JP6878808B2 - Method for manufacturing polyimide porous body - Google Patents

Method for manufacturing polyimide porous body Download PDF

Info

Publication number
JP6878808B2
JP6878808B2 JP2016190534A JP2016190534A JP6878808B2 JP 6878808 B2 JP6878808 B2 JP 6878808B2 JP 2016190534 A JP2016190534 A JP 2016190534A JP 2016190534 A JP2016190534 A JP 2016190534A JP 6878808 B2 JP6878808 B2 JP 6878808B2
Authority
JP
Japan
Prior art keywords
polyimide
porous body
solvent
gel
polyimide porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016190534A
Other languages
Japanese (ja)
Other versions
JP2018053100A (en
Inventor
健 川岸
健 川岸
達也 庄司
達也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2016190534A priority Critical patent/JP6878808B2/en
Publication of JP2018053100A publication Critical patent/JP2018053100A/en
Application granted granted Critical
Publication of JP6878808B2 publication Critical patent/JP6878808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、ポリイミド多孔質体の製造方法、及び概ポリイミド多孔質体を用いた断熱材に関する。 The present invention relates to a method for producing a polyimide porous body and a heat insulating material using the generally polyimide porous body.

ポリマー多孔質体は、電池用セパレータや電解コンデンサ用隔膜、集塵、精密濾過、膜分離、断熱材など様々な用途に用いられている。特にポリイミド多孔質体はポリイミド由来の耐熱性、力学特性、耐薬品性を有する事からその応用展開が期待されており、非溶媒誘起相分離法(NIPS)、蒸気誘起相分離法(VIPS)、熱誘起相分離法(TIPS)など、種々の方法での製造が検討されている。非溶媒誘起相分離法の例としては、特許文献1にビフェニルテトラカルボン酸成分とジアミン成分とから得られるポリイミド前駆体ワニスキャストフィルムに多孔質フィルムを積層した後、非溶媒に浸漬することを特徴とするポリイミド多孔質膜の製造方法が開示されている。また、蒸気誘起相分離法の例としては、特許文献2にポリイミド前駆体0 .3〜60重量% と溶媒99 .7〜40重量%とからなる溶液をフィルム状に流延し、得られたポリイミド前駆体のフィルム状物に蒸気暴露する処理を行った後、凝固溶媒に浸漬もしくは接触させることを特徴とするポリイミド多孔質膜の製造方法が開示されている。さらに、特許文献3には凝固浴を用いずに多孔質膜を製造する方法として、ポリイミド前駆体と、アミド系溶媒と、アミド系溶媒より50℃以上高い沸点を有するエーテル系溶媒を含有するポリイミド前駆体溶液を基材上に流延し、加熱乾燥・イミド化させることを特徴とするポリイミド多孔質フィルムの製造方法が開示されている。しかしながら、これらの手法は厚さが概ね1mm以下のフィルム状の多孔質体は比較的得やすいものの、相分離等に伴い形成された構造を積極的に凍結する事は考慮に入れていない為、1mm以上の厚膜や、バルクの多孔質体を得ることは、実質上困難であった。 Polymer porous materials are used in various applications such as battery separators, diaphragms for electrolytic capacitors, dust collection, microfiltration, membrane separation, and heat insulating materials. In particular, polyimide porous bodies are expected to be applied because they have heat resistance, mechanical properties, and chemical resistance derived from polyimide. Non-solvent-induced phase separation method (NIPS), steam-induced phase separation method (VIPS), Production by various methods such as a heat-induced phase separation method (TIPS) is being studied. As an example of the non-solvent-induced phase separation method, Patent Document 1 is characterized in that a porous film is laminated on a polyimide precursor varnish cast film obtained from a biphenyltetracarboxylic acid component and a diamine component, and then immersed in a non-solvent. A method for producing a polyimide porous film is disclosed. Further, as an example of the vapor-induced phase separation method, Patent Document 2 describes the polyimide precursor 0. 3-60% by weight and solvent 99. A polyimide characterized by casting a solution consisting of 7 to 40% by weight in the form of a film, subjecting the film-like substance of the obtained polyimide precursor to vapor exposure, and then immersing or contacting the solution in a coagulation solvent. A method for producing a porous film is disclosed. Further, Patent Document 3 describes a polyimide containing a polyimide precursor, an amide solvent, and an ether solvent having a boiling point higher than that of the amide solvent by 50 ° C. or more as a method for producing a porous film without using a coagulation bath. A method for producing a polyimide porous film is disclosed, which comprises casting a precursor solution on a substrate, drying it by heating, and imidizing it. However, although these methods are relatively easy to obtain a film-like porous body having a thickness of about 1 mm or less, they do not take into consideration the positive freezing of the structure formed by phase separation or the like. It was practically difficult to obtain a thick film of 1 mm or more and a bulk porous body.

一方、ポリイミド系樹脂を化学架橋又は物理架橋することによって得られるゲルを、乾燥させることで多孔質体(キセロゲル)を得る方法が、特許文献4、5に開示されている。これらの方法では、架橋によって構造を凍結し、その後乾燥させることで多孔質体を得ているが、得られるゲルの網目構造は非常に小さく、超臨界乾燥等の毛細管力が実質的に生じない乾燥方法以外ではゲルが大幅に収縮し、空孔率の高い多孔質体を得ることは困難であった。 On the other hand, Patent Documents 4 and 5 disclose methods for obtaining a porous body (xerogel) by drying a gel obtained by chemically or physically cross-linking a polyimide resin. In these methods, the structure is frozen by cross-linking and then dried to obtain a porous body, but the network structure of the obtained gel is very small, and capillary force such as supercritical drying does not substantially occur. Other than the drying method, the gel shrank significantly, and it was difficult to obtain a porous material with a high porosity.

特開平11−310658号公報Japanese Unexamined Patent Publication No. 11-310658 特開2001−089593号公報Japanese Unexamined Patent Publication No. 2001-0895993 特開2007−211136号公報Japanese Unexamined Patent Publication No. 2007-21136 特開2000−154273号公報Japanese Unexamined Patent Publication No. 2000-154273 特表2005−533893号公報Special Table 2005-533893

本発明の目的は、耐熱性、耐薬品性に優れたポリイミドからなり、高い空孔率を示すポリイミド多孔質体を製造可能な新しい技術を提供することにある。 An object of the present invention is to provide a new technique capable of producing a polyimide porous body which is made of polyimide having excellent heat resistance and chemical resistance and exhibits a high porosity.

本発明者らは、ポリイミドゲルを常圧乾燥させる際に生じる毛細管力を可能な限り低減させる事に着目して鋭意検討を重ねた。その結果、ポリイミドゲル状組成物を、溶媒置換及び表面疎水化処理を経て常圧乾燥させることで、ゲルの収縮を抑制し、高い空孔率を有するポリイミド多孔質体が得られることを見出し、本発明を完成するに至った。
即ち、本発明は、以下の事項に関する。
The present inventors have made extensive studies focusing on reducing the capillary force generated when the polyimide gel is dried under normal pressure as much as possible. As a result, they have found that by drying the polyimide gel-like composition under atmospheric pressure through solvent substitution and surface hydrophobization treatment, shrinkage of the gel is suppressed and a polyimide porous body having a high porosity can be obtained. The present invention has been completed.
That is, the present invention relates to the following matters.

1.下記一般式(1)で示される反復単位からなるポリイミド前駆体と、ポリイミド前駆体の溶媒と、イミド化触媒と、脱水剤を少なくとも混合してなることを特徴とするポリイミドゲル状組成物を、溶媒置換及び表面疎水化処理を経て常圧乾燥させるポリイミド多孔質体の製造方法。 1. 1. A polyimide gel-like composition comprising at least a mixture of a polyimide precursor composed of a repeating unit represented by the following general formula (1), a solvent of the polyimide precursor, an imidization catalyst, and a dehydrating agent. A method for producing a polyimide porous body, which is dried under atmospheric pressure after being subjected to solvent substitution and surface hydrophobization treatment.

Figure 0006878808
〔式中、Bは、芳香族環を含む4価のユニットであり、式中、Aは、芳香族環を含む2価のユニットである。〕
Figure 0006878808
[In the formula, B is a tetravalent unit containing an aromatic ring, and in the formula, A is a divalent unit containing an aromatic ring. ]

2.一般式(1)中、Bで示される構造の一部に下記化学式(2)で示される構造を含むことを特徴とする前記項1に記載のポリイミド多孔質体の製造方法。

Figure 0006878808
2. The method for producing a polyimide porous body according to Item 1, wherein a part of the structure represented by B in the general formula (1) includes a structure represented by the following chemical formula (2).
Figure 0006878808

3.一般式(1)中、Aで示される構造の一部に下記化学式(3)で示される構造を含むことを特徴とする前記項1又は2に記載のポリイミド多孔質体の製造方法。

Figure 0006878808
3. 3. The method for producing a polyimide porous material according to Item 1 or 2, wherein a part of the structure represented by A in the general formula (1) includes a structure represented by the following chemical formula (3).
Figure 0006878808

4.前記項1〜3のいずれか1項に記載のポリイミド多孔質体の製造方法において、表面疎水化処理が、ヘキサメチルジシラザン、メチルトリクロロシラン、のいずれか又は混合物を用いた処理であることを特徴とするポリイミド多孔質体の製造方法。 4. In the method for producing a polyimide porous body according to any one of Items 1 to 3, the surface hydrophobizing treatment is a treatment using any or a mixture of hexamethyldisilazane and methyltrichlorosilane. A method for producing a polyimide porous body, which is a feature.

5.前記項1〜4のいずれか1項に記載の方法で得られたポリイミド多孔質体を用いた断熱材。 5. A heat insulating material using a polyimide porous body obtained by the method according to any one of Items 1 to 4.

本発明によって、耐熱性、耐薬品性に優れたポリイミドからなり、高い空孔率を有するポリイミド多孔質体を得ることが出来る。本発明で得られるポリイミド多孔質体は、フィルム状の多孔質体のみならず、バルク状の多孔質体を得ることが可能である。 According to the present invention, it is possible to obtain a polyimide porous body made of polyimide having excellent heat resistance and chemical resistance and having a high porosity. As the polyimide porous body obtained in the present invention, not only a film-shaped porous body but also a bulk-shaped porous body can be obtained.

実施例1の多孔質体の断面の走査型電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image of the cross section of the porous body of Example 1. 比較例1の多孔質体の断面の走査型電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image of the cross section of the porous body of Comparative Example 1.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明のポリイミドゲル状組成物は、ポリイミド前駆体と、ポリイミド前駆体の溶媒と、イミド化触媒と、脱水剤を少なくとも混合してなる事を特徴とするポリイミドゲル状組成物を、溶媒置換及び表面疎水化処理を経て常圧乾燥させることで得られる。 The polyimide gel-like composition of the present invention is prepared by substituting a polyimide precursor, a solvent for the polyimide precursor, an imidization catalyst, and a dehydrating agent at least. It is obtained by subjecting it to surface hydrophobic treatment and then drying it at atmospheric pressure.

<ポリイミド前駆体モノマー>
本発明に用いるポリイミド前駆体は、前記一般式(1)で示される反復単位からなり、式中、Bはテトラカルボン酸成分に起因する4価のユニットである。また、Aはジアミン成分に起因する2価のユニットである。ポリイミド前駆体を構成するユニットについて以下に詳述する。
<Polyimide precursor monomer>
The polyimide precursor used in the present invention comprises a repeating unit represented by the general formula (1), in which B is a tetravalent unit derived from a tetracarboxylic acid component. Further, A is a divalent unit due to the diamine component. The units constituting the polyimide precursor will be described in detail below.

ユニットBは、テトラカルボン酸成分に起因する4価のユニットである。テトラカルボン酸成分はポリイミド前駆体を重合可能な範囲で特に限定されないが例えば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物(i−BPDA)、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2、2‐ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(2,3−ジカルボキシフェニル)エーテル二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物(6FDA)、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物及びその混合物が挙げられる。その中でも特にs−BPDA、a−BPDA、PMDAがポリイミドゲル状組成物を得る観点、及び得られるポリイミド多孔質体の耐熱性、耐薬品性、力学特性の観点から好ましい。 Unit B is a tetravalent unit due to the tetracarboxylic acid component. The tetracarboxylic acid component is not particularly limited as long as the polyimide precursor can be polymerized, and for example, 3,3', 4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3', 4'-biphenyltetracarboxylic dianhydride (a-BPDA), 2,2', 3,3'-biphenyltetracarboxylic dianhydride (i-BPDA), pyromellitic dianhydride (PMDA), 3 , 3', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA), 2,2', 3,3'-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxy) Phenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) ) Ether dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 1,2,5,6-naphthalene Tetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride (6FDA), 2,2-bis ( 2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride and a mixture thereof can be mentioned. Among them, s-BPDA, a-BPDA, and PMDA are particularly preferable from the viewpoint of obtaining a polyimide gel-like composition, and from the viewpoint of heat resistance, chemical resistance, and mechanical properties of the obtained polyimide porous body.

ユニットAは、ジアミン成分に起因する2価のユニットである。ジアミン成分はポリイミド前駆体を重合可能な範囲で特に限定されないが例えば、p−フェニレンジアミン(PPD)、m−フェニレンジアミン(MPD)などのフェニレンジアミン類、3,5−ジアミノ安息香酸などのジアミノ安息香酸類、4,4’−ジアミノジフェニルエーテル(ODA)、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルエーテル、3,3’−ジメトキシ−ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル類、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノビフェニルメタン、3,3’−ジクロロ−4,4’−ジアミノビフェニルメタン、2,2’−ジフルオロ−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメトキシ−4,4’−ジアミノジフェニルメタンなどのジアミノジフェニルメタン類、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)プロパン、2,2−(3,4'−ジアミノジフェニル)プロパンなどのジアミノジフェニルプロパン類、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパンなどのビス(アミノフェニル)ヘキサフルオロプロパン類、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホンなどのジアミノジフェニルスルホン類、3,7−ジアミノ−2,8−ジメチル−ジベンゾチオフェン、2,8−ジアミノ−3,7−ジメチル−ジベンゾチオフェン、3,7−ジアミノ−2,6−ジメチル−ジベンゾチオフェンなどのジアミノジベンゾチオフェン類、3,7−ジアミノ−2,8−ジメチル−ジフェニレンスルフォン、3,7−ジアミノ−2,8−ジエチル−ジフェニレンスルフォン、3,7−ジアミノ−2,8−ジメトキシ−ジフェニレンスルフォン、2,8−ジアミノ−3,7−ジメチル−ジフェニレンスルフォンなどのジアミノジフェニレンスルフォン類(後述のジアミノジベンゾチオフェン=5,5−ジオキシド類に同じ)、4,4’−ジアミノビベンジル、4,4’−ジアミノ−2,2’−ジメチルビベンジルなどのジアミノビベンジル類、0−ジアニシジン、0−トリジン、m−トリジンなどのジアミノビフェニル類、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノンなどのジアミノベンゾフェノン類、2,2’,5,5’−テトラクロロベンジジン、3,3’,5,5’−テトラクロロベンジジン、3,3’−ジクロロベンジジン、2,2’−ジクロロベンジジン、2,2’,3,3’,5,5’−ヘキサクロロベンジジン、2,2',5,5’−テトラブロモベンジジン、3,3’,5,5’−テトラブロモベンジジン、3,3’−ジブロモベンジジン、2,2’−ジブロモベンジジン、2,2’,3,3’,5,5’−ヘキサクロロベンジジンなどのジアミノベンジジン類、1,4−ビス(4−アミノフェノキシ)ベンゼン(TPE−Q)、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)などのビス(アミノフェノキシ)ベンゼン類、1,4−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(3−アミノフェニル)ベンゼンなどのジ(アミノフェニル)ベンゼン類、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕プロパンなどのビス〔(アミノフェノキシ)フェニル〕プロパン類、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕ヘキサフルオロプロパンなどのビス〔(アミノフェノキシ)フェニル〕ヘキサフルオロプロパン類、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホンなどのジ〔(アミノフェノキシ)フェニル〕スルホン類、4,4’−ビス(4−アミノフェニル)ビフェニルなどのジ(アミノフェニル)ビフェニル類、5(6)−アミノ−2−(4−アミノフェニル)−ベンゾイミダゾール(DAPBI)などのジアミノベンゾアゾール類及びその混合物が挙げられる。その中でも特にODAがポリイミドゲル状組成物を得る観点、及びポリイミド多孔質体の耐熱性、耐薬品性、力学特性の観点から好ましい。その他、脂環族ジアミンとして、イソホロンジアミン、シクロヘキサンジアミンなどを、重合性を妨げない範囲で適宜利用できる。 Unit A is a divalent unit due to the diamine component. The diamine component is not particularly limited as long as the polyimide precursor can be polymerized, but for example, phenylenediamines such as p-phenylenediamine (PPD) and m-phenylenediamine (MPD), and diaminobenzoic acid such as 3,5-diaminobenzoic acid. Acids, 4,4'-diaminodiphenyl ether (ODA), 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenyl ether, 3,3'-dimethoxy Diaminodiphenyl ethers such as −diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3,3′-diaminobiphenylmethane, 3,3′-dichloro-4,4′-diaminobiphenylmethane, 2,2′-difluoro-4 , 4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethoxy-4,4'-diaminodiphenylmethane, diaminodiphenylmethanes, 2,2-bis (4- Diaminodiphenyl propanes such as aminophenyl) propane, 2,2-bis (3-aminophenyl) propane, 2,2- (3,4'-diaminodiphenyl) propane, 2,2-bis (4-aminophenyl) Hexafluoropropane, bis (aminophenyl) hexafluoropropanes such as 2,2-bis (3-aminophenyl) hexafluoropropane, diamino such as 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone Diphenylsulfones, 3,7-diamino-2,8-dimethyl-dibenzothiophene, 2,8-diamino-3,7-dimethyl-dibenzothiophene, 3,7-diamino-2,6-dimethyl-dibenzothiophene, etc. Diaminodibenzothiophenes, 3,7-diamino-2,8-dimethyl-diphenylensulphon, 3,7-diamino-2,8-diethyl-diphenylensulphon, 3,7-diamino-2,8-dimethoxy-di Diaminodiphenylensulphons such as phenylensulphon, 2,8-diamino-3,7-dimethyl-diphenylensulphon (same as diaminodibenzothiophene = 5,5-dioxides described below), 4,4'-diaminobibenzyl , 4,4'-Diamino-2,2'-Diaminobibenzyls such as dimethylbibenzyl, 0-dianicidin, 0-trizine, diaminobiphenyls such as m-trizine, 4,4'- Diaminobenzophenones such as diaminobenzophenone, 3,3'-diaminobenzophenone, 2,2', 5,5'-tetrachlorobenzidine, 3,3', 5,5'-tetrachlorobenzidine, 3,3'-dichloro Benzidine, 2,2'-dichlorobenzidine, 2,2', 3,3', 5,5'-hexachlorobenzidine, 2,2', 5,5'-tetrabromobenzidine, 3,3', 5,5 Diaminobenzidines such as'-tetrabromobenzidine, 3,3'-dibromobenzidine, 2,2'-dibromobenzidine, 2,2', 3,3', 5,5'-hexachlorobenzidine, 1,4-bis Bis (aminophenoxy) benzenes such as (4-aminophenoxy) benzene (TPE-Q), 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,4-bis (4-aminophenyl) ) Benzidine, di (aminophenyl) benzenes such as 1,4-bis (3-aminophenyl) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3 -(3-Aminophenoxy) phenyl] bis such as propane [(aminophenoxy) phenyl] propanes, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [3 -(3-Aminophenoxy) phenyl] bis [(aminophenoxy) phenyl] hexafluoropropanes such as hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) ) Di [(aminophenoxy) phenyl] sulfones such as phenyl] sulfone, di (aminophenyl) biphenyls such as 4,4'-bis (4-aminophenyl) biphenyl, 5 (6) -amino-2-( Examples thereof include diaminobenzoazoles such as 4-aminophenyl) -benzoimidazole (DAPBI) and mixtures thereof. Among them, ODA is particularly preferable from the viewpoint of obtaining a polyimide gel-like composition, and from the viewpoint of heat resistance, chemical resistance, and mechanical properties of the polyimide porous body. In addition, as the alicyclic diamine, isophorone diamine, cyclohexanediamine and the like can be appropriately used as long as the polymerizable property is not hindered.

<良溶媒>
本発明に用いるポリイミド前駆体の溶媒としては、ポリイミド前駆体を溶解するものであれば特に限定されないが、具体的にはアミド系溶媒が挙げられる。アミド系溶媒の例としては、N−メチル−2−ピロリドン(NMP)、N−エチル−2−ピロリドン(NEP)、ピリジン、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド(DMF)、1,3−ジメチル−2−イミダゾリジノン(DMI)等を挙げる事が出来る。これらの良溶媒は、それぞれ単体で用いてもよいし、二種以上の混合物として用いても構わない。
<Good solvent>
The solvent for the polyimide precursor used in the present invention is not particularly limited as long as it dissolves the polyimide precursor, and specific examples thereof include an amide-based solvent. Examples of amide solvents include N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone (NEP), pyridine, N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N. , N-Dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI) and the like. Each of these good solvents may be used alone or as a mixture of two or more kinds.

本発明には、必要に応じてポリイミド前駆体の非溶媒も併用する事が出来る。ポリイミド前駆体の非溶媒は、例えば、ポリイミド前駆体のイミド化の進行に伴う溶媒への溶解性の低下による相分離を制御する為に用いられる。特に、多孔構造のサイズを大きくしたい場合に併用する事で、相分離を促進し、より大きな空孔の多孔質体を得ることが可能となる。 A non-solvent of a polyimide precursor can also be used in combination with the present invention, if necessary. The non-solvent of the polyimide precursor is used, for example, to control phase separation due to a decrease in solubility in a solvent as the imidization of the polyimide precursor progresses. In particular, when it is desired to increase the size of the porous structure, it is possible to promote phase separation and obtain a porous body having larger pores.

非溶媒を用いる場合、特にグリコールジエーテル系溶媒、及び又はカルボン酸ジエステル系溶媒、及び又はグリコールモノエーテルアセテート系溶媒が好ましい。具体的なグリコールジエーテル系溶媒としては、トリエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテルなどが好適に利用できる。 When a non-solvent is used, a glycol diether solvent, or a carboxylic acid diester solvent, or a glycol monoether acetate solvent is particularly preferable. As a specific glycol diether solvent, triethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether and the like can be preferably used.

カルボン酸ジエステル系溶媒としては、こはく酸ジメチル、こはく酸ジエチル、グルタル酸ジメチル、グルタル酸ジエチル、アジピン酸ジメチル、アジピン酸ジエチル等が好ましい。また、こはく酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチルの混合物である二塩基酸エステル(商品名DBE:三協化学株式会社)等も好適に用いる事が出来る。 As the carboxylic acid diester solvent, dimethyl succinate, diethyl succinate, dimethyl glutarate, diethyl glutarate, dimethyl adipate, diethyl adipate and the like are preferable. Further, a dibasic acid ester (trade name: DBE: Sankyo Chemical Co., Ltd.), which is a mixture of dimethyl succinate, dimethyl glutarate, and dimethyl adipate, can also be preferably used.

グリコールモノエーテルアセテート系溶媒としては、エチルカルビネートアセテート、ブチルカルビネートアセテート等が具体的に挙げられる。これらの非溶媒は、それぞれ単体で用いてもよいし、二種以上の混合物として用いても構わない。 Specific examples of the glycol monoether acetate solvent include ethyl carbinate acetate and butyl carbinate acetate. Each of these non-solvents may be used alone or as a mixture of two or more kinds.

本発明において、非溶媒の混合量は、非溶媒の種類に応じて適宜決定されるが、概ね80wt%未満の範囲であり、70wt%未満である事がより好ましく、60wt%以下であることが特に好ましい。非溶媒の添加量は非溶媒としての強さ、即ちポリイミド前駆体及びポリイミドとの相溶性に応じて適宜調整することが重要である。一般的には、80wt%以上加えると、ポリイミド前駆体の段階で混合溶媒に溶解出来なくなってしまい、本技術による多孔質体形成が困難となる。 In the present invention, the mixing amount of the non-solvent is appropriately determined according to the type of the non-solvent, but is generally in the range of less than 80 wt%, more preferably less than 70 wt%, and more preferably 60 wt% or less. Especially preferable. It is important that the amount of the non-solvent added is appropriately adjusted according to the strength as the non-solvent, that is, the compatibility with the polyimide precursor and the polyimide. Generally, if 80 wt% or more is added, it cannot be dissolved in a mixed solvent at the stage of the polyimide precursor, which makes it difficult to form a porous body by the present technology.

<イミド化触媒・脱水剤>
本発明では、化学イミド化によりポリイミド前駆体をイミド化する。具体的にはイミド化触媒と脱水剤をポリイミド前駆体に混合する事で、イミド化を促進し、相分離及びゲル化を誘起する事で高次構造が制御されたポリイミドゲルを得ることが出来る。イミド化触媒としては、トリエチルアミン、トリエチレンジアミン等の脂肪族第3級アミン、ジメチルアニリン等の芳香族第3級アミン、イソキノリン、ピリジン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、イミダール、ベンズイミダゾール等の複素環第3級アミン等が挙げられるが、臭気や反応性の観点からイソキノリンやメチルピリジン、イミダゾール等がより好ましい。脱水剤としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、無水安息香酸、無水フタル酸等の芳香族酸無水物等が挙げられるが、脂肪族酸無水物が好ましく、無水酢酸がより好ましい。
<Imidation catalyst / dehydrating agent>
In the present invention, the polyimide precursor is imidized by chemical imidization. Specifically, by mixing the imidization catalyst and the dehydrating agent with the polyimide precursor, imidization can be promoted, and phase separation and gelation can be induced to obtain a polyimide gel having a controlled higher-order structure. .. Examples of the imidization catalyst include aliphatic tertiary amines such as triethylamine and triethylenediamine, aromatic tertiary amines such as dimethylaniline, isoquinoline, pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine and imidazole. , Heterocyclic tertiary amines such as benzimidazole, etc., but isoquinoline, methylpyridine, imidazole and the like are more preferable from the viewpoint of odor and reactivity. Examples of the dehydrating agent include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic acid anhydrides such as benzoic anhydride and phthalic anhydride, but aliphatic acid anhydrides are preferable. Acetic anhydride is more preferred.

<ポリイミドゲル状組成物>
本発明のポリイミドゲル状組成物は、ポリイミド前駆体と、ポリイミド前駆体の溶媒と、イミド化触媒、及び脱水剤を少なくとも混合することで得られる。より具体的には、ポリイミド前駆体の溶液を調整し、その中にイミド化触媒、及び脱水剤を加える事でポリイミドゲル状組成物が得られる。
<Polyimide gel-like composition>
The polyimide gel-like composition of the present invention can be obtained by mixing at least a polyimide precursor, a solvent for the polyimide precursor, an imidization catalyst, and a dehydrating agent. More specifically, a polyimide gel-like composition can be obtained by preparing a solution of the polyimide precursor and adding an imidization catalyst and a dehydrating agent therein.

ポリイミド前駆体溶液は、溶媒中において、前記の芳香族テトラカルボン酸二無水物と芳香族ジアミンを用いて、公知の方法で重合することが出来る。非溶媒を加える場合、順序は特に限定されないが、例えば予め良溶媒と非溶媒の混合溶媒中に略等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンを添加して均一になるまで混合することでポリイミド前駆体溶液を得る事が出来る。また、ポリイミド前駆体の良溶媒中に略等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンを添加して均一になるまで混合することでポリイミド前駆体の良溶媒溶液を製造し、さらにこれらを撹拌しながら非溶媒を少量ずつ加えて均一になるまで混合する事で、良溶媒と非溶媒を含有したポリイミド前駆体溶液を得る事が出来る。 The polyimide precursor solution can be polymerized in a solvent by a known method using the above-mentioned aromatic tetracarboxylic dianhydride and aromatic diamine. When the non-solvent is added, the order is not particularly limited, but for example, approximately equimolar amounts of aromatic tetracarboxylic acid dianhydride and aromatic diamine are added in advance in a mixed solvent of a good solvent and a non-solvent and mixed until uniform. By doing so, a polyimide precursor solution can be obtained. Further, a good solvent solution of the polyimide precursor is produced by adding approximately equimolar aromatic tetracarboxylic acid dianhydride and aromatic diamine to the good solvent of the polyimide precursor and mixing them until they become uniform. By adding the non-solvent little by little while stirring and mixing until uniform, a polyimide precursor solution containing a good solvent and a non-solvent can be obtained.

芳香族テトラカルボン酸二無水物と芳香族ジアミンを混合する際の反応温度は、−30〜120℃が好ましく、−20〜80℃がより好ましい。反応時間は、0.5時間〜100時間が好ましく、2時間〜48時間がより好ましい。テトラカルボン酸二無水物と芳香族ジアミンの混合割合は等モルとなるように調整することが好ましいが、これらのモノマーの比率を若干変動させることにより、ポリイミド前駆体の重合度を任意に調節することができる。 The reaction temperature when the aromatic tetracarboxylic dianhydride and the aromatic diamine are mixed is preferably -30 to 120 ° C, more preferably -20 to 80 ° C. The reaction time is preferably 0.5 hours to 100 hours, more preferably 2 hours to 48 hours. The mixing ratio of the tetracarboxylic dianhydride and the aromatic diamine is preferably adjusted to be equimolar, but the degree of polymerization of the polyimide precursor is arbitrarily adjusted by slightly varying the ratio of these monomers. be able to.

本発明のポリイミド前駆体溶液中のポリイミド前駆体の濃度は、通常1〜50wt%、好ましくは5〜30wt%である。1wt%未満では、固形分が不足することで良好なポリイミドゲル状組成物が得られない為に好ましくなく、50wt%を超えると溶媒中へのポリイミド前駆体の溶解が難しくなる。 The concentration of the polyimide precursor in the polyimide precursor solution of the present invention is usually 1 to 50 wt%, preferably 5 to 30 wt%. If it is less than 1 wt%, a good polyimide gel-like composition cannot be obtained due to insufficient solid content, which is not preferable. If it exceeds 50 wt%, it becomes difficult to dissolve the polyimide precursor in the solvent.

本発明のポリイミド前駆体溶液の溶液粘度は、1Pa・s〜3000Pa・s、好ましくは5Pa・s〜1000Pa・s、特に好ましくは10Pa・s〜500Pa・sである。溶液粘度が3000Pa・sを越えるとイミド化触媒及び脱水剤を添加後、シート状やバルク状に加工するために、基板上に流延したり、型に流し込んだりする事が困難となる。溶液粘度が1Pa・s未満ではゲルとしての形状を保持できなくなり、良好なポリイミドゲル状組成物が得られにくくなるため、適当ではない。 The solution viscosity of the polyimide precursor solution of the present invention is 1 Pa · s to 3000 Pa · s, preferably 5 Pa · s to 1000 Pa · s, and particularly preferably 10 Pa · s to 500 Pa · s. If the viscosity of the solution exceeds 3000 Pa · s, after adding the imidization catalyst and the dehydrating agent, the solution is processed into a sheet or bulk, which makes it difficult to cast it on a substrate or pour it into a mold. If the solution viscosity is less than 1 Pa · s, the shape as a gel cannot be maintained, and it becomes difficult to obtain a good polyimide gel-like composition, which is not suitable.

本発明では、上記のポリイミド前駆体の良溶媒及び非溶媒からなる溶液に、イミド化触媒、及び脱水剤を加える事でイミド化が進行し、ポリイミドゲル状組成物が得られる。イミド化触媒及び脱水剤の添加量は、ポリイミド前駆体中のカルボキシル基に対して0.1〜4モル当量程度が好ましく、0.5〜2モル当量程度がより好ましい。0.1モル当量未満の場合、ポリイミド前駆体のイミド化が進みづらく、良好なポリイミドゲル状組成物が得られない為に好ましくなく、4モル当量を超えるとポリイミド前駆体のイミド化が急速に進行する為、基板上に流延したり、型に流し込んだりする加工が困難となる。 In the present invention, imidization proceeds by adding an imidization catalyst and a dehydrating agent to the above solution of the polyimide precursor consisting of a good solvent and a non-solvent, and a polyimide gel-like composition is obtained. The amount of the imidization catalyst and the dehydrating agent added is preferably about 0.1 to 4 molar equivalents, more preferably about 0.5 to 2 molar equivalents, relative to the carboxyl group in the polyimide precursor. If it is less than 0.1 molar equivalent, imidization of the polyimide precursor is difficult to proceed, and it is not preferable because a good polyimide gel-like composition cannot be obtained. If it exceeds 4 molar equivalent, imidization of the polyimide precursor is rapidly performed. As it progresses, it becomes difficult to cast it on the substrate or pour it into a mold.

イミド化触媒及び脱水剤を加えた後、ゲル化させる際の温度は、概ね0℃〜130℃が好ましく、10℃〜80℃がより好ましい。0℃未満だとゲル化が進行しづらくゲル化に長い時間を要するために好ましくなく、130℃を超えるとゲル化前に溶媒、イミド化触媒、脱水剤等が蒸発してしまう懸念があり、好ましくない。ゲル化時間はポリイミド前駆体の種類、濃度、イミド化触媒及び脱水剤の種類、添加量、ゲル化させる際の温度等によって適宜調整されるが、概ね1分〜48時間である。 After adding the imidization catalyst and the dehydrating agent, the temperature at the time of gelation is preferably about 0 ° C. to 130 ° C., more preferably 10 ° C. to 80 ° C. If the temperature is lower than 0 ° C, gelation does not proceed easily and it takes a long time to gel, which is not preferable. If the temperature exceeds 130 ° C, there is a concern that the solvent, imidization catalyst, dehydrating agent, etc. may evaporate before gelation. Not preferred. The gelation time is appropriately adjusted depending on the type and concentration of the polyimide precursor, the type of the imidization catalyst and the dehydrating agent, the amount added, the temperature at the time of gelation, and the like, but is approximately 1 minute to 48 hours.

本発明のポリイミドゲル状組成物には、必要に応じて補強材を添加することが出来る。補強材としては、ポリイミドゲル状組成物を補強する効果のあるものであれば特に限定されないが、特に繊維状物質やそれからなる織布又は不織布等が好ましい。より具体的には、高分子繊維、ガラス繊維、セラミック繊維、炭素繊維、又は生重合体繊維等からなる織布又は不織布等が挙げられる。補強材を添加する場合、イミド化触媒及び脱水剤を混合前又は混合後に、ドープが流動性を保っている間に添加することが好ましい。なお、織布や不織布を補強材として用いる場合は、イミド化触媒及び脱水剤を混合後、ドープが流動性を保っている間に織布や不織布に含浸させて複合させる事が好ましい。 A reinforcing material can be added to the polyimide gel-like composition of the present invention, if necessary. The reinforcing material is not particularly limited as long as it has the effect of reinforcing the polyimide gel-like composition, but a fibrous substance, a woven fabric made of the fibrous material, a non-woven fabric, or the like is particularly preferable. More specifically, woven fabrics or non-woven fabrics made of polymer fibers, glass fibers, ceramic fibers, carbon fibers, biopolymer fibers and the like can be mentioned. When the reinforcing material is added, it is preferable to add the imidization catalyst and the dehydrating agent before or after mixing while the dope maintains fluidity. When a woven fabric or a non-woven fabric is used as a reinforcing material, it is preferable to mix the imidization catalyst and the dehydrating agent and then impregnate the woven fabric or the non-woven fabric with the woven fabric or the non-woven fabric while the dope maintains the fluidity.

本発明のポリイミドゲル状組成物には、必要に応じて各種界面活性剤、有機シラン、顔料、導電性のカーボン粒子や微細炭素繊維、金属微粒子等の充填材、摩滅材、誘電体、潤滑材等の他、公知の添加物を本発明の効果を損なわない範囲で添加することができる。また、他の重合体が本発明の効果を損なわない範囲で添加されていてもよい。 The polyimide gel-like composition of the present invention contains various surfactants, organic silanes, pigments, fillers such as conductive carbon particles and fine carbon fibers, metal fine particles, abrasion materials, dielectrics, and lubricants, if necessary. In addition to the above, known additives can be added as long as the effects of the present invention are not impaired. Further, other polymers may be added as long as the effects of the present invention are not impaired.

<ポリイミド多孔質体の製造方法>
<溶媒置換>
本発明では、上記ポリイミドゲル状組成物を溶媒置換及び表面疎水化処理を経て常圧乾燥させることで、ポリイミド多孔質体を得ることが出来る。溶媒置換の方法としては、公知の手法を用いる事が出来るが、例えば、ポリイミドゲル状組成物の溶媒と相溶するエタノール、メタノール、イソプロピルアルコール等のアルコールで置換し、更に表面張力の低いヘキサン、ヘプタン、イソオクタン、フッ素系溶媒等へ置換させることが好ましい。
<Manufacturing method of polyimide porous body>
<Solvent replacement>
In the present invention, a polyimide porous body can be obtained by subjecting the above-mentioned polyimide gel-like composition to solvent substitution and surface hydrophobization and drying at atmospheric pressure. As a solvent replacement method, a known method can be used. For example, hexane, which is replaced with an alcohol such as ethanol, methanol, or isopropyl alcohol that is compatible with the solvent of the polyimide gel-like composition, and has a lower surface tension. It is preferable to replace it with heptan, isooctane, a fluorine-based solvent or the like.

<表面疎水化処理>
本発明では、溶媒置換と共に表面疎水化処理を行う事で、更に乾燥時の毛細管力によるゲルの収縮を抑制し、高い空孔率を示すポリイミド多孔質体を得ることが可能となる。表面疎水化処理としては、ヘキサン、ヘプタン、イソオクタン、フッ素系溶媒等が蒸発する際に表面張力が小さくなり、乾燥時の毛細管力による収縮を抑制出来るものであれば特に限定されないが、例えば、ヘキサメチルジシラザン(HMDS)、トリクロロメチルシラン(TMCS)及びその混合物等の疎水化剤による処理が挙げられる。より具体的には、ヘキサン、ヘプタン、イソオクタン等の中に疎水化剤を加え、その中に溶媒置換後のポリイミドゲル状組成物を浸漬し、必要に応じて加熱することで、ポリマーの一部に疎水化剤を反応させる事が出来る。表面疎水化処理されたポリイミドゲル状組成物は、再び低表面張力の溶媒中に浸漬して未反応の疎水化剤を洗浄後、常圧乾燥させることで高い空孔率を示すポリイミドゲルが得られる。
<Surface hydrophobization treatment>
In the present invention, by performing the surface hydrophobizing treatment together with the solvent substitution, it is possible to further suppress the shrinkage of the gel due to the capillary force during drying and obtain a polyimide porous body showing a high porosity. The surface hydrophobizing treatment is not particularly limited as long as the surface tension becomes small when hexane, heptane, isooctane, a fluorine-based solvent, etc. evaporates, and shrinkage due to capillary force during drying can be suppressed. Treatment with a hydrophobizing agent such as methyldisilazane (HMDS), trichloromethylsilane (TMCS) and a mixture thereof can be mentioned. More specifically, a hydrophobic agent is added to hexane, heptane, isooctane, etc., the polyimide gel-like composition after solvent substitution is immersed therein, and if necessary, it is heated to form a part of the polymer. Can be reacted with a hydrophobic agent. The surface-hydrophobicized polyimide gel-like composition is immersed in a solvent having a low surface tension again to wash the unreacted hydrophobizing agent, and then dried under atmospheric pressure to obtain a polyimide gel showing a high porosity. Be done.

その他、低表面張力の溶媒の蒸発の際の表面張力を低減できる表面疎水化の方法としては、フッ素系界面活性剤の添加や、フッ素系シランカップリング剤による処理等が挙げられ、これらの処理も好適に用いる事が出来る。 Other methods of surface hydrophobization that can reduce the surface tension during evaporation of a low surface tension solvent include addition of a fluorine-based surfactant and treatment with a fluorine-based silane coupling agent. Can also be preferably used.

以下、実施例により本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited to these examples.

以下の例で用いた酸二無水物、ジアミン、溶媒、イミド化触媒、脱水剤、疎水化剤は以下のとおりである。

3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)
4,4’−ジアミノジフェニルエーテル(ODA)
N,N−ジメチルアセトアミド(DMAc)
イソキノリン
無水酢酸
ヘキサメチルジシラザン(HMDS)
トリクロロメチルシラン(TMCS)
The acid dianhydride, diamine, solvent, imidization catalyst, dehydrating agent, and hydrophobizing agent used in the following examples are as follows.

3,3', 4,4'-biphenyltetracarboxylic dianhydride (s-BPDA)
4,4'-Diaminodiphenyl ether (ODA)
N, N-dimethylacetamide (DMAc)
Isoquinoline Acetic anhydride Hexamethyldisilazane acetate (HMDS)
Trichloromethylsilane (TMCS)

以下の例で用いた特性の測定方法を以下に示す。 The method for measuring the characteristics used in the following example is shown below.

〔多孔構造の観察〕
得られたポリイミド多孔質体の多孔構造を、走査型電子顕微鏡(SEM)を用いて観察した。試料を液体窒素中で破断した断面にスパッタリングにより金を蒸着して観察を行った。測定にはJEOL社製Carry Scope JCM−5700を用いた。
[Observation of porous structure]
The porous structure of the obtained polyimide porous body was observed using a scanning electron microscope (SEM). Gold was vapor-deposited on the cross section of the sample broken in liquid nitrogen by sputtering and observed. A Carry Scope JCM-5700 manufactured by JEOL Ltd. was used for the measurement.

〔密度及び空孔率の測定〕
所定の大きさに切り取った多孔質体の面積、厚み、及び質量を測定し、目付質量から密度及び空孔率を下記一般式(2)、(3)によって求めた。

密度(g/cm)=w/S×d (一般式2)

空孔率(%)=(1−(w/S×d)/D)×100 (一般式3)

(式中、Sは多孔質体の面積、dは厚み、wは測定した質量、Dはポリイミド緻密体の推定密度をそれぞれ意味する。ポリイミド緻密体の推定密度はs−BPDA/ODAポリイミド緻密体の密度を1.37g/cmとして計算した。)
[Measurement of density and porosity]
The area, thickness, and mass of the porous body cut to a predetermined size were measured, and the density and porosity were determined from the basis weight by the following general formulas (2) and (3).

Density (g / cm 3 ) = w / S × d (general formula 2)

Porosity (%) = (1- (w / S × d) / D) × 100 (general formula 3)

(In the formula, S means the area of the porous body, d means the thickness, w means the measured mass, and D means the estimated density of the polyimide dense body. The estimated density of the polyimide dense body is s-BPDA / ODA polyimide dense body. The density was calculated as 1.37 g / cm 3.)

〔製造例1〕
撹拌羽、窒素導入管、排気管を取り付けた500mlのガラス製セパラブルフラスコにODA12.16g及びDMAc270gを投入し、撹拌混合した。さらにs−BPDA約17.84gを徐々に加えながら撹拌し、室温で48時間混合してs−BPDA/ODAからなるポリイミド前駆体のDMAc溶液(ポリイミド前駆体固形分約10.0wt%)を調整した。
[Manufacturing Example 1]
12.16 g of ODA and 270 g of DMAc were put into a 500 ml glass separable flask equipped with a stirring blade, a nitrogen introduction pipe, and an exhaust pipe, and stirred and mixed. Further, about 17.84 g of s-BPDA is gradually added and stirred, and mixed at room temperature for 48 hours to prepare a DMAc solution of a polyimide precursor composed of s-BPDA / ODA (polyimide precursor solid content of about 10.0 wt%). did.

〔実施例1〕
製造例1で得られたポリイミド前駆体のDMAc溶液10gと、DMAc10gと、イソキノリン0.522g(ポリイミド前駆体の−COOHに対して1モル当量)を混合し均一になるまで攪拌した。さらに、無水酢酸0.413g(ポリイミド前駆体の−COOHに対して1モル当量)を加え、THINKY社製あわとり練太郎(ARE−250)を用いて2000rpmで2分間攪拌、2200rpmで2分間脱泡を行い、均一になるように攪拌、脱泡操作を行った。得られた混合溶液をテフロン(登録商標)製のシャーレに移し、湿気が入らないように密閉した状態で、室温で1日静置して、ポリイミドゲル状組成物を得た。得られたポリイミドゲル状組成物をシャーレから取り出し、過剰量のエタノール中に浸漬し、8時間毎にエタノールを交換しながら24時間溶媒置換を行った。さらに、過剰量のヘプタン中に浸漬し、8時間毎にヘプタンを交換しながら24時間溶媒置換を行った。溶媒置換後のポリイミドゲル状組成物を、10wt%のHMDS/ヘプタン溶液に60℃で2時間浸漬し、表面疎水化処理を行った。さらに、過剰量のヘプタン中に浸漬し、8時間毎にヘプタンを交換しながら24時間溶媒置換を行って未反応のHMDSを洗浄し、室温、常圧で24時間乾燥させた後、110℃で2時間乾燥させてポリイミド多孔質体を得た。得られたポリイミド多孔質体の特性を表1に示す。また、得られた多孔質体の断面の走査型電子顕微鏡(SEM)像を図1に示す。表面疎水化処理を行う事で、高い空孔率の多孔質体が得られることが示された。
[Example 1]
10 g of the DMAc solution of the polyimide precursor obtained in Production Example 1, 10 g of DMAc, and 0.522 g of isoquinoline (1 molar equivalent with respect to −COOH of the polyimide precursor) were mixed and stirred until uniform. Further, 0.413 g of acetic anhydride (1 molar equivalent with respect to -COOH of the polyimide precursor) was added, and the mixture was stirred at 2000 rpm for 2 minutes using THINKY's Awatori Rentaro (ARE-250) and removed at 2200 rpm for 2 minutes. Foaming was performed, and stirring and defoaming operations were performed so as to be uniform. The obtained mixed solution was transferred to a petri dish made of Teflon (registered trademark) and allowed to stand at room temperature for 1 day in a sealed state so as not to allow moisture to enter to obtain a polyimide gel-like composition. The obtained polyimide gel-like composition was taken out from a petri dish, immersed in an excess amount of ethanol, and subjected to solvent replacement for 24 hours while exchanging ethanol every 8 hours. Further, the mixture was immersed in an excess amount of heptane, and the solvent was replaced for 24 hours while exchanging heptane every 8 hours. The polyimide gel-like composition after solvent substitution was immersed in a 10 wt% HMDS / heptane solution at 60 ° C. for 2 hours to perform surface hydrophobization treatment. Further, the mixture was immersed in an excess amount of heptane, and the unreacted HMDS was washed by solvent substitution for 24 hours while exchanging heptane every 8 hours, dried at room temperature and normal pressure for 24 hours, and then at 110 ° C. It was dried for 2 hours to obtain a polyimide porous body. The characteristics of the obtained polyimide porous body are shown in Table 1. Further, a scanning electron microscope (SEM) image of a cross section of the obtained porous body is shown in FIG. It was shown that a porous body with a high porosity can be obtained by performing the surface hydrophobizing treatment.

〔実施例2〕
10wt%のHMDS/ヘプタン溶液の代わりに10wt%のTMCS/ヘプタン溶液を用いた他は、実施例1と同様の方法でポリイミド多孔質体を得た。得られたポリイミド多孔質体の特性を表1に示す。表面疎水化処理を行う事で、高い空孔率の多孔質体が得られることが示された。
[Example 2]
A polyimide porous body was obtained in the same manner as in Example 1 except that a 10 wt% TMCS / heptane solution was used instead of the 10 wt% HMDS / heptane solution. The characteristics of the obtained polyimide porous body are shown in Table 1. It was shown that a porous body with a high porosity can be obtained by performing the surface hydrophobizing treatment.

〔実施例3〕
10wt%のHMDS/ヘプタン溶液の代わりに、HMDS5wt%、TMCS5wt%のヘプタン溶液を用いた他は、実施例1と同様の方法でポリイミド多孔質体を得た。得られたポリイミド多孔質体の特性を表1に示す。表面疎水化処理を行う事で、高い空孔率の多孔質体が得られることが示された。
[Example 3]
A polyimide porous body was obtained in the same manner as in Example 1 except that the HMDS 5 wt% and TMCS 5 wt% heptane solutions were used instead of the 10 wt% HMDS / heptane solution. The characteristics of the obtained polyimide porous body are shown in Table 1. It was shown that a porous body with a high porosity can be obtained by performing the surface hydrophobizing treatment.

〔比較例1〕
10wt%のHMDS/ヘプタン溶液を用いた表面疎水化処理を行わなかった他は、実施例1と同様の方法でポリイミド多孔質体を得た。得られたポリイミド多孔質体の特性を表1に示す。また、得られた多孔質体の断面の走査型電子顕微鏡(SEM)像を図2に示す。表面疎水化処理を行わなかった場合、溶媒置換後の常圧乾燥のみではゲルの収縮を抑制出来ず、高い空孔率の多孔質体は得られなかった。
[Comparative Example 1]
A polyimide porous body was obtained in the same manner as in Example 1 except that the surface hydrophobization treatment using a 10 wt% HMDS / heptane solution was not performed. The characteristics of the obtained polyimide porous body are shown in Table 1. Further, a scanning electron microscope (SEM) image of a cross section of the obtained porous body is shown in FIG. When the surface hydrophobization treatment was not performed, the shrinkage of the gel could not be suppressed only by atmospheric drying after solvent replacement, and a porous body having a high porosity could not be obtained.

Figure 0006878808
Figure 0006878808

本発明により、溶媒置換後の常圧乾燥等、比較的コストのかからない手法で、ポリイミド由来の耐熱性、耐薬品性を兼ね備え、高い空孔率を有するポリイミド多孔質体を得ることが可能である。本発明で得られるポリイミド多孔質体は、断熱材、クッション材、吸液材、分離材、セパレータ、気体用フィルタ、液体用フィルタ、通気部品、気体拡散層などの用途に好適に用いることができる。また、本発明の多孔質ポリイミド膜は、耐熱性に優れ、250℃以上の使用温度領域でも使用することができる為、音響部品保護膜、耐熱フィルタ、触媒担体、熱交換器等の用途にも好適に用いることができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain a polyimide porous body having both heat resistance and chemical resistance derived from polyimide and having a high porosity by a method such as atmospheric drying after solvent replacement at a relatively low cost. .. The polyimide porous body obtained in the present invention can be suitably used for applications such as heat insulating materials, cushioning materials, liquid absorbing materials, separating materials, separators, gas filters, liquid filters, ventilation parts, and gas diffusion layers. .. Further, since the porous polyimide membrane of the present invention has excellent heat resistance and can be used even in an operating temperature range of 250 ° C. or higher, it can also be used for applications such as acoustic component protective membranes, heat resistant filters, catalyst carriers, and heat exchangers. It can be preferably used.

Claims (7)

下記一般式(1)で示される反復単位からなるポリイミド前駆体と、ポリイミド前駆体の溶媒と、イミド化触媒と、脱水剤を少なくとも混合してなることを特徴とするポリイミドゲル状組成物を、溶媒置換及び表面疎水化処理を経て常圧乾燥させるポリイミド多孔質体の製造方法。
Figure 0006878808
〔式中、Bは、芳香族環を含む4価のユニットであり、式中、Aは、芳香族環を含む2価のユニットである。〕
A polyimide gel-like composition comprising at least a mixture of a polyimide precursor composed of a repeating unit represented by the following general formula (1), a solvent of the polyimide precursor, an imidization catalyst, and a dehydrating agent. A method for producing a polyimide porous body, which is dried under atmospheric pressure after undergoing solvent substitution and surface hydrophobization.
Figure 0006878808
[In the formula, B is a tetravalent unit containing an aromatic ring, and in the formula, A is a divalent unit containing an aromatic ring. ]
一般式(1)中、Bで示される構造の一部に下記化学式(2)で示される構造を含むことを特徴とする請求項1に記載のポリイミド多孔質体の製造方法。
Figure 0006878808
The method for producing a polyimide porous body according to claim 1, wherein a part of the structure represented by B in the general formula (1) includes a structure represented by the following chemical formula (2).
Figure 0006878808
一般式(1)中、Aで示される構造の一部に下記化学式(3)で示される構造を含むことを特徴とする請求項1又は2に記載のポリイミド多孔質体の製造方法。
Figure 0006878808
The method for producing a polyimide porous body according to claim 1 or 2, wherein a part of the structure represented by A in the general formula (1) includes a structure represented by the following chemical formula (3).
Figure 0006878808
請求項1〜3のいずれか1項に記載のポリイミド多孔質体の製造方法において、表面疎水化処理が、ヘキサメチルジシラザン、メチルトリクロロシラン、のいずれか又は混合物を用いた処理であることを特徴とするポリイミド多孔質体の製造方法。 In the method for producing a polyimide porous body according to any one of claims 1 to 3, the surface hydrophobizing treatment is a treatment using any or a mixture of hexamethyldisilazane and methyltrichlorosilane. A method for producing a polyimide porous body, which is a feature. 下記一般式(4)で示される反復単位からなるポリイミド前駆体と、イミド化触媒と、脱水剤を少なくとも混合してなることを特徴とするポリイミドゲル状組成物であって、 A polyimide gel-like composition comprising at least a mixture of a polyimide precursor composed of a repeating unit represented by the following general formula (4), an imidization catalyst, and a dehydrating agent.
前記ポリイミドゲル状組成物がヘキサン、ヘプタン、イソオクタン、フッ素系溶媒から選ばれる溶媒及び疎水化剤を含有するポリイミドゲル状組成物。 A polyimide gel-like composition in which the polyimide gel-like composition contains a solvent selected from hexane, heptane, isooctane, a fluorine-based solvent, and a hydrophobic agent.
Figure 0006878808
Figure 0006878808
〔式中、Bは、芳香族環を含む4価のユニットであり、式中、Aは、芳香族環を含む2価のユニットである。〕[In the formula, B is a tetravalent unit containing an aromatic ring, and in the formula, A is a divalent unit containing an aromatic ring. ]
請求項5に記載のポリイミドゲル状組成物を常圧乾燥させたポリイミド多孔質体。 A polyimide porous body obtained by drying the polyimide gel-like composition according to claim 5 at normal pressure. 表面が疎水化されたポリイミド多孔質体であって、It is a polyimide porous body with a hydrophobic surface.
前記ポリイミド多孔質体の体積が0.1514〜0.2578cmThe volume of the polyimide porous body is 0.1514 to 0.2578 cm. 3 の範囲内にあり、Is within the range of
前記ポリイミド多孔質体の密度が0.50〜0.83g/cmThe density of the polyimide porous body is 0.50 to 0.83 g / cm. 3 の範囲内にあり、Is within the range of
前記ポリイミド多孔質体の空孔率が39.3〜63.3%の範囲内にある、The porosity of the polyimide porous body is in the range of 39.3 to 63.3%.
ポリイミド多孔質体。Polyimide porous body.
JP2016190534A 2016-09-29 2016-09-29 Method for manufacturing polyimide porous body Active JP6878808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016190534A JP6878808B2 (en) 2016-09-29 2016-09-29 Method for manufacturing polyimide porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016190534A JP6878808B2 (en) 2016-09-29 2016-09-29 Method for manufacturing polyimide porous body

Publications (2)

Publication Number Publication Date
JP2018053100A JP2018053100A (en) 2018-04-05
JP6878808B2 true JP6878808B2 (en) 2021-06-02

Family

ID=61835270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016190534A Active JP6878808B2 (en) 2016-09-29 2016-09-29 Method for manufacturing polyimide porous body

Country Status (1)

Country Link
JP (1) JP6878808B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437492B (en) * 2018-05-04 2022-03-08 中国科学院苏州纳米技术与纳米仿生研究所 Polyimide aerogel with petal effect as well as preparation method and application thereof
WO2020085830A1 (en) * 2018-10-26 2020-04-30 한국전기연구원 Polyimide aerogel having controlled particle size and pore structure, and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586206A (en) * 1981-07-01 1983-01-13 Ube Ind Ltd Production of plyimide semipermeable membrane
JPS585343A (en) * 1981-07-01 1983-01-12 Ube Ind Ltd Modification of porous membrane
JP3589125B2 (en) * 1999-11-19 2004-11-17 宇部興産株式会社 Porous membrane manufacturing method and porous membrane
JP6790678B2 (en) * 2016-09-29 2020-11-25 宇部興産株式会社 Polyimide gel-like composition, polyimide porous body, its manufacturing method, heat insulating material

Also Published As

Publication number Publication date
JP2018053100A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6790678B2 (en) Polyimide gel-like composition, polyimide porous body, its manufacturing method, heat insulating material
JP5522479B2 (en) Soluble terminal-modified imide oligomer using 2-phenyl-4,4&#39;-diaminodiphenyl ether, varnish, cured product thereof, imide prepreg thereof, and fiber-reinforced laminate having excellent heat resistance
JP4825112B2 (en) Polyimide moldings with high Tg, high TOS, and low moisture content
JP5944613B1 (en) Porous polyimide film and method for producing the same
JP2007211136A (en) Polyimide precursor solution, polyimide porous film, and their production methods
WO2018180930A1 (en) Semipreg, prepreg, resin composite material, and production methods thereof
JP6202554B2 (en) Polyimide resin composition made of terminal-modified imide oligomer using 2-phenyl-4,4&#39;-diaminodiphenyl ether and aromatic thermoplastic polyimide using oxydiphthalic acid, and varnish, and heat resistance and mechanical properties Excellent molded article of polyimide resin composition, prepreg, and fiber reinforced composite material thereof
TW201736509A (en) Polyimide composition and preparation method of separation membrane
US10047207B2 (en) Microporous polyimide sponge and method for producing the same
JP6878808B2 (en) Method for manufacturing polyimide porous body
JP6332528B2 (en) Polyimide resin composition made of terminal-modified imide oligomer using 2-phenyl-4,4&#39;-diaminodiphenyl ether and aromatic thermoplastic polyimide using oxydiphthalic acid, and varnish, and heat resistance and mechanical properties Excellent molded article of polyimide resin composition, prepreg, and fiber reinforced composite material thereof
US20190071541A1 (en) Terminally modified imide oligomer, varnish, cured products thereof, film, and imide prepreg and fiber-reinforced composite material using these
JP2017164726A (en) Method for producing polyimide porous membrane and polyimide porous membrane
US6828390B2 (en) Polyimide substrates having an interpenetrating network morphology and methods relating thereto
JP6983394B2 (en) Polyimide solution for forming porous polyimide film, manufacturing method of porous polyimide film and porous polyimide film
JP6777308B2 (en) Polyimide solution for forming a porous polyimide film, a method for producing a porous polyimide film, and a porous polyimide film
JP2019131747A (en) Porous polyimide film roll, production method thereof, and composition
TWI762041B (en) Polyimide film and method of manufacturing the same
JP6127845B2 (en) Polyimide precursor solution, method for producing porous membrane or coating, polyimide porous membrane, and coating
JP6923913B2 (en) Polyimide solution for forming a porous polyimide film, a method for producing a porous polyimide film, and a porous polyimide film
JP2010229345A (en) Method for manufacturing polyimide porous body and polyimide porous body
JP2017165924A (en) Polyimide precursor solution, manufacturing method of polyimide porous film and polyimide porous film
JP6440092B2 (en) Polyimide porous membrane and polyimide precursor reaction product solution for the production of porous membrane
JP2004307625A (en) Aromatic polyamide porous film and its manufacturing method
JP6937502B2 (en) Porous Composite Film and Method for Producing Porous Composite Film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R150 Certificate of patent or registration of utility model

Ref document number: 6878808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250