JP6881189B2 - Total phosphorus measuring device - Google Patents

Total phosphorus measuring device Download PDF

Info

Publication number
JP6881189B2
JP6881189B2 JP2017187347A JP2017187347A JP6881189B2 JP 6881189 B2 JP6881189 B2 JP 6881189B2 JP 2017187347 A JP2017187347 A JP 2017187347A JP 2017187347 A JP2017187347 A JP 2017187347A JP 6881189 B2 JP6881189 B2 JP 6881189B2
Authority
JP
Japan
Prior art keywords
sample water
measuring
unit
syringe pump
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017187347A
Other languages
Japanese (ja)
Other versions
JP2019060799A (en
Inventor
佳夫 北田
佳夫 北田
雅人 矢幡
雅人 矢幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2017187347A priority Critical patent/JP6881189B2/en
Priority to CN201810609191.XA priority patent/CN109580480A/en
Publication of JP2019060799A publication Critical patent/JP2019060799A/en
Application granted granted Critical
Publication of JP6881189B2 publication Critical patent/JP6881189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、試料水中の全リン濃度を測定する全リン測定装置に関するものである。 The present invention relates to a total phosphorus measuring device for measuring the total phosphorus concentration in sample water.

全リン測定装置は、一般的に、試料水中のリン化合物を酸化させる酸化処理を行なうためのリアクタやリアクタで酸化処理された後の試料水の吸光度測定を行なうための測定部を備えている。試料水を採取した後、その試料水にペルオキソ二硫酸カリウムなどの試薬を添加して混合してリアクタへ移送する。リアクタでは、試料水中のリン化合物を酸化させてオルトリン酸を生成する。リアクタでの酸化処理が終了した後、還元剤のアスコルビン酸と発色剤のモリブデン酸を試料水に添加して測定部へ移送し、試料水の吸光度を測定することによって試料水中のリン濃度を測定する(特許文献1を参照。)。 The total phosphorus measuring device generally includes a reactor for performing an oxidation treatment for oxidizing a phosphorus compound in the sample water and a measuring unit for measuring the absorbance of the sample water after the oxidation treatment in the reactor. After collecting the sample water, a reagent such as potassium persulfate is added to the sample water, mixed, and transferred to the reactor. In the reactor, the phosphorus compound in the sample water is oxidized to produce orthophosphoric acid. After the oxidation treatment in the reactor is completed, the reducing agent ascorbic acid and the color former molybdenum acid are added to the sample water and transferred to the measurement unit, and the phosphorus concentration in the sample water is measured by measuring the absorbance of the sample water. (See Patent Document 1).

特開2003−014724号公報Japanese Unexamined Patent Publication No. 2003-014724

試料水中に濁度成分が混入している場合がある。濁度成分は測定波長にも吸収をもっているため、試料水の単純な吸光度だけでは全リン濃度を正確に測定することはできない。 Turbidity components may be mixed in the sample water. Since the turbidity component also has absorption at the measurement wavelength, the total phosphorus concentration cannot be accurately measured only by the simple absorbance of the sample water.

そこで、本発明は、濁度成分を含む試料水中の全リン濃度を正確に測定することができるようにすることを目的とするものである。 Therefore, an object of the present invention is to enable accurate measurement of the total phosphorus concentration in the sample water containing the turbidity component.

本発明に係る全リン測定装置は、試料水貯留部、測定部、発色試薬供給部、シリンジポンプ、接続切替部、第1測定動作部、第2測定動作部、及び全リン濃度算出部を備えている。前記試料水貯留部には酸化処理済みの試料水が貯留される。前記測定部は、測定セルを有し、前記測定セル内に収容された試料水の吸光度を測定する。発色試薬供給部は、試料水を発色させるための発色試薬を供給するためのものである。シリンジポンプは、液の吸引と吐出を行なう。接続切替部は、前記シリンジポンプを前記試料水貯留部、前記測定部、又は前記発色試薬供給部のいずれかに切り替えて接続するように構成されている。前記第1測定動作部は、前記測定部、前記シリンジポンプ、及び前記接続切替部の動作を制御し、前記シリンジポンプによって、前記試料水貯留部に貯留された試料水であって前記発色試薬の添加されていない未添加試料水を前記測定セルへ移送し、その未添加試料水の吸光度Aを測定する第1測定動作を実行するように構成されている。前記第2測定動作部は、前記測定部、前記シリンジポンプ、及び前記接続切替部の動作を制御し、前記シリンジポンプによって、前記試料水貯留部に貯留された試料水であって前記発色試薬の添加された添加済試料水を前記測定セルへ移送し、その添加済試料水の吸光度Aを測定する第2測定動作を実行するように構成されている。前記全リン濃度算出部は、前記第1測定動作で測定された吸光度Aと前記第2測定動作で測定された吸光度Aを用いて、試料水中の全リン濃度を求めるように構成されている。 The total phosphorus measuring device according to the present invention includes a sample water storage unit, a measuring unit, a coloring reagent supply unit, a syringe pump, a connection switching unit, a first measuring operation unit, a second measuring operation unit, and a total phosphorus concentration calculation unit. ing. Oxidized sample water is stored in the sample water storage section. The measuring unit has a measuring cell and measures the absorbance of the sample water contained in the measuring cell. The color-developing reagent supply unit is for supplying a color-developing reagent for developing the color of the sample water. The syringe pump sucks and discharges the liquid. The connection switching unit is configured to switch and connect the syringe pump to any of the sample water storage unit, the measurement unit, or the color-developing reagent supply unit. The first measurement operation unit controls the operation of the measurement unit, the syringe pump, and the connection switching unit, and is sample water stored in the sample water storage unit by the syringe pump and is a color-developing reagent. the no addition sample water without added and transferred to the measuring cell, is configured to perform a first measurement operation of measuring the absorbance a 1 of the non-addition sample water. The second measurement operation unit controls the operation of the measurement unit, the syringe pump, and the connection switching unit, and is sample water stored in the sample water storage unit by the syringe pump and is a color-developing reagent. It is configured to transfer the added added sample water to the measurement cell and execute a second measurement operation for measuring the absorbance A 2 of the added sample water. The total phosphorus concentration calculation unit uses the absorbance A 2 measured in measured absorbance A 1 and the second measurement operation by the first measuring operation, is configured to determine the total phosphorus concentration in the sample water There is.

すなわち、本発明に係る全リン測定装置は、発色試薬の添加されていない試料水の吸光度Aを測定する第1測定動作と、発色試薬の添加された試料水の吸光度Aを測定する第2測定動作を行ない、吸光度AとAを用いて全リン濃度を求める。試料水に発色試薬が添加されていない場合、試料水中のオルトリン酸が測定波長に対して吸収を示さない。したがって、第1測定で測定される吸光度Aは濁度成分の濃度に依存したものとなる。一方で、試料水に発色試薬が添加された場合は、試料水中のオルトリン酸が測定波長に対して吸収を示すため、第2測定で測定される吸光度Aは、オルトリン酸の濃度と濁度成分の濃度に依存したものとなる。したがって、測定した吸光度AとAの差分をとれば、オルトリン酸の濃度にのみ依存した吸光度を求めることができ、その吸光度に基づいて試料水中の全リン濃度を求めることができる。 That is, the total phosphorus measuring apparatus according to the present invention has a first measuring operation for measuring the absorbance A 1 of the sample water to which the coloring reagent is not added, and a first measuring operation for measuring the absorbance A 2 of the sample water to which the coloring reagent is added. 2 performs the measurement operation to determine the total phosphorus concentration using the absorbance a 1 and a 2. When the coloring reagent is not added to the sample water, the orthophosphoric acid in the sample water does not show absorption with respect to the measurement wavelength. Therefore, the absorbance A 1 measured by the first measurement becomes dependent on the concentration of turbidity components. On the other hand, when the color developing reagent to the sample water is added, because the orthophosphoric acid sample water as it absorbs the measurement wavelength, the absorbance A 2 measured by the second measurement, the concentration of orthophosphoric acid and turbidity It depends on the concentration of the component. Therefore, by taking the difference between the measured absorbances A 2 and A 1 , the absorbance depending only on the concentration of orthophosphoric acid can be obtained, and the total phosphorus concentration in the sample water can be obtained based on the absorbance.

ところで、上記の第2測定動作で吸光度測定に用いられる試料水は発色試薬が添加されて希釈されたものであるため、第1測定動作で吸光度測定に用いられる試料水よりも濁度成分濃度が薄くなる。 By the way, since the sample water used for the absorbance measurement in the second measurement operation is diluted by adding a coloring reagent, the turbidity component concentration is higher than that of the sample water used for the absorbance measurement in the first measurement operation. getting thin.

そこで、本発明に係る全リン測定装置は、前記第2測定動作において前記試料水に添加される前記発色試薬による試料水の希釈率に基づく補正係数を求めるように構成された補正係数算出部をさらに備え、前記全リン濃度算出部は、前記補正係数算出部により求められた補正係数を用いて試料水中の全リン濃度を求めるように構成されていることが好ましい。そうすれば、発色試薬による試料水の希釈率に応じた補正係数を用いて全リン濃度を求めることができ、測定精度が向上する。 Therefore, the total phosphorus measuring apparatus according to the present invention includes a correction coefficient calculation unit configured to obtain a correction coefficient based on the dilution rate of the sample water by the color-developing reagent added to the sample water in the second measurement operation. Further, it is preferable that the total phosphorus concentration calculation unit is configured to obtain the total phosphorus concentration in the sample water by using the correction coefficient obtained by the correction coefficient calculation unit. Then, the total phosphorus concentration can be obtained by using the correction coefficient according to the dilution ratio of the sample water by the color-developing reagent, and the measurement accuracy is improved.

また、濁度成分の代表的なものとして砂などの不溶性物質があり、そのような不溶性物質が含まれる試料水中には濁度の濃淡が発生する場合が多い。試料水を試料貯留部に入れて放置しておくと、時間とともに濁度成分が沈降し、試料貯留部の上部では濁度が低く、下部では濁度が高い状態となる。このため、前記第1測定動作の際に試料貯留部内のから採取した試料水の濁度と前記第2測定動作の際に試料貯留部内から採取した試料水の濁度は異なっていることも考えられる。前記第1測定動作で用いる試料水と前記第2測定動作で用いる試料水の濁度が異なっていると、全リン濃度を正確に求めることができない。 Further, there is an insoluble substance such as sand as a typical turbidity component, and in many cases, a shade of turbidity occurs in the sample water containing such an insoluble substance. If the sample water is placed in the sample storage section and left to stand, the turbidity component will settle over time, and the turbidity will be low in the upper part of the sample storage section and high in the lower part. Therefore, it is considered that the turbidity of the sample water collected from the sample storage unit during the first measurement operation and the turbidity of the sample water collected from the sample storage unit during the second measurement operation are different. Be done. If the turbidity of the sample water used in the first measurement operation and the sample water used in the second measurement operation are different, the total phosphorus concentration cannot be accurately determined.

そこで、本発明に係る全リン測定装置においては、前記第2測定動作部は、前記第2測定動作として、前記第1測定動作が終了した後で、前記測定セル内の試料水を前記シリンジポンプ内へ吸引し、前記シリンジポンプ内で当該試料水に前記発色試薬を添加して前記添加済試料水とし、その添加済試料水を再び前記測定セルへ移送して吸光度Aを測定する動作を実行するように構成されていることが好ましい。これにより、前記第1測定動作と前記第2測定動作とで濁度の等しい試料水を用いることになるので、全リン濃度の測定精度を向上させることができる。 Therefore, in the total phosphorus measuring apparatus according to the present invention, the second measuring operation unit pumps the sample water in the measuring cell into the syringe pump after the first measuring operation is completed as the second measuring operation. The operation of sucking into the sample water and adding the color-developing reagent to the sample water in the syringe pump to obtain the added sample water, and transferring the added sample water to the measurement cell again to measure the absorbance A 2. It is preferably configured to perform. As a result, sample water having the same turbidity is used in the first measurement operation and the second measurement operation, so that the measurement accuracy of the total phosphorus concentration can be improved.

また、試料水中のリン化合物濃度に比べて濁度成分濃度が大きい場合が多く、濁度成分濃度のバラつきは測定精度に大きな影響を与える。一般に、複数回にわたってサンプリングされた試料水のそれぞれについて濁度成分による吸光度を計測する場合には、濁度の絶対値が小さいほど濁度の平均値からのバラつきが小さくなる。すなわち、試料水の濁度が小さいほど、濁度成分濃度のバラつきが小さくなり、全リン濃度の測定精度が向上する。 In addition, the turbidity component concentration is often higher than the phosphorus compound concentration in the sample water, and the variation in the turbidity component concentration has a great influence on the measurement accuracy. Generally, when measuring the absorbance of each sampled water sampled a plurality of times due to the turbidity component, the smaller the absolute value of turbidity, the smaller the variation from the average value of turbidity. That is, the smaller the turbidity of the sample water, the smaller the variation in the turbidity component concentration, and the better the measurement accuracy of the total phosphorus concentration.

そこで、本発明に係る全リン測定装置では、前記第1測定動作部は、前記第1測定動作として、前記試料貯留部内の試料水を前記未添加試料水として前記シリンジポンプ内へ吸引した後、前記未添加試料水中の濁度成分を沈降させるために予め設定された所定時間だけ待機し、その後、沈降した濁度成分を除く前記未添加試料水を前記測定セルへ移送して吸光度Aを測定する動作を実行するように構成されていることが好ましい。そうすれば、前記シリンジポンプ内において濁度成分の一部を沈降させて濁度を低下させた状態で試料水を前記測定セルへ移送することができるので、全リン濃度の測定精度が向上する。 Therefore, in the total phosphorus measuring apparatus according to the present invention, as the first measurement operation, the first measurement operation unit sucks the sample water in the sample storage unit as the unadded sample water into the syringe pump, and then sucks the sample water into the syringe pump. the wait for a preset predetermined time to precipitate the turbidity component of the non-addition sample water, after which the absorbance a 1 the no addition sample water and transferred to the measuring cell, excluding the precipitated turbidity component It is preferably configured to perform the action to be measured. Then, the sample water can be transferred to the measurement cell in a state where a part of the turbidity component is precipitated in the syringe pump to reduce the turbidity, so that the measurement accuracy of the total phosphorus concentration is improved. ..

なお、前記試料水貯留部は、前記シリンジポンプによって採取された試料水を貯留し、その試料水中のリン化合物を酸化させる酸化処理を行なうためのリアクタであってもよい。その場合、前記第1測定動作部は、前記酸化処理が終了した後、前記試料水中の濁度成分を沈降させるために予め設定された所定時間だけ待機し、その後、前記試料水貯留部の試料水を前記未添加試料水として前記測定セルへ移送するように構成されていてもよい。そうすれば、リアクタ内で酸化処理がなされた後の試料水をその濁度をある程度低下させた状態で測定セルへ移送することができ、全リン濃度の測定精度を向上させることができる。 The sample water storage unit may be a reactor for storing the sample water collected by the syringe pump and performing an oxidation treatment for oxidizing the phosphorus compound in the sample water. In that case, after the oxidation treatment is completed, the first measurement operation unit waits for a predetermined time set in advance to settle the turbidity component in the sample water, and then the sample in the sample water storage unit. The water may be configured to be transferred to the measurement cell as the unadded sample water. Then, the sample water after the oxidation treatment in the reactor can be transferred to the measurement cell in a state where the turbidity is reduced to some extent, and the measurement accuracy of the total phosphorus concentration can be improved.

上記の場合、前記試料水貯留部には、前記第1測定動作及び前記第2測定動作に用いられる試料水の量よりも多くの量の試料水が貯留されるようになっていてもよい。そうすれば、前記試料水貯留部における濁度成分の沈降効果を向上させることができ、全リン濃度の測定精度の向上を図ることができる。 In the above case, the sample water storage unit may store a larger amount of sample water than the amount of sample water used for the first measurement operation and the second measurement operation. By doing so, the sedimentation effect of the turbidity component in the sample water storage portion can be improved, and the measurement accuracy of the total phosphorus concentration can be improved.

本発明に係る全リン測定装置は、発色試薬の添加されていない試料水の吸光度Aを測定する第1測定動作と、発色試薬の添加された試料水の吸光度Aを測定する第2測定動作を行ない、吸光度AとAを用いて全リン濃度を求めるように構成されているので、試料水の吸光度の測定値から濁度成分に依存する値を差し引くことができ、全リン濃度を正確に求めることができる。 The total phosphorus measuring apparatus according to the present invention has a first measurement operation for measuring the absorbance A 1 of the sample water to which the coloring reagent has not been added, and a second measurement for measuring the absorbance A 2 of the sample water to which the coloring reagent has been added. performs operation, which is configured to determine the total phosphorus concentration using the absorbance a 1 and a 2, it is possible to subtract the value dependent from the measured absorbance of the sample water turbidity component, the total phosphorus concentration Can be calculated accurately.

全リン測定装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the total phosphorus measuring apparatus. 同実施例の全リン濃度測定の一連の動作を示すフローチャートである。It is a flowchart which shows the series operation of the total phosphorus concentration measurement of the same Example. 同実施例の測定精度の検証データを示すグラフである。It is a graph which shows the verification data of the measurement accuracy of the same Example.

以下、本発明に係る全リン測定装置の一実施例について、図面を参照しながら説明する。 Hereinafter, an embodiment of the total phosphorus measuring apparatus according to the present invention will be described with reference to the drawings.

図1に示されているように、この実施例の全リン測定装置は主として、シリンジポンプ2、2つのマルチポートバルブ4,6、リアクタ8、測定部10、及び演算制御装置20を備えている。 As shown in FIG. 1, the total phosphorus measuring device of this embodiment mainly includes a syringe pump 2, two multi-port valves 4 and 6, a reactor 8, a measuring unit 10, and an arithmetic control device 20. ..

シリンジポンプ2は液の吸引と吐出を行なうものである。シリンジポンプ2の吸引・吐出口は、後述するマルチポートバルブ4の中心ポートに接続されている。シリンジポンプ2のシリンダには撹拌用のポンプ18が流路を介して接続されており、ポンプ18によって供給されるエアーによりシリンジポンプ2内において液の撹拌を行なうことができるようになっている。 The syringe pump 2 sucks and discharges the liquid. The suction / discharge port of the syringe pump 2 is connected to the central port of the multi-port valve 4 described later. A stirring pump 18 is connected to the cylinder of the syringe pump 2 via a flow path, and the liquid can be stirred in the syringe pump 2 by the air supplied by the pump 18.

マルチポートバルブ4と6は、シリンジポンプ2の接続先を切り替える接続切替部を実現するものである。 The multi-port valves 4 and 6 realize a connection switching unit for switching the connection destination of the syringe pump 2.

マルチポートバルブ4は、1つの中心ポートと複数の選択ポートを有し、中心ポートをいずれか1つの選択ポートへ選択的に接続するものである。マルチポートバルブ4の中心ポートにシリンジポンプ2の吸引・吐出口が接続されている。マルチポートバルブ4の1つの選択ポートはマルチポートバルブ6の中心ポートと流路を介して接続されている。マルチポートバルブ4の他の選択ポートには、アスコルビン酸溶液、モリブデン酸溶液、硫酸溶液、塩酸溶液、ペルオキソ二硫酸カリウム溶液、水酸化ナトリウム溶液をそれぞれ貯留する容器へ通じる流路が接続されている。モリブデン酸溶液は、酸化処理された試料水を発色させるための発色剤であり、モリブデン酸溶液を貯留する容器は発色剤を供給するための発色剤供給部をなしている。 The multi-port valve 4 has one center port and a plurality of selection ports, and selectively connects the center port to any one selection port. The suction / discharge port of the syringe pump 2 is connected to the central port of the multi-port valve 4. One select port of the multi-port valve 4 is connected to the central port of the multi-port valve 6 via a flow path. The other selection port of the multi-port valve 4 is connected to a flow path leading to a container for storing ascorbic acid solution, molybdic acid solution, sulfuric acid solution, hydrochloric acid solution, peroxodisulfate potassium solution, and sodium hydroxide solution, respectively. .. The molybdic acid solution is a color-developing agent for developing the color of the oxidized sample water, and the container for storing the molybdic acid solution serves as a color-developing agent supply unit for supplying the color-developing agent.

マルチポートバルブ6も、1つの中心ポートと複数の選択ポートを有し、中心ポートをいずれか1つの選択ポートへ選択的に接続するものである。マルチポートバルブ6の1つの選択ポートは流路を介してリアクタ8と接続されており、マルチポートバルブ6の他の1つの選択ポートは流路を介して測定部10の測定セル12の入口に接続されている。マルチポートバルブ6の他の選択ポートには、試料水を採取するための採水管のほか、スパン液、希釈液、標準液をそれぞれ貯留する容器に通じる流路が接続されている。 The multi-port valve 6 also has one center port and a plurality of selection ports, and selectively connects the center port to any one selection port. One selection port of the multi-port valve 6 is connected to the reactor 8 via a flow path, and the other selection port of the multi-port valve 6 is connected to the inlet of the measurement cell 12 of the measuring unit 10 via the flow path. It is connected. The other selection port of the multi-port valve 6 is connected to a water sampling pipe for collecting sample water and a flow path leading to a container for storing a spanned liquid, a diluted liquid, and a standard liquid.

リアクタ8は試料水の酸化処理を行なうためのものであり、紫外線照射ランプ9を有する。試料水の酸化処理とは、酸化剤(例えば、ペルオキソ二硫酸カリウム溶液)の添加された試料水に対して一定の温度条件下(例えば、95℃)で酸素ガス又は空気を供給しながら紫外線を照射し、試料水中のリン化合物を酸化分解してオルトリン酸を生成する処理である。リアクタ8は、酸化処理済みの試料水を貯留する試料貯留部を構成する。 The reactor 8 is for performing an oxidation treatment of sample water, and has an ultraviolet irradiation lamp 9. Oxidation treatment of sample water is to apply ultraviolet rays to sample water to which an oxidizing agent (for example, potassium persulfate solution) has been added while supplying oxygen gas or air under constant temperature conditions (for example, 95 ° C.). It is a process of oxidatively decomposing phosphorus compounds in sample water by irradiation to produce orthophosphoric acid. The reactor 8 constitutes a sample storage unit for storing the sample water that has been oxidized.

測定部10は、測定セル12、光源14、及び光検出素子16を備えている。測定セル12の出口はドレインへ通じている。光源14は、測定波長(例えば880nm又は710nm)の光を測定セル12へ向けて発生させるものであり、例えばレーザ素子によって実現される。光検出素子16は測定セル12を透過してきた光源14からの光の強度を検出するためのものであり、例えばフォトダイオードによって実現される。 The measuring unit 10 includes a measuring cell 12, a light source 14, and a photodetector 16. The outlet of the measurement cell 12 leads to the drain. The light source 14 generates light having a measurement wavelength (for example, 880 nm or 710 nm) toward the measurement cell 12, and is realized by, for example, a laser element. The photodetector 16 is for detecting the intensity of light from the light source 14 that has passed through the measurement cell 12, and is realized by, for example, a photodiode.

演算制御装置20は、この全リン測定装置の動作管理と演算処理を行なうためのものであり、専用のコンピュータ又は汎用のパーソナルコンピュータによって実現されるものである。演算制御装置20の機能として、第1測定動作部22、第2測定動作部24、全リン濃度算出部26、及び補正係数算出部28を備えている。第1測定動作部22、第2測定動作部24、全リン濃度算出部26、及び補正係数算出部28は、演算制御装置20に設けられているマイクロコンピュータなどの演算素子が所定のプログラムを実行することによって得られる機能である。 The arithmetic control device 20 is for performing operation management and arithmetic processing of the total phosphorus measuring apparatus, and is realized by a dedicated computer or a general-purpose personal computer. As the functions of the arithmetic control device 20, a first measurement operation unit 22, a second measurement operation unit 24, a total phosphorus concentration calculation unit 26, and a correction coefficient calculation unit 28 are provided. In the first measurement operation unit 22, the second measurement operation unit 24, the total phosphorus concentration calculation unit 26, and the correction coefficient calculation unit 28, an arithmetic element such as a microcomputer provided in the arithmetic control device 20 executes a predetermined program. It is a function obtained by doing.

第1測定動作部22は、シリンジポンプ2、マルチポートバルブ4,6、測定部10の動作を制御し、リアクタ8において酸化処理が施された試料水であって、発色剤(例えば、モリブデン酸)の添加されていない試料水(未添加試料水)を測定セル12へ移送し、そのときの吸光度Aを測定する第1測定動作を実行するように構成されている。第1測定動作で測定セル12へ移送される試料水には発色剤が添加されていないため、測定セル12内の試料水中のオルトリン酸が測定波長に対して吸収をもたない。そのため、第1測定で測定される吸光度Aは試料水中の濁度成分濃度に依存した値となる。 The first measurement operation unit 22 controls the operation of the syringe pump 2, the multi-port valves 4 and 6, and the measurement unit 10, and is sample water that has been oxidized in the reactor 8 and is a color former (for example, molybdenum acid). ) sample water without added of the (no addition sample water) was transferred to the measuring cell 12 is configured to perform a first measurement operation of measuring the absorbance a 1 at that time. Since no color former is added to the sample water transferred to the measurement cell 12 in the first measurement operation, the orthophosphoric acid in the sample water in the measurement cell 12 does not absorb the measurement wavelength. Therefore, the absorbance A 1 measured by the first measurement is a value that depends on the turbidity component concentration of sample water.

第2測定動作部24は、シリンジポンプ2、マルチポートバルブ4,6、測定部10の動作を制御し、リアクタ8において酸化処理が施された試料水であって、発色剤(例えば、モリブデン酸溶液)が添加された試料水(添加済試料水)を測定セル12へ移送し、そのときの吸光度Aを測定する第2測定動作を実行するように構成されている。第2測定動作で測定セル12へ移送される試料水には発色剤が添加されているため、測定セル12内の試料水中のオルトリン酸が測定波長に対して吸収をもつ。そのため、第2測定で測定される吸光度Aは試料水中のオルトリン酸濃度と濁度成分濃度に依存した値となる。 The second measurement operation unit 24 controls the operation of the syringe pump 2, the multi-port valves 4 and 6, and the measurement unit 10, and is sample water that has been oxidized in the reactor 8 and is a color former (for example, molybdenum acid). sample water solution) was added (added already sample water) was transferred to the measuring cell 12 is configured to perform a second measurement operation of measuring the absorbance a 2 at that time. Since the color former is added to the sample water transferred to the measurement cell 12 in the second measurement operation, the orthophosphoric acid in the sample water in the measurement cell 12 has absorption with respect to the measurement wavelength. Therefore, the absorbance A 2 measured in the second measurement is a value that depends on the concentration of orthophosphoric acid and the concentration of the turbidity component in the sample water.

全リン濃度算出部26は、上記の第1測定動作と第2測定動作で測定された吸光度AとAの差分から試料水中のオルトリン酸濃度にのみ依存した吸光度を求め、その吸光度から試料水中の全リン濃度を求めるように構成されている。 The total phosphorus concentration calculation unit 26 obtains the absorbance depending only on the orthoric acid concentration in the sample water from the difference between the absorbances A 1 and A 2 measured in the first measurement operation and the second measurement operation, and the sample is obtained from the absorbance. It is configured to determine the total phosphorus concentration in water.

全リン濃度算出部26は、試料水中のオルトリン酸濃度にのみ依存した吸光度を吸光度AとAの単純な差分(A−A)によって求めるように構成されていてもよいが、この実施例では、全リン濃度をより高精度に算出するために、後述の補正係数算出部28によって算出される補正係数kを用いてオルトリン酸濃度にのみ依存した吸光度の算出を行なうように構成されている。 The total phosphorus concentration calculation unit 26 may be configured to obtain the absorbance depending only on the orthophosphoric acid concentration in the sample water by a simple difference (A 2- A 1 ) between the absorbances A 1 and A 2. In the embodiment, in order to calculate the total phosphorus concentration with higher accuracy, the absorbance k that depends only on the orthophosphoric acid concentration is calculated using the correction coefficient k calculated by the correction coefficient calculation unit 28 described later. ing.

補正係数算出部28は、上記の第2測定動作における試料水への発色剤の添加による試料水の希釈率を求め、その希釈率に基づいて補正係数k(<1)を算出するように構成されている。第2測定動作における試料水への発色剤の添加はシリンジポンプ2内において行なわれる。発色剤が添加される前のシリンジポンプ2内の試料水量と添加される発色剤の量は予めプログラムされた規定値からわかり、試料水の希釈率は、
(試料水量+発色剤量)/試料水量
となる。したがって、試料水中の濁度成分濃度は、
試料水量/(試料水量+発色剤量)
に低下していると考えられるため、補正係数kは
k=試料水量/(試料水量+発色剤量)
により求めることができる。
The correction coefficient calculation unit 28 is configured to obtain the dilution rate of the sample water by adding the color former to the sample water in the above second measurement operation, and calculate the correction coefficient k (<1) based on the dilution rate. Has been done. The addition of the color former to the sample water in the second measurement operation is performed in the syringe pump 2. The amount of sample water in the syringe pump 2 before the color former is added and the amount of the color former to be added can be found from the preset specified values, and the dilution ratio of the sample water is
(Sample water amount + color former amount) / Sample water amount. Therefore, the turbidity component concentration in the sample water is
Amount of sample water / (amount of sample water + amount of color former)
The correction coefficient k is k = sample water amount / (sample water amount + color former amount).
Can be obtained by.

全リン濃度算出部26は、補正係数算出部28により求められた補正係数kを用いて、オルトリン酸濃度にのみ依存した吸光度A
=A−kA
によって求めるように構成されている。
The total phosphorus concentration calculation unit 26 uses the correction coefficient k obtained by the correction coefficient calculation unit 28 to obtain the absorbance A 3 that depends only on the orthophosphoric acid concentration. A 3 = A 2- kA 1
It is configured to be sought by.

次に、図1とともに図2のフローチャートを用いて、全リン測定における一連の動作の一例について説明する。 Next, an example of a series of operations in total phosphorus measurement will be described with reference to FIG. 1 and the flowchart of FIG.

まず、シリンジポンプ2が試料水を採取するための採水管に接続されるようにマルチポートバルブ4,6を切り替え、シリンジポンプ2内に試料水を採取する(ステップS1)。次に、シリンジポンプ2が酸化剤であるペルオキソ二硫酸カリウム溶液を貯留した容器へ接続されるようにマルチポートバルブ4を切り替え、シリンジポンプ2内にペルオキソ二硫酸カリウム溶液を吸引する(ステップS2)。ポンプ18によってシリンジポンプ2内にエアーを供給することによりシリンジポンプ2内を撹拌する。 First, the multi-port valves 4 and 6 are switched so that the syringe pump 2 is connected to the water sampling pipe for collecting the sample water, and the sample water is collected in the syringe pump 2 (step S1). Next, the multi-port valve 4 is switched so that the syringe pump 2 is connected to the container storing the potassium persulfate solution as an oxidizing agent, and the potassium persulfate solution is sucked into the syringe pump 2 (step S2). .. The inside of the syringe pump 2 is agitated by supplying air into the syringe pump 2 by the pump 18.

シリンジポンプ2がリアクタ8へ接続されるようにマルチポートバルブ4,6を切り替え、試料水をシリンジポンプ2からリアクタ8へ移送する(ステップS4)。リアクタ8内で試料水の酸化処理を予め設定された時間(例えば、20分間)行なう。この酸化処理により、試料水中のリン化合物が酸化分解されてオルトリン酸が生成される(ステップS4)。酸化処理が完了した後、試料水中の濁度成分をさらに沈降させるために予め設定された時間(例えば、10分間)だけ待機する(ステップS5)。 The multi-port valves 4 and 6 are switched so that the syringe pump 2 is connected to the reactor 8, and the sample water is transferred from the syringe pump 2 to the reactor 8 (step S4). Oxidation of sample water is performed in the reactor 8 for a preset time (for example, 20 minutes). By this oxidation treatment, the phosphorus compound in the sample water is oxidatively decomposed to produce orthophosphoric acid (step S4). After the oxidation treatment is completed, it waits for a preset time (for example, 10 minutes) in order to further settle the turbidity component in the sample water (step S5).

その後、第1測定動作部22が第1測定動作を実行する。第1測定動作では、まず、リアクタ8内から所定量の試料水をシリンジポンプ2内に採取する(ステップS6)。リアクタ8の底部には濁度成分の一部が沈降しており、シリンジポンプ2内には濁度成分濃度の低下した試料水が採取される。 After that, the first measurement operation unit 22 executes the first measurement operation. In the first measurement operation, first, a predetermined amount of sample water is collected from the reactor 8 into the syringe pump 2 (step S6). A part of the turbidity component is settled at the bottom of the reactor 8, and sample water having a reduced turbidity component concentration is collected in the syringe pump 2.

シリンジポンプ2が還元剤であるアスコルビン酸溶液を貯留する容器に接続されるようにマルチポートバルブ4を切り替え、シリンジポンプ2内の試料水にアスコルビン酸を添加し混合する(ステップS7)。その後、試料水中の濁度成分を沈降させるために予め設定された時間(例えば、10分間)だけ待機する(ステップS8)。これにより、試料水中の濁度成分の一部はシリンジポンプ2の下部に沈降する。 The multi-port valve 4 is switched so that the syringe pump 2 is connected to a container for storing the ascorbic acid solution as the reducing agent, and ascorbic acid is added to the sample water in the syringe pump 2 and mixed (step S7). Then, it waits for a preset time (for example, 10 minutes) to settle the turbidity component in the sample water (step S8). As a result, a part of the turbidity component in the sample water is settled in the lower part of the syringe pump 2.

その後、シリンジポンプ2が測定セル12に接続されるようにマルチポートバルブ4,6を切り替え、発色剤未添加の状態の試料水(未添加試料水)を所定量だけシリンジポンプ2から測定セル12へ移送する(ステップS9)。このとき、シリンジポンプ2の下部に沈降した濁度成分はシリンジポンプ2内に滞留するため、濁度成分が沈降した後の上澄み液のみが測定セル12へ移送されることとなる。所定量の試料水を測定セル12へ移送した後、測定部10において吸光度Aを測定する(ステップS10)。ここまでが第1測定動作である。吸光度Aを測定している間に、シリンジポンプ2内に滞留した沈降成分(濁度成分)を含む試料水をドレインへ排出する。 After that, the multi-port valves 4 and 6 are switched so that the syringe pump 2 is connected to the measurement cell 12, and a predetermined amount of sample water (unadded sample water) in which the color former is not added is added to the measurement cell 12 from the syringe pump 2. (Step S9). At this time, since the turbidity component settled in the lower part of the syringe pump 2 stays in the syringe pump 2, only the supernatant liquid after the turbidity component has settled is transferred to the measurement cell 12. After transferring a predetermined amount of sample water to the measurement cell 12, the absorbance is measured A 1 in the measurement unit 10 (step S10). This is the first measurement operation. While measuring the absorbance A 1 , the sample water containing the sedimentation component (turbidity component) retained in the syringe pump 2 is discharged to the drain.

上記の第1測定動作が終了した後、第2測定動作部24は第2測定動作を実行する。まず、測定セル12内の試料水をシリンジポンプ2内に引き戻す(ステップS11)。その後、シリンジポンプ2がモリブデン酸溶液を収容した容器に接続されるようにマルチポートバルブ4を切り替え、シリンジポンプ2内の試料水にモリブデン酸溶液を発色剤として添加し撹拌する(ステップS12)。 After the first measurement operation is completed, the second measurement operation unit 24 executes the second measurement operation. First, the sample water in the measurement cell 12 is pulled back into the syringe pump 2 (step S11). After that, the multi-port valve 4 is switched so that the syringe pump 2 is connected to the container containing the molybdic acid solution, and the molybdic acid solution is added as a coloring agent to the sample water in the syringe pump 2 and stirred (step S12).

その後、シリンジポンプ2が測定セル12に接続されるようにマルチポートバルブ4,6を切り替え、発色剤の添加された試料水(添加済試料水)をシリンジポンプ2から測定セル12へ移送し(ステップS13)、測定部10において吸光度Aを測定する(ステップS14)。ここまでが第2測定動作である。 After that, the multi-port valves 4 and 6 are switched so that the syringe pump 2 is connected to the measurement cell 12, and the sample water to which the color former is added (added sample water) is transferred from the syringe pump 2 to the measurement cell 12 ( step S13), and measuring absorbance a 2 in the measurement section 10 (step S14). This is the second measurement operation.

上記の第2測定動作が終了した後、全リン濃度算出部26は、第1測定動作で求められた吸光度A1、第2測定動作で求められた吸光度A2、及び予め補正係数算出部28により算出されていた補正係数kを用いて、試料水中のオルトリン酸濃度にのみ依存した吸光度A
=A−kA
を用いて求め、求めたAと予め用意された検量線に基づいて試料水中の全リン濃度を求める(ステップS15)。
After the second measurement operation is completed, the total phosphorus concentration calculation unit 26 is calculated by the absorbance A1 obtained in the first measurement operation, the absorbance A2 obtained in the second measurement operation, and the correction coefficient calculation unit 28 in advance. using the correction coefficient k is, the absorbance a 3 and a 3 = a 2 -kA 1 which depends only on the orthophosphoric acid concentration in the sample water
Using, and obtains the total phosphorus concentration in the sample water based on the previously prepared calibration curve and A 3 obtained (step S15).

なお、上記の動作説明では、第1測定動作と第2測定動作で同一の試料水を用いるために、第1測定動作が終了した後で測定セル12からシリンジポンプ2内に試料水を引き戻している(ステップS11)が、本発明はこれに限定されるものではない。第1測定動作が終了した後、測定セル12内の試料水をドレインへ排出し、リアクタ8からシリンジポンプ2内に新たな試料水を採取するようにしてもよい。 In the above description of the operation, in order to use the same sample water in the first measurement operation and the second measurement operation, the sample water is pulled back from the measurement cell 12 into the syringe pump 2 after the first measurement operation is completed. However, the present invention is not limited to this (step S11). After the first measurement operation is completed, the sample water in the measurement cell 12 may be discharged to the drain, and new sample water may be collected from the reactor 8 into the syringe pump 2.

図3は、全リン測定用の標準試料(50ppb)と濁度成分の標準試料(カオリン400mg/L)の混合溶液を試料水として、上記実施例と同様の吸光度測定を行なったときの吸光度の測定結果を示すグラフである。当該グラフにおいてデータ点「●」は第1測定動作により求めた吸光度Aを示し、データ点「▲」は第2測定動作により求めた吸光度Aを示し、データ点「□」は(A−kA)を示している。 FIG. 3 shows the absorbance when a mixed solution of a standard sample for total phosphorus measurement (50 ppb) and a standard sample of turbidity component (kaolin 400 mg / L) was used as sample water and the same absorbance measurement as in the above example was performed. It is a graph which shows the measurement result. In the graph, the data point "●" indicates the absorbance A 1 obtained by the first measurement operation, the data point "▲" indicates the absorbance A 2 obtained by the second measurement operation, and the data point "□" indicates (A 2). -KA 1 ) is shown.

このグラフからわかるように、試料水中の濁度成分にのみ依存する吸光度Aは各測定間でバラつきがあるものの、補正値である(A−kA)はほとんどバラつきがなく安定した値となっている。このことから、本発明に係る全リン濃度測定装置は、濁度成分による干渉を抑制して全リン濃度の測定を正確に行なうことができることがわかる。 As can be seen from this graph, the absorbance A 1 which depends only on the turbidity component in the sample water varies between each measurement, but the correction value (A 2- kA 1 ) is a stable value with almost no variation. It has become. From this, it can be seen that the total phosphorus concentration measuring device according to the present invention can accurately measure the total phosphorus concentration by suppressing interference due to the turbidity component.

2 シリンジポンプ
4,6 マルチポートバルブ(接続切替部)
8 リアクタ(試料水貯留部)
9 紫外線ランプ
10 測定部
12 測定セル
14 光源
16 光検出素子
18 ポンプ
20 演算制御装置
22 第1測定動作部
24 第2測定動作部
26 全リン濃度算出部
28 補正係数算出部
2 Syringe pump 4, 6 Multi-port valve (connection switching part)
8 Reactor (sample water storage)
9 Ultraviolet lamp 10 Measuring unit 12 Measuring cell 14 Light source 16 Photodetector 18 Pump 20 Arithmetic control device 22 1st measurement operating unit 24 2nd measuring operating unit 26 Total phosphorus concentration calculation unit 28 Correction coefficient calculation unit

Claims (5)

酸化処理済みの試料水が貯留される試料水貯留部と、
測定セルを有し、前記測定セル内に収容された試料水の吸光度を測定するための測定部と、
前記試料水を発色させるための発色試薬を供給するための発色試薬供給部と、
液の吸引と吐出を行なうシリンジポンプと、
前記シリンジポンプを前記試料水貯留部、前記測定部、又は前記発色試薬供給部のいずれかに切り替えて接続するように構成された接続切替部と、
前記測定部、前記シリンジポンプ、及び前記接続切替部の動作を制御し、前記シリンジポンプによって、前記試料水貯留部に貯留された試料水であって前記発色試薬の添加されていない未添加試料水を前記測定セルへ移送し、その未添加試料水の吸光度Aを測定する第1測定動作を実行するように構成された第1測定動作部と、
前記測定部、前記シリンジポンプ、及び前記接続切替部の動作を制御し、前記シリンジポンプによって、前記試料水貯留部に貯留された試料水であって前記発色試薬の添加された添加済試料水を前記測定セルへ移送し、その添加済試料水の吸光度Aを測定する第2測定動作を実行するように構成された第2測定動作部と、
前記第1測定動作で測定された吸光度Aと前記第2測定動作で測定された吸光度Aを用いて、試料水中の全リン濃度を求めるように構成された全リン濃度算出部と、を備え
前記第1測定動作部は、前記第1測定動作として、前記試料貯留部内の試料水を前記未添加試料水として前記シリンジポンプ内へ吸引した後、前記未添加試料水中の濁度成分を沈降させるために予め設定された所定時間だけ待機し、その後、前記シリンジポンプ内の沈降した濁度成分を除く前記未添加試料水を前記測定セルへ移送して吸光度A を測定する動作を実行するように構成されている、全リン測定装置。
A sample water storage unit that stores oxidized sample water,
A measuring unit having a measuring cell and measuring the absorbance of the sample water contained in the measuring cell,
A color-developing reagent supply unit for supplying a color-developing reagent for developing the color of the sample water,
A syringe pump that sucks and discharges liquid,
A connection switching unit configured to switch and connect the syringe pump to any of the sample water storage unit, the measuring unit, or the coloring reagent supply unit.
The operation of the measuring unit, the syringe pump, and the connection switching unit is controlled, and the sample water stored in the sample water storage unit by the syringe pump and to which the coloring reagent is not added is not added. It was transferred to the measuring cell, the first measurement operation unit configured to perform a first measurement operation of measuring the absorbance a 1 of the non-addition sample water,
The operation of the measuring unit, the syringe pump, and the connection switching unit is controlled, and the sample water stored in the sample water storage unit and to which the coloring reagent is added is used by the syringe pump. A second measurement operation unit configured to transfer to the measurement cell and perform a second measurement operation for measuring the absorbance A 2 of the added sample water.
Using the absorbance A 2 measured is measured by the first measurement operation absorbance A 1 and at the second measuring operation, and the total phosphorus concentration calculator configured to determine the total phosphorus concentration in sample water, the Prepare ,
As the first measurement operation, the first measurement operation unit sucks the sample water in the sample storage unit into the syringe pump as the non-additive sample water, and then precipitates the turbidity component in the non-additive sample water. waits a preset time to, then, to perform the operation of measuring the said absorbance a 1 and transferring the non-addition sample water to the measurement cell, excluding the precipitated turbidity component in the syringe pump The total phosphorus measuring device is configured in.
酸化処理済みの試料水が貯留される試料水貯留部と、 A sample water storage unit that stores oxidized sample water,
測定セルを有し、前記測定セル内に収容された試料水の吸光度を測定するための測定部と、 A measuring unit having a measuring cell and measuring the absorbance of the sample water contained in the measuring cell,
前記試料水を発色させるための発色試薬を供給するための発色試薬供給部と、 A color-developing reagent supply unit for supplying a color-developing reagent for developing the color of the sample water,
液の吸引と吐出を行なうシリンジポンプと、 A syringe pump that sucks and discharges liquid,
前記シリンジポンプを前記試料水貯留部、前記測定部、又は前記発色試薬供給部のいずれかに切り替えて接続するように構成された接続切替部と、 A connection switching unit configured to switch and connect the syringe pump to any of the sample water storage unit, the measuring unit, or the coloring reagent supply unit.
前記測定部、前記シリンジポンプ、及び前記接続切替部の動作を制御し、前記シリンジポンプによって、前記試料水貯留部に貯留された試料水であって前記発色試薬の添加されていない未添加試料水を前記測定セルへ移送し、その未添加試料水の吸光度A The operation of the measuring unit, the syringe pump, and the connection switching unit is controlled, and the sample water stored in the sample water storage unit by the syringe pump and to which the coloring reagent is not added is not added. To the measurement cell, and the absorbance A of the unadded sample water 1 を測定する第1測定動作を実行するように構成された第1測定動作部と、A first measurement operation unit configured to perform a first measurement operation to measure
前記測定部、前記シリンジポンプ、及び前記接続切替部の動作を制御し、前記シリンジポンプによって、前記試料水貯留部に貯留された試料水であって前記発色試薬の添加された添加済試料水を前記測定セルへ移送し、その添加済試料水の吸光度A The operation of the measuring unit, the syringe pump, and the connection switching unit is controlled, and the sample water stored in the sample water storage unit and to which the coloring reagent is added is used by the syringe pump. Transfer to the measurement cell, and the absorbance A of the added sample water 2 を測定する第2測定動作を実行するように構成された第2測定動作部と、A second measurement operation unit configured to perform a second measurement operation to measure
前記第1測定動作で測定された吸光度A Absorbance A measured in the first measurement operation 1 と前記第2測定動作で測定された吸光度AAnd the absorbance A measured in the second measurement operation. 2 を用いて、試料水中の全リン濃度を求めるように構成された全リン濃度算出部と、を備え、A total phosphorus concentration calculation unit configured to obtain the total phosphorus concentration in the sample water using the above.
前記第2測定動作部は、前記第2測定動作として、前記第1測定動作が終了した後で、前記測定セル内の試料水を前記シリンジポンプ内へ吸引し、前記シリンジポンプ内で当該試料水に前記発色試薬を添加して前記添加済試料水とし、その添加済試料水を再び前記測定セルへ移送して吸光度A As the second measurement operation, the second measurement operation unit sucks the sample water in the measurement cell into the syringe pump after the first measurement operation is completed, and the sample water in the syringe pump. The color-developing reagent is added to the added sample water to obtain the added sample water, and the added sample water is transferred to the measurement cell again to have an absorbance A. 2 を測定する動作を実行するように構成されている、全リン測定装置。A total phosphorus measuring device that is configured to perform the action of measuring.
前記第2測定動作において前記試料水に添加される前記発色試薬による試料水の希釈率に基づく補正係数を求めるように構成された補正係数算出部をさらに備え、
前記全リン濃度算出部は前記補正係数算出部により求められた補正係数を用いて試料水中の全リン濃度を求めるように構成されている、請求項1又は2に記載の全リン測定装置。
Further, a correction coefficient calculation unit configured to obtain a correction coefficient based on the dilution ratio of the sample water by the color-developing reagent added to the sample water in the second measurement operation is further provided.
The total phosphorus measuring apparatus according to claim 1 or 2 , wherein the total phosphorus concentration calculation unit is configured to obtain the total phosphorus concentration in the sample water using the correction coefficient obtained by the correction coefficient calculation unit.
前記試料水貯留部は、前記シリンジポンプによって採取された試料水を貯留し、その試料水中のリン化合物を酸化させる酸化処理を行なうためのリアクタであり、
前記第1測定動作部は、前記酸化処理が終了した後、前記試料水中の濁度成分を沈降させるために予め設定された所定時間だけ待機し、その後、前記試料水貯留部の試料水を前記未添加試料水として前記測定セルへ移送するように構成されている、請求項1から3のいずれか一項に記載の全リン測定装置。
The sample water storage unit is a reactor for storing the sample water collected by the syringe pump and performing an oxidation treatment for oxidizing a phosphorus compound in the sample water.
After the oxidation treatment is completed, the first measurement operation unit waits for a predetermined time set in advance to settle the turbidity component in the sample water, and then the sample water in the sample water storage unit is used. The total phosphorus measuring apparatus according to any one of claims 1 to 3, which is configured to be transferred to the measuring cell as unadded sample water.
前記試料水貯留部には、前記第1測定動作及び前記第2測定動作に用いられる試料水の量よりも多くの量の試料水が貯留される、請求項に記載の全リン測定装置。
The total phosphorus measuring apparatus according to claim 4 , wherein a larger amount of sample water than the amount of sample water used for the first measurement operation and the second measurement operation is stored in the sample water storage unit.
JP2017187347A 2017-09-28 2017-09-28 Total phosphorus measuring device Active JP6881189B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017187347A JP6881189B2 (en) 2017-09-28 2017-09-28 Total phosphorus measuring device
CN201810609191.XA CN109580480A (en) 2017-09-28 2018-06-13 Total phosphorus determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187347A JP6881189B2 (en) 2017-09-28 2017-09-28 Total phosphorus measuring device

Publications (2)

Publication Number Publication Date
JP2019060799A JP2019060799A (en) 2019-04-18
JP6881189B2 true JP6881189B2 (en) 2021-06-02

Family

ID=65919543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187347A Active JP6881189B2 (en) 2017-09-28 2017-09-28 Total phosphorus measuring device

Country Status (2)

Country Link
JP (1) JP6881189B2 (en)
CN (1) CN109580480A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098348B (en) * 2020-08-20 2023-12-26 厦门斯坦道科学仪器股份有限公司 Total phosphorus turbidity compensation method applied to high turbidity water on-line monitoring
KR102393658B1 (en) * 2020-10-22 2022-05-17 주식회사 테크로스 Apparatus and method for measuring concentration using absorption photometry
CN113029955A (en) * 2021-03-29 2021-06-25 江苏省环境监测中心 Multichannel multithreading CODcr measurement system
CN113884450A (en) * 2021-09-15 2022-01-04 五邑大学 Turbidity chromaticity correction method for automatic water quality monitor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531899B2 (en) * 1971-08-27 1980-08-21
JPS6011144A (en) * 1983-06-30 1985-01-21 Yanagimoto Seisakusho:Kk Method and apparatus for analyzing aqueous sample
JP2550101B2 (en) * 1987-10-02 1996-11-06 株式会社日立サイエンスシステムズ Spectrophotometer
US5965448A (en) * 1996-09-30 1999-10-12 Mitsubishi Materials Corporation Precipitation separation type continuous flow analytical apparatus and quantitative analysis of thiourea in copper electrolyte
JP2000266677A (en) * 1999-01-14 2000-09-29 Shimadzu Corp Analyzer for nitrogen compound, phosphorus compound and organic contaminant
JP2003014724A (en) * 2001-06-27 2003-01-15 Shimadzu Corp Method and apparatus for measuring total phosphorus
JP2004184132A (en) * 2002-11-29 2004-07-02 Shimadzu Corp Water quality analyzer
JP4259402B2 (en) * 2004-06-04 2009-04-30 株式会社島津製作所 Total phosphorus measuring device
CN101320001B (en) * 2008-07-01 2010-07-14 洪陵成 High pressure flow injection rapid analysis system for permanganate index of water quality
CN101320002B (en) * 2008-07-01 2010-07-14 洪陵成 High pressure flow injection water quality total phosphorus analysis system
CN101532949B (en) * 2009-04-23 2011-04-13 云南省轻工业科学研究所 Method for real-time detection of micro total sugar in water body
CN101603969A (en) * 2009-07-23 2009-12-16 江苏德林环保技术有限公司 Flow-injection quick analysis system for hexavalent chromium water quality
CN101776581A (en) * 2009-12-29 2010-07-14 聚光科技(杭州)股份有限公司 Method for photometric analysis of trace pollutant in water sample and device thereof
CN102564978A (en) * 2011-11-22 2012-07-11 江苏大学 Method for determining content of total phospholipid in supercritical extract of pollen pini
CN202442960U (en) * 2012-01-21 2012-09-19 东亚Dkk株式会社 Total nitrogen determinator, total phosphorus determinator and sample water introduction device
CN104914063A (en) * 2014-03-14 2015-09-16 株式会社岛津制作所 Analytical device
CN206161538U (en) * 2016-11-11 2017-05-10 厦门斯坦道科学仪器股份有限公司 A monitoring devices for nitrate and nitrite

Also Published As

Publication number Publication date
CN109580480A (en) 2019-04-05
JP2019060799A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6881189B2 (en) Total phosphorus measuring device
US8236567B2 (en) Method and apparatus for automated determining of chemical oxygen demand of a liquid sample
JP5155320B2 (en) Dilution effect measurement by quantitative double staining photometry
JP5806884B2 (en) Whole blood immunoassay device and whole blood immunoassay method
JP3216584U (en) Water quality analyzer
US8778691B2 (en) Bromate ion measurement method
CN113008883A (en) Method for determining a parameter based on the concentration of at least one analyte in a sample liquid
CN107771279B (en) Calibration method for water hardness measurement
JP7040590B2 (en) Water quality analyzer
KR101903013B1 (en) Apparatus and method for measuring concentration of chemical solutions
Lima et al. A micro-flow-batch analyzer using webcam for spectrophotometric determination of Ortho-phosphate and aluminium (III) in tap water
WO2021250944A1 (en) Water quality analyzer and water quality analysis method
JP4661232B2 (en) Total nitrogen measuring method and apparatus
KR101617944B1 (en) Method and Apparatus for measurement of pH and concentration of sample using Absorption Photometry
US11333645B2 (en) Colorimetric detection of fluoride in an aqueous sample
JP6958636B2 (en) Water quality analyzer
KR102074700B1 (en) Potable NOX Measurement System
JP2005345316A (en) Total phosphorus measuring instrument
TWI665439B (en) A method for determining chemical oxygen demand of a water sample
CN113260851A (en) Water quality analyzer and water quality analyzing method
JP7360017B2 (en) Total nitrogen/total phosphorus analyzer
WO2020144902A1 (en) Water quality analyzer
JP2012093164A (en) Concentration measuring apparatus
KR100860545B1 (en) Apparatus and method for aautomatic measurement of dissolved oxygen
JP7207432B2 (en) METHOD FOR DETECTING PRESENCE OF LIQUID SUCTION BY SYRINGE PUMP, AND APPARATUS WITH SYRINGE PUMP

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6881189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151