 第2実施形態に係る無線通信システムの一例を示した図である。It is a figure which showed an example of the wireless communication system which concerns on 2nd Embodiment. 制御装置及び固定基地局のハードウェアの一例を示したブロック図である。It is a block diagram which showed an example of the hardware of a control device and a fixed base station. 移動基地局のハードウェアの一例を示したブロック図である。It is a block diagram which showed an example of the hardware of a mobile base station. 測定用移動体のハードウェアの一例を示したブロック図である。It is a block diagram which showed an example of the hardware of the moving body for measurement. 無線端末のハードウェアの一例を示したブロック図である。It is a block diagram which showed an example of the hardware of a wireless terminal. 制御装置及び固定基地局が有する機能の一例を示したブロック図である。It is a block diagram which showed an example of the function which a control device and a fixed base station have. 移動基地局が有する機能の一例を示したブロック図である。It is a block diagram which showed an example of the function which a mobile base station has. 測定用移動体が有する機能の一例を示したブロック図である。It is a block diagram which showed an example of the function which a moving body for measurement has. 無線端末が有する機能の一例を示したブロック図である。It is a block diagram which showed an example of the function which a wireless terminal has. 電波測定結果の例を示した図である。It is a figure which showed the example of the radio wave measurement result. 電波マップの例を示した図である。It is a figure which showed the example of the radio wave map. 測定位置情報の例を示した図である。It is a figure which showed the example of the measurement position information. 端末測定結果の例を示した図である。It is a figure which showed the example of the terminal measurement result. 端末マップの例を示した図である。It is a figure which showed the example of the terminal map. 重心情報の例を示した図である。It is a figure which showed the example of the center of gravity information. 移動情報の例を示した図である。It is a figure which showed the example of the movement information. 測定用移動体の移動制御について説明するための図である。It is a figure for demonstrating the movement control of the moving body for measurement. 移動基地局の現在位置と電力分布の重心位置との関係について説明するための図である。It is a figure for demonstrating the relationship between the present position of a mobile base station and the position of the center of gravity of a power distribution. 端末数の重心位置について説明するための図である。It is a figure for demonstrating the position of the center of gravity of the number of terminals. 移動基地局の移動制御について説明するための図である。It is a figure for demonstrating the movement control of a mobile base station. 第2実施形態に係る無線通信システムで実行される処理の流れを示したフロー図である。It is a flow chart which showed the flow of the process executed in the wireless communication system which concerns on 2nd Embodiment. 測定用移動体による電波マップ及び端末マップの生成に係る処理(測定用移動体による処理)の流れを示したフロー図である。It is a flow chart which showed the flow of the process (processing by the measurement mobile body) related to the generation of the radio wave map and the terminal map by the measurement mobile body. 移動基地局の移動制御に係る処理(制御装置による処理)の流れを示したフロー図である。It is a flow chart which showed the flow of the process (process by a control device) related to the movement control of a mobile base station. 第2実施形態の一変形例に係る無線通信システムの一例を示した図である。It is a figure which showed an example of the wireless communication system which concerns on one modification of 2nd Embodiment. 第2実施形態の一変形例に係る移動基地局が有する機能の一例を示したブロック図である。It is a block diagram which showed an example of the function which the mobile base station which concerns on one modification of 2nd Embodiment has.

以下に添付図面を参照しながら、本発明の実施形態について説明する。なお、本明細書及び図面において実質的に同一の機能を有する要素については、同一の符号を付することにより重複説明を省略する場合がある。 An embodiment of the present invention will be described below with reference to the accompanying drawings. In the present specification and the drawings, elements having substantially the same function may be designated by the same reference numerals to omit duplicate description.

<1.第1実施形態>
図1を参照しながら、第1実施形態について説明する。
第1実施形態は、測定用移動体を利用して、好適な無線環境が得られる位置に移動基地局を移動させる位置制御方法に関する。図1は、第1実施形態に係る無線通信システムの一例を示した図である。なお、図1に示した無線通信システム10は、第1実施形態に係る無線通信システムの一例である。
<1. First Embodiment>
The first embodiment will be described with reference to FIG.
The first embodiment relates to a position control method for moving a mobile base station to a position where a suitable wireless environment can be obtained by using a mobile body for measurement. FIG. 1 is a diagram showing an example of a wireless communication system according to the first embodiment. The wireless communication system 10 shown in FIG. 1 is an example of the wireless communication system according to the first embodiment.

図1に示すように、無線通信システム10は、制御システム11と、移動基地局12と、測定用移動体13とを有する。
なお、無線通信システム10に含まれる移動基地局の数及び測定用移動体の数は2以上であってもよい。図1には、移動基地局12及び測定用移動体13の一例としてドローンを描画しているが、ドローン以外の飛行体を移動基地局12及び測定用移動体13としてもよい。ドローンとは、遠隔操縦式又は自律式の制御機構を有するマルチコプタ(3つ以上のロータを搭載する回転翼機)である。
As shown in FIG. 1, the wireless communication system 10 includes a control system 11, a mobile base station 12, and a mobile body for measurement 13.
The number of mobile base stations and the number of mobiles for measurement included in the wireless communication system 10 may be 2 or more. Although the drone is drawn as an example of the mobile base station 12 and the measurement mobile body 13 in FIG. 1, an air vehicle other than the drone may be used as the mobile base station 12 and the measurement mobile body 13. A drone is a multicopter (rotorcraft equipped with three or more rotors) having a remote-controlled or autonomous control mechanism.

制御システム11は、無線基地局11a及び制御装置11bを有する。
制御装置11bは、例えば、メモリ及びプロセッサを有するサーバ装置などのコンピュータである。メモリは、RAM(Random Access Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)などである。プロセッサは、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などである。
The control system 11 has a radio base station 11a and a control device 11b.
The control device 11b is, for example, a computer such as a server device having a memory and a processor. The memory is a RAM (Random Access Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like. The processor is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or the like.

移動基地局12は、例えば、地上から数10m程度の高度を飛行するドローンなどの飛行体である。移動基地局12は、無線部12a、制御部12b、及び記憶部12cを有する。無線部12aは、例えば、アンテナを介してRF(Radio Frequency)信号を送受信するRF回路である。制御部12bは、例えば、CPU、DSP、ASIC、FPGAなどのプロセッサである。記憶部12cは、例えば、RAM、HDD、SSDなどのメモリである。 The mobile base station 12 is, for example, an air vehicle such as a drone that flies at an altitude of about several tens of meters from the ground. The mobile base station 12 has a radio unit 12a, a control unit 12b, and a storage unit 12c. The radio unit 12a is, for example, an RF circuit that transmits and receives RF (Radio Frequency) signals via an antenna. The control unit 12b is, for example, a processor such as a CPU, DSP, ASIC, or FPGA. The storage unit 12c is, for example, a memory such as a RAM, an HDD, or an SSD.

測定用移動体13は、例えば、地上から数m程度の高度を飛行するドローンなどの飛行体である。測定用移動体13は、複数の無線端末(UE:User Equipment)の上空を飛行する。また、測定用移動体13は、移動基地局12から出力される電波を検出する。測定用移動体13により検出される電波の状況14は、移動基地局12に通知される。電波の状況14は、例えば、電波強度や電波品質の分布(電力分布)である。 The measuring moving body 13 is, for example, a flying body such as a drone that flies at an altitude of about several meters from the ground. The measurement mobile body 13 flies over a plurality of wireless terminals (UE: User Equipment). Further, the measuring mobile body 13 detects the radio wave output from the mobile base station 12. The status 14 of the radio wave detected by the measuring mobile body 13 is notified to the mobile base station 12. The radio wave condition 14 is, for example, a distribution of radio wave intensity and radio wave quality (power distribution).

測定用移動体13は、端末分布15を検出する。例えば、測定用移動体13は、電波を下方に向けて測定用信号16を送信し、測定用信号16に応答する無線端末の数を検出する。測定用移動体13は、予め設定された複数の測定ポイントを移動しながら無線端末の数を検出し、端末分布15として各測定ポイントにおける検出結果を得る。測定用移動体13により検出される端末分布15は、移動基地局12に通知される。 The measuring mobile body 13 detects the terminal distribution 15. For example, the measurement mobile body 13 transmits a measurement signal 16 with radio waves directed downward, and detects the number of wireless terminals that respond to the measurement signal 16. The measurement mobile body 13 detects the number of wireless terminals while moving a plurality of preset measurement points, and obtains a detection result at each measurement point as a terminal distribution 15. The terminal distribution 15 detected by the measuring mobile body 13 is notified to the mobile base station 12.

測定用移動体13は、無線基地局11aを介して制御装置11bと通信する。例えば、制御装置11bは、無線基地局11aを介して測定用移動体13に制御信号を送信し、制御信号により測定用移動体13の動作を制御する。なお、測定用移動体13と制御装置11bとの間の通信は、無線基地局11a及び移動基地局12を介して実施されてもよい。 The measurement mobile body 13 communicates with the control device 11b via the radio base station 11a. For example, the control device 11b transmits a control signal to the measurement mobile body 13 via the radio base station 11a, and controls the operation of the measurement mobile body 13 by the control signal. The communication between the measurement mobile body 13 and the control device 11b may be carried out via the radio base station 11a and the mobile base station 12.

制御部12bは、測定用移動体13から通知された電波の状況14及び端末分布15を記憶部12cに記憶させる。制御部12bは、無線部12aを制御し、無線基地局11aを介して電波の状況14及び端末分布15を制御装置11bに通知する。制御装置11bは、電波の状況14及び端末分布15に基づいて移動基地局12の移動量を決定する。 The control unit 12b stores the radio wave condition 14 and the terminal distribution 15 notified from the measurement mobile body 13 in the storage unit 12c. The control unit 12b controls the radio unit 12a and notifies the control device 11b of the radio wave condition 14 and the terminal distribution 15 via the radio base station 11a. The control device 11b determines the movement amount of the mobile base station 12 based on the radio wave condition 14 and the terminal distribution 15.

例えば、制御装置11bは、端末分布15の重心位置Aと、電波の状況14から算出される電力分布の重心位置Bとを一致させるように移動基地局12の移動量を決定する。移動基地局12の移動量は、例えば、重心位置Bから重心位置Aに向かう移動ベクトルMVで表現できる。移動ベクトルMVの情報は、無線基地局11aを介して移動基地局12に送信される。制御部12bは、移動ベクトルMVの分だけ移動基地局12を現在位置から移動させる。 For example, the control device 11b determines the movement amount of the mobile base station 12 so that the center-of-gravity position A of the terminal distribution 15 and the center-of-gravity position B of the power distribution calculated from the radio wave condition 14 match. The movement amount of the mobile base station 12 can be expressed by, for example, a movement vector MV from the center of gravity position B to the center of gravity position A. The information of the moving vector MV is transmitted to the mobile base station 12 via the radio base station 11a. The control unit 12b moves the mobile base station 12 from the current position by the amount of the movement vector MV.

上記のように、測定用移動体13により検出される電波の状況14及び端末分布15に基づいて移動基地局12の移動量を決定し、決定した移動量に基づいて移動基地局12を移動することで、素早く移動基地局12を好適な位置に移動できる。なお、上記の説明では、制御装置11bが移動ベクトルMVを計算する例について述べたが、変形例として、記憶部12cが記憶する電波の状況14及び端末分布15に基づいて制御部12bが移動ベクトルMVを計算してもよい。このような変形も第1実施形態の技術的範囲に属する。 As described above, the movement amount of the mobile base station 12 is determined based on the radio wave condition 14 and the terminal distribution 15 detected by the measurement mobile body 13, and the mobile base station 12 is moved based on the determined movement amount. As a result, the mobile base station 12 can be quickly moved to a suitable position. In the above description, an example in which the control device 11b calculates the movement vector MV has been described, but as a modification, the control unit 12b moves the movement vector based on the radio wave condition 14 and the terminal distribution 15 stored in the storage unit 12c. The MV may be calculated. Such modifications also belong to the technical scope of the first embodiment.

以上、第1実施形態について説明した。
第1実施形態によれば、無線端末に近い上空を飛行する測定用移動体13の測定結果を利用して移動基地局12の移動制御を実施することで、移動基地局12を短時間で好適な位置に移動させることが可能になる。その結果、移動基地局12を利用した無線環境の復旧にかかる時間が短縮される。なお、飛行体である移動基地局12よりも無線端末に近い上空を飛行する測定用移動体13の測定結果を利用して移動基地局12の移動制御を実施することで、移動基地局12よりも精度よい無線端末の分布と移動基地局12からの電波の状況を同時に精度良く測ることができる。
The first embodiment has been described above.
According to the first embodiment, the mobile base station 12 is suitable in a short time by performing the movement control of the mobile base station 12 by using the measurement result of the measuring mobile body 13 flying over the radio terminal. It becomes possible to move it to a suitable position. As a result, the time required to restore the wireless environment using the mobile base station 12 is shortened. By controlling the movement of the mobile base station 12 by using the measurement result of the measurement mobile body 13 that flies over the wireless terminal closer to the wireless terminal than the mobile base station 12, which is an air vehicle, the mobile base station 12 can be used. It is also possible to accurately measure the distribution of wireless terminals and the condition of radio waves from the mobile base station 12 at the same time.

<2.第2実施形態>
次に、第2実施形態について説明する。第2実施形態は、測定用移動体を利用して、好適な無線環境が得られる位置に移動基地局を移動させる位置制御方法に関する。
<2. Second Embodiment>
Next, the second embodiment will be described. The second embodiment relates to a position control method for moving a mobile base station to a position where a suitable wireless environment can be obtained by using a mobile body for measurement.

[2−1.システム]
図2は、第2実施形態に係る無線通信システムの一例を示した図である。なお、図2に示した無線通信システム100は、第2実施形態に係る無線通信システムの一例である。
[2-1. system]
FIG. 2 is a diagram showing an example of a wireless communication system according to the second embodiment. The wireless communication system 100 shown in FIG. 2 is an example of the wireless communication system according to the second embodiment.

図2に示すように、無線通信システム100は、制御装置101、固定基地局102、移動基地局103、測定用移動体104、及び無線端末105、106、107、…を含む。なお、移動基地局の数及び測定用移動体の数は2以上であってもよい。 As shown in FIG. 2, the wireless communication system 100 includes a control device 101, a fixed base station 102, a mobile base station 103, a mobile body for measurement 104, and wireless terminals 105, 106, 107, and so on. The number of mobile base stations and the number of mobile bodies for measurement may be 2 or more.

制御装置101は、コアネットワークなどの通信回線を介して固定基地局102に接続される。固定基地局102は、移動基地局103と無線接続する。移動基地局103は、測定用移動体104と無線接続する。測定用移動体104は、固定基地局102と無線接続できる。測定用移動体104は、固定基地局102及び移動基地局103を介して、或いは、固定基地局102を介して制御装置101と通信する。 The control device 101 is connected to the fixed base station 102 via a communication line such as a core network. The fixed base station 102 wirelessly connects to the mobile base station 103. The mobile base station 103 wirelessly connects to the measurement mobile body 104. The measurement mobile body 104 can be wirelessly connected to the fixed base station 102. The measurement mobile body 104 communicates with the control device 101 via the fixed base station 102 and the mobile base station 103, or via the fixed base station 102.

移動基地局103は、例えば、地上から数10mの高度を飛行する飛行体である。測定用移動体104は、例えば、地上から数mの高度を飛行する飛行体である。
飛行体としては、例えば、回転翼機、気球、飛行船、滑空機、凧、飛行機などがある。
The mobile base station 103 is, for example, an air vehicle that flies at an altitude of several tens of meters from the ground. The measuring mobile body 104 is, for example, an air vehicle that flies at an altitude of several meters from the ground.
Aircraft include, for example, rotorcraft, balloons, airships, gliders, kites, airplanes, and the like.

図2には、一例として、回転翼機の一種であるドローンが描画されている。ドローンは、遠隔操縦式又は自律式の制御機構を有するマルチコプタ(3つ以上のロータを搭載する回転翼機)である。例えば、ドローンの移動経路や各種処理の制御は遠隔操作により実施される(遠隔操縦式の制御機構)。また、ドローンが自律的に移動経路や各種処理の制御を実施するプログラムをドローンに組み込むことも可能である(自律式の制御機構)。 In FIG. 2, a drone, which is a kind of rotary wing aircraft, is drawn as an example. A drone is a multicopter (rotorcraft equipped with three or more rotors) having a remote-controlled or autonomous control mechanism. For example, the movement route of the drone and various processes are controlled by remote control (remote control type control mechanism). It is also possible for the drone to incorporate a program that autonomously controls the movement route and various processes into the drone (autonomous control mechanism).

第2実施形態の説明では、図2に示した無線通信システム100を例に説明を進める。
[2−2.ハードウェア]
ここで、制御装置101、固定基地局102、移動基地局103、測定用移動体104、無線端末105、106、107、…のハードウェアについて説明する。但し、無線端末105、106、107、…のハードウェアは同じであるとして無線端末105のハードウェアについて説明し、無線端末106、107、…のハードウェアについては説明を省略する。
In the description of the second embodiment, the description will proceed with the wireless communication system 100 shown in FIG. 2 as an example.
[2-2. hardware]
Here, the hardware of the control device 101, the fixed base station 102, the mobile base station 103, the mobile body for measurement 104, the wireless terminals 105, 106, 107, ... Will be described. However, the hardware of the wireless terminal 105 will be described assuming that the hardware of the wireless terminals 105, 106, 107, ... Is the same, and the description of the hardware of the wireless terminals 106, 107, ... Will be omitted.

(制御装置、固定基地局)
まず、図3を参照しながら、制御装置101及び固定基地局102のハードウェアについて説明する。図3は、制御装置及び固定基地局のハードウェアの一例を示したブロック図である。
(Control device, fixed base station)
First, the hardware of the control device 101 and the fixed base station 102 will be described with reference to FIG. FIG. 3 is a block diagram showing an example of hardware of a control device and a fixed base station.

図3に示すように、制御装置101は、CPU101a、メモリ101b、及びNIF(Network Interface)回路101cを有する。
CPU101aは、制御装置101の動作や各種処理の制御、或いは、移動基地局103及び測定用移動体104の移動や各種処理の制御などを実施するプロセッサの一例である。CPU101aは、DSP、ASIC、FPGAなどで代替可能である。メモリ101bは、例えば、RAM、ROM、HDD、SSDなどの記憶装置である。NIF回路101cは、コアネットワークに接続される通信回路である。
As shown in FIG. 3, the control device 101 includes a CPU 101a, a memory 101b, and an NIF (Network Interface) circuit 101c.
The CPU 101a is an example of a processor that controls the operation of the control device 101 and various processes, or controls the movement of the mobile base station 103 and the measurement mobile body 104 and various processes. The CPU 101a can be replaced with a DSP, ASIC, FPGA or the like. The memory 101b is, for example, a storage device such as a RAM, a ROM, an HDD, or an SSD. The NIF circuit 101c is a communication circuit connected to the core network.

固定基地局102は、アンテナ群102a、RF回路102b、信号処理回路102c、CPU102d、メモリ102e、及びNIF回路102fを有する。
アンテナ群102aは、RF信号の送受信に用いられる1本以上のアンテナを含むアンテナの集合である。RF回路102bは、アンテナ群102aによるRF信号の送受信、周波数変換、AD(Analog to Digital)・DA(Digital to Analog)変換処理などの処理を実行する。信号処理回路102cは、変調・復調などの処理などを実行する。
The fixed base station 102 includes an antenna group 102a, an RF circuit 102b, a signal processing circuit 102c, a CPU 102d, a memory 102e, and a NIF circuit 102f.
The antenna group 102a is a set of antennas including one or more antennas used for transmitting and receiving RF signals. The RF circuit 102b executes processing such as transmission / reception of RF signals by the antenna group 102a, frequency conversion, and AD (Analog to Digital) / DA (Digital to Analog) conversion processing. The signal processing circuit 102c executes processing such as modulation / demodulation.

CPU102dは、データの符号化や復号、RF回路102b及び信号処理回路102cの制御、NIF回路102fによる通信の制御などを実施する。CPU102dは、DSP、ASIC、FPGAなどで代替可能である。メモリ102eは、例えば、RAM、ROM、HDD、SSDなどの記憶装置である。NIF回路102fは、コアネットワークに接続される通信回路である。 The CPU 102d performs data coding and decoding, control of the RF circuit 102b and the signal processing circuit 102c, control of communication by the NIF circuit 102f, and the like. The CPU 102d can be replaced by a DSP, ASIC, FPGA or the like. The memory 102e is, for example, a storage device such as a RAM, a ROM, an HDD, or an SSD. The NIF circuit 102f is a communication circuit connected to the core network.

図3に例示したハードウェアを利用することで、後述する制御装置101及び固定基地局102の機能を実現することができる。
(移動基地局)
次に、図4を参照しながら、移動基地局103のハードウェアについて説明する。図4は、移動基地局のハードウェアの一例を示したブロック図である。
By using the hardware illustrated in FIG. 3, the functions of the control device 101 and the fixed base station 102, which will be described later, can be realized.
(Mobile base station)
Next, the hardware of the mobile base station 103 will be described with reference to FIG. FIG. 4 is a block diagram showing an example of hardware of a mobile base station.

図4に示すように、移動基地局103は、アンテナ103a、RF回路103b、信号処理回路103c、CPU103d、メモリ103e、センサ群103f、駆動回路103g、及びロータ103hを有する。 As shown in FIG. 4, the mobile base station 103 includes an antenna 103a, an RF circuit 103b, a signal processing circuit 103c, a CPU 103d, a memory 103e, a sensor group 103f, a drive circuit 103g, and a rotor 103h.

アンテナ103aは、RF信号の送受信に用いられるアンテナである。なお、2本以上のアンテナが移動基地局103に設けられてもよい。RF回路103bは、アンテナ103aによるRF信号の送受信、周波数変換、AD・DA変換処理などの処理を実行する。信号処理回路103cは、変調・復調などの処理などを実行する。 The antenna 103a is an antenna used for transmitting and receiving RF signals. Two or more antennas may be provided in the mobile base station 103. The RF circuit 103b executes processing such as transmission / reception of RF signals by the antenna 103a, frequency conversion, and AD / DA conversion processing. The signal processing circuit 103c executes processing such as modulation / demodulation.

CPU103dは、データの符号化や復号、RF回路103b、信号処理回路103c、センサ群103f、及び駆動回路103gの制御などを実施する。CPU103dは、DSP、ASIC、FPGAなどで代替可能である。メモリ103eは、例えば、RAM、ROM、HDD、SSDなどの記憶装置である。 The CPU 103d performs data coding and decoding, control of the RF circuit 103b, the signal processing circuit 103c, the sensor group 103f, the drive circuit 103g, and the like. The CPU 103d can be replaced by a DSP, ASIC, FPGA or the like. The memory 103e is, for example, a storage device such as a RAM, a ROM, an HDD, or an SSD.

センサ群103fは、例えば、気圧センサや超音波センサを含むセンサの集合である。気圧センサは、例えば、高度の測定に利用される。超音波センサは、例えば、障害物の検知に利用される。センサ群103fには、現在位置の測定に利用できるGPS(Global Positioning System)や加速度センサなどが含まれてもよい。 The sensor group 103f is, for example, a set of sensors including a barometric pressure sensor and an ultrasonic sensor. Barometric pressure sensors are used, for example, to measure altitude. Ultrasonic sensors are used, for example, to detect obstacles. The sensor group 103f may include a GPS (Global Positioning System), an acceleration sensor, or the like that can be used to measure the current position.

駆動回路103gは、回転翼機の翼であるロータ103hの回転軸に接続されるモータを駆動し、ロータ103hを回転させる。駆動回路103gは、ロータ103hの回転を制御することで移動基地局103の水平位置、高度、姿勢などを制御する。 The drive circuit 103g drives a motor connected to the rotation shaft of the rotor 103h, which is a blade of the rotary wing aircraft, and rotates the rotor 103h. The drive circuit 103g controls the horizontal position, altitude, posture, etc. of the mobile base station 103 by controlling the rotation of the rotor 103h.

なお、図4には、固定基地局102、測定用移動体104、及び無線端末105のそれぞれと、移動基地局103との無線通信に利用する無線規格(LTE(Long Term Evolution)、Wi−Fi(登録商標))の例を示した。この例のように、移動基地局103と測定用移動体104との無線通信に利用する無線規格が、移動基地局103と固定基地局102や無線端末105との無線通信に利用する無線規格と異なってもよい。 Note that FIG. 4 shows wireless standards (LTE (Long Term Evolution), Wi-Fi) used for wireless communication between the fixed base station 102, the mobile body for measurement 104, and the wireless terminal 105, and the mobile base station 103. (Registered trademark)) is shown. As in this example, the wireless standard used for wireless communication between the mobile base station 103 and the measurement mobile body 104 is the wireless standard used for wireless communication between the mobile base station 103 and the fixed base station 102 or the wireless terminal 105. It may be different.

図4に例示したハードウェアを利用することで、後述する移動基地局103の機能を実現することができる。
(測定用移動体)
次に、図5を参照しながら、測定用移動体104のハードウェアについて説明する。図5は、測定用移動体のハードウェアの一例を示したブロック図である。
By using the hardware illustrated in FIG. 4, the function of the mobile base station 103, which will be described later, can be realized.
(Mobile for measurement)
Next, the hardware of the measuring mobile body 104 will be described with reference to FIG. FIG. 5 is a block diagram showing an example of the hardware of the mobile body for measurement.

図5に示すように、測定用移動体104は、アンテナ104a、RF回路104b、信号処理回路104c、CPU104d、メモリ104e、センサ群104f、駆動回路104g、及びロータ104hを有する。 As shown in FIG. 5, the measuring mobile body 104 includes an antenna 104a, an RF circuit 104b, a signal processing circuit 104c, a CPU 104d, a memory 104e, a sensor group 104f, a drive circuit 104g, and a rotor 104h.

アンテナ104aは、RF信号の送受信に用いられるアンテナである。なお、2本以上のアンテナが測定用移動体104に設けられてもよい。RF回路104bは、アンテナ104aによるRF信号の送受信、周波数変換、AD・DA変換処理などの処理を実行する。信号処理回路104cは、変調・復調などの処理などを実行する。 The antenna 104a is an antenna used for transmitting and receiving RF signals. Two or more antennas may be provided on the measuring mobile body 104. The RF circuit 104b executes processing such as transmission / reception of RF signals by the antenna 104a, frequency conversion, and AD / DA conversion processing. The signal processing circuit 104c executes processing such as modulation / demodulation.

CPU104dは、データの符号化や復号、RF回路104b、信号処理回路104c、センサ群104f、及び駆動回路104gの制御などを実施する。CPU104dは、DSP、ASIC、FPGAなどで代替可能である。メモリ104eは、例えば、RAM、ROM、HDD、SSDなどの記憶装置である。 The CPU 104d performs data coding and decoding, control of the RF circuit 104b, the signal processing circuit 104c, the sensor group 104f, the drive circuit 104g, and the like. The CPU 104d can be replaced by a DSP, ASIC, FPGA or the like. The memory 104e is, for example, a storage device such as a RAM, a ROM, an HDD, or an SSD.

センサ群104fは、例えば、気圧センサや超音波センサを含むセンサの集合である。気圧センサは、例えば、高度の測定に利用される。超音波センサは、例えば、障害物の検知に利用される。センサ群104fには、現在位置の測定に利用できるGPSや加速度センサなどが含まれてもよい。 The sensor group 104f is, for example, a set of sensors including a barometric pressure sensor and an ultrasonic sensor. Barometric pressure sensors are used, for example, to measure altitude. Ultrasonic sensors are used, for example, to detect obstacles. The sensor group 104f may include a GPS, an acceleration sensor, or the like that can be used to measure the current position.

駆動回路104gは、回転翼機の翼であるロータ104hの回転軸に接続されるモータを駆動し、ロータ104hを回転させる。駆動回路104gは、ロータ104hの回転を制御することで測定用移動体104の水平位置、高度、姿勢などを制御する。 The drive circuit 104g drives a motor connected to the rotation shaft of the rotor 104h, which is a blade of the rotary wing aircraft, and rotates the rotor 104h. The drive circuit 104g controls the horizontal position, altitude, posture, etc. of the measuring moving body 104 by controlling the rotation of the rotor 104h.

図5に例示したハードウェアを利用することで、後述する測定用移動体104の機能を実現することができる。
(無線端末)
次に、図6を参照しながら、無線端末105のハードウェアについて説明する。図6は、無線端末のハードウェアの一例を示したブロック図である。
By using the hardware illustrated in FIG. 5, the function of the mobile body 104 for measurement, which will be described later, can be realized.
(Wireless terminal)
Next, the hardware of the wireless terminal 105 will be described with reference to FIG. FIG. 6 is a block diagram showing an example of hardware of a wireless terminal.

図6に示すように、無線端末105は、アンテナ105a、RF回路105b、信号処理回路105c、CPU105d、及びメモリ105eを有する。
アンテナ105aは、RF信号の送受信に用いられるアンテナである。なお、2本以上のアンテナが無線端末105に設けられてもよい。RF回路105bは、アンテナ105aによるRF信号の送受信、周波数変換、AD・DA変換処理などの処理を実行する。信号処理回路105cは、変調・復調などの処理などを実行する。
As shown in FIG. 6, the wireless terminal 105 includes an antenna 105a, an RF circuit 105b, a signal processing circuit 105c, a CPU 105d, and a memory 105e.
The antenna 105a is an antenna used for transmitting and receiving RF signals. In addition, two or more antennas may be provided in the wireless terminal 105. The RF circuit 105b executes processing such as transmission / reception of RF signals by the antenna 105a, frequency conversion, and AD / DA conversion processing. The signal processing circuit 105c executes processing such as modulation / demodulation.

CPU105dは、データの符号化や復号、RF回路105b、及び信号処理回路105cの制御などを実施する。CPU105dは、DSP、ASIC、FPGAなどで代替可能である。メモリ105eは、例えば、RAM、ROM、HDD、SSDなどの記憶装置である。なお、無線端末105には、現在位置の測定に利用できるGPSや加速度センサなどが搭載されてもよい。 The CPU 105d performs data coding and decoding, control of the RF circuit 105b, the signal processing circuit 105c, and the like. The CPU 105d can be replaced by a DSP, ASIC, FPGA or the like. The memory 105e is, for example, a storage device such as a RAM, a ROM, an HDD, or an SSD. The wireless terminal 105 may be equipped with a GPS, an acceleration sensor, or the like that can be used to measure the current position.

図6に例示したハードウェアを利用することで、後述する無線端末105の機能を実現することができる。
以上、ハードウェアについて説明した。
By using the hardware illustrated in FIG. 6, the function of the wireless terminal 105, which will be described later, can be realized.
The hardware has been described above.

[2−3.機能]
次に、制御装置101、固定基地局102、移動基地局103、測定用移動体104、無線端末105、106、107、…の機能について説明する。但し、無線端末105、106、107、…の機能は同じであるとして無線端末105の機能について説明し、無線端末106、107、…の機能については説明を省略する。
[2-3. function]
Next, the functions of the control device 101, the fixed base station 102, the mobile base station 103, the mobile body for measurement 104, the wireless terminals 105, 106, 107, ... Will be described. However, the functions of the wireless terminals 105 will be described assuming that the functions of the wireless terminals 105, 106, 107, ... Are the same, and the functions of the wireless terminals 106, 107, ... Will be omitted.

(制御装置、固定基地局)
まず、図7を参照しながら、制御装置101及び固定基地局102の機能について説明する。図7は、制御装置及び固定基地局が有する機能の一例を示したブロック図である。
(Control device, fixed base station)
First, the functions of the control device 101 and the fixed base station 102 will be described with reference to FIG. 7. FIG. 7 is a block diagram showing an example of the functions of the control device and the fixed base station.

図7に示すように、制御装置101は、記憶部111、測定制御部112、重心計算部113、及び移動先決定部114を有する。固定基地局102は、送受信部121を有する。 As shown in FIG. 7, the control device 101 includes a storage unit 111, a measurement control unit 112, a center of gravity calculation unit 113, and a movement destination determination unit 114. The fixed base station 102 has a transmission / reception unit 121.

記憶部111の機能は、上述したメモリ101bにより実現できる。測定制御部112、重心計算部113、及び移動先決定部114の機能は、上述したCPU101aにより実現できる。送受信部121の機能は、上述したアンテナ群102a、RF回路102b、信号処理回路102c、及びCPU102dの機能により実現できる。なお、制御装置101と固定基地局102との間の通信は、上述したNIF回路101c、102fにより実現できる。 The function of the storage unit 111 can be realized by the memory 101b described above. The functions of the measurement control unit 112, the center of gravity calculation unit 113, and the movement destination determination unit 114 can be realized by the CPU 101a described above. The function of the transmission / reception unit 121 can be realized by the functions of the antenna group 102a, the RF circuit 102b, the signal processing circuit 102c, and the CPU 102d described above. Communication between the control device 101 and the fixed base station 102 can be realized by the above-mentioned NIF circuits 101c and 102f.

記憶部111には、電波マップ111a、端末マップ111b、重心情報111c、及び移動情報111dが格納される。
なお、説明の都合上、記憶部111に格納される電波マップPMを電波マップ111a、記憶部111に格納される端末マップTMを端末マップ111bと呼ぶ場合がある。電波マップPMは、測定用移動体104により検出される電力分布(電波状況)である。端末マップTMは、測定用移動体104により検出される端末数の分布(端末分布)である。
The storage unit 111 stores the radio wave map 111a, the terminal map 111b, the center of gravity information 111c, and the movement information 111d.
For convenience of explanation, the radio wave map PM stored in the storage unit 111 may be referred to as a radio wave map 111a, and the terminal map TM stored in the storage unit 111 may be referred to as a terminal map 111b. The radio wave map PM is a power distribution (radio wave condition) detected by the measuring mobile body 104. The terminal map TM is a distribution of the number of terminals (terminal distribution) detected by the measurement mobile body 104.

重心情報111cは、電波マップPMから算出される電力分布の重心位置、及び、端末マップTMから算出される端末数の重心位置に関する情報である。移動情報111dは、重心情報111cに基づいて算出される移動基地局103の移動量に関する情報である。電波マップPM、端末マップTM、重心情報111c、及び移動情報111dについては後段において、さらに説明する。 The center of gravity information 111c is information on the position of the center of gravity of the power distribution calculated from the radio wave map PM and the position of the center of gravity of the number of terminals calculated from the terminal map TM. The movement information 111d is information regarding the movement amount of the mobile base station 103 calculated based on the center of gravity information 111c. The radio wave map PM, the terminal map TM, the center of gravity information 111c, and the movement information 111d will be further described later.

測定制御部112は、予め設定された複数の測定ポイントを経由するルートに沿って測定用移動体104を移動させ、各測定ポイントで電波状況及び端末分布を測定させる制御を実施する。重心計算部113は、測定用移動体104により測定された電波状況及び端末分布に基づいて重心情報111cを生成する。移動先決定部114は、重心情報111cに基づいて移動情報111dを生成する。 The measurement control unit 112 moves the measurement moving body 104 along a route via a plurality of preset measurement points, and controls the measurement of the radio wave condition and the terminal distribution at each measurement point. The center of gravity calculation unit 113 generates the center of gravity information 111c based on the radio wave condition and the terminal distribution measured by the measuring mobile body 104. The movement destination determination unit 114 generates movement information 111d based on the center of gravity information 111c.

なお、測定用移動体104の制御方法、重心情報111c及び移動情報111dの生成方法については後述する。
測定用移動体104と制御装置101との間の通信は、固定基地局102の送受信部121により実施される。例えば、測定制御部112は、送受信部121により、測定用移動体104の移動や測定を指示する制御信号を測定用移動体104に送信する。測定制御部112は、送受信部121により、測定用移動体104から測定結果を受信する。
The method of controlling the moving body 104 for measurement and the method of generating the center of gravity information 111c and the moving information 111d will be described later.
Communication between the measurement mobile body 104 and the control device 101 is carried out by the transmission / reception unit 121 of the fixed base station 102. For example, the measurement control unit 112 transmits a control signal instructing the movement or measurement of the measurement mobile body 104 to the measurement mobile body 104 by the transmission / reception unit 121. The measurement control unit 112 receives the measurement result from the measurement moving body 104 by the transmission / reception unit 121.

移動基地局103と制御装置101との間の通信は、送受信部121により実施される。例えば、移動先決定部114は、送受信部121により、移動情報111dを移動基地局103に送信し、移動基地局103の位置を制御する。例えば、移動情報111dには、移動基地局103の現在位置から移動先の位置までの移動量(移動ベクトルMV)に関する情報が含まれる。 Communication between the mobile base station 103 and the control device 101 is carried out by the transmission / reception unit 121. For example, the movement destination determination unit 114 transmits the movement information 111d to the mobile base station 103 by the transmission / reception unit 121, and controls the position of the mobile base station 103. For example, the movement information 111d includes information on the movement amount (movement vector MV) from the current position of the mobile base station 103 to the position of the movement destination.

制御装置101及び固定基地局102は上記のような機能を有する。
(移動基地局)
次に、図8を参照しながら、移動基地局103の機能について説明する。図8は、移動基地局が有する機能の一例を示したブロック図である。
The control device 101 and the fixed base station 102 have the above-mentioned functions.
(Mobile base station)
Next, the function of the mobile base station 103 will be described with reference to FIG. FIG. 8 is a block diagram showing an example of the functions of the mobile base station.

図8に示すように、移動基地局103は、記憶部131、移動制御部132、状況判断部133、及び無線制御部134を有する。
記憶部131の機能は、上述したメモリ103eにより実現できる。移動制御部132、状況判断部133、及び無線制御部134の機能は、主に上述したCPU103dにより実現できる。
As shown in FIG. 8, the mobile base station 103 includes a storage unit 131, a mobile control unit 132, a situation determination unit 133, and a radio control unit 134.
The function of the storage unit 131 can be realized by the memory 103e described above. The functions of the movement control unit 132, the situation determination unit 133, and the wireless control unit 134 can be realized mainly by the CPU 103d described above.

記憶部131には、自局位置情報131a、及び移動情報131bが格納される。自局位置情報131aは、移動基地局103の現在位置を示す情報である。移動基地局103の現在位置は、例えば、GPSや加速度センサなどを利用して検出できる。移動情報131bは、制御装置101から受信した移動情報111dである。つまり、移動情報131bには、移動基地局103の現在位置から移動先の位置までの移動量(移動ベクトルMV)に関する情報が含まれる。 The storage unit 131 stores the own station position information 131a and the movement information 131b. The own station position information 131a is information indicating the current position of the mobile base station 103. The current position of the mobile base station 103 can be detected by using, for example, GPS or an acceleration sensor. The movement information 131b is the movement information 111d received from the control device 101. That is, the movement information 131b includes information on the movement amount (movement vector MV) from the current position of the mobile base station 103 to the position of the movement destination.

移動制御部132は、自局位置情報131a及び移動情報131bに基づいて移動基地局103の位置を移動させる。例えば、移動制御部132は、自局位置情報131aが示す現在位置を起点として、移動情報131bに含まれる移動ベクトルMVの分だけ移動した位置を特定する。そして、移動制御部132は、駆動回路103gを制御して、特定した位置に移動基地局103を移動させる。 The movement control unit 132 moves the position of the mobile base station 103 based on the own station position information 131a and the movement information 131b. For example, the movement control unit 132 specifies a position moved by the movement vector MV included in the movement information 131b, starting from the current position indicated by the own station position information 131a. Then, the movement control unit 132 controls the drive circuit 103g to move the mobile base station 103 to a specified position.

状況判断部133は、移動制御部132が特定した位置に移動する最中、障害物の存在や固定基地局102から出力される電波の受信状況などを監視する。
例えば、状況判断部133は、センサ群103fの超音波センサにより進路にある障害物を監視する。障害物により移動先へ到達できない状況の場合、状況判断部133は、移動制御部132に停止を指示し、制御装置101により新たな移動先が決定されるまで停止位置に留まる。
The situation determination unit 133 monitors the presence of obstacles and the reception status of radio waves output from the fixed base station 102 while the movement control unit 132 is moving to the specified position.
For example, the situation determination unit 133 monitors an obstacle in the course by the ultrasonic sensor of the sensor group 103f. When the movement destination cannot be reached due to an obstacle, the situation determination unit 133 instructs the movement control unit 132 to stop, and stays at the stop position until a new movement destination is determined by the control device 101.

また、状況判断部133は、固定基地局102から出力される電波が届かないエリア又は電波の強度が所定の閾値以下となるエリアに移動基地局103が進行した場合、移動制御部132に停止を指示し、制御装置101により新たな移動先が決定されるまで停止位置に留まる。 Further, the situation determination unit 133 stops the mobile control unit 132 when the mobile base station 103 advances to an area where the radio wave output from the fixed base station 102 does not reach or the strength of the radio wave is equal to or less than a predetermined threshold value. Instruct and stay in the stop position until the control device 101 determines a new destination.

無線制御部134は、無線端末105、106、107、…との無線通信を制御する。また、無線制御部134は、固定基地局102との無線通信を制御する。また、無線制御部134は、測定用移動体104との無線通信を制御する。 The wireless control unit 134 controls wireless communication with wireless terminals 105, 106, 107, .... In addition, the wireless control unit 134 controls wireless communication with the fixed base station 102. In addition, the wireless control unit 134 controls wireless communication with the measurement mobile body 104.

移動基地局103は上記のような機能を有する。
(測定用移動体)
次に、図9を参照しながら、測定用移動体104の機能について説明する。図9は、測定用移動体が有する機能の一例を示したブロック図である。
The mobile base station 103 has the above-mentioned functions.
(Mobile for measurement)
Next, the function of the measuring moving body 104 will be described with reference to FIG. FIG. 9 is a block diagram showing an example of the function of the moving body for measurement.

図9に示すように、測定用移動体104は、記憶部141、飛行制御部142、端末検知部143、電波検知部144、及びマップ生成部145を有する。
記憶部141の機能は、上述したメモリ104eにより実現できる。飛行制御部142、端末検知部143、電波検知部144、及びマップ生成部145の機能は、主に上述したCPU104dにより実現できる。
As shown in FIG. 9, the measuring mobile body 104 has a storage unit 141, a flight control unit 142, a terminal detection unit 143, a radio wave detection unit 144, and a map generation unit 145.
The function of the storage unit 141 can be realized by the memory 104e described above. The functions of the flight control unit 142, the terminal detection unit 143, the radio wave detection unit 144, and the map generation unit 145 can be realized mainly by the CPU 104d described above.

記憶部141には、電波測定結果141a、端末測定結果141b、電波マップ141c、端末マップ141d、及び測定位置情報141eが格納される。
電波測定結果141aは、移動基地局103から出力される電波の各測定ポイントにおける測定結果である。端末測定結果141bは、各測定ポイントにおける端末数の測定結果である。電波マップ141cは、記憶部141に格納される電波マップPMである。端末マップ141dは、記憶部141に格納される端末マップTMである。測定位置情報141eは、各測定ポイントの位置を示す情報である。
The storage unit 141 stores the radio wave measurement result 141a, the terminal measurement result 141b, the radio wave map 141c, the terminal map 141d, and the measurement position information 141e.
The radio wave measurement result 141a is a measurement result at each measurement point of the radio wave output from the mobile base station 103. The terminal measurement result 141b is a measurement result of the number of terminals at each measurement point. The radio wave map 141c is a radio wave map PM stored in the storage unit 141. The terminal map 141d is a terminal map TM stored in the storage unit 141. The measurement position information 141e is information indicating the position of each measurement point.

なお、電波測定結果141a、端末測定結果141b、及び測定位置情報141eについては後段において、さらに説明する。
飛行制御部142は、駆動回路104gを制御して測定用移動体104の位置、高度、姿勢を制御し、制御装置101により指定されたルートで測定ポイント間を移動する。
The radio wave measurement result 141a, the terminal measurement result 141b, and the measurement position information 141e will be further described later.
The flight control unit 142 controls the drive circuit 104g to control the position, altitude, and attitude of the measurement moving body 104, and moves between the measurement points by the route designated by the control device 101.

端末検知部143は、測定用移動体104の下方に測定用信号(例えば、既知のパイロット信号や参照信号)を送信する。そして、端末検知部143は、測定用信号に対する無線端末の応答数に基づいて各測定ポイントにおける端末数を検知し、検知結果を端末測定結果141bとして記憶部141に格納する。 The terminal detection unit 143 transmits a measurement signal (for example, a known pilot signal or a reference signal) below the measurement mobile body 104. Then, the terminal detection unit 143 detects the number of terminals at each measurement point based on the number of responses of the wireless terminal to the measurement signal, and stores the detection result as the terminal measurement result 141b in the storage unit 141.

電波検知部144は、移動基地局103から出力される電波の電波状況を検知する。
例えば、電波検知部144は、電波状況として、移動基地局103が形成する通信エリア(セル)のRSRP(Reference Signal Received Power)やRSRQ(Reference Signal Received Quality)を検知する。RSRPは、セル固有参照信号を受信する無線端末におけるRE(Resource Element)毎の平均電力である。RSRPは、セル固有参照信号のSINR(Signal-to-Interference plus Noise Ratio)である。電波検知部144は、検知結果を電波測定結果141aとして記憶部141に格納する。
The radio wave detection unit 144 detects the radio wave condition of the radio wave output from the mobile base station 103.
For example, the radio wave detection unit 144 detects RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality) of the communication area (cell) formed by the mobile base station 103 as the radio wave condition. RSRP is the average power for each RE (Resource Element) in the wireless terminal that receives the cell-specific reference signal. RSRP is the SINR (Signal-to-Interference plus Noise Ratio) of the cell-specific reference signal. The radio wave detection unit 144 stores the detection result as the radio wave measurement result 141a in the storage unit 141.

マップ生成部145は、端末測定結果141b及び測定位置情報141eに基づいて端末マップTM(端末マップ141d)を生成する。また、マップ生成部145は、電波測定結果141a及び測定位置情報141eに基づいて電波マップPM(電波マップ141c)を生成する。そして、マップ生成部145は、電波マップPM及び端末マップTMを移動基地局103に送信する。電波マップPM及び端末マップTMは、移動基地局103及び固定基地局102を経由して制御装置101により受信される。 The map generation unit 145 generates a terminal map TM (terminal map 141d) based on the terminal measurement result 141b and the measurement position information 141e. Further, the map generation unit 145 generates a radio wave map PM (radio wave map 141c) based on the radio wave measurement result 141a and the measurement position information 141e. Then, the map generation unit 145 transmits the radio wave map PM and the terminal map TM to the mobile base station 103. The radio wave map PM and the terminal map TM are received by the control device 101 via the mobile base station 103 and the fixed base station 102.

測定用移動体104は上記のような機能を有する。
(無線端末)
次に、図10を参照しながら、無線端末105の機能について説明する。図10は、無線端末が有する機能の一例を示したブロック図である。
The measuring mobile body 104 has the above-mentioned functions.
(Wireless terminal)
Next, the function of the wireless terminal 105 will be described with reference to FIG. FIG. 10 is a block diagram showing an example of the function of the wireless terminal.

図10に示すように、無線端末105は、位置情報取得部151、及び送受信部152を有する。位置情報取得部151の機能は、主に上述したCPU105dにより実現できる。送受信部152の機能は、上述したアンテナ105a、RF回路105b、信号処理回路105c、及びCPU105dにより実現できる。 As shown in FIG. 10, the wireless terminal 105 has a position information acquisition unit 151 and a transmission / reception unit 152. The function of the position information acquisition unit 151 can be realized mainly by the CPU 105d described above. The function of the transmission / reception unit 152 can be realized by the above-mentioned antenna 105a, RF circuit 105b, signal processing circuit 105c, and CPU 105d.

位置情報取得部151は、例えば、GPSや加速度センサなどにより現在位置の情報を取得する。送受信部152は、移動基地局103との間で信号を送受信する。また、送受信部152は、測定用移動体104から送信される測定用信号を受信したとき、受信した測定用信号に対する応答を測定用移動体104に送信する。なお、送受信部152は、位置情報取得部151が取得した現在位置の情報を測定用移動体104に送信してもよい。 The position information acquisition unit 151 acquires the current position information by, for example, GPS or an acceleration sensor. The transmission / reception unit 152 transmits / receives a signal to / from the mobile base station 103. Further, when the transmission / reception unit 152 receives the measurement signal transmitted from the measurement mobile body 104, the transmission / reception unit 152 transmits a response to the received measurement signal to the measurement mobile body 104. The transmission / reception unit 152 may transmit the information of the current position acquired by the position information acquisition unit 151 to the measurement moving body 104.

無線端末105は上記のような機能を有する。
(各種情報)
ここで、図11から図17を参照しながら、電波測定結果141a、電波マップPM、測定位置情報141e、端末測定結果141b、端末マップTM、重心情報111c、及び移動情報111d(移動情報131b)について、さらに説明する。
The wireless terminal 105 has the above-mentioned functions.
(Various information)
Here, with reference to FIGS. 11 to 17, the radio wave measurement result 141a, the radio wave map PM, the measurement position information 141e, the terminal measurement result 141b, the terminal map TM, the center of gravity information 111c, and the movement information 111d (movement information 131b). , Further explanation.

電波測定結果141aは、例えば、図11のような情報を含む。図11は、電波測定結果の例を示した図である。図11に示すように、電波測定結果141aは、測定時刻、RSRP、RSRQなどの情報を含む。測定時刻は、測定用移動体104によりRSRP、RSRQが測定された時刻である。 The radio wave measurement result 141a includes, for example, information as shown in FIG. FIG. 11 is a diagram showing an example of radio wave measurement results. As shown in FIG. 11, the radio wave measurement result 141a includes information such as measurement time, RSRP, and RSRQ. The measurement time is the time when RSRP and RSRQ are measured by the measuring mobile body 104.

なお、ここでは説明の都合上、RSRP、RSRQ、端末数が同じタイミングで測定されているとする。また、電波状況を表す指標としてRSRP及びRSRQの組を例示しているが、RSRP及びRSRQのいずれか一方、或いは、RSRP及びRSRQとは異なる指標(電波強度に関する指標)を電波状況の指標として利用してもよい。 Here, for convenience of explanation, it is assumed that RSRP, RSRQ, and the number of terminals are measured at the same timing. In addition, although the set of RSRP and RSRQ is illustrated as an index showing the radio wave condition, either one of RSRP and RSRQ or an index different from RSRP and RSRQ (index related to radio wave intensity) is used as an index of radio wave condition. You may.

電波マップPMは、例えば、図12のような情報を含む。図12は、電波マップの例を示した図である。図12に示すように、電波マップPMは、測定位置の座標(X,Y)、RSRP、RSRQなどの情報を含む。測定位置の座標(X,Y)は、例えば、地平面に平行な平面座標系の点に対応し、測定用移動体104が電波状況及び端末数を測定する測定ポイントの位置を表す。 The radio wave map PM includes, for example, the information shown in FIG. FIG. 12 is a diagram showing an example of a radio wave map. As shown in FIG. 12, the radio wave map PM includes information such as coordinates (X, Y) of measurement positions, RSRP, and RSRQ. The coordinates (X, Y) of the measurement position correspond to, for example, a point in the plane coordinate system parallel to the ground plane, and represent the position of the measurement point at which the moving body 104 for measurement measures the radio wave condition and the number of terminals.

電波マップPMに含まれる測定位置の座標(X,Y)は、図13に示すような測定位置情報141eに基づいて特定される。図13は、測定位置情報の例を示した図である。図13に示すように、測定位置情報141eは、測定用移動体104によりRSRP、RSRQ、及び端末数が測定された時刻(測定時刻)と、測定ポイントの位置(測定位置)と、測定高度とを対応付ける情報である。 The coordinates (X, Y) of the measurement position included in the radio wave map PM are specified based on the measurement position information 141e as shown in FIG. FIG. 13 is a diagram showing an example of measurement position information. As shown in FIG. 13, the measurement position information 141e includes the time (measurement time) when the RSRP, RSRQ, and the number of terminals are measured by the measurement mobile body 104, the position of the measurement point (measurement position), and the measurement altitude. It is the information to associate with.

上記のように、電波測定結果141aには測定時刻が含まれる。そのため、電波測定結果141aに含まれる測定時刻をキーに測定位置情報141eの内容を検索することで、その測定時刻に対応する測定位置を抽出することができる。そのため、マップ生成部145は、測定時刻をキーに、電波測定結果141aのRSRP及びRSRQなどと、測定位置情報141eの測定位置とを対応付けて電波マップPMを生成する。 As described above, the radio wave measurement result 141a includes the measurement time. Therefore, by searching the content of the measurement position information 141e using the measurement time included in the radio wave measurement result 141a as a key, the measurement position corresponding to the measurement time can be extracted. Therefore, the map generation unit 145 generates the radio wave map PM by associating the RSRP and RSRQ of the radio wave measurement result 141a with the measurement position of the measurement position information 141e using the measurement time as a key.

端末測定結果141bは、例えば、図14のような情報を含む。図14は、端末測定結果の例を示した図である。図14に示すように、端末測定結果141bは、測定時刻、及び端末数の情報を含む。マップ生成部145は、電波マップPMと同様に測定時刻をキーにして、端末測定結果141bの端末数と、測定位置情報141eの測定位置とを対応付けて、図15に示すような端末マップTMを生成する。図15は、端末マップの例を示した図である。 The terminal measurement result 141b includes, for example, information as shown in FIG. FIG. 14 is a diagram showing an example of terminal measurement results. As shown in FIG. 14, the terminal measurement result 141b includes information on the measurement time and the number of terminals. Similar to the radio wave map PM, the map generation unit 145 uses the measurement time as a key to associate the number of terminals of the terminal measurement result 141b with the measurement position of the measurement position information 141e, and the terminal map TM as shown in FIG. To generate. FIG. 15 is a diagram showing an example of a terminal map.

重心情報111cは、例えば、図16のような情報を含む。図16は、重心情報の例を示した図である。図16に示すように、重心情報111cは、電波マップPMから得られる電力分布の重心位置(電波)と、端末分布の重心位置(端末)とを含む。 The center of gravity information 111c includes, for example, information as shown in FIG. FIG. 16 is a diagram showing an example of center of gravity information. As shown in FIG. 16, the center of gravity information 111c includes the center of gravity position (radio wave) of the power distribution obtained from the radio wave map PM and the center of gravity position (terminal) of the terminal distribution.

例えば、k番目の測定ポイントの測定位置をr(r=(Xk,Yk))、k番目の測定ポイントにおける電波状況の指標(RSRPなど)をAと表記すると、電力分布の重心位置gP(gP=(X1w,Y1w))は、下記の式(1)で与えられる。k番目の測定ポイントにおける端末数をnと表記すると、端末分布の重心位置gT(gT=(X2w,Y2w))は、下記の式(2)で与えられる。 For example, the measurement position of the k-th measurement point r k (r k = (Xk , Yk)), the index of the radio wave state (such as RSRP) is denoted as A k in the k-th measurement point, the center of gravity of the power distribution gP (gP = (X1w, Y1w)) is given by the following formula (1). When the number of terminals at the kth measurement point is expressed as nk, the center of gravity position gT (gT = (X2w, Y2w)) of the terminal distribution is given by the following equation (2).

なお、r、gP、gTはベクトル量である。重心計算部113は、電波マップPM及び端末マップTMを参照し、下記の式(1)及び式(2)に基づいて電力分布の重心位置gP及び端末分布の重心位置gTを計算する。 In addition, r k, gP, gT is a vector quantity. The center of gravity calculation unit 113 calculates the center of gravity position gP of the power distribution and the center of gravity position gT of the terminal distribution based on the following equations (1) and (2) with reference to the radio wave map PM and the terminal map TM.

Figure 0006882683
Figure 0006882683

移動情報111dは、例えば、図17のような情報を含む。図17は、移動情報の例を示した図である。図17に示すように、移動情報111dは、移動ベクトルMV(MV=(dX,dY))の情報を含む。但し、dX=X2w−X1w、dY=Y2w−Y1wである。移動ベクトルMVは、電力分布の重心位置gPを始点とし、端末分布の重心位置gTを終点とするベクトルである。移動ベクトルMVは、重心情報111cに基づいて移動先決定部114により算出され、移動基地局103に通知される。 The movement information 111d includes, for example, information as shown in FIG. FIG. 17 is a diagram showing an example of movement information. As shown in FIG. 17, the movement information 111d includes information of the movement vector MV (MV = (dX, dY)). However, dX = X2w-X1w and dY = Y2w-Y1w. The movement vector MV is a vector starting from the center of gravity position gP of the power distribution and ending at the center of gravity position gT of the terminal distribution. The movement vector MV is calculated by the movement destination determination unit 114 based on the center of gravity information 111c, and is notified to the mobile base station 103.

上記の各種情報を利用して、以下のように移動基地局103の位置制御が実施される。
(位置制御方法)
ここで、図18から図21を参照しながら、移動基地局103の位置制御方法について、さらに説明する。
Using the above various information, the position control of the mobile base station 103 is performed as follows.
(Position control method)
Here, the position control method of the mobile base station 103 will be further described with reference to FIGS. 18 to 21.

図18は、測定用移動体の移動制御について説明するための図である。図19は、移動基地局の現在位置と電力分布の重心位置との関係について説明するための図である。図20は、端末数の重心位置について説明するための図である。図21は、移動基地局の移動制御について説明するための図である。 FIG. 18 is a diagram for explaining the movement control of the moving body for measurement. FIG. 19 is a diagram for explaining the relationship between the current position of the mobile base station and the position of the center of gravity of the power distribution. FIG. 20 is a diagram for explaining the position of the center of gravity of the number of terminals. FIG. 21 is a diagram for explaining the movement control of the mobile base station.

図18の例では、測定ポイントP1、P2、…、P16を含む測定領域SAが設定されている。また、測定用移動体104が移動するルートとして、P1→P2→…→P16が設定されている。測定用移動体104は、制御装置101の測定制御部112による制御を受け、ルートに沿って移動しながら測定ポイントP1、P2、…、P16のそれぞれで電波の状況及び端末数を測定する。 In the example of FIG. 18, the measurement region SA including the measurement points P1, P2, ..., P16 is set. Further, P1 → P2 → ... → P16 is set as the route on which the measurement moving body 104 moves. The measuring mobile body 104 is controlled by the measurement control unit 112 of the control device 101, and measures the radio wave condition and the number of terminals at each of the measurement points P1, P2, ..., P16 while moving along the route.

電波に影響を及ぼす障害物がない場合、移動基地局103から出力される電波の強度は、図19に示すように、測定領域SA内で移動基地局103の現在位置から離れるにつれて弱くなる。但し、電波を反射又は吸収する構造物の存在や電波干渉の影響などがあると電力分布の広がり方が等方的でなくなる。そのため、電波の強度が強くなる電力分布の重心位置gPは、図19のように移動基地局103の現在位置からずれた位置になる。他方、端末分布の重心位置gTは、図20に示すように、測定時点の端末分布で決まる。 When there are no obstacles affecting the radio waves, the intensity of the radio waves output from the mobile base station 103 becomes weaker as the distance from the current position of the mobile base station 103 in the measurement area SA increases, as shown in FIG. However, if there is a structure that reflects or absorbs radio waves or if there is an influence of radio wave interference, the spread of the power distribution will not be isotropic. Therefore, the position gP of the center of gravity of the power distribution in which the strength of the radio wave becomes strong becomes a position deviated from the current position of the mobile base station 103 as shown in FIG. On the other hand, the center of gravity position gT of the terminal distribution is determined by the terminal distribution at the time of measurement, as shown in FIG.

上記のように、移動先決定部114は、電力分布の重心位置gP及び端末分布の重心位置gTから移動ベクトルMVを計算し(図21(A)を参照)、移動ベクトルMVの分だけ移動基地局103を移動させる(図21(B)を参照)。つまり、移動先決定部114は、電波の強度が高い電力分布の重心位置gPと、無線端末が密集する端末分布の重心位置gTとが近づくように移動基地局103の位置を制御する。この制御により、移動基地局103の移動前に比べて通信環境が改善する。例えば、スループット特性が向上する。 As described above, the movement destination determination unit 114 calculates the movement vector MV from the center of gravity position gP of the power distribution and the center of gravity position gT of the terminal distribution (see FIG. 21 (A)), and the movement base is equal to the movement vector MV. The station 103 is moved (see FIG. 21 (B)). That is, the movement destination determination unit 114 controls the position of the mobile base station 103 so that the center-of-gravity position gP of the power distribution with high radio wave intensity and the center-of-gravity position gT of the terminal distribution in which wireless terminals are densely approached. By this control, the communication environment is improved as compared with before the movement of the mobile base station 103. For example, the throughput characteristics are improved.

但し、端末分布は時々刻々と変化しうる。また、移動基地局103の移動により電力分布の広がり方が変化しうる。これらの事情を考慮し、測定用移動体104による測定、制御装置101による重心位置gP、gTの計算、移動基地局103の移動制御を繰り返し実施することが好ましい。これらの処理を繰り返し実施することで、状況の変化に適時対応することができ、より好適な通信環境の維持に寄与する。 However, the terminal distribution can change from moment to moment. In addition, the spread of the power distribution may change due to the movement of the mobile base station 103. In consideration of these circumstances, it is preferable to repeatedly perform the measurement by the measuring mobile body 104, the calculation of the center of gravity positions gP and gT by the control device 101, and the movement control of the mobile base station 103. By repeatedly performing these processes, it is possible to respond to changes in the situation in a timely manner, which contributes to the maintenance of a more suitable communication environment.

以上、制御装置101、固定基地局102、移動基地局103、測定用移動体104、無線端末105、106、107、…の機能について説明した。
[2−4.処理の流れ]
次に、図22を参照しながら、無線通信システム100で実行される処理の流れについて説明する。図22は、第2実施形態に係る無線通信システムで実行される処理の流れを示したフロー図である。
The functions of the control device 101, the fixed base station 102, the mobile base station 103, the mobile body for measurement 104, the wireless terminals 105, 106, 107, ... Have been described above.
[2-4. Process flow]
Next, the flow of processing executed by the wireless communication system 100 will be described with reference to FIG. 22. FIG. 22 is a flow chart showing a flow of processing executed in the wireless communication system according to the second embodiment.

(S101)制御装置101の移動先決定部114は、移動基地局103を初期位置に移動させる。初期位置は、例えば、通信断や輻輳などが発生している災害現場やイベント会場など近辺に予め設定された位置である。 (S101) The movement destination determination unit 114 of the control device 101 moves the mobile base station 103 to the initial position. The initial position is, for example, a preset position in the vicinity of a disaster site or an event venue where communication interruption or congestion occurs.

(S102)移動基地局103の無線制御部134は、無線端末105などとの通信に利用する電波の出力を開始する。
(S103、S104)制御装置101の測定制御部112は、移動基地局103の初期位置を基準に設定される測定領域SA内の測定ポイントに測定用移動体104を移動させる。また、測定制御部112は、測定領域SA内の各測定ポイントで電波状況及び端末数を測定するように測定用移動体104の動作を制御する。
(S102) The wireless control unit 134 of the mobile base station 103 starts outputting radio waves used for communication with the wireless terminal 105 and the like.
(S103, S104) The measurement control unit 112 of the control device 101 moves the measurement mobile body 104 to a measurement point in the measurement area SA set with reference to the initial position of the mobile base station 103. Further, the measurement control unit 112 controls the operation of the measurement moving body 104 so as to measure the radio wave condition and the number of terminals at each measurement point in the measurement area SA.

上記の制御に応じて、測定用移動体104の飛行制御部142は、測定用移動体104を各測定ポイントに移動させる。各測定ポイントでは、端末検知部143が端末数を検知して端末測定結果141bを生成し、電波検知部144が電波状況を検知して電波測定結果141aを生成する。 In response to the above control, the flight control unit 142 of the measuring moving body 104 moves the measuring moving body 104 to each measurement point. At each measurement point, the terminal detection unit 143 detects the number of terminals and generates the terminal measurement result 141b, and the radio wave detection unit 144 detects the radio wave condition and generates the radio wave measurement result 141a.

測定用移動体104のマップ生成部145は、端末測定結果141bに基づいて端末マップTMを生成し、電波測定結果141aに基づいて電波マップPMを生成する。また、マップ生成部145は、移動基地局103に端末マップTM及び電波マップPMを送信する。移動基地局103の無線制御部134は、測定用移動体104から受信した端末マップTM及び電波マップPMを固定基地局102に送信する。固定基地局102の送受信部121は、移動基地局103から受信した端末マップTM及び電波マップPMを制御装置101に送信する。 The map generation unit 145 of the mobile body 104 for measurement generates the terminal map TM based on the terminal measurement result 141b, and generates the radio wave map PM based on the radio wave measurement result 141a. Further, the map generation unit 145 transmits the terminal map TM and the radio wave map PM to the mobile base station 103. The radio control unit 134 of the mobile base station 103 transmits the terminal map TM and the radio wave map PM received from the measurement mobile body 104 to the fixed base station 102. The transmission / reception unit 121 of the fixed base station 102 transmits the terminal map TM and the radio wave map PM received from the mobile base station 103 to the control device 101.

(S105)制御装置101の重心計算部113は、端末マップTM及び電波マップPMから重心情報111cを生成する。制御装置101の移動先決定部114は、重心情報111cに基づいて移動基地局103の移動先を示す移動ベクトルMVを計算する。そして、移動先決定部114は、固定基地局102を介して、移動ベクトルMVを移動基地局103に通知する(移動基地局103の移動制御)。 (S105) The center of gravity calculation unit 113 of the control device 101 generates the center of gravity information 111c from the terminal map TM and the radio wave map PM. The movement destination determination unit 114 of the control device 101 calculates a movement vector MV indicating the movement destination of the mobile base station 103 based on the center of gravity information 111c. Then, the movement destination determination unit 114 notifies the mobile base station 103 of the movement vector MV via the fixed base station 102 (movement control of the mobile base station 103).

(S106)移動基地局103の移動制御部132は、移動ベクトルMVの分だけ移動基地局103を現在位置から移動させる。
なお、移動基地局103の状況判断部133は、移動中に、障害物の存在や固定基地局102から出力される電波の受信状況などを監視する。
(S106) The movement control unit 132 of the mobile base station 103 moves the mobile base station 103 from the current position by the amount of the movement vector MV.
The status determination unit 133 of the mobile base station 103 monitors the presence of obstacles and the reception status of radio waves output from the fixed base station 102 during movement.

例えば、状況判断部133は、センサ群103fの超音波センサにより進路にある障害物を監視する。障害物により移動先へ到達できない状況の場合、状況判断部133は、例えば、移動制御部132に停止を指示し、制御装置101により新たな移動先が決定されるまで停止位置に留まる。 For example, the situation determination unit 133 monitors an obstacle in the course by the ultrasonic sensor of the sensor group 103f. In the case where the movement destination cannot be reached due to an obstacle, the situation determination unit 133 instructs the movement control unit 132 to stop, and stays at the stop position until a new movement destination is determined by the control device 101, for example.

また、固定基地局102から出力される電波が届かないエリア又は電波の強度が所定の閾値以下となるエリアに移動基地局103が進行した場合、状況判断部133は、例えば、移動制御部132に停止を指示し、制御装置101により新たな移動先が決定されるまで停止位置に留まる。 Further, when the mobile base station 103 advances to an area where the radio wave output from the fixed base station 102 does not reach or an area where the strength of the radio wave is equal to or less than a predetermined threshold value, the situation determination unit 133 may contact the mobile control unit 132, for example. It instructs the stop and stays in the stop position until the control device 101 determines a new movement destination.

(S107)制御装置101の移動先決定部114は、所定の完了条件を満たしたか否かを判定する。
所定の完了条件としては、例えば、災害などで障害が発生していた基地局の復旧が完了したことや、イベントが終了してイベント会場近辺の通信環境が改善したことなどがある。例えば、復旧が完了した基地局の信号を検知した場合や、イベント会場近辺における輻輳の発生頻度が低下した場合などに完了条件を満たしたと判定できる。
(S107) The movement destination determination unit 114 of the control device 101 determines whether or not the predetermined completion condition is satisfied.
Predetermined completion conditions include, for example, the completion of restoration of a base station that has failed due to a disaster or the like, and the improvement of the communication environment near the event venue after the event has ended. For example, it can be determined that the completion condition is satisfied when the signal of the base station for which restoration has been completed is detected, or when the frequency of occurrence of congestion in the vicinity of the event venue decreases.

所定の完了条件を満たした場合、図22に示した一連の処理は終了する。一方、所定の完了条件を満たしていない場合、処理はS103へと進む。つまり、所定の完了条件を満たすまで、測定用移動体104による測定や移動基地局103の移動制御が繰り返し実施され、好適な通信環境の維持及び更なる通信環境の改善が図られる。 When the predetermined completion condition is satisfied, the series of processes shown in FIG. 22 ends. On the other hand, if the predetermined completion condition is not satisfied, the process proceeds to S103. That is, until the predetermined completion condition is satisfied, the measurement by the measurement mobile body 104 and the movement control of the mobile base station 103 are repeatedly performed to maintain a suitable communication environment and further improve the communication environment.

(測定用移動体による処理)
ここで、図23を参照しながら、測定用移動体による処理の流れについて、さらに説明する。なお、図23に示した処理は、上述したS103及びS104の処理に対応する。図23は、測定用移動体による電波マップ及び端末マップの生成に係る処理(測定用移動体による処理)の流れを示したフロー図である。
(Processing by moving body for measurement)
Here, the flow of processing by the moving body for measurement will be further described with reference to FIG. 23. The process shown in FIG. 23 corresponds to the process of S103 and S104 described above. FIG. 23 is a flow chart showing the flow of processing (processing by the measuring mobile body) related to the generation of the radio wave map and the terminal map by the measuring mobile body.

(S111)飛行制御部142は、制御装置101から通知されるルートに沿って測定用移動体104を移動させる。ルート上には、電波状況及び端末数を測定する複数の測定ポイントが設定されている。飛行制御部142は、未測定の測定ポイントへ測定用移動体104を移動させる。 (S111) The flight control unit 142 moves the measurement moving body 104 along the route notified from the control device 101. A plurality of measurement points for measuring the radio wave condition and the number of terminals are set on the route. The flight control unit 142 moves the measurement moving body 104 to an unmeasured measurement point.

(S112)飛行制御部142は、測定用移動体104の移動先となる測定ポイントの位置情報(測定位置、測定高度)を取得する。また、飛行制御部142は、端末検知部143及び電波検知部144による端末数及び電波状況の測定時刻を取得し、測定位置情報141e(図13を参照)を生成する。なお、測定位置は、例えば、GPSや加速度センサなどを用いて取得できる。測定高度は、例えば、気圧センサなどを用いて取得できる。 (S112) The flight control unit 142 acquires the position information (measurement position, measurement altitude) of the measurement point to which the measurement moving body 104 moves. Further, the flight control unit 142 acquires the measurement time of the number of terminals and the radio wave condition by the terminal detection unit 143 and the radio wave detection unit 144, and generates the measurement position information 141e (see FIG. 13). The measurement position can be acquired by using, for example, GPS or an acceleration sensor. The measurement altitude can be obtained by using, for example, a barometric pressure sensor.

(S113)電波検知部144は、移動基地局103から出力される電波の電波状況を測定する。例えば、電波検知部144は、電波状況として、移動基地局103が形成する通信エリア(セル)のRSRPやRSRQなどを検知する。測定された電波状況は、電波測定結果141a(図11を参照)として記憶部141に格納される。 (S113) The radio wave detection unit 144 measures the radio wave condition of the radio wave output from the mobile base station 103. For example, the radio wave detection unit 144 detects RSRP, RSRQ, and the like in the communication area (cell) formed by the mobile base station 103 as the radio wave condition. The measured radio wave condition is stored in the storage unit 141 as a radio wave measurement result 141a (see FIG. 11).

(S114)端末検知部143は、無線制御部134を制御して測定用移動体104直下の所定範囲(例えば、測定ポイント間隔程度の幅を有する範囲)に電波を出力して信号(測定用信号)を送信し、測定用信号に対する応答状況から端末数を測定する。例えば、端末検知部143は、測定用信号に対する応答数を端末数としてカウントする。測定された端末数は、端末測定結果141b(図14を参照)として記憶部141に格納される。 (S114) The terminal detection unit 143 controls the wireless control unit 134 to output radio waves to a predetermined range (for example, a range having a width of about the measurement point interval) directly under the measurement mobile body 104 to output a signal (measurement signal). ) Is transmitted, and the number of terminals is measured from the response status to the measurement signal. For example, the terminal detection unit 143 counts the number of responses to the measurement signal as the number of terminals. The measured number of terminals is stored in the storage unit 141 as a terminal measurement result 141b (see FIG. 14).

(S115)マップ生成部145は、全ての測定ポイントで電波状況及び端末数を測定したか否かを判定する。全ての測定ポイントで測定した場合、処理はS116へと進む。一方、未測定の測定ポイントがある場合、処理はS111へと進む。 (S115) The map generation unit 145 determines whether or not the radio wave condition and the number of terminals have been measured at all the measurement points. When measured at all measurement points, the process proceeds to S116. On the other hand, if there is an unmeasured measurement point, the process proceeds to S111.

(S116、S117)マップ生成部145は、電波測定結果141a及び測定位置情報141eに基づいて電波マップPM(図12を参照)を生成する。また、マップ生成部145は、端末測定結果141b及び測定位置情報141eに基づいて端末マップTM(図15を参照)を生成する。 (S116, S117) The map generation unit 145 generates a radio wave map PM (see FIG. 12) based on the radio wave measurement result 141a and the measurement position information 141e. Further, the map generation unit 145 generates a terminal map TM (see FIG. 15) based on the terminal measurement result 141b and the measurement position information 141e.

(S118)マップ生成部145は、移動基地局103及び固定基地局102を介して制御装置101に端末マップTM及び電波マップPMを送信する。S118の処理が完了すると、図23に示した一連の処理は終了する。 (S118) The map generation unit 145 transmits the terminal map TM and the radio wave map PM to the control device 101 via the mobile base station 103 and the fixed base station 102. When the process of S118 is completed, the series of processes shown in FIG. 23 is completed.

(制御装置による処理)
ここで、図24を参照しながら、制御装置による処理の流れについて、さらに説明する。なお、図24に示した処理は、上述したS105の処理に対応する。図24は、移動基地局の移動制御に係る処理(制御装置による処理)の流れを示したフロー図である。
(Processing by control device)
Here, the flow of processing by the control device will be further described with reference to FIG. 24. The process shown in FIG. 24 corresponds to the process of S105 described above. FIG. 24 is a flow chart showing the flow of processing (processing by the control device) related to the movement control of the mobile base station.

(S121)重心計算部113は、移動基地局103及び固定基地局102を介して測定用移動体104から受信した電波マップPMに基づいて、電力分布の重心位置gPを計算する。例えば、重心計算部113は、上記の式(1)に基づいて電力分布の重心位置gPを計算し、計算結果を重心情報111c(図16を参照)として記憶部141に格納する。 (S121) The center of gravity calculation unit 113 calculates the center of gravity position gP of the power distribution based on the radio wave map PM received from the measurement mobile body 104 via the mobile base station 103 and the fixed base station 102. For example, the center of gravity calculation unit 113 calculates the center of gravity position gP of the power distribution based on the above equation (1), and stores the calculation result as the center of gravity information 111c (see FIG. 16) in the storage unit 141.

(S122)重心計算部113は、移動基地局103及び固定基地局102を介して測定用移動体104から受信した端末マップTMに基づいて、端末分布の重心位置gTを計算する。例えば、重心計算部113は、上記の式(2)に基づいて端末分布の重心位置gTを計算し、計算結果を重心情報111c(図16を参照)として記憶部141に格納する。 (S122) The center of gravity calculation unit 113 calculates the center of gravity position gT of the terminal distribution based on the terminal map TM received from the measurement mobile body 104 via the mobile base station 103 and the fixed base station 102. For example, the center of gravity calculation unit 113 calculates the center of gravity position gT of the terminal distribution based on the above equation (2), and stores the calculation result as the center of gravity information 111c (see FIG. 16) in the storage unit 141.

(S123)移動先決定部114は、重心情報111cに基づいて移動ベクトルMV(MV=(dX,dY))を計算する。但し、gP=(X1w,Y1w)、gT=(X2w,Y2w)の場合に、dX=X2w−X1w、dY=Y2w−Y1wである。つまり、移動ベクトルMVは、電力分布の重心位置gPを始点とし、端末分布の重心位置gTを終点とするベクトルである。移動先決定部114は、移動ベクトルMVを移動情報111d(図17を参照)として記憶部141に格納する。 (S123) The movement destination determination unit 114 calculates the movement vector MV (MV = (dX, dY)) based on the center of gravity information 111c. However, when gP = (X1w, Y1w) and gT = (X2w, Y2w), dX = X2w-X1w and dY = Y2w-Y1w. That is, the movement vector MV is a vector whose starting point is the center of gravity position gP of the power distribution and the ending point is the center of gravity position gT of the terminal distribution. The movement destination determination unit 114 stores the movement vector MV as movement information 111d (see FIG. 17) in the storage unit 141.

(S124)移動先決定部114は、固定基地局102を介して移動情報111dを移動基地局103に送信する。S124の処理が完了すると、図24に示した一連の処理は終了する。 (S124) The movement destination determination unit 114 transmits the movement information 111d to the mobile base station 103 via the fixed base station 102. When the process of S124 is completed, the series of processes shown in FIG. 24 is completed.

以上、無線通信システム100で実行される処理の流れについて説明した。
[2−5.変形例]
ここで、第2実施形態の変形例について説明する。
The flow of processing executed by the wireless communication system 100 has been described above.
[2-5. Modification example]
Here, a modified example of the second embodiment will be described.

(複数の測定用移動体、自律型の移動基地局)
これまでは説明の都合上、1台の測定用移動体104を用いて電波状況及び端末数を測定する無線通信システム100を例に説明を進めてきた。他方、変形例に係る無線通信システム200は、図25に示すように、複数の測定用移動体(測定用移動体203、204)を利用する。図25は、第2実施形態の一変形例に係る無線通信システムの一例を示した図である。
(Multiple measurement mobiles, autonomous mobile base stations)
So far, for convenience of explanation, the explanation has been carried out by taking as an example the wireless communication system 100 that measures the radio wave condition and the number of terminals using one mobile body 104 for measurement. On the other hand, as shown in FIG. 25, the wireless communication system 200 according to the modified example utilizes a plurality of measuring mobile bodies (measurement mobile bodies 203 and 204). FIG. 25 is a diagram showing an example of a wireless communication system according to a modification of the second embodiment.

例えば、図18に例示した測定領域SAの各測定ポイントで上記の測定を実施する場合、測定用移動体203がP1、P2、…、P8で測定を実施し、測定用移動体204がP9、P10、…、P16で測定を実施する。このように、測定用移動体203、204に異なる測定ポイントを設定し、測定用移動体203、204が並行して測定を実施することで、より短時間で測定を完了することができる。 For example, when the above measurement is performed at each measurement point in the measurement area SA illustrated in FIG. 18, the measurement moving body 203 performs the measurement at P1, P2, ..., P8, and the measuring moving body 204 is P9, Measurements are carried out at P10, ..., P16. In this way, by setting different measurement points for the measurement mobile bodies 203 and 204 and performing the measurement in parallel with the measurement mobile bodies 203 and 204, the measurement can be completed in a shorter time.

再び図25を参照する。無線通信システム200は、測定用移動体203、204に加え、固定基地局201、及び移動基地局202を有する。固定基地局201は、上述した固定基地局102と同様に通常の無線基地局として動作する。 See FIG. 25 again. The wireless communication system 200 has a fixed base station 201 and a mobile base station 202 in addition to the measurement mobile bodies 203 and 204. The fixed base station 201 operates as a normal radio base station in the same manner as the fixed base station 102 described above.

一方、移動基地局202は、上述した移動基地局103及び制御装置101の機能を併せ持つ。つまり、移動基地局202は、電波マップPM及び端末マップTMから電力分布の重心位置gP及び端末分布の重心位置gTを計算する。また、移動基地局202は、電力分布の重心位置gP及び端末分布の重心位置gTから移動ベクトルMVを計算し、自律的に移動基地局202の位置を好適な位置に制御する。 On the other hand, the mobile base station 202 also has the functions of the mobile base station 103 and the control device 101 described above. That is, the mobile base station 202 calculates the center-of-gravity position gP of the power distribution and the center-of-gravity position gT of the terminal distribution from the radio wave map PM and the terminal map TM. Further, the mobile base station 202 calculates the movement vector MV from the center of gravity position gP of the power distribution and the center of gravity position gT of the terminal distribution, and autonomously controls the position of the mobile base station 202 to a suitable position.

移動基地局202が有する機能は、図26のようになる。図26は、第2実施形態の一変形例に係る移動基地局が有する機能の一例を示したブロック図である。
図26に示すように、移動基地局202は、記憶部221、移動制御部222、状況判断部223、無線制御部224、測定制御部225、重心計算部226、及び移動先決定部227を有する。
The functions of the mobile base station 202 are as shown in FIG. FIG. 26 is a block diagram showing an example of the function of the mobile base station according to the modified example of the second embodiment.
As shown in FIG. 26, the mobile base station 202 has a storage unit 221, a movement control unit 222, a situation determination unit 223, a radio control unit 224, a measurement control unit 225, a center of gravity calculation unit 226, and a movement destination determination unit 227. ..

なお、移動基地局202の機能は、移動基地局103と同じハードウェア(図4を参照)により実現可能である。例えば、記憶部221の機能は、上述したメモリ103eにより実現できる。移動制御部222、状況判断部223、無線制御部224、測定制御部225、重心計算部226、及び移動先決定部227の機能は、主に上述したCPU103dにより実現できる。 The function of the mobile base station 202 can be realized by the same hardware as the mobile base station 103 (see FIG. 4). For example, the function of the storage unit 221 can be realized by the memory 103e described above. The functions of the movement control unit 222, the situation determination unit 223, the wireless control unit 224, the measurement control unit 225, the center of gravity calculation unit 226, and the movement destination determination unit 227 can be realized mainly by the CPU 103d described above.

記憶部221には、自局位置情報221a、電波マップ221b、端末マップ221c、重心情報221d、及び移動情報221eが格納される。自局位置情報221a、電波マップ221b、端末マップ221c、重心情報221d、及び移動情報221eは、それぞれ自局位置情報131a、電波マップ111a、端末マップ111b、重心情報111c、及び移動情報111dと同じ内容の情報である。 The storage unit 221 stores the own station position information 221a, the radio wave map 221b, the terminal map 221c, the center of gravity information 221d, and the movement information 221e. The own station position information 221a, radio wave map 221b, terminal map 221c, center of gravity information 221d, and movement information 221e have the same contents as the own station position information 131a, radio wave map 111a, terminal map 111b, center of gravity information 111c, and movement information 111d, respectively. Information.

移動制御部222は、自局位置情報221a及び移動情報221eに基づいて移動基地局202の位置を移動させる。例えば、移動制御部222は、自局位置情報221aが示す現在位置を起点として、移動情報221eに含まれる移動ベクトルMVの分だけ移動した位置を特定する。そして、移動制御部222は、駆動回路103gを制御して、特定した位置に移動基地局202を移動させる。 The movement control unit 222 moves the position of the mobile base station 202 based on the own station position information 221a and the movement information 221e. For example, the movement control unit 222 specifies a position moved by the movement vector MV included in the movement information 221e, starting from the current position indicated by the own station position information 221a. Then, the movement control unit 222 controls the drive circuit 103g to move the mobile base station 202 to the specified position.

状況判断部223は、移動制御部222が特定した位置に移動する最中、障害物の存在や固定基地局201から出力される電波の受信状況などを監視する。
例えば、状況判断部223は、センサ群103fの超音波センサにより進路にある障害物を監視する。障害物により移動先へ到達できない状況の場合、状況判断部223は、移動制御部222を制御して移動基地局202を停止させる。
The situation determination unit 223 monitors the presence of obstacles and the reception status of radio waves output from the fixed base station 201 while the movement control unit 222 is moving to the specified position.
For example, the situation determination unit 223 monitors an obstacle in the course by an ultrasonic sensor of the sensor group 103f. When the movement destination cannot be reached due to an obstacle, the situation determination unit 223 controls the movement control unit 222 to stop the mobile base station 202.

また、状況判断部223は、固定基地局102から出力される電波が届かないエリア又は電波の強度が所定の閾値以下となるエリアに移動基地局202が進行した場合、移動制御部222を制御して移動基地局202を停止させる。なお、後述する移動先決定部227により新たな移動先が決定されると、移動制御部222は、移動基地局202を新たな移動先に移動させる。 Further, the situation determination unit 223 controls the mobile control unit 222 when the mobile base station 202 advances to an area where the radio wave output from the fixed base station 102 does not reach or the area where the strength of the radio wave is equal to or less than a predetermined threshold value. To stop the mobile base station 202. When a new movement destination is determined by the movement destination determination unit 227, which will be described later, the movement control unit 222 moves the mobile base station 202 to the new movement destination.

無線制御部224は、無線端末105、106、107、…との無線通信を制御する。また、無線制御部224は、固定基地局201との無線通信を制御する。また、無線制御部224は、測定用移動体203、204との無線通信を制御する。 The wireless control unit 224 controls wireless communication with wireless terminals 105, 106, 107, .... In addition, the wireless control unit 224 controls wireless communication with the fixed base station 201. Further, the wireless control unit 224 controls wireless communication with the measurement mobile bodies 203 and 204.

測定制御部225は、予め設定された複数の測定ポイントを経由するルートに沿って測定用移動体203、204を移動させ、各測定ポイントで電波状況及び端末分布を測定させる制御を実施する。 The measurement control unit 225 moves the measurement mobile bodies 203 and 204 along a route via a plurality of preset measurement points, and controls the measurement of the radio wave condition and the terminal distribution at each measurement point.

重心計算部226は、測定用移動体203、204により測定された電波状況及び端末分布に基づいて重心情報221dを生成する。このとき、重心計算部226は、上記の式(1)及び式(2)に基づき、電波マップPM及び端末マップTMを用いて電力分布の重心位置gP及び端末分布の重心位置gTを計算する。 The center of gravity calculation unit 226 generates the center of gravity information 221d based on the radio wave condition and the terminal distribution measured by the measuring mobile bodies 203 and 204. At this time, the center of gravity calculation unit 226 calculates the center of gravity position gP of the power distribution and the center of gravity position gT of the terminal distribution using the radio wave map PM and the terminal map TM based on the above equations (1) and (2).

移動先決定部227は、重心情報221dに基づいて移動ベクトルMVを計算し、移動情報221eとして記憶部221に格納する。移動制御部222は、移動ベクトルMVの分だけ移動基地局202を現在位置から移動させる。なお、電波状況及び端末数の測定や、移動基地局202の移動は、上述した完了条件を満たすまで繰り返し実施される。 The movement destination determination unit 227 calculates the movement vector MV based on the center of gravity information 221d and stores it in the storage unit 221 as the movement information 221e. The movement control unit 222 moves the mobile base station 202 from the current position by the amount of the movement vector MV. The measurement of the radio wave condition and the number of terminals and the movement of the mobile base station 202 are repeatedly carried out until the above-mentioned completion condition is satisfied.

上記のように、複数の測定用移動体を利用することで測定にかかる時間を短縮することができ、より素早い通信環境の復旧に寄与する。また、自律的に位置を制御できる移動基地局202を採用することで、上述した制御装置101の利用や設置が難しい状況でも第2実施形態の技術を採用することが可能になる。 As described above, by using a plurality of mobile objects for measurement, the time required for measurement can be shortened, which contributes to quicker restoration of the communication environment. Further, by adopting the mobile base station 202 capable of autonomously controlling the position, it becomes possible to adopt the technique of the second embodiment even in a situation where it is difficult to use or install the above-mentioned control device 101.

(移動体の例)
ところで、これまでは説明の都合上、主にドローンを利用して測定用移動体及び移動基地局を実現する方法について述べてきた。測定用移動体には、上述した機能を提供するためにドローンのような飛行体を利用するのが好ましい。一方、移動基地局については、例えば、車両や船などを移動基地局として利用してもよい。車両としては、例えば、自動車、二輪車、バイクなどがある。船又は船に類する移動体としては、例えば、ボート、筏、浮子などがある。このように多様な移動体を利用して上述した第2実施形態の技術を実現することができる。
(Example of moving object)
By the way, for convenience of explanation, a method of realizing a mobile body for measurement and a mobile base station mainly by using a drone has been described so far. As the moving body for measurement, it is preferable to utilize a flying body such as a drone to provide the above-mentioned functions. On the other hand, as for the mobile base station, for example, a vehicle or a ship may be used as the mobile base station. Vehicles include, for example, automobiles, motorcycles, motorcycles, and the like. Ships or mobiles similar to ships include, for example, boats, rafts, floats and the like. As described above, the technique of the second embodiment described above can be realized by utilizing various mobile bodies.

(端末数の測定)
上記の説明では、端末数を測定する方法として、測定用移動体から測定用信号を送信し、測定用信号に対する応答をカウントする方法を導入した。但し、この方法の他にも、変形例として、無線端末のGPSデータを取得して端末マップTMを生成する方法を採用できる。また、各測定ポイントを基準とする狭い範囲毎に無線端末のWi−Fi SSID(Service Set Identifier)を検知し、検知数から端末マップTMを生成する方法を採用できる。
(Measurement of the number of terminals)
In the above description, as a method of measuring the number of terminals, a method of transmitting a measurement signal from the measurement moving body and counting the response to the measurement signal has been introduced. However, in addition to this method, as a modification, a method of acquiring GPS data of a wireless terminal and generating a terminal map TM can be adopted. Further, it is possible to adopt a method of detecting the Wi-Fi SSID (Service Set Identifier) of the wireless terminal for each narrow range based on each measurement point and generating the terminal map TM from the number of detections.

また、無線端末から出力される電波の強度を検知し、検知した強度の分布から端末マップTMを生成する方法を採用できる。さらに、測定用移動体に赤外線カメラを搭載し、赤外線カメラの画像から検出される人の密度に基づき、人がそれぞれ無線端末を保持していると仮定して、密度分布から端末マップTMを生成する方法を採用できる。このように、端末数の測定についても様々な変形が可能であり、これらの変形例も当然に第2実施形態の技術的範囲に属する。 Further, it is possible to adopt a method of detecting the intensity of the radio wave output from the wireless terminal and generating the terminal map TM from the distribution of the detected intensity. Furthermore, an infrared camera is mounted on the moving body for measurement, and a terminal map TM is generated from the density distribution on the assumption that each person holds a wireless terminal based on the density of people detected from the image of the infrared camera. Can be adopted. As described above, various modifications can be made to the measurement of the number of terminals, and these modifications naturally belong to the technical scope of the second embodiment.

(電波状況の測定)
上記の説明では、電波状況を表す指標として、RSRP及びRSRQを例示した。RSRPは電波の強度を表す指標の一例であり、RSRQは電波の品質を表す指標の一例である。RSRP以外に、電波の強度を表す指標としては、例えば、RSCP(Received Signal Code Power)やRSSI(Received Signal Strength Indicator)などがある。また、電波の品質を表す指標としては、RSRQ以外に、SIR(Signal to Interference Ratio)、CQI(Channel Quality Indicator)などがある。電波状況の測定に、これらの指標を利用してもよい。
(Measurement of radio wave condition)
In the above description, RSRP and RSRQ are exemplified as indicators representing the radio wave condition. RSRP is an example of an index showing the strength of radio waves, and RSRQ is an example of an index showing the quality of radio waves. In addition to RSRP, as an index showing the strength of radio waves, for example, there are RCSP (Received Signal Code Power) and RSSI (Received Signal Strength Indicator). In addition to RSRQ, there are SIR (Signal to Interference Ratio), CQI (Channel Quality Indicator), and the like as indexes indicating the quality of radio waves. These indicators may be used to measure the radio wave condition.

以上、第2実施形態について説明した。
<3.付記>
以上説明した実施形態に関し、さらに以下の付記を開示する。
The second embodiment has been described above.
<3. Addendum>
The following additional notes will be further disclosed with respect to the embodiments described above.

(付記1) 飛行動力を駆動する駆動電力部と、
複数の無線端末の上空に設定される複数の検出ポイントを通過するように前記駆動電力部を制御する制御部と、
移動基地局から出力される電波の状況を検出する電波検知部と、
前記複数の無線端末の分布を検出する端末検知部と、
前記電波の状況及び前記複数の無線端末の分布を前記移動基地局に通知する通知部と、
を有する、測定用移動体。
(Appendix 1) The drive power unit that drives the flight power and
A control unit that controls the drive power unit so as to pass through a plurality of detection points set above the plurality of wireless terminals, and a control unit.
A radio wave detector that detects the status of radio waves output from mobile base stations,
A terminal detection unit that detects the distribution of the plurality of wireless terminals,
A notification unit that notifies the mobile base station of the radio wave condition and the distribution of the plurality of wireless terminals.
A mobile body for measurement having.

(付記2) 前記測定用移動体は、前記移動基地局より低い高度で、前記移動基地局から出力される電波の状況を検出し、前記複数の無線端末の分布を検出する
付記1に記載の測定用移動体。
(Appendix 2) The measurement mobile body detects the condition of radio waves output from the mobile base station at an altitude lower than that of the mobile base station, and detects the distribution of the plurality of wireless terminals. Moving body for measurement.

(付記3) 前記電波の状況と前記複数の無線端末の分布とは、異なるルートを飛行する複数の測定用移動体により検出される
付記2に記載の測定用移動体。
(Appendix 3) The measurement mobile body according to Appendix 2, wherein the radio wave condition and the distribution of the plurality of wireless terminals are detected by a plurality of measurement mobile bodies flying on different routes.

(付記4) 移動動力を駆動する駆動電力部と、
端末と通信するための電波を出力する無線部と、
複数の無線端末の上空を飛行する測定用移動体により検出される前記電波の状況と、前記測定用移動体により検出される前記複数の無線端末の分布を受信する受信部と、
前記電波の状況と前記無線端末の分布に基づいて決定される位置に移動するように前記駆動電力部を制御する制御部と
を有する、移動基地局。
(Appendix 4) The drive power unit that drives the mobile power and
A wireless unit that outputs radio waves to communicate with the terminal,
A receiver that receives the radio wave condition detected by the measurement mobile body flying over the plurality of wireless terminals and the distribution of the plurality of wireless terminals detected by the measurement mobile body.
A mobile base station having a control unit that controls the drive power unit so as to move to a position determined based on the radio wave condition and the distribution of the wireless terminal.

(付記5) 前記位置は、前記測定用移動体による検出結果から算出される前記電波の強度分布の重心位置と前記複数の無線端末の分布の重心位置との差に基づいて決定される
付記4に記載の移動基地局。
(Appendix 5) The position is determined based on the difference between the position of the center of gravity of the intensity distribution of the radio wave calculated from the detection result by the moving body for measurement and the position of the center of gravity of the distribution of the plurality of wireless terminals. The mobile base station described in.

(付記6) 前記位置の決定は繰り返し実施され、
前記制御部は、前記位置が決定される度に前記決定される位置に移動するように前記駆動電力部を制御する
付記5に記載の移動基地局。
(Appendix 6) The determination of the position is repeatedly carried out.
The mobile base station according to Appendix 5, wherein the control unit controls the drive power unit so as to move to the determined position each time the position is determined.

(付記7) 前記無線部は、受信した前記電波の状況及び前記複数の無線端末の分布に関する情報を制御装置に送信し、
前記受信部は、該情報に基づいて前記制御装置が決定した前記位置の情報を該制御装置から受信し、
前記制御部は、該位置に移動するように前記駆動電力部を制御する
付記4に記載の移動基地局。
(Appendix 7) The radio unit transmits information on the status of the received radio waves and the distribution of the plurality of radio terminals to the control device.
The receiving unit receives the information of the position determined by the control device based on the information from the control device, and receives the information of the position.
The mobile base station according to Appendix 4, wherein the control unit controls the drive power unit so as to move to the position.

(付記8) 移動基地局が複数の無線端末と通信するための電波を出力し、
前記複数の無線端末の上空を飛行する測定用移動体が前記電波の状況を検出し、
前記測定用移動体が前記複数の無線端末の分布を検出し、
前記電波の状況と前記複数の無線端末の分布とに基づいて移動位置を決定し、
決定した移動位置に前記移動基地局を移動させる
位置制御方法。
(Appendix 8) The mobile base station outputs radio waves for communicating with multiple wireless terminals.
A mobile body for measurement flying over the plurality of wireless terminals detects the condition of the radio wave, and the state of the radio wave is detected.
The measuring mobile body detects the distribution of the plurality of wireless terminals,
The moving position is determined based on the radio wave condition and the distribution of the plurality of wireless terminals.
A position control method for moving the mobile base station to a determined moving position.

(付記9) 複数の無線端末の上空を飛行して移動基地局から出力される電波を受信する測定用移動体から、前記電波の状況及び前記複数の無線端末の分布の情報を受信し、
前記電波の状況と前記複数の無線端末の分布とに基づいて前記移動基地局の位置を決定する制御部と、
決定した前記位置に関する情報を前記移動基地局に通知する送信部と、
を有する、制御装置。
(Appendix 9) Information on the status of the radio waves and the distribution of the plurality of wireless terminals is received from the measurement mobile body that flies over the plurality of wireless terminals and receives the radio waves output from the mobile base station.
A control unit that determines the position of the mobile base station based on the radio wave condition and the distribution of the plurality of wireless terminals.
A transmitter that notifies the mobile base station of information about the determined position, and
Has a control device.

(付記10) 前記移動基地局及び/又は前記測定用移動体は、遠隔操縦式又は自律式の制御機構を有するマルチコプタである
付記4に記載の移動基地局。
(Appendix 10) The mobile base station according to Appendix 4, wherein the mobile base station and / or the measurement mobile body is a multicopter having a remote-controlled or autonomous control mechanism.

(付記11) 前記位置は、前記電波の強度分布の重心位置を始点とし、前記複数の無線端末の分布の重心位置を終点とする移動ベクトルに基づき、前記移動基地局の現在位置を起点として前記移動ベクトルの分だけ移動した位置に決定される
付記5に記載の移動基地局。
(Appendix 11) The position is based on a movement vector whose starting point is the center of gravity position of the radio wave intensity distribution and whose ending point is the center of gravity position of the distribution of the plurality of wireless terminals, and the current position of the mobile base station is the starting point. The mobile base station according to Appendix 5, which is determined at a position moved by the movement vector.

10 無線通信システム
11 制御システム
11a 無線基地局
11b 制御装置
12 移動基地局
12a 無線部
12b 制御部
12c 記憶部
13 測定用移動体
14 電波の状況
15 端末分布
16 測定用信号
MV 移動ベクトル
10 Wireless communication system 11 Control system 11a Wireless base station 11b Control device 12 Mobile base station 12a Wireless unit 12b Control unit 12c Storage unit 13 Measurement mobile unit 14 Radio wave condition 15 Terminal distribution 16 Measurement signal MV mobile vector

Claims (9)

飛行動力を駆動する駆動電力部と、
複数の無線端末の上空に設定される複数の検出ポイントを通過するように前記駆動電力部を制御する制御部と、
移動基地局から出力される電波の状況を検出する電波検知部と、
前記複数の無線端末の分布を検出する端末検知部と、
前記電波の状況及び前記複数の無線端末の分布を前記移動基地局に通知する通知部と、
を有する、測定用移動体。
The drive power unit that drives the flight power and
A control unit that controls the drive power unit so as to pass through a plurality of detection points set above the plurality of wireless terminals, and a control unit.
A radio wave detector that detects the status of radio waves output from mobile base stations,
A terminal detection unit that detects the distribution of the plurality of wireless terminals,
A notification unit that notifies the mobile base station of the radio wave condition and the distribution of the plurality of wireless terminals.
A mobile body for measurement having.
前記測定用移動体は、前記移動基地局より低い高度で、前記移動基地局から出力される電波の状況を検出し、前記複数の無線端末の分布を検出する
請求項1に記載の測定用移動体。
The measurement movement according to claim 1, wherein the measurement mobile body detects the state of radio waves output from the mobile base station at a lower altitude than the mobile base station, and detects the distribution of the plurality of wireless terminals. body.
前記電波の状況と前記複数の無線端末の分布とは、異なるルートを飛行する複数の測定用移動体により検出される
請求項2に記載の測定用移動体。
The measuring mobile body according to claim 2, wherein the radio wave condition and the distribution of the plurality of wireless terminals are detected by a plurality of measuring moving bodies flying on different routes.
移動動力を駆動する駆動電力部と、
端末と通信するための電波を出力する無線部と、
複数の無線端末の上空を飛行する測定用移動体により検出される前記電波の状況と、前記測定用移動体により検出される前記複数の無線端末の分布を受信する受信部と、
前記電波の状況と前記無線端末の分布に基づいて決定される位置に移動するように前記駆動電力部を制御する制御部と
を有する、移動基地局。
The drive power unit that drives the mobile power and
A wireless unit that outputs radio waves to communicate with the terminal,
A receiver that receives the radio wave condition detected by the measurement mobile body flying over the plurality of wireless terminals and the distribution of the plurality of wireless terminals detected by the measurement mobile body.
A mobile base station having a control unit that controls the drive power unit so as to move to a position determined based on the radio wave condition and the distribution of the wireless terminal.
前記位置は、前記測定用移動体による検出結果から算出される前記電波の強度分布の重心位置と前記複数の無線端末の分布の重心位置との差に基づいて決定される
請求項4に記載の移動基地局。
The position according to claim 4, wherein the position is determined based on the difference between the position of the center of gravity of the intensity distribution of the radio wave calculated from the detection result by the moving body for measurement and the position of the center of gravity of the distribution of the plurality of wireless terminals. Mobile base station.
前記位置の決定は繰り返し実施され、
前記制御部は、前記位置が決定される度に前記決定される位置に移動するように前記駆動電力部を制御する
請求項5に記載の移動基地局。
The determination of the position is repeated and
The mobile base station according to claim 5, wherein the control unit controls the drive power unit so as to move to the determined position each time the position is determined.
前記無線部は、受信した前記電波の状況及び前記複数の無線端末の分布に関する情報を制御装置に送信し、
前記受信部は、該情報に基づいて前記制御装置が決定した前記位置の情報を該制御装置から受信し、
前記制御部は、該位置に移動するように前記駆動電力部を制御する
請求項4に記載の移動基地局。
The radio unit transmits information on the status of the received radio waves and the distribution of the plurality of radio terminals to the control device.
The receiving unit receives the information of the position determined by the control device based on the information from the control device, and receives the information of the position.
The mobile base station according to claim 4, wherein the control unit controls the drive power unit so as to move to the position.
移動基地局が複数の無線端末と通信するための電波を出力し、
前記複数の無線端末の上空を飛行する測定用移動体が前記電波の状況を検出し、
前記測定用移動体が前記複数の無線端末の分布を検出し、
前記電波の状況と前記複数の無線端末の分布とに基づいて移動位置を決定し、
決定した移動位置に前記移動基地局を移動させる
位置制御方法。
The mobile base station outputs radio waves for communicating with multiple wireless terminals,
A mobile body for measurement flying over the plurality of wireless terminals detects the condition of the radio wave, and the state of the radio wave is detected.
The measuring mobile body detects the distribution of the plurality of wireless terminals,
The moving position is determined based on the radio wave condition and the distribution of the plurality of wireless terminals.
A position control method for moving the mobile base station to a determined moving position.
複数の無線端末の上空を飛行して移動基地局から出力される電波を受信する測定用移動体から、前記電波の状況及び前記複数の無線端末の分布の情報を受信し、
前記電波の状況と前記複数の無線端末の分布とに基づいて前記移動基地局の位置を決定する制御部と、
決定した前記位置に関する情報を前記移動基地局に通知する送信部と、
を有する、制御装置。
Information on the status of the radio waves and the distribution of the plurality of wireless terminals is received from the measurement mobile body that flies over the plurality of wireless terminals and receives the radio waves output from the mobile base station.
A control unit that determines the position of the mobile base station based on the radio wave condition and the distribution of the plurality of wireless terminals.
A transmitter that notifies the mobile base station of information about the determined position, and
Has a control device.
JP2017153871A 2017-08-09 2017-08-09 Mobile body for measurement, mobile base station, position control method, and control device Active JP6882683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153871A JP6882683B2 (en) 2017-08-09 2017-08-09 Mobile body for measurement, mobile base station, position control method, and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153871A JP6882683B2 (en) 2017-08-09 2017-08-09 Mobile body for measurement, mobile base station, position control method, and control device

Publications (2)

Publication Number Publication Date
JP2019033409A JP2019033409A (en) 2019-02-28
JP6882683B2 true JP6882683B2 (en) 2021-06-02

Family

ID=65524526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153871A Active JP6882683B2 (en) 2017-08-09 2017-08-09 Mobile body for measurement, mobile base station, position control method, and control device

Country Status (1)

Country Link
JP (1) JP6882683B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6955468B2 (en) * 2018-03-23 2021-10-27 株式会社日立国際電気 Unmanned flying object
CN113574963B (en) * 2019-03-29 2023-11-10 本田技研工业株式会社 Control device, control method, and storage medium
JP7388442B2 (en) * 2019-10-04 2023-11-29 日本電信電話株式会社 Propagation characteristic measurement system and propagation characteristic measurement method
JP6986595B2 (en) * 2020-05-26 2021-12-22 エヌ・ティ・ティ・ブロードバンドプラットフォーム株式会社 Information processing equipment and information processing method
JP7439937B2 (en) 2020-08-25 2024-02-28 日本電信電話株式会社 Method for determining the installation location of a mobile base station and the base station to which it is connected, and information processing device
JP7480957B2 (en) 2020-10-28 2024-05-10 日本電信電話株式会社 Wireless communication system, management server, and communication method
WO2023026445A1 (en) * 2021-08-26 2023-03-02 日本電信電話株式会社 Base station control system, base station control method, base station control device, and program
CN116506868A (en) * 2022-01-21 2023-07-28 中兴通讯股份有限公司 Communication base station, migration method of communication base station, and storage medium
CN115914045B (en) * 2022-11-11 2023-09-26 南通智大信息技术有限公司 Throughput optimization method and system for unmanned aerial vehicle relay system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3366810B2 (en) * 1996-08-21 2003-01-14 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system
JP2004336408A (en) * 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd Construction method of communication network, and communication system
JP5163337B2 (en) * 2008-07-24 2013-03-13 日本電気株式会社 Relay device, data processing method thereof, monitoring method, wireless communication system, and management device
JP2016192750A (en) * 2015-03-31 2016-11-10 パイオニア株式会社 Terminal state guiding device
JP2016219874A (en) * 2015-05-14 2016-12-22 日本電信電話株式会社 Wireless relay system
JP6514101B2 (en) * 2015-12-28 2019-05-15 Kddi株式会社 Communication relay device
JP6766423B2 (en) * 2016-04-20 2020-10-14 日本電気株式会社 Mobile communication system
JP6615827B2 (en) * 2017-05-12 2019-12-04 ソフトバンク株式会社 Communication system and remote control device

Also Published As

Publication number Publication date
JP2019033409A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6882683B2 (en) Mobile body for measurement, mobile base station, position control method, and control device
US11241969B2 (en) Unmanned aerial vehicle drive testing and mapping of carrier signals
CN110199566B (en) Unmanned aerial vehicle user equipment indication
US11943041B2 (en) Dynamic shielding system of cellular signals for an antenna of an unmanned aerial vehicle
US20200413267A1 (en) Ue modem for drones with flight path and 3d wireless environment signal quality information
Goddemeier et al. Investigation of air-to-air channel characteristics and a UAV specific extension to the rice model
US9918235B2 (en) Adaptive antenna operation for UAVs using terrestrial cellular networks
US10255817B2 (en) Computer implemented system and method for providing robust communication links to unmanned aerial vehicles
Goddemeier et al. Coverage evaluation of wireless networks for unmanned aerial systems
WO2018089071A2 (en) Wireless communication enhancements for unmanned aerial vehicle communications
CN114342443B (en) Communication control device, communication control method, and communication control program
TWI656758B (en) Communication terminal device for aircraft and mobile communication method thereof
Obreja et al. Evaluation of an indoor localization solution based on bluetooth low energy beacons
US20230007578A1 (en) Distance-based serving cell selection for communications between an aerial vehicle and a cellular radio access network
CN112055309A (en) Communication method and related equipment
CN117121402A (en) Autonomous beam switching in HAPS coverage
CN110895419A (en) Unmanned aerial vehicle positioner and expulsion device
KR101732870B1 (en) network optimizing position searching system using drone
Ullah et al. An unmanned aerial vehicle based wireless network for bridging communication
JP2020072417A (en) Mobile station, flight vehicle and mobile communication system
JP2017208722A (en) Mobile terminal search system, unmanned moving body and mobile terminal search method
EP4007178A1 (en) Electronic equipment and method in wireless communication system
US11770165B2 (en) Wireless communication device and selection method
US12035189B2 (en) System and method for facilitating index-based positioning in a non-terrestrial network
KR102175576B1 (en) LoRa base ship position measurement system and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200529

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6882683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150