JP6880805B2 - Induction motor control device - Google Patents

Induction motor control device Download PDF

Info

Publication number
JP6880805B2
JP6880805B2 JP2017024594A JP2017024594A JP6880805B2 JP 6880805 B2 JP6880805 B2 JP 6880805B2 JP 2017024594 A JP2017024594 A JP 2017024594A JP 2017024594 A JP2017024594 A JP 2017024594A JP 6880805 B2 JP6880805 B2 JP 6880805B2
Authority
JP
Japan
Prior art keywords
value
time constant
axis current
estimate
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017024594A
Other languages
Japanese (ja)
Other versions
JP2018133865A (en
Inventor
崇伸 吉田
崇伸 吉田
裕吾 只野
裕吾 只野
野村 昌克
昌克 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2017024594A priority Critical patent/JP6880805B2/en
Publication of JP2018133865A publication Critical patent/JP2018133865A/en
Application granted granted Critical
Publication of JP6880805B2 publication Critical patent/JP6880805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、誘導電動機のベクトル制御に係り、特に力行・回生の4象限運転する際の一次時定数,二次時定数の補償方法に関する。 The present invention relates to vector control of an induction motor, and particularly relates to a method for compensating for a primary time constant and a secondary time constant during four-quadrant operation of power running and regeneration.

PWMインバータなどの電力変換器を用いて誘導電動機を運転する手法の1つに、ベクトル制御がある。 Vector control is one of the methods for operating an induction motor using a power converter such as a PWM inverter.

誘導電動機のベクトル制御では、制御設定値である一次抵抗設定値Rs_c,二次抵抗設定値Rr_c,一次漏れインクダクタンス設定値Ls_c,二次漏れインダクタンス設定値Lr_c,相互インダクタンス設定値M_cと、誘導電動機の実パラメータである一次抵抗Rs,二次抵抗Rr,一次漏れインダクタンスLs,二次漏れインダクタンスLr,相互インダクタンスMと、の間に誤差が生じると、ベクトル制御性能が悪化する。 In the vector control of the induction motor, the primary resistance set value Rs_c, the secondary resistance set value Rr_c, the primary leakage ink ductance setting value Ls_c, the secondary leakage inductance set value Lr_c, the mutual inductance set value M_c, which are the control set values, and the induction motor If an error occurs between the primary resistance Rs, the secondary resistance Rr, the primary leakage inductance Ls, the secondary leakage inductance Lr, and the mutual inductance M, which are the actual parameters of the above, the vector control performance deteriorates.

誘導電動機をトルク制御する場合、ベクトル制御性能が悪化した状態は、トルク誤差が生じるため好ましくない。また、一般的なすべり周波数型ベクトル制御を行う場合には、すべり周波数を誘導電動機の二次時定数τr(=Lr/Rr)から推定する。 When torque controlling an induction motor, a state in which the vector control performance is deteriorated is not preferable because a torque error occurs. Further, when performing general slip frequency type vector control, the slip frequency is estimated from the secondary time constant τr (= Lr / Rr) of the induction motor.

実際には、二次時定数τrの検出は困難であるため二次時定数設定値τr_c(=Lr_c/Rr_c)を用いる。運転中に温度変化等が生じる場合には、一次抵抗Rsの変動と合わせて、二次抵抗Rrも同様に変動する。そのような場合には、二次時定数設定値τr_cと二次時定数τrとの間に誤差が生じるためベクトル軸のずれ(軸ずれ)が生じ、所望の制御性能を得られない問題がある。 Actually, since it is difficult to detect the secondary time constant τr, the secondary time constant set value τr_c (= Lr_c / Rr_c) is used. When a temperature change or the like occurs during operation, the secondary resistance Rr fluctuates in the same manner as the fluctuation of the primary resistance Rs. In such a case, there is a problem that a vector axis shift (axis shift) occurs because an error occurs between the secondary time constant set value τr_c and the secondary time constant τr, and the desired control performance cannot be obtained. ..

そこで、運転中の二次抵抗補償法が多数開示されている。しかし、電流予測値と電流検出値の誤差である電流誤差を用いる補償方式の場合、誘導電動機の回生運転で二次抵抗補償値が不安定となることが、非特許文献1で示されている。 Therefore, many secondary resistance compensation methods during operation are disclosed. However, in the case of the compensation method using the current error which is the error between the current predicted value and the current detected value, it is shown in Non-Patent Document 1 that the secondary resistance compensation value becomes unstable due to the regenerative operation of the induction motor. ..

また、実際の誘導電動機の運転では、力行・回生の4象限で運転する場合もあるため、回生領域でも安定して二次抵抗補償を行う方式が必要となる。 Further, in the actual operation of the induction motor, since it may be operated in four quadrants of power running and regeneration, a method of stably performing secondary resistance compensation even in the regeneration region is required.

力行・回生の4象限で運転するための従来技術として特許文献1が開示されている。この方式は、力行・回生を考慮した軸ずれの補償方式であり、トルク精度向上も実現可能である。 Patent Document 1 is disclosed as a conventional technique for operating in four quadrants of power running and regeneration. This method is a compensation method for shaft misalignment in consideration of power running and regeneration, and it is possible to improve torque accuracy.

特開2005−20993号公報Japanese Unexamined Patent Publication No. 2005-20993

「誘導電動機パラメータ適応二次磁束オブザーバの提案とその安定性」久保田・松瀬,電気学会D部門論文誌,Vol.111,No.3,p188(1991)"Proposal of Secondary Magnetic Flux Observer for Induction Motor Parameter Adaptation and Its Stability" Kubota and Matsuse, IEEJ D Division Journal, Vol. 111, No. 3, p188 (1991)

特許文献1では、力行時と回生時で軸ずれ角δの補償式が異なるため、力行・回生運転の判別が必要となっている。 In Patent Document 1, since the compensation formula for the axial deviation angle δ differs between power running and regeneration, it is necessary to discriminate between power running and regenerative operation.

下記は、特許文献1の(11a)式,(11b)式に記載されている軸ずれ角δの演算式である。 The following is an arithmetic expression of the axial deviation angle δ described in the equations (11a) and (11b) of Patent Document 1.

Figure 0006880805
Figure 0006880805

力行・回生運転の判別手法として、特許文献1では電動機モデルで求まる誘起電圧E1(12)式と電流モデルで求まる誘起電圧E2(13a)式から求めている。 As a method for discriminating between power running and regenerative operation, Patent Document 1 obtains it from the induced voltage E1 (12) equation obtained by the motor model and the induced voltage E2 (13a) equation obtained by the current model.

Figure 0006880805
Figure 0006880805

その他の力行・回生運転の判別手法としては、トルク検出値と回転数検出値から求める手法がある。 As another method for discriminating power running / regenerative operation, there is a method of obtaining from the torque detection value and the rotation speed detection value.

しかし、これらの力行・回生運転の運転判別手法では、電圧、電流などの検出値がノイズなどの外乱によって真値から誤差が生じた場合、力行・回生判別が正しく行われなくなるおそれがある。その場合、制御性能が大きく悪化する問題がある。 However, in these power running / regenerative operation operation discrimination methods, if the detected values of voltage, current, etc. have an error from the true values due to disturbances such as noise, the power running / regenerative operation may not be correctly discriminated. In that case, there is a problem that the control performance is greatly deteriorated.

以上示したようなことから、力行・回生運転の判別を必要とせずに、4象限運転時のパラメータ誤差補償を行うことができ、ベクトル制御性能を向上させる誘導電動機の制御装置を提供することが課題となる。 From the above, it is possible to provide a control device for an induction motor that can compensate for parameter errors during 4-quadrant operation and improve vector control performance without the need to discriminate between power running and regenerative operation. It becomes an issue.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御器と、前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、前記三相電圧指令値に応じた電圧を出力するインバータと、前記インバータが出力した電圧により駆動する誘導電動機と、前記インバータの三相電流検出値を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、前記γ軸電圧指令値と、前記δ軸電圧指令値と、前記γ軸電流検出値と、前記δ軸電流検出値と、電気角演算値と、一次時定数推定値の逆数と、二次時定数推定値の逆数と、機械回転数と、に基づいて、γ軸電流推定値と、δ軸電流推定値を演算する電流オブザーバと、前記γ軸電流検出値と、前記δ軸電流検出値と、前記γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、前記δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、推定開始信号と、に基づいて前記一次時定数推定値の逆数と前記二次時定数推定値の逆数を演算する時定数推定部と、前記二次時定数推定値の逆数に基づいて、電気角演算値を演算するすべり演算・電気角演算部と、を備え、前記時定数推定部は、前記一次時定数推定値の変化率が第1閾値以下で所定時間経過している場合は前記一次時定数推定値の推定を中止して現在の前記一次時定数推定値を保持し、それ以外の場合は、繰り返し前記一次時定数推定値の演算を行い、前記二次時定数推定値の変化率が第2閾値以下で所定時間経過している場合は前記二次時定数推定値の推定を中止して現在の二次時定推定値を保持し、それ以外の場合は、繰り返し前記二次時定数推定値の演算を行うことを特徴とする。 The present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is a deviation between a γ-axis current command value and a γ-axis current detection value, a δ-axis current command value and a δ-axis current detection value. Based on the deviation of, the current controller that outputs the γ-axis voltage command value and the δ-axis voltage command value, and the γ-axis voltage command value and the δ-axis voltage command value are converted into the three-phase voltage command value. The one-coordinate conversion unit, the inverter that outputs the voltage corresponding to the three-phase voltage command value, the induction electric motor driven by the voltage output by the inverter, and the three-phase current detection value of the inverter are the γ-axis current detection values. , The second coordinate conversion unit that converts to the δ-axis current detection value, the γ-axis voltage command value, the δ-axis voltage command value, the γ-axis current detection value, the δ-axis current detection value, and electricity. A current observer that calculates the γ-axis current estimate and the δ-axis current estimate based on the angle calculation value, the inverse of the primary time constant estimate, the inverse of the secondary time constant estimate, and the machine rotation speed. The γ-axis current detected value, the δ-axis current detected value, the γ-axis current error which is the difference between the γ-axis current estimated value and the γ-axis current detected value, the δ-axis current estimated value, and the δ-axis current detected value. A time constant estimation unit that calculates the inverse of the primary time constant estimation value and the inverse of the secondary time constant estimation value based on the δ-axis current error, which is the difference from the δ-axis current detection value, and the estimation start signal. , A slip calculation / electric angle calculation unit that calculates an electric angle calculation value based on the inverse of the secondary time constant estimation value, and the time constant estimation unit has a rate of change of the primary time constant estimation value. If the predetermined time has elapsed below the first threshold value, the estimation of the primary time constant estimation value is stopped and the current primary time constant estimation value is retained. In other cases, the primary time constant estimation value is repeated. If the rate of change of the secondary time constant estimated value is equal to or less than the second threshold value and a predetermined time has elapsed, the estimation of the secondary time constant estimated value is stopped and the current secondary time constant estimated value is stopped. In other cases, the quadratic time constant estimated value is repeatedly calculated.

また、他の態様として、γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御器と、前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、前記三相電圧指令値に応じた電圧を出力するインバータと、前記インバータが出力した電圧により駆動する誘導電動機と、前記インバータの三相電流検出値を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、前記γ軸電圧指令値と、前記δ軸電圧指令値と、前記γ軸電流検出値と、前記δ軸電流検出値と、電気角演算値と、一次時定数推定値の逆数と、二次時定数推定値の逆数と、機械回転数と、に基づいて、γ軸電流推定値と、δ軸電流推定値を演算する電流オブザーバと、前記γ軸電流検出値と、前記δ軸電流検出値と、前記γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、前記δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、推定開始信号と、に基づいて前記一次時定数推定値の逆数と前記二次時定数推定値の逆数を演算する時定数推定部と、前記二次時定数推定値の逆数に基づいて、電気角演算値を演算するすべり演算・電気角演算部と、を備え、前記時定数推定部は、前記一次時定数推定値の変化率が第1閾値以下で所定時間経過している場合、または、前記一次時定数推定値の変化率が前記第1閾値よりも大きい第3閾値以上で所定時間経過している場合は前記一次時定数推定値の推定を中止して現在の前記一次時定数推定値を保持し、それ以外の場合は、繰り返し、前記一次時定数推定値の演算を行い、前記二次時定数推定値の変化率が第2閾値以下で所定時間経過している場合、または、前記二次時定数推定値の変化率が前記第2閾値よりも大きい第4閾値以上で所定時間経過している場合は前記二次時定数推定値の推定を中止して現在の前記二次時定数推定値を保持し、それ以外の場合は、繰り返し、前記二次時定数推定値の演算を行うことを特徴とする。 In another embodiment, the γ-axis voltage command value and the δ-axis voltage command are based on the deviation between the γ-axis current command value and the γ-axis current detection value and the deviation between the δ-axis current command value and the δ-axis current detection value. A current controller that outputs a value, a first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and a voltage corresponding to the three-phase voltage command value. An inverter that outputs the above voltage, an induction motor that is driven by the voltage output by the inverter, and a second coordinate conversion unit that converts the three-phase current detection value of the inverter into the γ-axis current detection value and the δ-axis current detection value. , The γ-axis voltage command value, the δ-axis voltage command value, the γ-axis current detection value, the δ-axis current detection value, the electric angle calculation value, the inverse of the primary time constant estimation value, and the second order. A current observer that calculates a γ-axis current estimated value and a δ-axis current estimated value based on the inverse of the time-constant estimated value and the machine rotation speed, the γ-axis current detected value, and the δ-axis current detected value. The γ-axis current error, which is the difference between the γ-axis current estimated value and the γ-axis current detected value, and the δ-axis current error, which is the difference between the δ-axis current estimated value and the δ-axis current detected value. Based on the estimation start signal, the time constant estimation unit that calculates the inverse of the primary time constant estimation value and the inverse number of the secondary time constant estimation value, and the electric angle based on the inverse number of the secondary time constant estimation value. The slip calculation / electric angle calculation unit for calculating the calculated value is provided, and the time constant estimation unit is used when the rate of change of the primary time constant estimation value is equal to or less than the first threshold value and a predetermined time has elapsed, or the above. If the rate of change of the primary time constant estimated value is greater than or equal to the third threshold voltage larger than the first threshold value and a predetermined time has elapsed, the estimation of the primary time constant estimated value is stopped and the current primary time constant estimated value is used. Hold, and in other cases, repeat the calculation of the primary time constant estimated value, and when the rate of change of the secondary time constant estimated value is equal to or less than the second threshold value and a predetermined time has elapsed, or the above two. If the rate of change of the next time constant estimated value is greater than or equal to the fourth threshold voltage larger than the second threshold value and a predetermined time has elapsed, the estimation of the second time constant estimated value is stopped and the current secondary time constant estimation is performed. It is characterized in that the value is held, and in other cases, the calculation of the quadratic time constant estimated value is repeated repeatedly.

また、他の態様として、γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御器と、前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、前記三相電圧指令値に応じた電圧を出力するインバータと、前記インバータが出力した電圧により駆動する誘導電動機と、前記インバータの三相電流検出値を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、前記γ軸電圧指令値と、前記δ軸電圧指令値と、前記γ軸電流検出値と、前記δ軸電流検出値と、電気角演算値と、一次時定数推定値の逆数と、二次時定数推定値の逆数と、機械回転数と、に基づいて、γ軸電流推定値と、δ軸電流推定値を演算する電流オブザーバと、前記γ軸電流検出値と、前記δ軸電流検出値と、前記γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、前記δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、推定開始信号と、に基づいて前記一次時定数推定値の逆数と前記二次時定数推定値の逆数を演算する時定数推定部と、前記二次時定数推定値の逆数に基づいて、電気角演算値を演算するすべり演算・電気角演算部と、を備え、前記時定数推定部は、前記一次時定数推定値の変化率が第1閾値以下で所定時間経過している場合は前記一次時定数推定値の推定を中止して現在の前記一次時定数推定値を保持し、前記一次時定数推定値の変化率の絶対値が前記第1閾値よりも大きい第1リミッタ値で飽和している場合は前回一次時定数推定値を前記一次時定数推定値として保持して前記一次時定数推定値の推定を中止し、それ以外の場合は、繰り返し、前記一次時定数推定値の演算を行い、前記二次時定数推定値の変化率が第2閾値以下で所定時間経過している場合、前記二次時定数推定値の推定を中止して現在の前記二次時定数推定値を保持し、前記二次時定数推定値の変化率の絶対値が前記第2閾値よりも大きい第2リミッタ値で飽和している場合は前回二次時定数推定値を前記二次時定数推定値として保持して前記二次時定数推定値の推定を中止し、それ以外の場合は、繰り返し、前記二次時定数推定値の演算を行うことを特徴とする。 In another embodiment, the γ-axis voltage command value and the δ-axis voltage command are based on the deviation between the γ-axis current command value and the γ-axis current detection value and the deviation between the δ-axis current command value and the δ-axis current detection value. A current controller that outputs a value, a first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and a voltage corresponding to the three-phase voltage command value. An inverter that outputs the above voltage, an induction motor that is driven by the voltage output by the inverter, and a second coordinate conversion unit that converts the three-phase current detection value of the inverter into the γ-axis current detection value and the δ-axis current detection value. , The γ-axis voltage command value, the δ-axis voltage command value, the γ-axis current detection value, the δ-axis current detection value, the electric angle calculation value, the inverse of the primary time constant estimation value, and the second order. A current observer that calculates a γ-axis current estimated value and a δ-axis current estimated value based on the inverse of the time-constant estimated value and the machine rotation speed, the γ-axis current detected value, and the δ-axis current detected value. The γ-axis current error, which is the difference between the γ-axis current estimated value and the γ-axis current detected value, and the δ-axis current error, which is the difference between the δ-axis current estimated value and the δ-axis current detected value. Based on the estimation start signal, the time constant estimation unit that calculates the inverse of the primary time constant estimation value and the inverse number of the secondary time constant estimation value, and the electric angle based on the inverse number of the secondary time constant estimation value. The slip calculation / electric angle calculation unit for calculating the calculated value is provided, and the time constant estimation unit is used when the rate of change of the primary time constant estimation value is equal to or less than the first threshold value and a predetermined time has elapsed. The estimation of the constant estimated value is stopped, the current primary time constant estimated value is retained, and the absolute value of the rate of change of the primary time constant estimated value is saturated with the first limiter value larger than the first threshold value. In that case, the previous primary time constant estimated value is held as the primary time constant estimated value, the estimation of the primary time constant estimated value is stopped, and in other cases, the calculation of the primary time constant estimated value is repeated. When the rate of change of the secondary time constant estimation value is equal to or less than the second threshold value and a predetermined time has elapsed, the estimation of the secondary time constant estimation value is stopped and the current secondary time constant estimation value is retained. When the absolute value of the rate of change of the secondary time constant estimated value is saturated with the second limiter value larger than the second threshold value, the previous secondary time constant estimated value is retained as the secondary time constant estimated value. The estimation of the secondary time constant estimated value is stopped, and in other cases, the calculation of the secondary time constant estimated value is repeated repeatedly.

また、他の態様として、γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御器と、前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、前記三相電圧指令値に応じた電圧を出力するインバータと、前記インバータが出力した電圧により駆動する誘導電動機と、前記インバータの三相電流検出値を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、前記γ軸電圧指令値と、前記δ軸電圧指令値と、前記γ軸電流検出値と、前記δ軸電流検出値と、電気角演算値と、一次時定数推定値の逆数と、二次時定数推定値の逆数と、機械回転数と、に基づいて、γ軸電流推定値と、δ軸電流推定値を演算する電流オブザーバと、前記γ軸電流検出値と、前記δ軸電流検出値と、前記γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、前記δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、推定開始信号と、に基づいて前記一次時定数推定値の逆数と前記二次時定数推定値の逆数を演算する時定数推定部と、前記二次時定数推定値の逆数に基づいて、電気角演算値を演算するすべり演算・電気角演算部と、を備え、前記時定数推定部は、前記一次時定数推定値の変化率が第1閾値以下で所定時間経過している場合は前記一次時定数推定値の推定を中止して現在の前記一次時定数推定値を保持し、前記一次時定数推定値の変化率の絶対値が前記第1閾値よりも大きい第1リミッタ値で飽和している場合は前回一次時定数推定値を前記一次時定数推定値として保持して前記一次時定数推定値の推定を中止し、それ以外の場合は、繰り返し、前記一次時定数推定値の演算を行い、前記二次時定数推定値の変化率が第2閾値以下で所定時間以上経過しておらず、かつ、前記二次時定数推定値の変化率の絶対値が前記第2閾値よりも大きい第2リミッタ値で飽和していない場合は、繰り返し、前記二次時定数推定値の演算を行い、前記二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和しておらず、かつ、前記二次時定数推定値の変化率が前記第2閾値以下で所定時間以上経過している場合は、前記二次時定数推定値の推定を中止して現在の前記二次時定数推定値を保持し、前記二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和し、かつ、前記二次時定数推定値を演算した値に−1を乗算した逆符号二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和している場合は、前回二次時定数推定値を前記二次時定数推定値として保持して前記二次時定数推定値の推定を中止し、前記二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和し、前記逆符号二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和しておらず、かつ、前記逆符号二次時定数推定値の変化率が前記第2閾値以下で所定時間以上経過している場合は、前記逆符号二次時定数推定値を保持して前記二次時定数推定値の推定を中止し、前記二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和し、前記逆符号二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和しておらず、かつ、前記逆符号二次時定数推定値の変化率が前記第2閾値以下で所定時間以上経過していない場合は、繰り返し、前記逆符号二次時定数推定値の演算を行うことを特徴とする。 In another embodiment, the γ-axis voltage command value and the δ-axis voltage command are based on the deviation between the γ-axis current command value and the γ-axis current detection value and the deviation between the δ-axis current command value and the δ-axis current detection value. A current controller that outputs a value, a first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and a voltage corresponding to the three-phase voltage command value. An inverter that outputs the above voltage, an induction motor that is driven by the voltage output by the inverter, and a second coordinate conversion unit that converts the three-phase current detection value of the inverter into the γ-axis current detection value and the δ-axis current detection value. , The γ-axis voltage command value, the δ-axis voltage command value, the γ-axis current detection value, the δ-axis current detection value, the electric angle calculation value, the inverse of the primary time constant estimation value, and the second order. A current observer that calculates a γ-axis current estimated value and a δ-axis current estimated value based on the inverse of the time-constant estimated value and the machine rotation speed, the γ-axis current detected value, and the δ-axis current detected value. The γ-axis current error, which is the difference between the γ-axis current estimated value and the γ-axis current detected value, and the δ-axis current error, which is the difference between the δ-axis current estimated value and the δ-axis current detected value. Based on the estimation start signal, the time constant estimation unit that calculates the inverse of the primary time constant estimation value and the inverse number of the secondary time constant estimation value, and the electric angle based on the inverse number of the secondary time constant estimation value. The slip calculation / electric angle calculation unit for calculating the calculated value is provided, and the time constant estimation unit is used when the rate of change of the primary time constant estimation value is equal to or less than the first threshold value and a predetermined time has elapsed. The estimation of the constant estimated value is stopped, the current primary time constant estimated value is retained, and the absolute value of the rate of change of the primary time constant estimated value is saturated with the first limiter value larger than the first threshold value. In that case, the previous primary time constant estimated value is held as the primary time constant estimated value, the estimation of the primary time constant estimated value is stopped, and in other cases, the calculation of the primary time constant estimated value is repeated. A second value in which the rate of change of the secondary time constant estimated value is equal to or less than the second threshold value and has not elapsed for a predetermined time or more, and the absolute value of the rate of change of the secondary time constant estimated value is larger than the second threshold value. If it is not saturated with the limiter value, the calculation of the secondary time constant estimated value is repeated, and the absolute value of the rate of change of the secondary time constant estimated value is not saturated with the second limiter value. If the rate of change of the secondary time constant estimation value is equal to or less than the second threshold value and a predetermined time or longer has elapsed, the estimation of the secondary time constant estimation value is stopped and the current secondary time constant estimation is performed. The value is held, and the absolute value of the rate of change of the secondary time constant estimated value is the second limit. The absolute value of the rate of change of the inverse code secondary time constant estimated value obtained by multiplying the calculated value of the secondary time constant estimated value by -1 is saturated with the second limiter value. If so, the previous secondary time constant estimate is held as the secondary time constant estimate, the estimation of the secondary time constant estimate is stopped, and the absolute value of the rate of change of the secondary time constant estimate is Saturated by the second limiter value, the absolute value of the rate of change of the inverse code secondary time constant estimate is not saturated by the second limiter value, and the change of the inverse code secondary time constant estimate value. When the rate is equal to or less than the second threshold value and a predetermined time or more has elapsed, the inverse code secondary time constant estimation value is retained, the estimation of the secondary time constant estimation value is stopped, and the secondary time constant estimation is performed. The absolute value of the rate of change of the value is saturated with the second limiter value, the absolute value of the rate of change of the inverse time constant estimated value is not saturated with the second limiter value, and the inverse code When the rate of change of the secondary time constant estimated value is equal to or less than the second threshold value and the predetermined time or more has not elapsed, the inverse code secondary time constant estimated value is repeatedly calculated.

本発明によれば、力行・回生運転の判別を必要とせずに、4象限運転時のパラメータ誤差補償を行うことができ、ベクトル制御性能を向上させる誘導電動機の制御装置を提供することが可能となる。 According to the present invention, it is possible to provide a control device for an induction motor that can compensate for parameter errors during four-quadrant operation and improve vector control performance without the need to discriminate between power running and regenerative operation. Become.

実施形態1における誘導電動機の制御システム構成図。FIG. 5 is a configuration diagram of a control system for an induction motor according to the first embodiment. 実施形態1における時定数調整器を示すブロック図。The block diagram which shows the time constant adjuster in Embodiment 1. FIG. 実施形態1における時定数推定部の動作を示すフローチャート。The flowchart which shows the operation of the time constant estimation part in Embodiment 1. 実施形態1における回転数,トルク,一次時定数推定値,二次時定数推定値,γ軸,δ軸電流偏差を示すタイムチャート。A time chart showing the rotation speed, torque, primary time constant estimated value, secondary time constant estimated value, γ-axis, and δ-axis current deviation in the first embodiment. 図4のトルク部の拡大図。An enlarged view of the torque portion of FIG. 実施形態2における時定数推定部の動作を示すフローチャート。The flowchart which shows the operation of the time constant estimation part in Embodiment 2. 実施形態3における時定数調整器を示すブロック図。The block diagram which shows the time constant adjuster in Embodiment 3. 実施形態3における時定数推定部の動作を示すフローチャート。The flowchart which shows the operation of the time constant estimation part in Embodiment 3. 実施形態1〜3の一次時定数推定値を示すタイムチャート。A time chart showing primary time constant estimates of Embodiments 1-3. 実施形態4における時定数推定部の動作を示すフローチャート。The flowchart which shows the operation of the time constant estimation part in Embodiment 4.

[実施形態1]
本実施形態1における誘導電動機の制御装置について説明する。図1は本実施形態1における誘導電動機の制御装置の構成図である。
[Embodiment 1]
The control device for the induction motor according to the first embodiment will be described. FIG. 1 is a configuration diagram of a control device for an induction motor according to the first embodiment.

電流指令演算部1は、γ軸磁束指令値φγr_rとトルク指令値T_rとに基づいて、例えば(1)式,(2)式によりγ軸電流指令値iγs_rとδ軸電流指令値iδs_rを出力する。 The current command calculation unit 1 outputs the γ-axis current command value iγs_r and the δ-axis current command value iδs_r according to the equations (1) and (2), for example, based on the γ-axis magnetic flux command value φγr_r and the torque command value T_r. ..

Figure 0006880805
Figure 0006880805

減算器2a,2bは、γ軸電流指令値iγs_rとγ軸電流検出値iγs_dとのγ軸電流偏差、δ軸電流指令値iδs_rとδ軸電流検出値iδs_dとのδ軸電流偏差を計算し、電流制御部3へ出力する。 The subtractors 2a and 2b calculate the γ-axis current deviation between the γ-axis current command value iγs_r and the γ-axis current detection value iγs_d, and the δ-axis current deviation between the δ-axis current command value iδs_r and the δ-axis current detection value iδs_d. Output to the current control unit 3.

電流制御部3では、例えば、PI制御のような電流偏差がゼロとなるγ軸電圧指令値vγs_r,δ軸電圧指令値vδs_rを第1座標変換部4に出力する。 The current control unit 3 outputs, for example, the γ-axis voltage command value vγs_r and the δ-axis voltage command value vδs_r at which the current deviation becomes zero, as in PI control, to the first coordinate conversion unit 4.

第1座標変換部4は、γ軸電圧指令値vγs_rとδ軸電圧指令値vδs_rを、電気角基準位相θeに基づいて座標変換を行い、三相電圧指令値vu_r,vv_r,vw_rに変換し、PWMインバータ5に出力する。本実施形態1での座標変換は(3)式,(4)式の回転行列Cと3相2相変換行列Dを用いて行っている。 The first coordinate conversion unit 4 performs coordinate conversion on the γ-axis voltage command value vγs_r and the δ-axis voltage command value vδs_r based on the electric angle reference phase θe, and converts them into the three-phase voltage command values vu_r, vv_r, vw_r. Output to the PWM inverter 5. The coordinate transformation in the first embodiment is performed by using the rotation matrix C of the equations (3) and (4) and the three-phase two-phase transformation matrix D.

Figure 0006880805
Figure 0006880805

PWMインバータ5は、三相電圧指令値vu_r,vv_r,vw_rに基づいて、誘導電動機IMに電圧を出力する。 The PWM inverter 5 outputs a voltage to the induction motor IM based on the three-phase voltage command values vu_r, vv_r, vw_r.

第2座標変換部6は、三相電流検出値iu_d,iv_d,iw_dを電気角基準位相θeに基づいて、γ軸電流検出値iγ_dとδ軸電流検出値iδ_dを出力する。 The second coordinate conversion unit 6 outputs the γ-axis current detection value iγ_d and the δ-axis current detection value iδ_d based on the electric angle reference phase θe for the three-phase current detection values iu_d, iv_d, and iw_d.

適応制御部7は、電流オブザーバ8と時定数調整器9とを備える。電流オブザーバ8は、γ軸電圧指令値vγs_r,δ軸電圧指令値vδs_r,γ軸電流検出値iγs_d,δ軸電流検出値iδs_d,機械回転数(極数倍)ωre_d,電気角演算値ωe_e,一次時定数推定値の逆数1/τs_e,二次時定数推定値の逆数1/τr_eを入力する。電流オブザーバ8で以下の(5)式の演算を行い、γ軸電流推定値iγs_e,δ軸電流推定値iδs_eを出力する。 The adaptive control unit 7 includes a current observer 8 and a time constant adjuster 9. The current observer 8 has a γ-axis voltage command value vγs_r, a δ-axis voltage command value vδs_r, a γ-axis current detection value iγs_d, a δ-axis current detection value iδs_d, a machine rotation speed (number of poles) ωre_d, an electric angle calculation value ωe_e, and a primary. Enter the reciprocal of the time constant estimate 1 / τs_e and the reciprocal of the secondary time constant estimate 1 / τr_e. The current observer 8 performs the following calculation of Eq. (5) and outputs the γ-axis current estimated value iγs_e and the δ-axis current estimated value iδs_e.

Figure 0006880805
Figure 0006880805

推定したγ軸電流推定値iγs_e,δ軸電流推定値iδs_eと、γ軸電流検出値iγs_d,δ軸電流検出値iδs_d,推定開始信号Start_estを時定数調整器9に入力する。時定数調整器9の詳細を図2に示す。時定数調整器9は、電流誤差演算部9aと時定数推定部9bと、を備える。 The estimated γ-axis current estimated value iγs_e, δ-axis current estimated value iδs_e, γ-axis current detected value iγs_d, δ-axis current detected value iδs_d, and estimation start signal Start_est are input to the time constant adjuster 9. The details of the time constant adjuster 9 are shown in FIG. The time constant adjuster 9 includes a current error calculation unit 9a and a time constant estimation unit 9b.

電流誤差演算部9aは、γ軸電流推定値iγs_e,δ軸電流推定値iδs_eと、γ軸電流検出値iγs_d,δ軸電流検出値iδs_dからγ軸電流誤差eiγs,δ軸電流誤差eiδsを(6)式で求める。 The current error calculation unit 9a converts the γ-axis current error eiγs and the δ-axis current error eiδs from the γ-axis current estimated value iγs_e and the δ-axis current estimated value iδs_e and the γ-axis current detected value iγs_d and the δ-axis current detected value iδs_d (6). ) Formula.

Figure 0006880805
Figure 0006880805

時定数推定部9bは、γ軸電流誤差eiγs,δ軸電流誤差eiδs,γ軸電流検出値iγs_d,δ軸電流検出値iδs_d,推定開始信号Start_estを入力し、一次時定数推定値の逆数1/τs_eと二次時定数推定値の逆数1/τr_eを推定する。時定数推定部9bでの処理に関しては後述する。 The time constant estimation unit 9b inputs the γ-axis current error eiγs, the δ-axis current error eiδs, the γ-axis current detection value iγs_d, the δ-axis current detection value iδs_d, and the estimation start signal Start_est, and the reciprocal 1 / of the primary time constant estimation value. Estimate the reciprocal 1 / τr_e of τs_e and the second-order time constant estimate. The processing in the time constant estimation unit 9b will be described later.

図1に示すように、時定数調整器9で推定した一次時定数推定値の逆数1/τs_e,二次時定数推定値の逆数1/τr_eは電流オブザーバ8に出力される。また、二次時定数推定値の逆数1/τr_eは適応制御部7の出力として、すべり演算・電気角演算部10へ出力される。その他、γ軸電流指令値iγs_r,δ軸電流指令値iδs_r,機械回転数ωre_dを、すべり演算・電気角演算部10へ入力し(7)式で電気角演算値ωe_eを求める。 As shown in FIG. 1, the reciprocal 1 / τs_e of the primary time constant estimated value estimated by the time constant regulator 9 and the reciprocal 1 / τr_e of the secondary time constant estimated value are output to the current observer 8. Further, the reciprocal 1 / τr_e of the second-order time constant estimated value is output to the slip calculation / electric angle calculation unit 10 as the output of the adaptive control unit 7. In addition, the γ-axis current command value iγs_r, the δ-axis current command value iδs_r, and the mechanical rotation speed ωre_d are input to the slip calculation / electric angle calculation unit 10 to obtain the electric angle calculation value ωe_e by the equation (7).

Figure 0006880805
Figure 0006880805

(7)式は誘導電動機IMでδ軸磁束指令値φδr_r=0とするベクトル制御で導出可能な一般的な式であるため説明は省略する。 Since the equation (7) is a general equation that can be derived by vector control in which the δ-axis magnetic flux command value φδr_r = 0 in the induction motor IM, the description thereof will be omitted.

積分器11は、(7)式で求めた電気角演算値ωe_eに基づいて、電気角基準位相θeを求め、電気角基準位相θeを座標変換時の基準軸として利用する。 The integrator 11 obtains the electric angle reference phase θe based on the electric angle calculated value ωe_e obtained by the equation (7), and uses the electric angle reference phase θe as the reference axis at the time of coordinate conversion.

本実施形態1は、運転前の実二次抵抗値Rrと二次抵抗設定値Rr_cに誤差がある場合や、運転中の温度変化により実二次抵抗値Rrと二次抵抗設定値Rr_cに誤差が生じ、軸ずれが生じてしまう条件でも、運転中に逐次推定される二次時定数推定値τr_eを用いてすべり周波数を推定することで軸ずれを防ぎ、所望の制御性能を得ることができる。加えて、従来制御では困難であった力行・回生の4象限運転においても、その効果を得ることができる方式である。 In the first embodiment, there is an error between the actual secondary resistance value Rr and the secondary resistance set value Rr_c before operation, or there is an error between the actual secondary resistance value Rr and the secondary resistance set value Rr_c due to a temperature change during operation. By estimating the slip frequency using the secondary time constant estimated value τr_e that is sequentially estimated during operation, it is possible to prevent the shaft shift and obtain the desired control performance even under the condition that the shaft shift occurs. .. In addition, it is a method that can obtain the effect even in the four-quadrant operation of power running and regeneration, which was difficult with conventional control.

時定数推定部9bでの動作フローチャートを図3に示す。 FIG. 3 shows an operation flowchart of the time constant estimation unit 9b.

はじめに推定開始信号Start_estを受信し、S1で時定数推定部9bが動作を始める。時定数推定部9bでは一次時定数推定値τs_eを(8)式で演算する。一次時定数推定値τs_eは(8)式を積分し、その逆数をとることで求める。 First, the estimation start signal Start_est is received, and the time constant estimation unit 9b starts operating in S1. The time constant estimation unit 9b calculates the first-order time constant estimation value τs_e by the equation (8). The first-order time constant estimate τs_e is obtained by integrating Eq. (8) and taking the reciprocal of it.

Figure 0006880805
Figure 0006880805

S2において推定した一次時定数推定値τs_eの変化率Δτs_eを演算し、S3において変化率Δτs_eがあらかじめ定めた第1閾値以下の状態を所定時間t1継続しているか否かを判定する。 The rate of change Δτs_e of the primary time constant estimated value τs_e estimated in S2 is calculated, and it is determined in S3 whether or not the state in which the rate of change Δτs_e is equal to or less than the predetermined first threshold value continues for a predetermined time t1.

条件を満たしていない場合はS1に戻り、(8)式の演算を繰り返し、一次時定数推定値τs_eの推定を続ける。条件を満たした場合には、S4へ移行し、その時の一次時定数推定値τs_eの値を保持したまま推定を中止し、S5へ移行して二次時定数推定値τr_eの推定を開始する。 If the condition is not satisfied, the process returns to S1, the operation of Eq. (8) is repeated, and the estimation of the first-order time constant estimated value τs_e is continued. When the condition is satisfied, the process proceeds to S4, the estimation is stopped while holding the value of the primary time constant estimated value τs_e at that time, and the process proceeds to S5 to start the estimation of the secondary time constant estimated value τr_e.

二次時定数推定値τr_eは(9)式で演算する。二次時定数推定値τr_eは(9)式を積分し、その逆数をとることで求める。 The quadratic time constant estimated value τr_e is calculated by Eq. (9). The quadratic time constant estimate τr_e is obtained by integrating Eq. (9) and taking the reciprocal of it.

Figure 0006880805
Figure 0006880805

(9)式はγ軸電流誤差eiγsとδ軸電流誤差eiδsがゼロとなるように調整する信号を二次時定数推定値τr_eとする演算である。 Equation (9) is an operation in which the signal adjusted so that the γ-axis current error eiγs and the δ-axis current error eiδs become zero is set as the quadratic time constant estimated value τr_e.

S6で、推定した二次時定数推定値τr_eの変化率Δτr_eを演算し、S7で変化率Δτr_eがあらかじめ定めた第2閾値以下の状態を所定時間t2継続しているか判定する。条件を満たしていない場合はS5に戻り、(9)式の演算を繰り返し、二次時定数推定値τr_eの推定を続ける。条件を満たした場合には、S8へ移行し、二次時定数推定値τr_eの値を保持したまま推定を中止し、S1に戻って一次時定数推定値τs_eの推定を開始する。 In S6, the rate of change Δτr_e of the estimated secondary time constant estimated value τr_e is calculated, and in S7, it is determined whether or not the state in which the rate of change Δτr_e is equal to or less than the predetermined second threshold value continues for a predetermined time t2. If the condition is not satisfied, the process returns to S5, the operation of Eq. (9) is repeated, and the estimation of the quadratic time constant estimated value τr_e is continued. When the condition is satisfied, the process proceeds to S8, the estimation is stopped while holding the value of the secondary time constant estimated value τr_e, and the process returns to S1 to start the estimation of the primary time constant estimated value τs_e.

本実施形態1では、電流モデルとの誤差がゼロとなるように二次時定数を調整することで、力行・回生の運転状態の判別を行うことなく、誘導電動機IMのトルクを精度よく制御できる。 In the first embodiment, the torque of the induction motor IM can be accurately controlled without discriminating the operating state of power running and regeneration by adjusting the secondary time constant so that the error from the current model becomes zero. ..

本実施形態1での回転数,トルク,一次時定数推定値の逆数1/τs_e,二次時定数推定値の逆数1/τr_e,γ軸,δ軸電流誤差eiγs,eiδsを図4に示す。図4は時刻Aまでと時刻B以降が回生領域(回転数×トルク<0),時刻AB間が力行領域(回転数×トルク>0)である。図5は、図4のトルク部の拡大図である。 FIG. 4 shows the rotation speed, torque, reciprocal of the primary time constant estimate 1 / τs_e, reciprocal of the secondary time constant estimate 1 / τr_e, γ-axis, and δ-axis current errors eiγs and eiδs in the first embodiment. In FIG. 4, the regeneration region (rotation speed x torque <0) is between the time A and after the time B, and the power running region (rotation speed x torque> 0) is between the time AB. FIG. 5 is an enlarged view of the torque portion of FIG.

時刻(1)までは、パラメータ設定誤差として一次時定数推定値の逆数1/τs_eは一次時定数の逆数1/τsに対して−5[%]の誤差、二次時定数推定値の逆数1/τr_eは二次時定数の逆数1/τrに対して+5[%]の誤差が生じた状態で運転を行っている。パラメータ誤差の影響でトルク指令値T_rに対してトルク検出値T_dに誤差が生じており、トルク精度が良くないことが確認できる。 Until time (1), the reciprocal of the primary time constant 1 / τs_e is an error of -5 [%] with respect to the reciprocal 1 / τs of the primary time constant as a parameter setting error, and the reciprocal 1 of the secondary time constant estimate. / Τr_e is operating with an error of +5 [%] with respect to the reciprocal 1 / τr of the quadratic time constant. It can be confirmed that the torque detection value T_d has an error with respect to the torque command value T_r due to the influence of the parameter error, and the torque accuracy is not good.

時刻(1)にて推定開始信号Start_estを受信し推定開始となる。まずは、一次時定数推定値の逆数1/τs_eを推定するため、一次時定数推定値の逆数1/τs_eが変化していることが確認できる。その後、一次時定数推定値の逆数1/τs_eの変化率が第1閾値以下となり所定時間t1経過した時刻が(2)である。時刻(2)で一次時定数推定値τs_eの推定を中止し、その値を保持し二次時定数推定値τr_eの推定を開始する。 At time (1), the estimation start signal Start_est is received and the estimation starts. First, since the reciprocal 1 / τs_e of the first-order time constant estimate is estimated, it can be confirmed that the reciprocal 1 / τs_e of the first-order time constant estimate has changed. After that, the rate of change of the reciprocal 1 / τs_e of the estimated primary time constant becomes equal to or less than the first threshold value, and the time when the predetermined time t1 elapses is (2). At time (2), the estimation of the primary time constant estimated value τs_e is stopped, the value is retained, and the estimation of the secondary time constant estimated value τr_e is started.

二次時定数推定値τr_eの推定開始後、その変化率Δτr_eが第2閾値以下となり所定時間t2経過した時刻が(3)である。ここで、二次時定数推定値τr_eの推定を中止し、その値を保持して再び一次時定数推定値τs_eの推定を開始する。 (3) is the time when the rate of change Δτr_e becomes equal to or less than the second threshold value and a predetermined time t2 elapses after the estimation of the secondary time constant estimated value τr_e is started. Here, the estimation of the secondary time constant estimated value τr_e is stopped, the value is held, and the estimation of the primary time constant estimated value τs_e is started again.

この動作を繰り返すことで、図4は一次時定数推定値の逆数1/τs_e,二次時定数推定値の逆数1/τr_eが100[%]に近づき、トルク精度もよくなっていることが確認できる。 By repeating this operation, it is confirmed that the reciprocal 1 / τs_e of the primary time constant estimate and the reciprocal 1 / τr_e of the secondary time constant estimate approach 100 [%] in FIG. 4, and the torque accuracy is also improved. it can.

また、推定中に回生から力行,力行から回生と運転状態が変化しているが、運転状態判別なしであるにもかかわらず、推定が不安定となることなくパラメータ誤差を小さくするように動作することができていることを確認できる。 In addition, although the operating state changes from regeneration to power running and from power running to regeneration during estimation, it operates so as to reduce the parameter error without making the estimation unstable even though the operating state is not discriminated. You can confirm that you are able to do it.

本実施形態1によれば、力行・回生の判別を必要とせずに4象限運転時のパラメータ誤差補償を行うことができ、ベクトル制御性能を向上させることが可能となる。 According to the first embodiment, parameter error compensation during 4-quadrant operation can be performed without requiring discrimination between power running and regeneration, and vector control performance can be improved.

また、本実施形態1は力行・回生の判別が不要であるのでノイズの影響を受けやすい計測器等を使用する場合においても安定して適応制御を行うことが可能となり、ロバスト性も向上する。 Further, since the present embodiment 1 does not require discrimination between power running and regeneration, stable adaptive control can be performed even when a measuring instrument or the like that is easily affected by noise is used, and robustness is also improved.

[実施形態2]
本実施形態2の制御システムの構成は実施形態1(図1)と同様である。
[Embodiment 2]
The configuration of the control system of the second embodiment is the same as that of the first embodiment (FIG. 1).

本実施形態2は、時定数推定部9bの動作が実施形態1とは異なる。図6に本実施形態2の時定数推定部9bのフローチャートを示す。 In the second embodiment, the operation of the time constant estimation unit 9b is different from that of the first embodiment. FIG. 6 shows a flowchart of the time constant estimation unit 9b of the second embodiment.

本実施形態2のフローチャートでは、実施形態1のフローチャートにおけるS1〜S8に加え、S9,S10の処理を行う。 In the flowchart of the second embodiment, the processes of S9 and S10 are performed in addition to S1 to S8 in the flowchart of the first embodiment.

S9では、一次時定数推定値の変化率Δτs_eが第3閾値a_max以上で所定時間t1b継続しているか否かを判定し、第3閾値a_max以上で所定時間t1b継続している場合はS4へ移行し、一次時定数推定値τs_eを保持し、一次時定数推定値τs_eの推定を中止する。 In S9, it is determined whether or not the rate of change Δτs_e of the primary time constant estimated value continues t1b for a predetermined time at the third threshold value a_max or more, and if it continues at t1b for a predetermined time at the third threshold value a_max or more, the process proceeds to S4. Then, the primary time constant estimated value τs_e is retained, and the estimation of the primary time constant estimated value τs_e is stopped.

それ以外の場合はS3へ移行し、一次時定数推定値の変化率Δτs_eが第1閾値a_min以下で所定時間t1a継続しているか否かを判定し、第1閾値a_min以下で所定時間t1a継続している場合はS4へ移行し、それ以外の場合はS1に戻る。 In other cases, the process proceeds to S3, and it is determined whether or not the rate of change Δτs_e of the primary time constant estimated value continues t1a for a predetermined time at the first threshold value a_min or less, and continues t1a for a predetermined time at the first threshold value a_min or less. If so, the process proceeds to S4, and in other cases, the process returns to S1.

また、S10では、二次時定数推定値の変化率Δτr_eが第4閾値b_max以上で所定時間t2b継続しているか否かを判定し、第4閾値b_max以上で所定時間t2b継続している場合はS8へ移行し、二次時定数推定値τr_eを保持し、二次時定数推定値τr_eの推定を中止する。 Further, in S10, it is determined whether or not the rate of change Δτr_e of the secondary time constant estimated value continues t2b for a predetermined time at the fourth threshold value b_max or more, and if it continues t2b for a predetermined time at the fourth threshold value b_max or more. The process proceeds to S8, the secondary time constant estimated value τr_e is held, and the estimation of the secondary time constant estimated value τr_e is stopped.

それ以外の場合はS7へ移行し、二次時定数推定値の変化率Δτr_eが第2閾値b_min以下で所定時間t2a継続しているか否かを判定し、第2閾値b_min以下で所定時間t2a継続している場合はS8へ移行し、それ以外の場合はS5に戻る。 In other cases, the process proceeds to S7, and it is determined whether or not the rate of change Δτr_e of the secondary time constant estimated value continues t2a for a predetermined time below the second threshold value b_min, and continues t2a for a predetermined time below the second threshold value b_min. If it is, the process proceeds to S8, and in other cases, the process returns to S5.

すなわち、一次時定数推定値,二次時定数推定値の変化率Δτs_e,Δτr_eの上限を設定し、変化率Δτs_e,Δτr_eが第3,第4閾値a_max(一次時定数推定値の場合)b_max(二次時定数推定値の場合)を超えた場合に、推定を中止する機能を追加している。なお、変化率Δτs_e,Δτr_eの第3,第4閾値a_max,b_maxは以下の関係となるように設定する。(a_max>a_min),(b_max>b_min)。 That is, the upper limit of the change rates Δτs_e and Δτr_e of the primary time constant estimate and the secondary time constant estimate is set, and the change rates Δτs_e and Δτr_e are the third and fourth thresholds a_max (in the case of the primary time constant estimate) b_max (in the case of the primary time constant estimate). A function has been added to stop the estimation when the (in the case of the secondary time constant estimation value) is exceeded. The third and fourth thresholds a_max and b_max of the rate of change Δτs_e and Δτr_e are set so as to have the following relationship. (A_max> a_min), (b_max> b_min).

実施形態1では、外乱ノイズなどの影響によって時定数調整器9に入力されるγ軸,δ軸電流検出値iγs_d,iδs_dに誤差が生じた場合に、一次時定数推定値τs_e,二次時定数推定値τr_eが発散してしまう恐れがある。 In the first embodiment, when an error occurs in the γ-axis and δ-axis current detection values iγs_d and iδs_d input to the time constant regulator 9 due to the influence of disturbance noise or the like, the primary time constant estimated value τs_e and the secondary time constant The estimated value τr_e may diverge.

しかし、本実施形態2により、一次時定数推定値τs_e,二次時定数推定値τr_eが発散するような状況で確実に推定を中止することができる。 However, according to the second embodiment, the estimation can be reliably stopped in a situation where the primary time constant estimated value τs_e and the secondary time constant estimated value τr_e diverge.

以上示したように、本実施形態2では、実施形態1の効果に加え、一次時定数推定値τs_e,二次時定数推定値τr_eが発散するような状況になった場合を検出することが可能となるため、適応制御系のロバスト性を実施形態1よりも保証することが可能となる。 As shown above, in the second embodiment, in addition to the effect of the first embodiment, it is possible to detect a case where the primary time constant estimated value τs_e and the secondary time constant estimated value τr_e diverge. Therefore, it is possible to guarantee the robustness of the adaptive control system as compared with the first embodiment.

[実施形態3]
本実施形態3は、時定数調整器9の構成が実施形態1と異なる。その他の構成は実施形態1と同様である。本実施形態3の時定数調整器9の構成を図7に示す。図7に示すように、本実施形態3の時定数推定部9bは、バッファを介した前回一次時定数推定値τs_ez,前回二次時定数推定値τr_ezが入力される。
[Embodiment 3]
In the third embodiment, the configuration of the time constant adjuster 9 is different from that of the first embodiment. Other configurations are the same as those in the first embodiment. The configuration of the time constant adjuster 9 of the third embodiment is shown in FIG. As shown in FIG. 7, the time constant estimation unit 9b of the third embodiment inputs the previous primary time constant estimated value τs_ez and the previous secondary time constant estimated value τr_ez via the buffer.

図8に本実施形態3の時定数推定部9bの動作フローチャートを示す。本実施形態3では、実施形態1のフローチャートに、S11,S12,S13,S14の処理が加えられている。 FIG. 8 shows an operation flowchart of the time constant estimation unit 9b of the third embodiment. In the third embodiment, the processes of S11, S12, S13, and S14 are added to the flowchart of the first embodiment.

S11では、一次時定数推定値の変化率の絶対値|Δτs_e|のリミッタ処理を行う。このリミッタ処理でのリミッタ値が第1リミッタ値a_limである。さらに、一次時定数推定値の変化率の絶対値|Δτs_e|が第1リミッタ値a_limで飽和しているか否か(すなわち、リミッタ処理後の|Δτs_e|=a_limか否か)を判定し、飽和している場合(リミッタ処理後の|Δτs_e|=a_limの場合)はS12、飽和していない場合(リミッタ処理後の|Δτs_e|<a_limの場合)はS3へ移行する。S3へ移行した場合は、実施形態1と同様である。 In S11, the limiter processing of the absolute value | Δτs_e | of the rate of change of the first-order time constant estimated value is performed. The limiter value in this limiter processing is the first limiter value a_lim. Further, it is determined whether or not the absolute value | Δτs_e | of the rate of change of the first-order time constant estimated value is saturated at the first limiter value a_lim (that is, whether | Δτs_e | = a_lim after the limiter processing) and saturated. If it is (in the case of | Δτs_e | = a_lim after the limiter processing), it shifts to S12, and if it is not saturated (in the case of | Δτs_e | <a_lim after the limiter treatment), it shifts to S3. When shifting to S3, it is the same as in the first embodiment.

S12では前回一次時定数推定値τs_ezを一次時定数推定値τs_eとし、S4へ移行して一次時定数推定値τr_eを保持し、推定を中止する。 In S12, the previous primary time constant estimated value τs_ez is set to the primary time constant estimated value τs_e, and the process shifts to S4 to hold the primary time constant estimated value τr_e and stop the estimation.

S13では、二次時定数推定値の変化率の絶対値|Δτr_e|のリミッタ処理を行う。このリミッタ処理でのリミッタ値が第2リミッタ値b_limである。二次時定数推定値の変化率の絶対値|Δτr_e|が第2リミッタ値b_limで飽和しているか否かを判定し、飽和している場合はS14、飽和していない場合はS7へ移行する。S7へ移行した場合は実施形態1と同様である。 In S13, the limiter processing of the absolute value | Δτr_e | of the rate of change of the second-order time constant estimated value is performed. The limiter value in this limiter processing is the second limiter value b_lim. It is determined whether or not the absolute value | Δτr_e | of the rate of change of the secondary time constant estimated value is saturated at the second limiter value b_lim, and if it is saturated, it shifts to S14, and if it is not saturated, it shifts to S7. .. The case of shifting to S7 is the same as that of the first embodiment.

S14では前回二次時定数推定値τr_ezを二次時定数推定値τs_eとし、S8へ移行して二次時定数推定値τr_eを保持し、推定を中止する。 In S14, the previous secondary time constant estimated value τr_ez is set to the secondary time constant estimated value τs_e, and the process shifts to S8 to hold the secondary time constant estimated value τr_e and stop the estimation.

すなわち、一次時定数推定値,二次時定数推定値の変化率の絶対値|Δτs_e|,|Δτr_e|に第1,第2リミッタ値a_lim,b_limを設定し,一次時定数推定値,二次時定数推定値の変化率の絶対値|Δτs_e|,|Δτr_e|が第1,第2リミッタ値a_lim,b_limを超えた場合に、一次,二次時定数推定値τs_e,τr_eを前回一次時定数推定値τs_ez、前回二次時定数推定値τr_ezとして推定を中止する機能を追加している。なお、第1,第2リミッタ値は以下の関係となるように設定する。(a_lim>a_min),(b_lim>b_min)。 That is, the first and second limiter values a_lim and b_lim are set in the absolute values | Δτs_e | and | Δτr_e | of the rate of change of the primary time constant estimated value and the secondary time constant estimated value, and the primary time constant estimated value and the secondary time constant are set. When the absolute value | Δτs_e |, | Δτr_e | of the rate of change of the time constant estimated value exceeds the first and second limiter values a_lim and b_lim, the primary and secondary time constant estimated values τs_e and τr_e are set to the previous primary time constants. A function to stop the estimation is added as the estimated value τs_ez and the previous secondary time constant estimated value τr_ez. The first and second limiter values are set so as to have the following relationship. (A_lim> a_min), (b_lim> b_min).

本実施形態3により、一次時定数推定値τs_e,二次時定数推定値τs_eが発散するような状況で確実に推定を中止することができる。 According to the third embodiment, the estimation can be reliably stopped in a situation where the primary time constant estimated value τs_e and the secondary time constant estimated value τs_e diverge.

図9に、実施形態1〜3の一次時定数推定τs_eの動作を示す。推定を開始してから通常であれば一次時定数推定値τs_eは真値に向かい収束するが、外乱等により推定がうまくいかない場合には発散してしまうことが考えられる。実施形態1ではそのような場合に推定を止める機能がないため、図9に示すように発散している値を推定値としてすべり演算で利用し続けてしまう。 FIG. 9 shows the operation of the primary time constant estimation τs_e of the first to third embodiments. Normally, the first-order time constant estimated value τs_e converges toward the true value after the estimation is started, but it may diverge if the estimation is not successful due to disturbance or the like. In the first embodiment, since there is no function to stop the estimation in such a case, as shown in FIG. 9, the divergent value is continuously used as the estimated value in the slip calculation.

実施形態2では、発散状態が所定時間以上継続していると思われる場合には推定を中止する。しかし発散している途中の値で保持してしまうため推定開始前よりも悪い値をすべり演算で利用することとなる。 In the second embodiment, the estimation is stopped when the divergence state seems to continue for a predetermined time or longer. However, since it is retained at the value in the middle of divergence, a value worse than before the estimation start is used in the slip calculation.

本実施形態3では推定を中止した場合には、前回の値を用いるため推定開始前より悪い値をすべり演算で用いることはない。したがって、仮に発散状態が発生した場合では、実施形態2よりも精度よく誘導電動機IMを制御できることになる。 In the third embodiment, when the estimation is stopped, the previous value is used, so that a value worse than before the estimation is started is not used in the slip calculation. Therefore, if a divergence state occurs, the induction motor IM can be controlled more accurately than in the second embodiment.

以上示したように、本実施形態3は、実施形態1の効果に加え、実施形態1では一次,二次時定数推定値τs_e,τr_eが発散するような状況になった場合を検出することが可能となるため、適応制御系のロバスト性を保証することが可能となる。 As shown above, in the third embodiment, in addition to the effect of the first embodiment, in the first embodiment, it is possible to detect a case where the primary and secondary time constant estimated values τs_e and τr_e are diverged. Since it is possible, it is possible to guarantee the robustness of the adaptive control system.

[実施形態4]
本実施形態4における制御システムの構成は、実施形態3と同様である。本実施形態4は、時定数推定部9bの動作が実施形態3と異なる。図10に本実施形態4の時定数推定部9bの動作フローチャートを示す。
[Embodiment 4]
The configuration of the control system in the fourth embodiment is the same as that of the third embodiment. In the fourth embodiment, the operation of the time constant estimation unit 9b is different from that of the third embodiment. FIG. 10 shows an operation flowchart of the time constant estimation unit 9b of the fourth embodiment.

本実施形態4は、実施形態3の処理に、S15,S16,S17,S18,S19の処理が加えられている。 In the fourth embodiment, the processes of S15, S16, S17, S18, and S19 are added to the processes of the third embodiment.

S15は、二次時定数推定値の変化率の絶対値|Δτr_e|が第2リミット値b_limで飽和した場合にS14で前回二次時定数推定値τr_ezを二次時定数推定値τr_eとした後に、二次時定数推定値τr_eを以下の(10)式で演算する。(10)式は(9)式と符号が異なり、(10)式で演算された値を逆符号二次時定数推定値とする。 In S15, when the absolute value | Δτr_e | of the rate of change of the secondary time constant estimated value is saturated with the second limit value b_lim, the previous secondary time constant estimated value τr_ez is set to the secondary time constant estimated value τr_e in S14. , The quadratic time constant estimated value τr_e is calculated by the following equation (10). Eq. (10) has a different sign from Eq. (9), and the value calculated by Eq. (10) is used as the inverse code quadratic time constant estimation value.

Figure 0006880805
Figure 0006880805

S16では、逆符号二次時定数推定値τr_eの変化率Δτr_eを演算する。S17は、逆符号二次時定数推定値の変化率の絶対値|Δτr_e|が第2リミッタ値b_limで飽和しているか否かを判定し、飽和している場合はS18、飽和していない場合はS19へ移行する。 In S16, the rate of change Δτr_e of the inverse sign quadratic time constant estimated value τr_e is calculated. S17 determines whether or not the absolute value | Δτr_e | of the rate of change of the inverse code quadratic time constant estimated value is saturated at the second limiter value b_lim. If it is saturated, S18 is determined, and if it is not saturated, S18 is determined. Moves to S19.

S18は、前回二次時定数推定値τr_ezを二次時定数推定値τr_eとして、S8へ移行する。S19は、逆符号二次時定数推定値の変化率Δτr_eが第2リミット値b_min以下で所定時間t2a継続しているか否か判定し、継続している場合はS8へ移行し、継続していない場合はS15へ移行する。その他は実施形態3と同様である。 S18 shifts to S8 by using the previous secondary time constant estimated value τr_ez as the secondary time constant estimated value τr_e. S19 determines whether or not the rate of change Δτr_e of the inverse code quadratic time constant estimated value continues t2a for a predetermined time at the second limit value b_min or less, and if it continues, it shifts to S8 and does not continue. In that case, the process proceeds to S15. Others are the same as in the third embodiment.

すなわち、(10)式の演算により、(9)式では電流偏差を小さくできなかった場合に電流偏差を小さくすることができる場合がある。(9)式,(10)式の演算を行っても二次時定数推定値の変化率Δτr_eが小さくならない場合に推定を中止する。 That is, there are cases where the current deviation can be reduced when the current deviation cannot be reduced in the formula (9) by the calculation of the equation (10). If the rate of change Δτr_e of the quadratic time constant estimated value does not decrease even after performing the operations of Eqs. (9) and (10), the estimation is stopped.

本実施形態4では、一次時定数推定値τs_eが発散するような状況になった場合でも二次時定数推定値演算方法を(10)式に変更するフローが追加されているため、適応制御系のロバスト性を実施形態3よりも保証することが可能となる。 In the fourth embodiment, even if the primary time constant estimated value τs_e diverges, a flow for changing the secondary time constant estimated value calculation method to the equation (10) is added, so that the adaptive control system is used. It is possible to guarantee the robustness of the above as compared with the third embodiment.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the above description has been made in detail only with respect to the specific examples described in the present invention, it is clear to those skilled in the art that various modifications and modifications can be made within the scope of the technical idea of the present invention. It goes without saying that such modifications and modifications fall within the scope of the claims.

1…電流指令演算部
2a,2b…減算部
3…電流制御部
4…第1座標変換部
5…PWMインバータ
6…第2座標変換部
7…適応制御部
8…電流オブザーバ
9…時定数調整器
10…すべり演算・電気角演算部
11…積分器
1 ... Current command calculation unit 2a, 2b ... Subtraction unit 3 ... Current control unit 4 ... 1st coordinate conversion unit 5 ... PWM inverter 6 ... 2nd coordinate conversion unit 7 ... Adaptive control unit 8 ... Current observer 9 ... Time constant adjuster 10 ... Sliding calculation / electric angle calculation unit 11 ... Inverter

Claims (4)

γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御器と、
前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、
前記三相電圧指令値に応じた電圧を出力するインバータと、
前記インバータが出力した電圧により駆動する誘導電動機と、
前記インバータの三相電流検出値を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、
前記γ軸電圧指令値と、前記δ軸電圧指令値と、前記γ軸電流検出値と、前記δ軸電流検出値と、電気角演算値と、一次時定数推定値の逆数と、二次時定数推定値の逆数と、機械回転数と、に基づいて、γ軸電流推定値と、δ軸電流推定値を演算する電流オブザーバと、
前記γ軸電流検出値と、前記δ軸電流検出値と、前記γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、前記δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、推定開始信号と、に基づいて前記一次時定数推定値の逆数と前記二次時定数推定値の逆数を演算する時定数推定部と、
前記二次時定数推定値の逆数に基づいて、前記電気角演算値を演算するすべり演算・電気角演算部と、
を備え、
前記時定数推定部は、
前記一次時定数推定値の変化率が第1閾値以下で所定時間経過している場合は前記一次時定数推定値の推定を中止して現在の前記一次時定数推定値を保持し、
それ以外の場合は、繰り返し前記一次時定数推定値の演算を行い、
前記二次時定数推定値の変化率が第2閾値以下で所定時間経過している場合は前記二次時定数推定値の推定を中止して現在の前記二次時定数推定値を保持し、
それ以外の場合は、繰り返し前記二次時定数推定値の演算を行うことを特徴とする誘導電動機の制御装置。
Current control that outputs the γ-axis voltage command value and the δ-axis voltage command value based on the deviation between the γ-axis current command value and the γ-axis current detection value and the deviation between the δ-axis current command value and the δ-axis current detection value. With a vessel
A first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and
An inverter that outputs a voltage according to the three-phase voltage command value, and
An induction motor driven by the voltage output by the inverter,
A second coordinate conversion unit that converts the three-phase current detection value of the inverter into the γ-axis current detection value and the δ-axis current detection value, and
The γ-axis voltage command value, the δ-axis voltage command value, the γ-axis current detection value, the δ-axis current detection value, the electric angle calculation value, the inverse of the primary time constant estimated value, and the secondary time. A current observer that calculates the γ-axis current estimate and the δ-axis current estimate based on the inverse of the constant estimate and the machine speed.
The γ-axis current detected value, the δ-axis current detected value, the γ-axis current error which is the difference between the γ-axis current estimated value and the γ-axis current detected value, the δ-axis current estimated value, and the δ-axis A time constant estimation unit that calculates the inverse of the primary time constant estimation value and the inverse of the secondary time constant estimation value based on the δ-axis current error, which is the difference from the current detection value, and the estimation start signal.
On the basis of the reciprocal of the secondary time constant estimate, and the sliding operation and electrical angle calculator for calculating the electrical angle calculation value,
With
The time constant estimation unit
When the rate of change of the primary time constant estimate is equal to or less than the first threshold value and a predetermined time has elapsed, the estimation of the primary time constant estimate is stopped and the current primary time constant estimate is retained.
In other cases, the first-order time constant estimate is repeatedly calculated.
If the rate of change of the secondary time constant estimate is equal to or less than the second threshold value and a predetermined time has elapsed, the estimation of the secondary time constant estimate is stopped and the current secondary time constant estimate is retained.
In other cases, the control device for the induction motor, characterized in that the calculation of the secondary time constant estimated value is repeatedly performed.
γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御器と、
前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、
前記三相電圧指令値に応じた電圧を出力するインバータと、
前記インバータが出力した電圧により駆動する誘導電動機と、
前記インバータの三相電流検出値を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、
前記γ軸電圧指令値と、前記δ軸電圧指令値と、前記γ軸電流検出値と、前記δ軸電流検出値と、電気角演算値と、一次時定数推定値の逆数と、二次時定数推定値の逆数と、機械回転数と、に基づいて、γ軸電流推定値と、δ軸電流推定値を演算する電流オブザーバと、
前記γ軸電流検出値と、前記δ軸電流検出値と、前記γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、前記δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、推定開始信号と、に基づいて前記一次時定数推定値の逆数と前記二次時定数推定値の逆数を演算する時定数推定部と、
前記二次時定数推定値の逆数に基づいて、前記電気角演算値を演算するすべり演算・電気角演算部と、
を備え、
前記時定数推定部は、
前記一次時定数推定値の変化率が第1閾値以下で所定時間経過している場合、または、前記一次時定数推定値の変化率が前記第1閾値よりも大きい第3閾値以上で所定時間経過している場合は前記一次時定数推定値の推定を中止して現在の前記一次時定数推定値を保持し、
それ以外の場合は、繰り返し、前記一次時定数推定値の演算を行い、
前記二次時定数推定値の変化率が第2閾値以下で所定時間経過している場合、または、前記二次時定数推定値の変化率が前記第2閾値よりも大きい第4閾値以上で所定時間経過している場合は前記二次時定数推定値の推定を中止して現在の前記二次時定数推定値を保持し、
それ以外の場合は、繰り返し、前記二次時定数推定値の演算を行うことを特徴とする誘導電動機の制御装置。
Current control that outputs the γ-axis voltage command value and the δ-axis voltage command value based on the deviation between the γ-axis current command value and the γ-axis current detection value and the deviation between the δ-axis current command value and the δ-axis current detection value. With a vessel
A first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and
An inverter that outputs a voltage according to the three-phase voltage command value, and
An induction motor driven by the voltage output by the inverter,
A second coordinate conversion unit that converts the three-phase current detection value of the inverter into the γ-axis current detection value and the δ-axis current detection value, and
The γ-axis voltage command value, the δ-axis voltage command value, the γ-axis current detection value, the δ-axis current detection value, the electric angle calculation value, the inverse of the primary time constant estimated value, and the secondary time. A current observer that calculates the γ-axis current estimate and the δ-axis current estimate based on the inverse of the constant estimate and the machine speed.
The γ-axis current detected value, the δ-axis current detected value, the γ-axis current error which is the difference between the γ-axis current estimated value and the γ-axis current detected value, the δ-axis current estimated value, and the δ-axis A time constant estimation unit that calculates the inverse of the primary time constant estimation value and the inverse of the secondary time constant estimation value based on the δ-axis current error, which is the difference from the current detection value, and the estimation start signal.
On the basis of the reciprocal of the secondary time constant estimate, and the sliding operation and electrical angle calculator for calculating the electrical angle calculation value,
With
The time constant estimation unit
When the rate of change of the primary time constant estimated value is equal to or less than the first threshold value and a predetermined time has elapsed, or when the rate of change of the primary time constant estimated value is greater than or equal to the third threshold value and the predetermined time has elapsed. If so, the estimation of the primary time constant estimate is stopped and the current primary time constant estimate is retained.
In other cases, the calculation of the first-order time constant estimate is repeated, and the operation is performed.
When the rate of change of the secondary time constant estimated value is equal to or less than the second threshold value and a predetermined time has elapsed, or when the rate of change of the secondary time constant estimated value is greater than or equal to the fourth threshold value. If time has passed, the estimation of the secondary time constant estimate is stopped and the current secondary time constant estimate is retained.
In other cases, the control device for the induction motor, characterized in that the calculation of the secondary time constant estimated value is repeatedly performed.
γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御器と、
前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、
前記三相電圧指令値に応じた電圧を出力するインバータと、
前記インバータが出力した電圧により駆動する誘導電動機と、
前記インバータの三相電流検出値を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、
前記γ軸電圧指令値と、前記δ軸電圧指令値と、前記γ軸電流検出値と、前記δ軸電流検出値と、電気角演算値と、一次時定数推定値の逆数と、二次時定数推定値の逆数と、機械回転数と、に基づいて、γ軸電流推定値と、δ軸電流推定値を演算する電流オブザーバと、
前記γ軸電流検出値と、前記δ軸電流検出値と、前記γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、前記δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、推定開始信号と、に基づいて前記一次時定数推定値の逆数と前記二次時定数推定値の逆数を演算する時定数推定部と、
前記二次時定数推定値の逆数に基づいて、前記電気角演算値を演算するすべり演算・電気角演算部と、
を備え、
前記時定数推定部は、
前記一次時定数推定値の変化率が第1閾値以下で所定時間経過している場合は前記一次時定数推定値の推定を中止して現在の前記一次時定数推定値を保持し、
前記一次時定数推定値の変化率の絶対値が前記第1閾値よりも大きい第1リミッタ値で飽和している場合は前回一次時定数推定値を前記一次時定数推定値として保持して前記一次時定数推定値の推定を中止し、
それ以外の場合は、繰り返し、前記一次時定数推定値の演算を行い、
前記二次時定数推定値の変化率が第2閾値以下で所定時間経過している場合、前記二次時定数推定値の推定を中止して現在の前記二次時定数推定値を保持し、
前記二次時定数推定値の変化率の絶対値が前記第2閾値よりも大きい第2リミッタ値で飽和している場合は前回二次時定数推定値を前記二次時定数推定値として保持して前記二次時定数推定値の推定を中止し、
それ以外の場合は、繰り返し、前記二次時定数推定値の演算を行うことを特徴とする誘導電動機の制御装置。
Current control that outputs the γ-axis voltage command value and the δ-axis voltage command value based on the deviation between the γ-axis current command value and the γ-axis current detection value and the deviation between the δ-axis current command value and the δ-axis current detection value. With a vessel
A first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and
An inverter that outputs a voltage according to the three-phase voltage command value, and
An induction motor driven by the voltage output by the inverter,
A second coordinate conversion unit that converts the three-phase current detection value of the inverter into the γ-axis current detection value and the δ-axis current detection value, and
The γ-axis voltage command value, the δ-axis voltage command value, the γ-axis current detection value, the δ-axis current detection value, the electric angle calculation value, the inverse of the primary time constant estimated value, and the secondary time. A current observer that calculates the γ-axis current estimate and the δ-axis current estimate based on the inverse of the constant estimate and the machine speed.
The γ-axis current detected value, the δ-axis current detected value, the γ-axis current error which is the difference between the γ-axis current estimated value and the γ-axis current detected value, the δ-axis current estimated value, and the δ-axis A time constant estimation unit that calculates the inverse of the primary time constant estimation value and the inverse of the secondary time constant estimation value based on the δ-axis current error, which is the difference from the current detection value, and the estimation start signal.
On the basis of the reciprocal of the secondary time constant estimate, and the sliding operation and electrical angle calculator for calculating the electrical angle calculation value,
With
The time constant estimation unit
When the rate of change of the primary time constant estimate is equal to or less than the first threshold value and a predetermined time has elapsed, the estimation of the primary time constant estimate is stopped and the current primary time constant estimate is retained.
When the absolute value of the rate of change of the primary time constant estimate is saturated with the first limiter value larger than the first threshold value, the previous primary time constant estimate is held as the primary time constant estimate and the primary is held. Stop estimating the time constant estimate and stop
In other cases, the calculation of the first-order time constant estimate is repeated, and the operation is performed.
When the rate of change of the secondary time constant estimate is equal to or less than the second threshold value and a predetermined time has elapsed, the estimation of the secondary time constant estimate is stopped and the current secondary time constant estimate is retained.
When the absolute value of the rate of change of the secondary time constant estimated value is saturated with the second limiter value larger than the second threshold value, the previous secondary time constant estimated value is retained as the secondary time constant estimated value. To stop the estimation of the secondary time constant estimate,
In other cases, the control device for the induction motor, characterized in that the calculation of the secondary time constant estimated value is repeatedly performed.
γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御器と、
前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、
前記三相電圧指令値に応じた電圧を出力するインバータと、
前記インバータが出力した電圧により駆動する誘導電動機と、
前記インバータの三相電流検出値を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、
前記γ軸電圧指令値と、前記δ軸電圧指令値と、前記γ軸電流検出値と、前記δ軸電流検出値と、電気角演算値と、一次時定数推定値の逆数と、二次時定数推定値の逆数と、機械回転数と、に基づいて、γ軸電流推定値と、δ軸電流推定値を演算する電流オブザーバと、
前記γ軸電流検出値と、前記δ軸電流検出値と、前記γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、前記δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、推定開始信号と、に基づいて前記一次時定数推定値の逆数と前記二次時定数推定値の逆数を演算する時定数推定部と、
前記二次時定数推定値の逆数に基づいて、前記電気角演算値を演算するすべり演算・電気角演算部と、
を備え、
前記時定数推定部は、
前記一次時定数推定値の変化率が第1閾値以下で所定時間経過している場合は前記一次時定数推定値の推定を中止して現在の前記一次時定数推定値を保持し、
前記一次時定数推定値の変化率の絶対値が前記第1閾値よりも大きい第1リミッタ値で飽和している場合は前回一次時定数推定値を前記一次時定数推定値として保持して前記一次時定数推定値の推定を中止し、
それ以外の場合は、繰り返し、前記一次時定数推定値の演算を行い、
前記二次時定数推定値の変化率が第2閾値以下で所定時間以上経過しておらず、かつ、前記二次時定数推定値の変化率の絶対値が前記第2閾値よりも大きい第2リミッタ値で飽和していない場合は、繰り返し、前記二次時定数推定値の演算を行い、
前記二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和しておらず、かつ、前記二次時定数推定値の変化率が前記第2閾値以下で所定時間以上経過している場合は、前記二次時定数推定値の推定を中止して現在の前記二次時定数推定値を保持し、
前記二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和し、かつ、前記二次時定数推定値を演算した値に−1を乗算した逆符号二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和している場合は、前回二次時定数推定値を前記二次時定数推定値として保持して前記二次時定数推定値の推定を中止し、
前記二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和し、前記逆符号二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和しておらず、かつ、前記逆符号二次時定数推定値の変化率が前記第2閾値以下で所定時間以上経過している場合は、前記逆符号二次時定数推定値を保持して前記二次時定数推定値の推定を中止し、
前記二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和し、前記逆符号二次時定数推定値の変化率の絶対値が前記第2リミッタ値で飽和しておらず、かつ、前記逆符号二次時定数推定値の変化率が前記第2閾値以下で所定時間以上経過していない場合は、繰り返し、前記逆符号二次時定数推定値の演算を行うことを特徴とする誘導電動機の制御装置。
Current control that outputs the γ-axis voltage command value and the δ-axis voltage command value based on the deviation between the γ-axis current command value and the γ-axis current detection value and the deviation between the δ-axis current command value and the δ-axis current detection value. With a vessel
A first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and
An inverter that outputs a voltage according to the three-phase voltage command value, and
An induction motor driven by the voltage output by the inverter,
A second coordinate conversion unit that converts the three-phase current detection value of the inverter into the γ-axis current detection value and the δ-axis current detection value, and
The γ-axis voltage command value, the δ-axis voltage command value, the γ-axis current detection value, the δ-axis current detection value, the electric angle calculation value, the inverse of the primary time constant estimated value, and the secondary time. A current observer that calculates the γ-axis current estimate and the δ-axis current estimate based on the inverse of the constant estimate and the machine speed.
The γ-axis current detected value, the δ-axis current detected value, the γ-axis current error which is the difference between the γ-axis current estimated value and the γ-axis current detected value, the δ-axis current estimated value, and the δ-axis A time constant estimation unit that calculates the inverse of the primary time constant estimation value and the inverse of the secondary time constant estimation value based on the δ-axis current error, which is the difference from the current detection value, and the estimation start signal.
On the basis of the reciprocal of the secondary time constant estimate, and the sliding operation and electrical angle calculator for calculating the electrical angle calculation value,
With
The time constant estimation unit
When the rate of change of the primary time constant estimate is equal to or less than the first threshold value and a predetermined time has elapsed, the estimation of the primary time constant estimate is stopped and the current primary time constant estimate is retained.
When the absolute value of the rate of change of the primary time constant estimate is saturated with the first limiter value larger than the first threshold value, the previous primary time constant estimate is held as the primary time constant estimate and the primary is held. Stop estimating the time constant estimate and stop
In other cases, the calculation of the first-order time constant estimate is repeated, and the operation is performed.
A second value in which the rate of change of the secondary time constant estimate is equal to or less than the second threshold value and has not elapsed for a predetermined time or more, and the absolute value of the rate of change of the secondary time constant estimate is larger than the second threshold value. If it is not saturated with the limiter value, the calculation of the quadratic time constant estimate is repeated, and the calculation is performed.
The absolute value of the rate of change of the secondary time constant estimate is not saturated with the second limiter value, and the rate of change of the secondary time constant estimate is equal to or less than the second threshold value, and a predetermined time or more has elapsed. If so, the estimation of the quadratic time constant estimate is stopped and the current quadratic time constant estimate is retained.
The absolute value of the rate of change of the secondary time constant estimated value is saturated with the second limiter value, and the inverse code secondary time constant estimated value obtained by multiplying the calculated value of the secondary time constant estimated value by -1. If the absolute value of the rate of change of is saturated with the second limiter value, the previous secondary time constant estimate is held as the secondary time constant estimate and the estimation of the secondary time constant estimate is stopped. And
The absolute value of the rate of change of the secondary time constant estimate is saturated with the second limiter value, and the absolute value of the rate of change of the inverse code secondary time constant estimate is not saturated with the second limiter value. In addition, when the rate of change of the inverse code secondary time constant estimated value is equal to or less than the second threshold value and a predetermined time or more has elapsed, the inverse code secondary time constant estimated value is retained and the secondary time constant is retained. Stop estimating the estimated value and
The absolute value of the rate of change of the secondary time constant estimate is saturated with the second limiter value, and the absolute value of the rate of change of the inverse code secondary time constant estimate is not saturated with the second limiter value. In addition, when the rate of change of the inverse code secondary time constant estimated value is equal to or less than the second threshold value and the predetermined time or more has not elapsed, the operation of the inverse code secondary time constant estimated value is repeatedly performed. The control device for the induction motor.
JP2017024594A 2017-02-14 2017-02-14 Induction motor control device Active JP6880805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024594A JP6880805B2 (en) 2017-02-14 2017-02-14 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024594A JP6880805B2 (en) 2017-02-14 2017-02-14 Induction motor control device

Publications (2)

Publication Number Publication Date
JP2018133865A JP2018133865A (en) 2018-08-23
JP6880805B2 true JP6880805B2 (en) 2021-06-02

Family

ID=63248659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024594A Active JP6880805B2 (en) 2017-02-14 2017-02-14 Induction motor control device

Country Status (1)

Country Link
JP (1) JP6880805B2 (en)

Also Published As

Publication number Publication date
JP2018133865A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP5952332B2 (en) Sensorless vector control device for induction motor
JP4502734B2 (en) Origin offset amount calculation method for motor rotational position detection device and motor control device using this calculation method
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
US8593087B2 (en) Magnetic pole position estimation method for AC synchronous motor
KR101619567B1 (en) Apparatus for estimating parameters in induction machine
US9397602B2 (en) Rotary electric machine control apparatus and control method for rotary electric machine
JP6361450B2 (en) Induction motor control device
CN111130417B (en) Power conversion device and control method thereof
JP5910757B2 (en) Electric motor control device
KR101629059B1 (en) Apparatus for estimating parameters in induction machine
JP2016144389A (en) Method and system for controlling rotor angular speed of induction motor
JP2009060688A (en) Controller for synchronous motors
JP3185604B2 (en) Induction machine control device
JP5392532B2 (en) Induction motor control device
JP6880805B2 (en) Induction motor control device
JP2010268568A (en) Controller for ac motor
JP5298367B2 (en) Induction motor control device
JP6966978B2 (en) Machine tool motor drive
JP6794693B2 (en) Induction motor control device
JP2015171302A (en) Control device for electric motor
JP5996485B2 (en) Motor drive control device
JP4123335B2 (en) Speed sensorless control device for induction motor
JP5983636B2 (en) Electric motor control device
JP2016019341A (en) Control device for three-phase ac rotary machine
JP6584371B2 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6880805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150