JP6882243B2 - Avoidance support device - Google Patents

Avoidance support device Download PDF

Info

Publication number
JP6882243B2
JP6882243B2 JP2018190634A JP2018190634A JP6882243B2 JP 6882243 B2 JP6882243 B2 JP 6882243B2 JP 2018190634 A JP2018190634 A JP 2018190634A JP 2018190634 A JP2018190634 A JP 2018190634A JP 6882243 B2 JP6882243 B2 JP 6882243B2
Authority
JP
Japan
Prior art keywords
ship
maneuvering
avoidance
calculation unit
risk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018190634A
Other languages
Japanese (ja)
Other versions
JP2020060886A (en
Inventor
紳也 中村
紳也 中村
尚樹 岡田
尚樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Marine Science Inc
Original Assignee
Japan Marine Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Marine Science Inc filed Critical Japan Marine Science Inc
Priority to JP2018190634A priority Critical patent/JP6882243B2/en
Publication of JP2020060886A publication Critical patent/JP2020060886A/en
Application granted granted Critical
Publication of JP6882243B2 publication Critical patent/JP6882243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Description

本発明は、避航支援装置に関し、例えば、他船との衝突を回避するための最適な操船方法を計算によって求める技術に関する。 The present invention relates to an avoidance support device, for example, a technique for calculating an optimum ship maneuvering method for avoiding a collision with another ship.

非特許文献1,2には、現時点における操船者の選好関係を、避航操船空間の効用値によって表す方式が示される。避航操船空間は、針路の変針角と速力の変速率とを組み合わせた空間であり、効用値は、この空間の各位置毎に算出される。効用値は、針路、速力の変更に伴う操船者の主観的な選好度から、針路、速力の変更に応じた他船に対する客観的な衝突危険度を減算したものである。 Non-Patent Documents 1 and 2 show a method of expressing the preference relationship of the ship operator at the present time by the utility value of the avoidance maneuvering space. The avoidance maneuvering space is a space that combines the course change angle of the course and the speed change rate, and the utility value is calculated for each position in this space. The utility value is obtained by subtracting the objective collision risk with another ship according to the change in course and speed from the subjective preference of the operator due to the change in course and speed.

特許文献1には、操縦性指数K,Tを用いて船舶の操縦運動を推定する方法が示される。特許文献2には、最適な変針角等を求める避航操船シミュレーションと、その変針角等を反映した避航操船とを順次繰り返すような操船方法を想定し、現時点で得られる避航操船シミュレーションの変針角等を反映して当該操船方法に従った場合に、どの程度の危険が今後生じるかを現時点で予測する避航支援装置が示される。具体的には、当該避航支援装置は、現時点において、時間をΔtずつ進めながら、その都度、避航操船シミュレーションと、その変針角等を反映して避航操船を行った前提での運動シミュレーションとを実行する。当該避航支援装置は、Δt毎に避航操船シュミレーションによって得られる他船との衝突危険度を画面に表示することで、操船者に現時点での変針角の妥当性を判断させる。 Patent Document 1 discloses a method of estimating the maneuvering motion of a ship using the maneuverability indices K and T. Patent Document 2 assumes a ship maneuvering method in which a ship maneuvering simulation for obtaining an optimum needle change angle and the like and a ship maneuvering method reflecting the needle change angle and the like are sequentially repeated. The avoidance support device that predicts how much danger will occur in the future if the ship maneuvering method is followed is shown. Specifically, at the present time, the avoidance support device executes an avoidance maneuvering simulation and a motion simulation on the premise that the avoidance maneuvering is performed reflecting the change angle of the needle each time while advancing the time by Δt. To do. The avoidance support device displays on the screen the risk of collision with another ship obtained by the avoidance maneuvering simulation for each Δt, so that the ship operator can judge the validity of the current needle change angle.

特開平4−154498号公報Japanese Unexamined Patent Publication No. 4-154498 特開平9−22499号公報Japanese Unexamined Patent Publication No. 9-22499

長澤、他3名、“避航操船環境の困難度−II.−シミュレーションによる評価に向けて−”、日本航海学会論文集、88号、1993年、p.137−144Nagasawa and three others, "Difficulty of Evasion and Maneuvering Environment-II.-Toward Evaluation by Simulation-", Proceedings of the Japan Voyage Society, No. 88, 1993, p. 137-144 長澤、他3名、“Assessment of High Speed Navigation in a Congested Area by the Traffic Simulation”、FAST’93、Vol.2(1993)、p.1349−1357Nagasawa and 3 others, "Assessment of High Speed Navigation in a Congested Area by the Traffic Simulation", FAST'93, Vol. 2 (1993), p. 1349-1357

例えば、非特許文献1,2に示されるような方式に基づく避航操船シミュレータが知られている。また、このような避航操船シミュレータを利用して、船舶の安全な避航や船舶の省人化等を図るための装置として、特許文献2に示されるような避航支援装置が知られている。避航操船シミュレータを用いると、現時点で他船との衝突を効率的に回避するための変針角等が得られる。しかし、現実的には、現時点で船舶を即座に当該変針角等に制御することは困難であり、船舶の操縦性能(例えば、船舶の大きさ等)に応じた応答性の遅延が生じ得る。このため、避航操船シミュレータに基づく理想的な操船方法と、船舶の操縦性能に応じた現実的な操船方法との間に乖離が発生する。 For example, an escape ship maneuvering simulator based on the method shown in Non-Patent Documents 1 and 2 is known. Further, as a device for safely evacuating a ship and saving manpower of a ship by using such an evasion maneuvering simulator, an evasion support device as shown in Patent Document 2 is known. By using the avoidance ship maneuvering simulator, it is possible to obtain a needle change angle and the like for efficiently avoiding a collision with another ship at the present time. However, in reality, it is difficult to immediately control the ship to the turning angle or the like at present, and a delay in responsiveness may occur depending on the maneuvering performance of the ship (for example, the size of the ship). For this reason, there is a discrepancy between the ideal ship maneuvering method based on the avoidance ship maneuvering simulator and the realistic ship maneuvering method according to the maneuvering performance of the ship.

そこで、この乖離を考慮して、特許文献2に示されるように、現時点において、時間をΔtずつ進めながら、避航操船シミュレーションおよび運動シミュレーションを繰り返し行うような方式が考えられる。当該方式を用いると、現時点での避航操船シミュレーションの結果をそのまま適用した際の今後生じ得る危険を、現時点で予測することが可能になる。しかし、当該方式では、現時点での最適解が得られる訳ではなく、現時点での最適解は、当該予測結果に基づく操船者の判断に委ねられる。近年、避航支援装置は、船舶の自律航行で必要とされる主要技術の一つを担うことが期待される。このため、避航支援装置は、現時点での最適解を操船者の判断を経ずに得ることが望まれる。 Therefore, in consideration of this dissociation, as shown in Patent Document 2, at present, a method of repeatedly performing the avoidance maneuvering simulation and the motion simulation while advancing the time by Δt can be considered. By using this method, it is possible to predict at the present time the danger that may occur in the future when the result of the current avoidance maneuvering simulation is applied as it is. However, this method does not give the optimum solution at the present time, and the optimum solution at the present time is left to the judgment of the operator based on the prediction result. In recent years, avoidance support devices are expected to play a role in one of the main technologies required for autonomous navigation of ships. Therefore, it is desired that the avoidance support device obtain the optimum solution at the present time without the judgment of the operator.

本発明は、このようなことに鑑みてなされたものであり、その目的の一つは、船舶の操縦性能に応じた最適な避航操船方法を自動的に導出可能な避航支援装置を提供することにある。 The present invention has been made in view of the above, and one of the objects thereof is to provide an avoidance support device capable of automatically deriving an optimum avoidance maneuvering method according to the maneuvering performance of a ship. It is in.

本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will become apparent from the description and accompanying drawings herein.

本願において開示される発明のうち、代表的な実施の形態の概要を簡単に説明すれば、次のとおりである。 A brief description of typical embodiments of the inventions disclosed in the present application is as follows.

一実施の形態による避航支援装置は、選好度算出部と、危険度算出部と、効用値算出部と、操船指示部とを有する。選好度算出部は、変針角の選択肢と変速率の選択肢とを組み合わせた空間を避航操船空間として、避航操船空間の各位置毎に、当該各位置の選択に伴う操船者の主観的な好みを表す選好度を算出する。危険度算出部は、自船の操縦性能を表す操縦性能パラメータを反映して現時点から所定時間後の自船の状況を仮定し、当該状況下で自船が避航操船を行った場合の他船に対する衝突危険度を、避航操船空間の各位置毎に算出する。効用値算出部は、避航操船空間の各位置毎に、選好度から衝突危険度を減算することで効用値を算出する。操船指示部は、効用値算出部の算出結果に基づく避航操船を所定時間後の状況下で行った場合の航路に乗るように、自船の操船方法を指示する。 The avoidance support device according to the embodiment includes a preference degree calculation unit, a risk degree calculation unit, a utility value calculation unit, and a ship maneuvering instruction unit. The preference calculation unit uses a space that combines the choice of the needle change angle and the choice of the shift rate as the avoidance maneuvering space, and determines the subjective preference of the ship operator associated with the selection of each position of the avoidance maneuvering space for each position. Calculate the desired degree of preference. The risk calculation unit reflects the maneuvering performance parameters that represent the maneuvering performance of the own ship, assumes the situation of the own ship after a predetermined time from the present time, and the other ship when the own ship performs avoidance maneuvering under the situation. The collision risk with respect to is calculated for each position in the avoidance maneuvering space. The utility value calculation unit calculates the utility value by subtracting the collision risk from the preference for each position in the avoidance maneuvering space. The ship maneuvering instruction unit instructs the maneuvering method of the own ship so as to get on the route when the avoidance maneuvering based on the calculation result of the utility value calculation unit is performed under the condition after a predetermined time.

前記一実施の形態によれば、船舶の操縦性能に応じた最適な避航操船方法を自動的に導出可能になる。 According to the above-described embodiment, the optimum avoidance maneuvering method according to the maneuvering performance of the ship can be automatically derived.

本発明の実施の形態1による避航支援装置周りの構成例を示す概略図である。It is the schematic which shows the configuration example around the avoidance support device by Embodiment 1 of this invention. 図1における危険度算出部の処理内容の一例を示す説明図である。It is explanatory drawing which shows an example of the processing content of the risk degree calculation part in FIG. 図1の避航支援装置における主要部の概略的な処理内容の一例を示すフロー図である。It is a flow chart which shows an example of the schematic processing contents of the main part in the avoidance support device of FIG. 本発明の実施の形態2による避航支援装置周りの構成例を示す概略図である。It is the schematic which shows the configuration example around the avoidance support device by Embodiment 2 of this invention. 図4における運動シミュレータの処理内容の一例を説明する図である。It is a figure explaining an example of the processing content of the exercise simulator in FIG. 図4における運動シミュレータの処理内容の一例を説明する図である。It is a figure explaining an example of the processing content of the exercise simulator in FIG. 図4における運動シミュレータの処理内容の一例を説明する図である。It is a figure explaining an example of the processing content of the exercise simulator in FIG. 図4における危険度算出部の処理内容の一例を示す説明図である。It is explanatory drawing which shows an example of the processing content of the risk degree calculation part in FIG. 図4の避航支援装置における主要部の概略的な処理内容の一例を示すフロー図である。It is a flow chart which shows an example of the schematic processing contents of the main part in the avoidance support device of FIG. 自船と他船が衝突し得る状況の一例を示す図である。It is a figure which shows an example of the situation which the own ship and another ship may collide. 本発明の比較例となる避航支援装置における選好度算出部の処理結果の一例を示す図である。It is a figure which shows an example of the processing result of the preference degree calculation part in the avoidance support device which becomes the comparative example of this invention. 本発明の比較例となる避航支援装置における危険度算出部の処理内容の一例を説明する図である。It is a figure explaining an example of the processing content of the risk calculation part in the avoidance support device which becomes the comparative example of this invention. 図12におけるバンパー領域を説明する補足図である。It is a supplementary figure explaining the bumper region in FIG. 本発明の比較例となる避航支援装置における危険度算出部の処理結果の一例を示す図である。It is a figure which shows an example of the processing result of the risk calculation part in the avoidance support device which becomes the comparative example of this invention. 本発明の比較例となる避航支援装置における効用値算出部の処理結果の一例を示す図である。It is a figure which shows an example of the processing result of the utility value calculation part in the avoidance support device which becomes the comparative example of this invention. 本発明の比較例となる避航支援装置において、効用値算出部の算出結果に基づき避航操船を行った場合の実際上の航路の一例を示す図である。It is a figure which shows an example of the practical route when the avoidance maneuvering is performed based on the calculation result of the utility value calculation part in the avoidance support device which becomes the comparative example of this invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in all the drawings for explaining the embodiment, in principle, the same members are designated by the same reference numerals, and the repeated description thereof will be omitted.

(実施の形態1)
《避航支援装置周りの概略》
図1は、本発明の実施の形態1による避航支援装置周りの構成例を示す概略図である。図1において、船舶情報取得部11は、各種機構を用いて、自船の情報(針路、速力および位置(座標))と、自船周辺の所定の範囲内に存在する単数または複数の他船の情報(針路、速力および位置(座標))とを取得する。各種機構は、代表的には、AIS(Automatic Identification System)30、レーダ31、カメラ32、方位センサ35、速度センサ36およびGPS(Global Positioning System)37等のいずれかまたはその組み合わせである。
(Embodiment 1)
<< Outline around the escape support device >>
FIG. 1 is a schematic view showing a configuration example around the avoidance support device according to the first embodiment of the present invention. In FIG. 1, the ship information acquisition unit 11 uses various mechanisms to obtain information (course, speed and position (coordinates)) of the own ship and one or more other ships existing within a predetermined range around the own ship. Information (course, velocity and position (coordinates)) and. The various mechanisms are typically any or a combination of AIS (Automatic Identification System) 30, radar 31, camera 32, directional sensor 35, speed sensor 36, GPS (Global Positioning System) 37, and the like.

AISは、船舶間や船舶と陸上間で、船舶の位置、針路、速力、目的地などの船舶情報を無線通信で交換することで、他船や自船の情報を取得するシステムである。レーダ31やカメラ32は、自船の周辺に存在する各他船の相対的な針路、速力および位置を検出することで、他船の情報を取得する。方位センサ35は、ジャイロコンパス等であり、自船の針路を検出する。速度センサ36は、電磁式ログやドップラーログ等であり、自船の速力を検出する。GPS37は、自船の位置(座標)を検出する。 AIS is a system for acquiring information on other ships and own ships by exchanging ship information such as the position, course, speed, and destination of the ship between ships or between ships and land by wireless communication. The radar 31 and the camera 32 acquire information on the other ship by detecting the relative course, speed, and position of each other ship existing in the vicinity of the own ship. The directional sensor 35 is a gyro compass or the like, and detects the course of the own ship. The speed sensor 36 is an electromagnetic log, a Doppler log, or the like, and detects the speed of the own ship. GPS37 detects the position (coordinates) of its own ship.

避航支援装置10は、効用値算出部20と、パラメータ保持部21と、航路設定部22と、操船指示部23とを備える。効用値算出部20は、選好度算出部24と、危険度算出部26aとを備える。避航支援装置10は、例えば、CPU(Central Processing Unit)を含むコンピュータシステムを用いたプログラム処理によって実現される。ただし、必ずしもこれに限定されず、例えば、避航支援装置10の一部は、専用のハードウェアで実現されてもよい。 The avoidance support device 10 includes a utility value calculation unit 20, a parameter holding unit 21, a route setting unit 22, and a ship maneuvering instruction unit 23. The utility value calculation unit 20 includes a preference degree calculation unit 24 and a risk degree calculation unit 26a. The escape support device 10 is realized by, for example, program processing using a computer system including a CPU (Central Processing Unit). However, the present invention is not necessarily limited to this, and for example, a part of the avoidance support device 10 may be realized by dedicated hardware.

航路設定部22は、予め操船者等によって設定された電子海図上の予定航路を記憶する。予定航路は、出発地点と目標地点とを複数のウエイポイント(WP)を介して結んだ経路であり、ウエイポイント(WP)は、代表的には変針点である。電子海図は、ハードディスク等の不揮発性記憶装置14に記憶される。パラメータ保持部21は、自船の操縦性能を表す操縦性能パラメータとして、自船の操縦性能に応じて定められる応答性の遅延時間Tdを保持する。遅延時間Tdは、自船の操縦性能が低いほど長く、高いほど短く定められる。 The route setting unit 22 stores a scheduled route on an electronic chart set in advance by a ship operator or the like. The planned route is a route connecting the starting point and the target point via a plurality of waypoints (WP), and the waypoint (WP) is typically a turning point. The electronic chart is stored in a non-volatile storage device 14 such as a hard disk. The parameter holding unit 21 holds a responsive delay time Td determined according to the maneuvering performance of the own ship as a maneuvering performance parameter representing the maneuvering performance of the own ship. The delay time Td is set longer as the maneuverability of the own ship is lower and shorter as the maneuverability of the ship is higher.

危険度算出部26aは、概略的には、操縦性能パラメータを反映して現時点から所定時間後の自船の状況を仮定し、当該状況下で自船が避航操船を行った場合の他船に対する衝突危険度を、避航操船空間の各位置毎に算出する。より詳細には、危険度算出部26aは、他船および自船が現進航状態をパラメータ保持部21に保持される遅延時間Td維持した後の状況を仮定し、当該状況下で避航操船空間の各位置毎の衝突危険度を算出する。避航操船空間とは、変針角の選択肢と変速率の選択肢とを組み合わせた空間であり、避航操船を行う際に採り得る選択肢(言い換えれば手数)を表す。 Roughly speaking, the risk calculation unit 26a assumes the situation of the own ship after a predetermined time from the present time, reflecting the maneuvering performance parameters, and refers to the other ship when the own ship performs avoidance maneuvering under the situation. The collision risk is calculated for each position in the avoidance maneuvering space. More specifically, the risk calculation unit 26a assumes a situation after the other ship and the own ship maintain the delay time Td in which the current cruising state is held by the parameter holding unit 21, and the avoidance maneuvering space under the situation. Calculate the collision risk for each position of. The avoidance maneuvering space is a space that combines the options of the change angle and the option of the shift rate, and represents the options (in other words, the number of steps) that can be taken when performing the avoidance maneuvering.

選好度算出部24は、避航操船空間の各位置毎に、当該各位置の選択に伴う操船者の主観的な好みを表す選好度を算出する。効用値算出部20は、避航操船空間の各位置毎に、選好度算出部24による選好度から危険度算出部26aによる衝突危険度を減算することで効用値を算出する。操船指示部23は、効用値算出部20の算出結果(例えば、効用値が最大となる避航操船空間の位置)に基づく避航操船を前述した所定時間後の状況下で行った場合の航路に乗るように、自船の操船方法を自動操縦装置15へ指示する。 The preference calculation unit 24 calculates the preference for each position in the avoidance maneuvering space, which represents the subjective preference of the operator associated with the selection of each position. The utility value calculation unit 20 calculates the utility value by subtracting the collision risk by the risk calculation unit 26a from the preference by the preference calculation unit 24 for each position in the avoidance maneuvering space. The ship maneuvering instruction unit 23 gets on the route when the ship maneuvering based on the calculation result of the utility value calculation unit 20 (for example, the position of the avoidance maneuvering space where the utility value is maximized) is performed under the above-mentioned conditions after the predetermined time. As described above, the autopilot device 15 is instructed on how to maneuver the own ship.

自動操縦装置15は、例えば、風波潮等の外力が働いた場合でも指示された座標に到達するように舵を自動制御するトラックコントロールシステム(TCS)や、指示された変速率に向けて変速するようにエンジン出力を自動制御する装置等を含む。自動操縦装置15は、船舶情報取得部11からの自船情報(現在の針路、速力、位置(座標))と、航路設定部22からの予定航路情報とを受け、操船指示部23からの指示に応じて、適宜、避航操船を行いながら、目標地点に向けて自律航行を行う。結果表示装置13は、ディスプレイ等であり、例えば、効用値算出部20による効用値の算出結果を表す3次元グラフ(避航操船空間の各位置毎の効用値)を表示する。 The autopilot device 15 has, for example, a track control system (TCS) that automatically controls the rudder so as to reach the instructed coordinates even when an external force such as a wind wave tide acts, or shifts toward the instructed shift rate. It includes a device that automatically controls the engine output and the like. The autopilot device 15 receives the ship information (current course, speed, position (coordinates)) from the ship information acquisition unit 11 and the planned route information from the route setting unit 22, and receives instructions from the ship maneuvering instruction unit 23. Depending on the situation, autonomous navigation will be carried out toward the target point while performing avoidance maneuvers as appropriate. The result display device 13 is a display or the like, and displays, for example, a three-dimensional graph (utility value for each position in the avoidance maneuvering space) showing the calculation result of the utility value by the utility value calculation unit 20.

《避航支援装置(比較例)の各部の詳細》
ここで、実施の形態1の避航支援装置の説明に先立ち、比較例となる避航支援装置について説明する。比較例となる避航支援装置は、図1の構成例において、パラメータ保持部21が設けられず、これに伴い、比較例となる危険度算出部は、操縦性能パラメータを反映せずに衝突危険度を算出する。また、比較例となる避航支援装置では、図1の構成例における操船指示部の処理内容も若干異なっている。以下、比較例となる避航支援装置における主要部の詳細について説明する。
<< Details of each part of the escape support device (comparative example) >>
Here, prior to the description of the avoidance support device of the first embodiment, the avoidance support device as a comparative example will be described. The avoidance support device as a comparative example is not provided with the parameter holding unit 21 in the configuration example of FIG. 1, and accordingly, the risk calculation unit as a comparative example does not reflect the maneuvering performance parameter and the collision risk. Is calculated. Further, in the avoidance support device as a comparative example, the processing contents of the ship maneuvering instruction unit in the configuration example of FIG. 1 are also slightly different. Hereinafter, the details of the main parts of the avoidance support device as a comparative example will be described.

図10は、自船と他船が衝突し得る状況の一例を示す図である。図10の例では、自船OSは、北に向けて所定の速力で進航しており、他船TSは、西に向けて所定の速力で進航している。自船OSおよび他船TSは、そのまま進航を続けると、所定の時間(最近接時間(Tcpa))後に衝突する可能性がある。この場合、他船TSを右側に見る自船OSに衝突回避義務が生じる。このような場合に、自船OSは、衝突を効率的に回避するための避航操船方法を避航支援装置を用いて探索する。 FIG. 10 is a diagram showing an example of a situation in which the own ship and another ship may collide. In the example of FIG. 10, the own ship OS is advancing toward the north at a predetermined speed, and the other ship TS is advancing toward the west at a predetermined speed. If the own ship OS and the other ship TS continue to advance as they are, there is a possibility that they will collide after a predetermined time (closest contact time (Tcpa)). In this case, the OS of the own ship looking at the TS of the other ship on the right side is obliged to avoid collision. In such a case, the own ship OS searches for an avoidance maneuvering method for efficiently avoiding a collision by using an avoidance support device.

図11は、本発明の比較例となる避航支援装置における選好度算出部の処理結果の一例を示す図である。図11において、横軸は、変針角[deg]であり、原針路を0[deg]として左変針“−60[deg]”から右変針“60[deg]”までの範囲を示している。縦軸は、変速率[%]であり、原速力を100[%]として0[%]から100[%]までの範囲を示している。前述した避航操船空間は、この横軸および縦軸で示される空間であり、避航操船の選択肢を表す空間である。 FIG. 11 is a diagram showing an example of the processing result of the preference calculation unit in the avoidance support device which is a comparative example of the present invention. In FIG. 11, the horizontal axis is the needle change angle [deg], and the original course is 0 [deg], and the range from the left change course “-60 [deg]” to the right change course “60 [deg]” is shown. The vertical axis represents the shift rate [%], and indicates a range from 0 [%] to 100 [%] with the original speed as 100 [%]. The above-mentioned avoidance maneuvering space is a space indicated by the horizontal axis and the vertical axis, and is a space representing options for avoidance maneuvering.

一方、高さ軸は、選好度であり、“1.0”に近づくほど好ましさが増し、“0”に近づくほど好ましさが減ることを表す。通常、操船者は、他船や陸域等の障害物が存在しない場合、主観的に原針路と原速力を維持することを好み、針路や速力をできるだけ変化させないことを好む。図11に示される選好度Pb(i,j)は、このような操船者の主観を反映して、式(1)に示される演算式によって定められる。
Pb(i,j)=Pb(i,0)×Pb(0,j) …(1)
On the other hand, the height axis is the degree of preference, and represents that the preference increases as it approaches "1.0" and decreases as it approaches "0". Normally, the operator prefers to subjectively maintain the original course and the original speed in the absence of obstacles such as other ships and land areas, and prefers not to change the course and speed as much as possible. The preference Pb (i, j) shown in FIG. 11 is determined by the arithmetic expression shown in the equation (1), reflecting the subjectivity of the ship operator.
Pb (i, j) = Pb (i, 0) x Pb (0, j) ... (1)

式(1)によって算出される選好度Pb(i,j)は、図11に示されるように、現進航状態を維持する避航操船空間上の位置(変針角“0[deg]”、変速率“100[%]”の位置)にピーク値を有する。選好度算出部24は、変針角(i)と変速率(j)との組み合わせ毎に、式(1)の選好度Pb(i,j)を算出する。 As shown in FIG. 11, the preference Pb (i, j) calculated by the equation (1) is a position on the avoidance maneuvering space (needle angle “0 [deg]”) that maintains the current sailing state, and shifts. It has a peak value at the rate "100 [%]" position). The preference calculation unit 24 calculates the preference Pb (i, j) of the equation (1) for each combination of the needle change angle (i) and the shift rate (j).

ここで、式(1)における各項は、式(2)の変針選好度Pb(i,0)および式(3)の変速選好度Pb(0,j)に示される指数関数によって定められる。変針選好度Pb(i,0)は、変速率を100[%]とした場合で、変針角を0[deg]から“ΔCo”変化させた場合の選好度を表す。一方、変速選好度Pb(0,j)は、変針角を0[deg]とした場合で、変速率を100[%]から“ΔV”変化させた場合の選好度を表す。式(2)および式(3)における“a”および“a”は予め設定される係数であり、“a”は、右変針時と左変針時で異なる値に設定されてもよい。
Pborg(i,0)=exp(−a×ΔCo) …(2)
Pborg(0,j)=exp(−a×ΔV) …(3)
Here, each term in the equation (1) is determined by an exponential function represented by the needle change preference Pb (i, 0) in the equation (2) and the shift preference Pb (0, j) in the equation (3). The needle change preference Pb (i, 0) represents the preference when the shift rate is 100 [%] and the needle change angle is changed from 0 [deg] to “ΔCo”. On the other hand, the shift preference Pb (0, j) represents the preference when the shift angle is set to 0 [deg] and the shift rate is changed from 100 [%] to "ΔV". A coefficient equation (2) and "a c" and in the formula (3) "a v" is set in advance, "a c" may be set to different values in a time when the right veering and left veering ..
Pb org (i, 0) = exp (-a c × ΔCo) ... (2)
Pb org (0, j) = exp (-a v × ΔV) ... (3)

図12は、本発明の比較例となる避航支援装置における危険度算出部の処理内容の一例を説明する図であり、図13は、図12におけるバンパー領域を説明する補足図である。図14は、本発明の比較例となる避航支援装置における危険度算出部の処理結果の一例を示す図である。例えば、図10に示したようなケースにおいて、比較例となる危険度算出部は、図14に示されるような処理結果を生成する。図14において、横軸および縦軸は、図11の場合と同様の避航操船空間である。高さ軸は、衝突危険度であり、“1.0”に近づくほど危険が増し、“0”に近づくほど危険が減ることを表す。 FIG. 12 is a diagram for explaining an example of the processing content of the risk calculation unit in the avoidance support device which is a comparative example of the present invention, and FIG. 13 is a supplementary diagram for explaining the bumper region in FIG. FIG. 14 is a diagram showing an example of the processing result of the risk calculation unit in the avoidance support device which is a comparative example of the present invention. For example, in the case shown in FIG. 10, the risk calculation unit as a comparative example generates the processing result as shown in FIG. In FIG. 14, the horizontal axis and the vertical axis are the same avoidance maneuvering space as in the case of FIG. The height axis is the collision risk, and represents that the risk increases as it approaches "1.0" and decreases as it approaches "0".

比較例となる危険度算出部は、図1の危険度算出部26aのように現時点から所定時間後の自船の状況ではなく、現時点での自船の状況に基づいて、図14の避航操船空間の各位置毎に、図12に示されるような方式を用いて衝突危険度を算出する。図12には、自船OSと他船TSの相対関係が示される。自船OSは、絶対軸上の座標(Xo,Yo)に位置し、所定の針路へ速力Voで進航する。一方、他船TSは、絶対軸上の座標(Xt,Yt)に位置し、所定の針路へ速力Vtで進航する。 The risk calculation unit as a comparative example is not the situation of the own ship after a predetermined time from the present time as in the risk calculation unit 26a of FIG. 1, but the avoidance maneuver of FIG. 14 based on the current situation of the own ship. The collision risk is calculated for each position in the space by using the method shown in FIG. FIG. 12 shows the relative relationship between the OS of the own ship and the TS of the other ship. The own ship OS is located at the coordinates (Xo, Yo) on the absolute axis, and advances to a predetermined course at a speed Vo. On the other hand, the other ship TS is located at the coordinates (Xt, Yt) on the absolute axis and advances to a predetermined course at a speed Vt.

ここで、自船OSおよび他船TSの一方は基準船舶であり、他方は対象船舶である。基準船舶の位置は、相対軸上の原点に定められ、基準船舶の針路は、相対軸上のY軸に定められ、それに直交する軸は、相対軸上のX軸に定められる。この例では、基準船舶は他船TS、対象船舶は自船OSであるが、相対関係であるため、対象船舶が他船TS、基準船舶が自船OSであってもよい。 Here, one of the own ship OS and the other ship TS is the reference ship, and the other is the target ship. The position of the reference vessel is defined at the origin on the relative axis, the course of the reference vessel is defined at the Y axis on the relative axis, and the axis orthogonal to it is defined at the X axis on the relative axis. In this example, the reference ship is the other ship TS and the target ship is the own ship OS, but since there is a relative relationship, the target ship may be the other ship TS and the reference ship may be the own ship OS.

このような相対軸上で、対象船舶である自船OSは、速力Voのベクトルと速力Vtの逆ベクトルとの合成ベクトルで得られる相対針路43へ相対速力Vrで進行する。なお、自船OSの座標、針路、速力は、図1の船舶情報取得部11からの自船情報に、避航操船空間の位置に基づく変針角および変速率を反映させることで定められる。また、他船TSの座標、針路、速力は、図1の船舶情報取得部11からの他船情報に基づき、他船TSが現進航状態(すなわち原針路および原速力)をそのまま維持するものとして定められる。 On such a relative axis, the own ship OS, which is the target ship, travels at a relative speed Vr to the relative course 43 obtained by a composite vector of the vector of the speed Vo and the inverse vector of the speed Vt. The coordinates, course, and speed of the own ship OS are determined by reflecting the change angle and shift rate based on the position of the avoidance maneuvering space in the own ship information from the ship information acquisition unit 11 in FIG. Further, the coordinates, course, and speed of the other ship TS are based on the other ship information from the ship information acquisition unit 11 in FIG. 1, and the other ship TS maintains the current traveling state (that is, the original course and the original speed) as it is. Is defined as.

ここで、基準船舶である他船TSの周囲には、楕円状のバンパー領域(排他的領域)40が設定される。図13には、短径Aおよび長径Bを有するバンパー領域40が示される。バンパー領域40のサイズは、例えば、自船OSの全長および速力、他船TSの全長および速力といった2隻の船舶の情報に基づいて定められる。なお、他船TSの位置は、バンパー領域40の中心ではなく、船舶の交通ルール等を反映して中心から距離Cおよび距離Dだけ左下にシフトした位置に設定される。 Here, an elliptical bumper region (exclusive region) 40 is set around the other vessel TS, which is the reference vessel. FIG. 13 shows a bumper region 40 having a minor axis A and a major axis B. The size of the bumper area 40 is determined based on the information of two ships such as the total length and speed of the own ship OS and the total length and speed of the other ship TS. The position of the other ship TS is set not at the center of the bumper area 40, but at a position shifted to the lower left by the distance C and the distance D from the center, reflecting the traffic rules of the ship and the like.

このようなバンパー領域40を用いて、図12に示されるように、他船TSの位置からバンパー領域40の外周に向けて最大値から最小値に順次推移するようなリスク関数41,42が定義される。具体的には、リスク関数41は、Y軸(相対軸)用であり、他船TSの位置となるY軸(相対軸)の原点座標で最大値“1.0”となり、バンパー領域40の外周が位置するY軸(相対軸)の最大座標および最小座標で最小値(例えば“0”)となる。同様に、リスク関数42は、X軸(相対軸)用であり、X軸(相対軸)の原点座標で最大値“1.0”となり、バンパー領域40の外周が位置するX軸(相対軸)の最大座標および最小座標で最小値(例えば“0”)となる。 Using such a bumper region 40, as shown in FIG. 12, risk functions 41 and 42 are defined so as to sequentially change from the maximum value to the minimum value from the position of the other ship TS toward the outer circumference of the bumper region 40. Will be done. Specifically, the risk function 41 is for the Y-axis (relative axis), and has a maximum value of "1.0" at the origin coordinates of the Y-axis (relative axis), which is the position of the other ship TS, and has a bumper region 40. The maximum and minimum coordinates of the Y-axis (relative axis) where the outer circumference is located are the minimum values (for example, "0"). Similarly, the risk function 42 is for the X-axis (relative axis), has a maximum value of "1.0" at the origin coordinates of the X-axis (relative axis), and has an X-axis (relative axis) in which the outer periphery of the bumper region 40 is located. ) Is the minimum value (for example, "0") at the maximum and minimum coordinates.

危険度算出部は、自船OS(対象船舶)が将来的に通過するバンパー領域40内の位置に応じたリスク関数41,42の値を算出することで衝突危険度を算出する。具体的には、危険度算出部は、自船OSが相対針路43上を進航した場合のY軸(相対軸)との交点座標に対応するリスク関数41の値をY軸衝突危険度Ryとして算出し、X軸(相対軸)との交点座標に対応するリスク関数42の値をX軸衝突危険度Rxとして算出する。 The risk calculation unit calculates the collision risk by calculating the values of the risk functions 41 and 42 according to the positions in the bumper area 40 through which the own ship OS (target ship) will pass in the future. Specifically, the risk calculation unit sets the value of the risk function 41 corresponding to the coordinates of the intersection with the Y axis (relative axis) when the own ship OS advances on the relative course 43 as the Y axis collision risk Ry. The value of the risk function 42 corresponding to the coordinates of the intersection with the X-axis (relative axis) is calculated as the X-axis collision risk Rx.

そして、危険度算出部は、式(4)に示されるように、Y軸衝突危険度RyかX軸衝突危険度Rxの大きい方の値に所定の重み付けを行うことで衝突危険度Rk(i,j)を算出する。式(4)において、“Tcpa”は最近接時間であり、“Wtcpa”は予め設定された一定時間である。式(4)では、最近接時間(Tcpa)が短いほど、衝突危険度R(i,j)が高まるような重み付けがなされている。
Rk(i,j)=max(Rx,Ry)×(1−Tcpa/Wtcpa) …(4)
Then, as shown in the equation (4), the risk calculation unit performs a predetermined weighting on the larger value of the Y-axis collision risk Ry or the X-axis collision risk Rx, thereby causing the collision risk Rk (i). , J) is calculated. In the formula (4), "Tcpa" is the closest time, and "Wtcppa" is a preset fixed time. In the formula (4), weighting is performed so that the shorter the closest contact time (Tcpa), the higher the collision risk R (i, j).
Rk (i, j) = max (Rx, Ry) × (1-Tcpa / Wtcpa)… (4)

また、実際には、所定の範囲内に他船TSは1隻ではなく、q隻(qは2以上の整数)存在する場合がある。これに伴い、図14の避航操船空間の各位置毎に、対象となる他船TS(すなわち、最も影響が大きい他船TS)も異なり得る。そこで、実際には、式(4)の衝突危険度Rk(i,j)の代わりに、式(5)の衝突危険度R(i,j)が用いられる。式(5)の衝突危険度R(i,j)は、避航操船空間の各位置毎に、単数または複数の他船TSの中の最も影響が大きい他船TSに対する衝突危険度Rk(i,j)によって定められる。

Figure 0006882243
Further, in reality, there may be q ships (q is an integer of 2 or more) instead of one other ship TS within a predetermined range. Along with this, the target other ship TS (that is, the other ship TS having the greatest influence) may be different for each position of the avoidance maneuvering space of FIG. Therefore, in practice, the collision risk R (i, j) of the formula (5) is used instead of the collision risk Rk (i, j) of the formula (4). The collision risk R (i, j) of the equation (5) is the collision risk Rk (i, j) with respect to the other ship TS having the greatest influence among the single or multiple other ship TS for each position in the avoidance maneuvering space. Determined by j).
Figure 0006882243

図15は、本発明の比較例となる避航支援装置における効用値算出部の処理結果の一例を示す図である。図15において、横軸および縦軸は、図11の場合と同様の避航操船空間である。高さ軸は、効用値であり、“1.0”に近づくほど効果が増し、“0”に近づくほど効果が減ることを表す。効用値算出部20は、図15の避航操船空間の各位置毎に、式(6)に示されるように、選好度算出部24による選好度Pb(i,j)から、危険度算出部による式(5)の衝突危険度R(i,j)を減算することで効用値u(i,j)を算出する。すなわち、図15の効用値u(i,j)は、図11の選好度Pb(i,j)から図14の衝突危険度R(i,j)を減算することで得られる。この際に、衝突危険度R(i,j)は、詳細には、所定の係数αで重み付けされる。
u(i,j)=Pb(i,j)−α×R(i,j) …(6)
FIG. 15 is a diagram showing an example of the processing result of the utility value calculation unit in the avoidance support device which is a comparative example of the present invention. In FIG. 15, the horizontal axis and the vertical axis are the same avoidance maneuvering space as in the case of FIG. The height axis is a utility value, and indicates that the effect increases as it approaches "1.0" and decreases as it approaches "0". The utility value calculation unit 20 is determined by the risk calculation unit from the preference Pb (i, j) by the preference calculation unit 24, as shown in the equation (6), for each position in the avoidance maneuvering space of FIG. The utility value u (i, j) is calculated by subtracting the collision risk R (i, j) of the equation (5). That is, the utility value u (i, j) in FIG. 15 is obtained by subtracting the collision risk R (i, j) in FIG. 14 from the preference Pb (i, j) in FIG. At this time, the collision risk R (i, j) is specifically weighted by a predetermined coefficient α.
u (i, j) = Pb (i, j) -α × R (i, j)… (6)

最適な避航操船方法は、例えば、効用値u(i,j)が最大となる方法であり、図15の例では、原速力を維持して、変針角18[deg]の右変針を行う方法となる。比較例となる操船指示部は、この効用値算出部20の算出結果に基づく避航操船を、図1の操船指示部23のように所定時間後の状況下で行った場合ではなく、現時点で行った場合(すなわち、現時点で18[deg]の右変針を行った場合)の航路に乗るように、自船の操船方法を指示する。 The optimum avoidance maneuvering method is, for example, a method in which the utility value u (i, j) is maximized. In the example of FIG. 15, a method in which the original speed is maintained and the right needle change angle of the needle change angle is 18 [deg] is performed. Will be. The ship maneuvering instruction unit, which is a comparative example, performs the avoidance maneuvering based on the calculation result of the utility value calculation unit 20 at the present time, not under the situation after a predetermined time as in the ship maneuvering instruction unit 23 of FIG. Instruct the maneuvering method of the own ship to get on the route in the case of the case (that is, when the right change of 18 [deg] is performed at the present time).

《避航支援装置(比較例)の問題点》
図16は、本発明の比較例となる避航支援装置において、効用値算出部の算出結果に基づき避航操船を行った場合の実際上の航路の一例を示す図である。この例では、効用値算出部20の算出結果に基づき、現時点(t=0)において他船TSを回避するための最適な変針角θrが得られている。比較例となる操船指示部は、この変針角θr上の目標回避航路70に乗るように自船の操船方向を指示する。具体的には、操船指示部は、例えば、当該目標回避航路70上の所定の座標を自動操縦装置15へ指示する。
<< Problems of avoidance support device (comparative example) >>
FIG. 16 is a diagram showing an example of an actual route when the avoidance maneuver is performed based on the calculation result of the utility value calculation unit in the avoidance support device which is a comparative example of the present invention. In this example, based on the calculation result of the utility value calculation unit 20, the optimum needle change angle θr for avoiding the TS of another ship is obtained at the present time (t = 0). The ship maneuvering instruction unit, which is a comparative example, instructs the maneuvering direction of the own ship so as to get on the target avoidance route 70 on the needle change angle θr. Specifically, the ship maneuvering instruction unit instructs the autopilot device 15 with predetermined coordinates on the target avoidance route 70, for example.

ここで、自船OSsの操縦性能が高い場合(例えば小型船舶の場合)、自船OSsを目標回避航路70上に短時間で乗せることが可能である。その結果、所定の期間経過後(t=Tm時)に、自船OSs[Tm]は、他船TS[Tm]を効率的に回避することができる。しかし、自船OSbの操縦性能が低い場合(例えば大型船舶の場合)、自船OSbを目標回避航路70上に短時間で乗せることは困難になり得る。その結果、所定の期間経過後(t=Tm時)に、自船OSb[Tm]と他船TS[Tm]の衝突を招くような状況が生じる恐れがある。このように、比較例となる避航支援装置では、船舶の操縦性能に応じた最適な避航操船方法を自動的に導出することは困難となり得る。 Here, when the maneuvering performance of the own ship OSs is high (for example, in the case of a small ship), the own ship OSs can be placed on the target avoidance route 70 in a short time. As a result, after the elapse of a predetermined period (at t = Tm), the own ship OSs [Tm] can efficiently avoid the other ship TS [Tm]. However, when the maneuverability of the own ship OSb is low (for example, in the case of a large ship), it may be difficult to put the own ship OSb on the target avoidance route 70 in a short time. As a result, after a lapse of a predetermined period (at t = Tm), there is a possibility that a situation may occur in which the own ship OSb [Tm] and another ship TS [Tm] collide. As described above, in the avoidance support device as a comparative example, it may be difficult to automatically derive the optimum avoidance maneuvering method according to the maneuvering performance of the ship.

《避航支援装置(実施の形態1)の各部の詳細》
そこで、図1の危険度算出部26aは、前述したように、操縦性能パラメータ(パラメータ保持部21の遅延時間Td)を反映して現時点から所定時間(遅延時間Td)後の自船の状況を仮定し、当該状況下で自船が避航操船を行った場合の他船に対する衝突危険度を、避航操船空間の各位置毎に算出する。図2は、図1における危険度算出部の処理内容の一例を示す説明図である。
<< Details of each part of the escape support device (Embodiment 1) >>
Therefore, as described above, the risk calculation unit 26a of FIG. 1 reflects the maneuvering performance parameter (delay time Td of the parameter holding unit 21) and displays the situation of the own ship after a predetermined time (delay time Td) from the present time. Assuming that, the risk of collision with another ship when the own ship performs the avoidance maneuver under the circumstances is calculated for each position in the avoidance maneuvering space. FIG. 2 is an explanatory diagram showing an example of the processing content of the risk calculation unit in FIG.

図2の例では、自船OSは、現時点(t=0)において、座標(X,Y)=(Xo[0],Yo[0])に位置し、Y軸方向に針路を向けているものとする。一方、他船TSは、現時点(t=0)において、座標(X,Y)=(Xt[0],Yt[0])に位置し、X軸方向に針路を向けているものとする。ここで、危険度算出部26aは、まず、他船TSおよび自船OSが現進航状態(原針路および原速力)を遅延時間Td維持した後の状況を仮定する。その結果、遅延時間Td後の自船OS[Td]の座標(X,Y)は、(Xo[0],Yo[Td])となり、他船TS[Td]の座標(X,Y)は、(Xt[Td],Yt[0])となる。 In the example of FIG. 2, the own ship OS is located at the coordinates (X, Y) = (Xo [0], Yo [0]) at the present time (t = 0), and the course is directed in the Y-axis direction. It shall be. On the other hand, it is assumed that the other ship TS is located at the coordinates (X, Y) = (Xt [0], Yt [0]) at the present time (t = 0) and has its course oriented in the X-axis direction. Here, the risk calculation unit 26a first assumes a situation after the other ship TS and the own ship OS maintain the current course (original course and original speed) with a delay time Td. As a result, the coordinates (X, Y) of the own ship OS [Td] after the delay time Td become (Xo [0], Yo [Td]), and the coordinates (X, Y) of the other ship TS [Td] become. , (Xt [Td], Yt [0]).

そして、危険度算出部26aは、当該遅延時間Td後の自船OS[Td]および他船TS[Td]の状況下で、自船OS[Td]が他船TS[Td]に対して避航操船を行った場合の避航操船空間の各位置毎の衝突危険度を算出する。具体的には、危険度算出部26aは、現時点ではなく当該遅延時間Td後の自船OS[Td]および他船TS[Td]の座標、針路、速力を前提として図12に示したような相対座標系を構築すると共に、自船OS[Td]に対して避航操船空間上の各位置に基づく変針角および変速率を反映させることで衝突危険度を算出する。 Then, the risk calculation unit 26a avoids the own ship OS [Td] from the other ship TS [Td] under the condition of the own ship OS [Td] and the other ship TS [Td] after the delay time Td. Calculate the collision risk for each position in the avoidance maneuvering space when maneuvering the ship. Specifically, the risk calculation unit 26a is as shown in FIG. 12 on the premise of the coordinates, course, and speed of the own ship OS [Td] and the other ship TS [Td] after the delay time Td, not at the present time. The collision risk is calculated by constructing the relative coordinate system and reflecting the course change angle and the shift rate based on each position on the avoidance maneuvering space for the own ship OS [Td].

効用値算出部20は、選好度算出部24の算出結果(図11)と、当該危険度算出部26aによる遅延時間Td後の衝突危険度とを用いて最適な変針角θr(および変速率)を算出する。操船指示部23は、効用値算出部20の算出結果に基づく避航操船を、前述した遅延時間Td後の状況下で行った場合の航路(目標回避航路)50に乗るように、現時点(t=0)における自船OSの操船方法を指示する。具体的には、操船指示部23は、例えば、効用値算出部20からの遅延時間Td後の座標、変針角および変速率を受けて目標回避航路50や目標速力を設定し、当該目標回避航路50上の所定の座標や目標速力を自動操縦装置15へ指示する。 The utility value calculation unit 20 uses the calculation result of the preference calculation unit 24 (FIG. 11) and the collision risk after the delay time Td by the risk calculation unit 26a to obtain the optimum needle change angle θr (and shift rate). Is calculated. At present (t =), the ship maneuvering instruction unit 23 rides on the route (target avoidance route) 50 when the avoidance maneuvering based on the calculation result of the utility value calculation unit 20 is performed under the situation after the delay time Td described above. Instruct the maneuvering method of the own ship OS in 0). Specifically, the ship maneuvering instruction unit 23 sets the target avoidance route 50 and the target speed based on the coordinates, the needle change angle, and the shift rate after the delay time Td from the utility value calculation unit 20, for example, and sets the target avoidance route 50 and the target speed. Instruct the autopilot device 15 of the predetermined coordinates and the target speed on the 50.

このようにして、目標回避航路50は、図16の場合と異なり、操縦性能パラメータ(遅延時間Td)を反映して、現時点ではなく遅延時間Td後の航路に定められる。そして、この遅延時間Tdの中で、自船OSの実際上の変針に伴う応答性の遅延などが補償される。このため、図2に示されるように、自船OSの実際上の回避回路51を目標回避航路50に乗せることができ、その結果、将来的に自船OSは他船TSを効率的に回避することが可能になる。また、図2から分かるように、遅延時間Tdは、自船OSの操縦性能が低いほど(例えば、船舶が大型化するほど)長くなるように予め固定的に定められる。 In this way, unlike the case of FIG. 16, the target avoidance route 50 is set to the route after the delay time Td, not at the present time, reflecting the maneuvering performance parameter (delay time Td). Then, within this delay time Td, the delay in responsiveness due to the actual change of course of the own ship OS is compensated. Therefore, as shown in FIG. 2, the actual avoidance circuit 51 of the own ship OS can be placed on the target avoidance route 50, and as a result, the own ship OS efficiently avoids the other ship TS in the future. Will be possible. Further, as can be seen from FIG. 2, the delay time Td is fixedly determined in advance so that the lower the maneuvering performance of the own ship OS (for example, the larger the ship becomes), the longer it becomes.

《避航支援装置(実施の形態1)の動作》
図3は、図1の避航支援装置における主要部の概略的な処理内容の一例を示すフロー図である。避航支援装置10は、例えば、図3のフローを所定の制御サイクル毎に繰り返し実行する。図3において、避航支援装置10は、船舶情報取得部11から自船情報(針路、速力、位置(座標))と、所定の範囲内に存在する他船情報(針路、速力、位置(座標))とを取得する(ステップS101)。
<< Operation of the avoidance support device (Embodiment 1) >>
FIG. 3 is a flow chart showing an example of schematic processing contents of the main part of the avoidance support device of FIG. The avoidance support device 10 repeatedly executes, for example, the flow of FIG. 3 at predetermined control cycles. In FIG. 3, the avoidance support device 10 receives information on its own ship (course, speed, position (coordinates)) from the ship information acquisition unit 11 and information on other ships (course, speed, position (coordinates)) existing within a predetermined range. ) And (step S101).

次いで、避航支援装置10は、ステップS101の情報と、パラメータ保持部21の遅延時間Tdとに基づき、他船TSおよび自船OSが現進航状態(原針路および原速力)を遅延時間Td維持した後の状況を仮定し、当該状況下で避航操船空間の各位置毎の衝突危険度(式(5)のR(i,j))を危険度算出部26aを用いて算出する(ステップS102)。続いて、避航支援装置10は、避航操船空間の各位置毎の選好度(図11および式(1)のPb(i,j))を選好度算出部24を用いて算出する(ステップS103)。 Next, in the avoidance support device 10, based on the information in step S101 and the delay time Td of the parameter holding unit 21, the other ship TS and the own ship OS maintain the current state (original course and original speed) of the delay time Td. Assuming the situation after the above, the collision risk (R (i, j) of the equation (5)) for each position in the avoidance maneuvering space is calculated using the risk calculation unit 26a under the situation (step S102). ). Subsequently, the avoidance support device 10 calculates the preference degree (Pb (i, j) in FIG. 11 and equation (1)) for each position in the avoidance maneuvering space using the preference degree calculation unit 24 (step S103). ..

次いで、避航支援装置10は、ステップS102で算出された衝突危険度と、ステップS103で算出された選好度とに基づき、避航操船空間の各位置毎の効用値(式(6)のu(i,j))を効用値算出部20を用いて算出する(ステップS104)。続いて、避航支援装置10は、効用値算出部20の効用値に基づく避航操船を遅延時間Td後の状況下で行った場合の航路(目標回避航路)50に乗るように、操船指示部23を用いて自船OSの操船方法を指示する(ステップS105)。 Next, the avoidance support device 10 uses the utility value (u (i) of the equation (6)) for each position of the avoidance maneuvering space based on the collision risk calculated in step S102 and the preference degree calculated in step S103. , J)) are calculated using the utility value calculation unit 20 (step S104). Subsequently, the avoidance support device 10 so as to get on the route (target avoidance route) 50 when the avoidance maneuvering based on the utility value of the utility value calculation unit 20 is performed under the condition after the delay time Td, the ship maneuvering instruction unit 23. Is used to instruct the maneuvering method of the own ship OS (step S105).

《実施の形態1の主要な効果》
以上、実施の形態1の避航支援装置を用いることで、代表的には、船舶の操縦性能に応じた最適な避航操船方法を自動的に導出することが可能になる。その結果、船舶の自律航行に寄与することが可能になる。さらに、実施の形態1の方式は、主に、遅延時間(Td)を導入することで実現できるため、複雑な処理なども特に必要とされず、実装も容易となる。
<< Main effect of Embodiment 1 >>
As described above, by using the avoidance support device of the first embodiment, it is possible to automatically derive the optimum avoidance maneuvering method according to the maneuvering performance of the ship. As a result, it becomes possible to contribute to the autonomous navigation of the ship. Further, since the method of the first embodiment can be realized mainly by introducing a delay time (Td), complicated processing and the like are not particularly required, and the implementation becomes easy.

なお、特許文献2の方式は、実施の形態1の方式のように、現時点での最適な避航操船方法を自動的に導出するために操縦性能パラメータを用いるのではなく、現時点で操縦性能パラメータを用いずに定めた避航操船方法を適用した場合のその後の実際上のリスクを検証するために操縦性能パラメータを用いる。すなわち、実施の形態1の方式は、最初に、現時点ではなく、船舶の操縦性能を加味した所定時間後の状況を仮定し、当該状況下で衝突危険度を算出することで現時点での最適な避航操船方法を自動的に導出すると共に、この所定時間後の状況を適切に仮定するために操縦性能パラメータを用いる。 Note that the method of Patent Document 2 does not use the maneuvering performance parameter to automatically derive the optimum avoidance maneuvering method at the present time as in the method of the first embodiment, but uses the maneuvering performance parameter at the present time. Maneuverability parameters are used to verify the subsequent practical risks of applying the non-use avoidance maneuvering method. That is, the method of the first embodiment first assumes a situation after a predetermined time in consideration of the maneuvering performance of the ship, not at the present time, and calculates the collision risk under the situation, which is optimal at the present time. The maneuvering performance parameters are used to automatically derive the avoidance maneuvering method and to appropriately assume the situation after this predetermined time.

(実施の形態2)
《避航支援装置周りの概略》
図4は、本発明の実施の形態2による避航支援装置周りの構成例を示す概略図である。図4に示す避航支援装置10は、図1の構成例と比較して、パラメータ保持部21の代わりに運動シミュレータ55が設けられ、これに応じて危険度算出部26bの処理内容が異なっている。運動シミュレータ55は、図1とは異なるパラメータ保持部57と、シミュレーション実行部56とを備える。
(Embodiment 2)
<< Outline around the escape support device >>
FIG. 4 is a schematic view showing a configuration example around the avoidance support device according to the second embodiment of the present invention. The avoidance support device 10 shown in FIG. 4 is provided with a motion simulator 55 instead of the parameter holding unit 21 as compared with the configuration example of FIG. 1, and the processing content of the risk calculation unit 26b is different accordingly. .. The motion simulator 55 includes a parameter holding unit 57 different from that in FIG. 1 and a simulation executing unit 56.

パラメータ保持部57は、自船の操縦性能を表す操縦性能パラメータとして、操縦性指数を保持する。操縦性指数として、代表的には、特許文献1等に示されるように、舵力を表す操縦性指数Kと、慣性力を表す操縦性指数Tとが挙げられる。シミュレーション実行部56は、予め定めた所定時間(Tx)後に到達し得る変針角毎に、到達時の変針角毎の座標をパラメータ保持部57で保持される操縦性指数を用いて算出する。なお、このような運動シミュレータ55は、広く知られている操縦性モデル(所謂TKモデル)を用いたシミュレータで実現できる。 The parameter holding unit 57 holds a maneuverability index as a maneuvering performance parameter representing the maneuvering performance of the own ship. Typical examples of the maneuverability index include a maneuverability index K representing a steering force and a maneuverability index T representing an inertial force, as shown in Patent Document 1 and the like. The simulation execution unit 56 calculates the coordinates of each needle change angle at the time of arrival for each needle change angle that can be reached after a predetermined time (Tx), using the maneuverability index held by the parameter holding unit 57. It should be noted that such a motion simulator 55 can be realized by a simulator using a widely known maneuverability model (so-called TK model).

危険度算出部26bは、概略的には図1の場合と同様に、操縦性能パラメータを反映して現時点から所定時間(Tx)後の自船の状況を仮定し、当該状況下で自船が避航操船を行った場合の他船に対する衝突危険度を、避航操船空間の各位置毎に算出する。より詳細には、危険度算出部26bは、他船が現進航状態を所定時間(Tx)維持し、かつ自船が所定時間(Tx)後に運動シミュレータ55に基づく変針角毎の座標に位置する状況を仮定し、当該状況下で避航操船空間の各位置毎の衝突危険度を算出する。操船指示部23は、効用値算出部20の算出結果に基づく避航操船を、対応する所定時間(Tx)後の状況下で行った場合の航路に乗るように、自船の操船方法を指示する。 The risk calculation unit 26b assumes the situation of the own ship after a predetermined time (Tx) from the present time by reflecting the maneuvering performance parameters, as in the case of FIG. 1, and the own ship under the situation. The risk of collision with other vessels when the avoidance vessel is operated is calculated for each position in the avoidance vessel maneuvering space. More specifically, the risk calculation unit 26b positions the other ship at the coordinates for each change angle based on the motion simulator 55 after the predetermined time (Tx) while the other ship maintains the current traveling state for a predetermined time (Tx). Under such circumstances, the collision risk for each position in the avoidance maneuvering space is calculated. The ship maneuvering instruction unit 23 instructs the maneuvering method of the own ship so as to get on the route when the avoidance maneuvering based on the calculation result of the utility value calculation unit 20 is performed under the situation after the corresponding predetermined time (Tx). ..

《避航支援装置(実施の形態2)の各部の詳細》
図5、図6および図7は、図4における運動シミュレータの処理内容の一例を説明する図である。運動シミュレータ55は、図5に示されるように、まず、現時点(t=0および座標(X,Y)=(0,0))で自船OSの舵角δを操作し、当該舵角δを維持した状態で、所定時間Tx後に到達する変針角θと座標(X,Y)を、舵角δを変えながら計算する。図5の例では、運動シミュレータ55は、舵角δを5°ずつ変えながら計算を行う。
<< Details of each part of the escape support device (Embodiment 2) >>
5, FIG. 6 and FIG. 7 are diagrams for explaining an example of the processing content of the motion simulator in FIG. As shown in FIG. 5, the motion simulator 55 first operates the rudder angle δ of the own ship OS at the present time (t = 0 and coordinates (X, Y) = (0,0)), and the rudder angle δ The change angle θ and the coordinates (X, Y) that arrive after a predetermined time Tx are calculated while changing the rudder angle δ. In the example of FIG. 5, the motion simulator 55 performs the calculation while changing the rudder angle δ by 5 °.

例えば、現時点から舵角δを5°に維持した場合、所定時間Tx後に、変針角θは10°近辺に到達し、座標Xは“50”近辺に、座標Yは“600”近辺にそれぞれ到達する。また、現時点から舵角δを30°に維持した場合、所定時間Tx後に、変針角θは60°近辺に到達し、座標Xは“300”近辺に、座標Yは“500”近辺にそれぞれ到達する。 For example, when the rudder angle δ is maintained at 5 ° from the present time, the change needle angle θ reaches the vicinity of 10 ° after a predetermined time Tx, the coordinate X reaches the vicinity of “50”, and the coordinate Y reaches the vicinity of “600”. To do. Further, when the rudder angle δ is maintained at 30 ° from the present time, the change needle angle θ reaches the vicinity of 60 ° after a predetermined time Tx, the coordinate X reaches the vicinity of “300”, and the coordinate Y reaches the vicinity of “500”. To do.

次いで、運動シミュレータ55は、図6に示されるように、図5のようにして得られた舵角δと、所定時間Tx後の変針角θおよび座標(X,Y)との対応関係をテーブルに纏める。続いて、運動シミュレータ55は、図6の対応関係に基づき、図7に示されるように、変針角θを変数とする座標Xの関数式X(θ)と、変針角θを変数とする座標Yの関数式Y(θ)とを求める。運動シミュレータ55は、当該関数式X(θ),Y(θ)に基づき、所定時間Tx後における任意の変針角θ毎の座標(X,Y)を算出することが可能になる。 Next, as shown in FIG. 6, the motion simulator 55 tables the correspondence between the steering angle δ obtained as shown in FIG. 5 and the needle change angle θ and the coordinates (X, Y) after a predetermined time Tx. Summarize in. Subsequently, the motion simulator 55 is based on the correspondence relationship of FIG. 6, as shown in FIG. 7, the functional expression X (θ) of the coordinate X having the variable needle angle θ as a variable and the coordinate having the variable needle angle θ as a variable. Find the functional expression Y (θ) of Y. The motion simulator 55 can calculate the coordinates (X, Y) for each arbitrary needle angle θ after a predetermined time Tx based on the function formulas X (θ) and Y (θ).

なお、図5〜図7では、右変針時の場合を例に説明を行ったが、同様にして左変針時の場合の関数式X(θ),Y(θ)も求められる。また、所定時間Txは、例えば、図5において、60°の変針角θ(すなわち、避航操船空間の最大の変針角θ)に到達する時間を勘案して予め定められる。 In FIGS. 5 to 7, the description has been given by taking the case of the right hand change as an example, but in the same manner, the functional expressions X (θ) and Y (θ) of the case of the left hand change can also be obtained. Further, the predetermined time Tx is predetermined, for example, in FIG. 5, in consideration of the time for reaching the needle change angle θ of 60 ° (that is, the maximum hand change angle θ of the avoidance maneuvering space).

図8は、図4における危険度算出部の処理内容の一例を示す説明図である。図8の例では、自船OSは、現時点(t=0)において、座標(X,Y)=(Xo[0],Yo[0])に位置し、Y軸方向に針路を向けているものとする。一方、他船TSは、現時点(t=0)において、座標(X,Y)=(Xt[0],Yt[0])に位置し、X軸方向に針路を向けているものとする。 FIG. 8 is an explanatory diagram showing an example of the processing content of the risk calculation unit in FIG. In the example of FIG. 8, the own ship OS is located at the coordinates (X, Y) = (Xo [0], Yo [0]) at the present time (t = 0), and the course is directed in the Y-axis direction. It shall be. On the other hand, it is assumed that the other ship TS is located at the coordinates (X, Y) = (Xt [0], Yt [0]) at the present time (t = 0) and has its course oriented in the X-axis direction.

ここで、危険度算出部26bは、まず、他船TSが現進航状態を所定時間Tx維持し、かつ自船OSが所定時間Tx後に運動シミュレータ55に基づく変針角θ毎の座標(X,Y)に位置する状況を仮定する。その結果、所定時間Tx後の他船TS[Tx]の座標(X,Y)は、(Xt[Tx],Yt[0])となる。一方、所定時間Tx後の自船OS[Tx]の座標(X,Y)は、変針角θ毎に異なる。例えば、自船OS[Tx]の座標(X,Y)は、変針角θが30°の場合には(Xo3[Tx],Yo3[Tx])となり、変針角θが60°の場合には(Xo6[Tx],Yo6[Tx])となる。 Here, in the risk calculation unit 26b, first, the other ship TS maintains the current traveling state at Tx for a predetermined time, and the own ship OS after the predetermined time Tx, the coordinates (X,) for each change angle θ based on the motion simulator 55. Assume a situation located in Y). As a result, the coordinates (X, Y) of the other ship TS [Tx] after the predetermined time Tx become (Xt [Tx], Yt [0]). On the other hand, the coordinates (X, Y) of the own ship OS [Tx] after the predetermined time Tx are different for each change angle θ. For example, the coordinates (X, Y) of the own ship OS [Tx] are (Xo3 [Tx], Yo3 [Tx]) when the needle change angle θ is 30 °, and when the needle change angle θ is 60 °. (Xo6 [Tx], Yo6 [Tx]).

そして、危険度算出部26bは、当該所定時間Tx後の自船OS[Tx]および他船TS[Tx]の状況下で、自船OS[Tx]が他船TS[Tx]に対して避航操船を行った場合の避航操船空間の各位置毎の衝突危険度を算出する。具体例として、例えば、避航操船空間における変針角θが30°の位置の衝突危険度を算出する場合を想定する。この場合、危険度算出部26bは、自船OS[Tx]が座標(X,Y)=(Xo3[Tx],Yo3[Tx])に位置した状態で30°の変針角θに向けて進航し、他船TS[Tx]が座標(X,Y)=(Xt[Tx],Yt[0])に位置した状態でX軸方向に向けて進航するものとして、図12に示したような相対座標系を構築する。 Then, the risk calculation unit 26b avoids the own ship OS [Tx] from the other ship TS [Tx] under the condition of the own ship OS [Tx] and the other ship TS [Tx] after the predetermined time Tx. Calculate the collision risk for each position in the avoidance maneuvering space when maneuvering the ship. As a specific example, for example, it is assumed that the collision risk is calculated at a position where the needle change angle θ is 30 ° in the avoidance maneuvering space. In this case, the risk calculation unit 26b advances toward the needle change angle θ of 30 ° with the own ship OS [Tx] located at the coordinates (X, Y) = (Xo3 [Tx], Yo3 [Tx]). FIG. 12 shows that the other ship TS [Tx] sails and sails in the X-axis direction with the coordinates (X, Y) = (Xt [Tx], Yt [0]). Build a relative coordinate system like this.

同様に、例えば、避航操船空間における変針角θが60°の位置の衝突危険度を算出する場合を想定する。この場合、危険度算出部26bは、自船OS[Tx]が座標(X,Y)=(Xo6[Tx],Yo6[Tx])に位置した状態で60°の変針角θに向けて進航し、他船TS[Tx]が座標(X,Y)=(Xt[Tx],Yt[0])に位置した状態でX軸方向に向けて進航するものとして、図12に示したような相対座標系を構築する。 Similarly, for example, assume a case where the collision risk is calculated at a position where the needle change angle θ is 60 ° in the avoidance maneuvering space. In this case, the risk calculation unit 26b advances toward the needle change angle θ of 60 ° with the own ship OS [Tx] located at the coordinates (X, Y) = (Xo6 [Tx], Yo6 [Tx]). FIG. 12 shows that the other ship TS [Tx] sails and sails in the X-axis direction with the coordinates (X, Y) = (Xt [Tx], Yt [0]). Build a relative coordinate system like this.

危険度算出部26bは、このようにして構築した相対座標系に基づいて避航操船空間の各位置毎の衝突危険度を算出する。効用値算出部20は、選好度算出部24の算出結果(図11)と、当該危険度算出部26bによる所定時間Tx後の衝突危険度とを用いて最適な変針角θr(および変速率)を算出する。図8の例では、最適な変針角θrとして30°が得られたものとする。 The risk calculation unit 26b calculates the collision risk for each position in the avoidance maneuvering space based on the relative coordinate system constructed in this way. The utility value calculation unit 20 uses the calculation result of the preference calculation unit 24 (FIG. 11) and the collision risk after a predetermined time Tx by the risk calculation unit 26b to obtain the optimum needle change angle θr (and shift rate). Is calculated. In the example of FIG. 8, it is assumed that 30 ° is obtained as the optimum needle change angle θr.

操船指示部23は、効用値算出部20の算出結果に基づく避航操船(すなわち30°の右変針)を、対応する所定時間Tx後の状況(すなわち、自船OS[Tx]が座標(Xo3[Tx],Yo3[Tx])に位置する状況)下で行った場合の航路(目標回避航路)60に乗るように、現時点(t=0)における自船の操船方法を指示する。具体的には、操船指示部23は、例えば、効用値算出部20からの所定時間Tx後の座標、変針角および変速率を受けて目標回避航路60や目標速力を設定し、当該目標回避航路60上の所定の座標や目標速力を自動操縦装置15へ指示する。 The ship maneuvering instruction unit 23 sets the coordinates (that is, the own ship OS [Tx]) after the corresponding predetermined time Tx for the avoidance maneuvering (that is, the right hand change of 30 °) based on the calculation result of the utility value calculation unit 20. Instruct the maneuvering method of the own ship at the present time (t = 0) so as to get on the route (target avoidance route) 60 when the vehicle is located under (Tx], Yo3 [Tx]). Specifically, the ship maneuvering instruction unit 23 sets the target avoidance route 60 and the target speed in response to the coordinates, the needle change angle, and the shift rate after a predetermined time Tx from the utility value calculation unit 20, for example, and sets the target avoidance route 60 and the target speed. Instruct the autopilot device 15 of the predetermined coordinates and the target speed on the 60.

このようにして、目標回避航路60は、図16の場合と異なり、操縦性能パラメータ(操縦性指数)に基づく運動シミュレーション結果を反映して、現時点ではなく所定時間Tx後の航路に定められる。そして、この所定時間Txの中で、自船OSの実際上の変針に伴う応答性の遅延や位置(座標)ズレなどが補償される。このため、図8に示されるように、自船OSの実際上の回避回路61を目標回避航路60に乗せることができ、その結果、将来的に自船OSは他船TSを効率的に回避することが可能になる。 In this way, unlike the case of FIG. 16, the target avoidance route 60 is set to the route after a predetermined time Tx, not at the present time, reflecting the motion simulation result based on the maneuverability parameter (maneuverability index). Then, within this predetermined time Tx, the delay in responsiveness and the displacement of the position (coordinates) due to the actual change of the course of the own ship OS are compensated. Therefore, as shown in FIG. 8, the actual avoidance circuit 61 of the own ship OS can be placed on the target avoidance route 60, and as a result, the own ship OS efficiently avoids the other ship TS in the future. Will be possible.

《避航支援装置(実施の形態2)の動作》
図9は、図4の避航支援装置における主要部の概略的な処理内容の一例を示すフロー図である。避航支援装置10は、例えば、図9のフローを所定の制御サイクル毎に繰り返し実行する。図9において、避航支援装置10は、船舶情報取得部11から自船情報(針路、速力、位置(座標))と、所定の範囲内に存在する他船情報(針路、速力、位置(座標))とを取得する(ステップS201)。
<< Operation of the avoidance support device (Embodiment 2) >>
FIG. 9 is a flow chart showing an example of schematic processing contents of the main part of the avoidance support device of FIG. The escape support device 10, for example, repeatedly executes the flow of FIG. 9 at predetermined control cycles. In FIG. 9, the avoidance support device 10 receives information on its own ship (course, speed, position (coordinates)) from the ship information acquisition unit 11 and information on other ships (course, speed, position (coordinates)) existing within a predetermined range. ) And (step S201).

次いで、避航支援装置10は、ステップS201の自船情報に基づき、自船OSが所定時間Tx後に到達し得る変針角θ毎に、到達時の変針角θ毎の座標(X,Y)(例えば、図7のX(θ),Y(θ))を操縦性指数に基づく運動シミュレータ55を用いて算出する(ステップS202)。続いて、避航支援装置10は、他船TSが現進航状態を所定時間Tx維持し、かつ自船OSが所定時間Tx後にステップS202に基づく変針角θ毎の座標に位置する状況を仮定し、当該状況下で避航操船空間の各位置毎の衝突危険度(式(5)のR(i,j))を危険度算出部26bを用いて算出する(ステップS203)。 Next, the avoidance support device 10 is based on the information of the own ship in step S201, and the coordinates (X, Y) (for example, X, Y) of each change angle θ at the time of arrival are obtained for each change angle θ that the own ship OS can reach after Tx for a predetermined time. , X (θ), Y (θ)) in FIG. 7 are calculated using the motion simulator 55 based on the maneuverability index (step S202). Subsequently, the avoidance support device 10 assumes a situation in which the other ship TS maintains the current cruising state at Tx for a predetermined time, and the own ship OS is located at the coordinates for each needle change angle θ based on step S202 after the predetermined time Tx. Under the circumstances, the collision risk (R (i, j) of the equation (5)) for each position in the avoidance maneuvering space is calculated using the risk calculation unit 26b (step S203).

次いで、避航支援装置10は、避航操船空間の各位置毎の選好度(図11および式(1)のPb(i,j))を選好度算出部24を用いて算出する(ステップS204)。続いて、避航支援装置10は、ステップS203で算出された衝突危険度と、ステップS204で算出された選好度とに基づき、避航操船空間の各位置毎の効用値(式(6)のu(i,j))を効用値算出部20を用いて算出する(ステップS205)。次いで、避航支援装置10は、効用値算出部20の効用値に基づく避航操船を、対応する所定時間Tx後の状況下で行った場合の航路(目標回避航路)60に乗るように、操船指示部23を用いて自船の操船方法を指示する(ステップS206)。 Next, the avoidance support device 10 calculates the preference degree (Pb (i, j) in FIG. 11 and equation (1)) for each position in the avoidance maneuvering space using the preference degree calculation unit 24 (step S204). Subsequently, the avoidance support device 10 is based on the collision risk calculated in step S203 and the preference degree calculated in step S204, and the utility value for each position in the avoidance maneuvering space (u (u (formula (6))). i, j)) is calculated using the utility value calculation unit 20 (step S205). Next, the avoidance support device 10 instructs the ship maneuvering to board the route (target avoidance route) 60 when the avoidance maneuvering based on the utility value of the utility value calculation unit 20 is performed under the condition after the corresponding predetermined time Tx. A method of maneuvering the own ship is instructed using the unit 23 (step S206).

《実施の形態2の主要な効果》
以上、実施の形態2の避航支援装置を用いることで、実施の形態1の場合と同様に、代表的には、船舶の操縦性能に応じた最適な避航操船方法を自動的に導出することが可能になる。その結果、船舶の自律航行に寄与することが可能になる。さらに、実施の形態1の方式と比較して、より妥当性が高い避航操船方法を導出することが可能になる。
<< Main effect of Embodiment 2 >>
As described above, by using the avoidance support device of the second embodiment, it is possible to automatically derive the optimum avoidance maneuvering method according to the maneuvering performance of the ship, as in the case of the first embodiment. It will be possible. As a result, it becomes possible to contribute to the autonomous navigation of the ship. Further, it becomes possible to derive a more appropriate avoidance maneuvering method as compared with the method of the first embodiment.

具体的に説明すると、例えば、図2では、自船OSが、現時点(t=0)から遅延時間Td後に座標(Xo[0],Yo[Td])を経由して目標回避航路50上の所定の座標に向かう前提で最適な避航操船方法が導出される。ただし、自船OSがこのような航路で目標回避航路50上の所定の座標に到達するまでの時間と、実際上の回避航路51に乗って目標回避航路50上の所定の座標に到達するまでの時間との間には誤差が生じ得る。この時間的誤差によって、導出された避航操船方法の妥当性が低下する恐れがある。図8の方式を用いると、このような時間的誤差が生じないように避航操船方法を導出することが可能になる。 Specifically, for example, in FIG. 2, the own ship OS is on the target avoidance route 50 via the coordinates (Xo [0], Yo [Td]) after the delay time Td from the current time (t = 0). The optimum avoidance maneuvering method is derived on the premise that the ship goes to a predetermined coordinate. However, the time required for the OS of the own ship to reach the predetermined coordinates on the target avoidance route 50 on such a route and until the OS reaches the predetermined coordinates on the target avoidance route 50 on the actual avoidance route 51. There may be an error between the time and the time. This time error may reduce the validity of the derived avoidance maneuvering method. By using the method of FIG. 8, it is possible to derive an avoidance maneuvering method so that such a time error does not occur.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 Although the invention made by the present inventor has been specifically described above based on the embodiment, the present invention is not limited to the embodiment and can be variously modified without departing from the gist thereof.

例えば、選好度、衝突危険度、効用値を算出する各式は、必ずしも、前述した各式に限定されず、要旨を逸脱しない範囲で、適宜、変更されてもよい。 For example, the formulas for calculating the preference, collision risk, and utility value are not necessarily limited to the above-mentioned formulas, and may be appropriately changed as long as they do not deviate from the gist.

10 避航支援装置
11 船舶情報取得部
13 結果表示装置
14 電子海図
15 自動操縦装置
20 効用値算出部
21 パラメータ保持部
22 航路設定部
23 操船指示部
24 選好度算出部
26a,26b 危険度算出部
30 AIS
31 レーダ
32 カメラ
35 方位センサ
36 速度センサ
37 GPS
40 バンパー領域
41,42 リスク関数
43 相対針路
50,60,70 目標回避航路
51,61 実際上の回避航路
55 運動シミュレータ
56 シミュレーション実行部
57 パラメータ保持部
OS 自船
TS 他船
10 Escape support device 11 Ship information acquisition unit 13 Result display device 14 Electronic chart 15 Autopilot 20 Utility value calculation unit 21 Parameter holding unit 22 Route setting unit 23 Ship maneuvering instruction unit 24 Preference calculation unit 26a, 26b Risk calculation unit 30 AIS
31 Radar 32 Camera 35 Direction sensor 36 Speed sensor 37 GPS
40 Bumper area 41,42 Risk function 43 Relative course 50, 60, 70 Target avoidance route 51, 61 Actual avoidance route 55 Motion simulator 56 Simulation execution unit 57 Parameter holding unit OS Own ship TS Other ship

Claims (2)

変針角の選択肢と変速率の選択肢とを組み合わせた空間を避航操船空間として、前記避航操船空間の各位置毎に、当該各位置の選択に伴う操船者の主観的な好みを表す選好度を算出する選好度算出部と、
自船の操縦性能を表す操縦性能パラメータを反映して現時点から所定時間後の前記自船の状況を仮定し、当該状況下で前記自船が避航操船を行った場合の他船に対する衝突危険度を、前記避航操船空間の各位置毎に算出する危険度算出部と、
前記避航操船空間の各位置毎に、前記選好度から前記衝突危険度を減算することで効用値を算出する効用値算出部と、
前記効用値算出部の算出結果に基づく避航操船を前記所定時間後の状況下で行った場合の航路に乗るように、前記自船の操船方法を指示する操船指示部と、
を有し、
前記操縦性能パラメータは、操縦性指数であり、
さらに、前記所定時間後に到達し得る前記変針角毎に、到達時の前記変針角毎の座標を前記操縦性指数を用いて算出する運動シミュレータを有し、
前記危険度算出部は、前記他船が現進航状態を前記所定時間維持し、かつ前記自船が前記所定時間後に前記運動シミュレータに基づく前記変針角毎の前記座標に位置する状況を仮定し、当該状況下で前記避航操船空間の各位置毎の前記衝突危険度を算出し、
前記操船指示部は、前記効用値算出部の算出結果に基づく避航操船を、対応する前記所定時間後の状況下で行った場合の航路に乗るように、前記自船の前記操船方法を指示する、
避航支援装置。
The space that combines the choice of the change angle and the choice of the shift rate is used as the avoidance maneuvering space, and the preference degree that expresses the subjective preference of the operator due to the selection of each position is calculated for each position of the avoidance maneuvering space. Preference calculation unit and
Reflecting the maneuvering performance parameters that represent the maneuvering performance of the own ship, assuming the situation of the own ship after a predetermined time from the present time, the risk of collision with other ships when the own ship performs avoidance maneuvering under the situation. With a risk calculation unit that calculates each position in the avoidance maneuvering space,
A utility value calculation unit that calculates a utility value by subtracting the collision risk from the preference for each position in the avoidance maneuvering space.
A ship maneuvering instruction unit that instructs the maneuvering method of the own ship so as to get on the route when the avoidance maneuvering based on the calculation result of the utility value calculation unit is performed under the situation after the predetermined time.
Have a,
The maneuverability parameter is a maneuverability index.
Further, it has a motion simulator that calculates the coordinates of each change angle at the time of arrival for each change angle that can be reached after the predetermined time by using the maneuverability index.
The risk calculation unit assumes a situation in which the other ship maintains the current traveling state for the predetermined time and the own ship is located at the coordinates of each needle change angle based on the motion simulator after the predetermined time. Under the circumstances, the collision risk was calculated for each position in the avoidance maneuvering space.
The ship maneuvering instruction unit instructs the maneuvering method of the own ship so as to get on the route when the avoidance maneuvering based on the calculation result of the utility value calculation unit is performed under the corresponding situation after the predetermined time. ,
Escape support device.
請求項記載の避航支援装置において、
前記運動シミュレータは、前記自船の舵角を維持した状態で、前記所定時間後に到達する前記変針角と前記座標を前記舵角を変えながら計算することで、前記変針角毎の前記座標を算出する、
避航支援装置。
In the escape support device according to claim 1,
The motion simulator calculates the coordinates for each of the stylus angles by calculating the stylus angle and the coordinates that reach after the predetermined time while maintaining the rudder angle of the own ship while changing the rudder angle. To do,
Escape support device.
JP2018190634A 2018-10-09 2018-10-09 Avoidance support device Active JP6882243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018190634A JP6882243B2 (en) 2018-10-09 2018-10-09 Avoidance support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190634A JP6882243B2 (en) 2018-10-09 2018-10-09 Avoidance support device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021030051A Division JP7069371B2 (en) 2021-02-26 2021-02-26 Evasion support device

Publications (2)

Publication Number Publication Date
JP2020060886A JP2020060886A (en) 2020-04-16
JP6882243B2 true JP6882243B2 (en) 2021-06-02

Family

ID=70219916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190634A Active JP6882243B2 (en) 2018-10-09 2018-10-09 Avoidance support device

Country Status (1)

Country Link
JP (1) JP6882243B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741669C1 (en) * 2020-08-18 2021-01-28 Акционерное общество "Кронштадт Технологии" System for coordinated control of ship movement in modes of automatic and remote control
EP4253219A1 (en) * 2020-11-26 2023-10-04 Furuno Electric Co., Ltd. Ship monitoring system, ship monitoring method, information processing device, and program
CN113032896B (en) * 2021-02-25 2024-05-03 武汉理工大学 Anti-collision auxiliary decision-making method based on preference of ship driver
WO2022195675A1 (en) * 2021-03-15 2022-09-22 パイオニア株式会社 Information processing device, control method, program, and storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922499A (en) * 1995-07-07 1997-01-21 Tokimec Inc Supporting device for collision avoiding navigation

Also Published As

Publication number Publication date
JP2020060886A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6882243B2 (en) Avoidance support device
CN108445879B (en) Unmanned ship obstacle avoidance method based on collision danger prediction area
Wang et al. A COLREGs-based obstacle avoidance approach for unmanned surface vehicles
US10431099B2 (en) Collision avoidance systems and methods
EP1365301B1 (en) Method and system for maneuvering a movable object
JPWO2016104030A6 (en) MOBILE BODY CONTROL DEVICE, MOBILE BODY CONTROL METHOD, AND MOBILE BODY CONTROL PROGRAM
JPWO2016104030A1 (en) MOBILE BODY CONTROL DEVICE, MOBILE BODY CONTROL METHOD, AND MOBILE BODY CONTROL PROGRAM
CN111580518B (en) Unmanned ship layered obstacle avoidance method based on improved drosophila optimization and dynamic window method
JP2021181301A (en) Automatic guidance method for vessel, automatic guidance program for vessel, automatic guidance system for vessel, and vessel
KR102099699B1 (en) Device and method avoiding collision of autonomous surface vehicle considering uncertainty of trajectory prediction
CN112578793B (en) Obstacle avoiding method for fast moving surface boat
US20090069962A1 (en) Guidance of marine vessels
JP4213518B2 (en) Control method and control apparatus for moving body
JP2007249631A (en) Polygonal line following mobile robot, and control method for polygonal line following mobile robot
JP2020027344A (en) Collision avoidance support device
JP7069371B2 (en) Evasion support device
Clark et al. Proportional navigation based guidance laws for UAV obstacle avoidance in complex urban environments
CN108241368B (en) Unmanned ship route navigation method and equipment
JPWO2020111044A1 (en) Control target generator and ship maneuvering control device
JP6752253B2 (en) Avoidance support device
WO2021229825A1 (en) Ship maneuver calculation device
CN111337027B (en) Ship follow-up operation auxiliary driving method and system
CN114035574A (en) Autonomous obstacle avoidance method for unmanned surface vehicle
CN117970786B (en) Ship autonomous navigation decision-making method and device, ship and storage medium
WO2022239402A1 (en) Ship monitoring system, ship monitoring method, information processing device, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200407

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200407

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210315

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210506

R150 Certificate of patent or registration of utility model

Ref document number: 6882243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250