JP6870335B2 - Automatic charging system and automatic charging method - Google Patents

Automatic charging system and automatic charging method Download PDF

Info

Publication number
JP6870335B2
JP6870335B2 JP2017005930A JP2017005930A JP6870335B2 JP 6870335 B2 JP6870335 B2 JP 6870335B2 JP 2017005930 A JP2017005930 A JP 2017005930A JP 2017005930 A JP2017005930 A JP 2017005930A JP 6870335 B2 JP6870335 B2 JP 6870335B2
Authority
JP
Japan
Prior art keywords
power
automatic
contact
automatic charging
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017005930A
Other languages
Japanese (ja)
Other versions
JP2018117433A (en
Inventor
周史 山本
周史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2017005930A priority Critical patent/JP6870335B2/en
Publication of JP2018117433A publication Critical patent/JP2018117433A/en
Application granted granted Critical
Publication of JP6870335B2 publication Critical patent/JP6870335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、自動移動体の充電を行う自動充電システム及び自動充電方法に関する。 The present invention relates to an automatic charging system and an automatic charging method for charging an automatic moving body.

近年、二次電池を用いたアプリケーションが増えてきている。主なアプリケーションとしては、電気自動車、セグウェイの様な電動車両、荷物搬送車等の自動移動体がある。これらは、各アプリケーションに対して充電システムが開発されている。二次電池を充電する際には接触充電や非接触充電の2通りあるが、電気自動車や荷物搬送車等は待ち時間を少なくする為に大電流で充電を行う。大電流で充電するには非接触充電は効率の問題で不向きであるので接触充電が基本となる。 In recent years, applications using secondary batteries have been increasing. The main applications are automatic moving bodies such as electric vehicles, electric vehicles such as Segways, and luggage carriers. For these, charging systems have been developed for each application. There are two ways to charge the secondary battery, contact charging and non-contact charging, but electric vehicles, luggage carriers, etc. are charged with a large current in order to reduce the waiting time. Since non-contact charging is not suitable for charging with a large current due to efficiency problems, contact charging is the basis.

ここで、自動充電を行う場合は、充電する電流が大きくなるほど発熱しやすくなるため、接触不良や異物噛み込みによる接触不具合に起因する通常よりもさらに高い温度まで発熱することを防止する必要がある。 Here, in the case of automatic charging, the larger the charging current, the easier it is to generate heat. Therefore, it is necessary to prevent heat generation to a higher temperature than usual due to poor contact or contact failure due to foreign matter biting. ..

人の手が関与した場合であれば、アプリケーションの充電用接続部(端子)と充電器の接続部とを確実に接続させロック機構で外れないようにする作業を、目視を前提としてメカ的に確認しながら実施できる。 If human hands are involved, the work of securely connecting the charging connection (terminal) of the application and the connection of the charger and preventing it from coming off with the lock mechanism is mechanically performed on the premise of visual inspection. It can be carried out while checking.

しかし、近年、車社会含め工場等では走行から充電まで全てにおいて自動化が進められ、充電自体も自動化が進みつつある。この際に、人の手を介さない自動充電を行う場合は、充電部分が接続されたか、外れたかなどの接触不具合を検知することが難しかった。 However, in recent years, in factories and the like including the automobile society, automation has been promoted in everything from running to charging, and charging itself is also being automated. At this time, when automatic charging is performed without human intervention, it is difficult to detect contact problems such as whether the charged portion is connected or disconnected.

そこで、本発明は上記事情に鑑み、自動移動体に対して、安全に、大電流充電が可能な自動充電システムの提供を目的とする。 Therefore, in view of the above circumstances, an object of the present invention is to provide an automatic charging system capable of safely and large-current charging for an automatic moving body.

上記課題を解決するため、本発明の一態様では、蓄電池と前記蓄電池に電力を供給する受電部を備えた自動的に移動可能な自動移動体と、該自動移動体に対して給電をする自動充電装置を備える自動充電システムであって、
前記自動充電装置は、 前記自動移動体の前記受電部に接触給電する給電部と、
先端が前記給電部と接続され、前記給電部の位置を移動可能な接続機構
と、
前記接続機構を制御駆動させる制御手段と、
前記給電部の温度を検出する温度検出手段と、
前記温度検出手段により検出された温度から前記給電部と前記受電部の接触状態を検知
する接触状態判別手段と、を備えており、
前記制御手段は、前記接触状態判別手段で検知された接触状態に基づいて、大電流充電
の前に、
微電流充電を行って前記温度検出手段によって前記給電部の温度を検出し、
前記接触状態判別手段は、前記微電流充電での前記給電部の温度に応じて、前記給電部と前記受電部との接触状態で接触面積が正常範囲内かどうかを検知し、
前記接触状態判別手段が前記接触状態で接触面積が小さいと検知した場合は、前記制御手段は、
前記接続機構を調整して、前記給電部と前記受電部との接触ズレを補正する、
自動充電システムを提供する。

In order to solve the above problems, in one aspect of the present invention, an automatically movable automatic moving body including a storage battery and a power receiving unit for supplying electric power to the storage battery, and an automatic power supply to the automatic moving body. An automatic charging system equipped with a charging device
The automatic charging device includes a power supply unit that contacts and supplies power to the power receiving unit of the automatic mobile body.
A connection mechanism whose tip is connected to the power supply unit and can move the position of the power supply unit,
A control means for controlling and driving the connection mechanism,
A temperature detecting means for detecting the temperature of the power feeding unit, and
It is provided with a contact state determining means for detecting a contact state between the power feeding unit and the power receiving unit from the temperature detected by the temperature detecting means.
The control means, based on the contact state detected by the contact state determination means, before the large current charge,
A small current charge is performed, and the temperature of the power feeding unit is detected by the temperature detecting means.
The contact state determining means detects whether or not the contact area is within the normal range in the contact state between the power feeding unit and the power receiving unit according to the temperature of the power feeding unit in the microcurrent charging.
When the contact state determining means detects that the contact area is small in the contact state, the control means determines the contact state.
The connection mechanism is adjusted to correct the contact deviation between the power feeding unit and the power receiving unit.
Provides an automatic charging system.

本発明の一態様によれば、自動充電システムにおいて、自動移動体に対して、安全に、大電流充電が可能になる。 According to one aspect of the present invention, in an automatic charging system, a large current can be safely charged to an automatically moving body.

本発明の一実施形態に係る充電システムにおいて自動移動体が充電中の全体概略図。The whole schematic view which an automatic moving body is charging in the charging system which concerns on one Embodiment of this invention. 図1の充電システムに含まれる自動移動体が走行中の状態を示す図。The figure which shows the state in which the automatic moving body included in the charging system of FIG. 1 is running. 本発明の充電システムの接触充電に係る部分の回路例。A circuit example of a part related to contact charging of the charging system of the present invention. 本発明の自動充電に係るフローチャート。The flowchart which concerns on the automatic charging of this invention. 本発明の自動充電システムにおける、自動充電装置の給電部の電極と自動移動体の受電部の電極の構成の一例を示す図。The figure which shows an example of the structure of the electrode of the power feeding part of the automatic charging device, and the electrode of the power receiving part of an automatic moving body in the automatic charging system of this invention. 本発明の自動充電装置のアーム部及び給電部と、自動移動体の受電部の構成を示す概略図。The schematic diagram which shows the structure of the arm part and the power supply part of the automatic charging device of this invention, and the power receiving part of an automatic moving body. 本発明の自動充電装置の給電部の電極と自動移動体の受電部の電極の構成の他の例を示す図。The figure which shows another example of the structure of the electrode of the power feeding part of the automatic charging device of this invention, and the electrode of the power receiving part of an automatic moving body. 本発明の自動充電装置のアーム部の説明図。Explanatory drawing of the arm part of the automatic charging device of this invention.

以下、図面を参照して本発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.

<自動充電システム>
図1は本発明に係る自動充電システムにおいて自動移動体が充電中の概略図である。図1に示すように、本発明の充電システム1は、自動移動体10と、自動充電装置20とを備える。
<Automatic charging system>
FIG. 1 is a schematic view of an automatic moving body being charged in the automatic charging system according to the present invention. As shown in FIG. 1, the charging system 1 of the present invention includes an automatic moving body 10 and an automatic charging device 20.

図1に示す例では、自動移動体10は、電池パック(蓄電池)11、受電部12、温度モニタ部13、駆動部14、移動体側通信部15、及び表示部16等を有する。 In the example shown in FIG. 1, the automatic moving body 10 includes a battery pack (storage battery) 11, a power receiving unit 12, a temperature monitoring unit 13, a driving unit 14, a mobile body-side communication unit 15, a display unit 16, and the like.

また、自動充電装置20は、ホストコンピューター21、充電制御部22、接続機構制御部23、充電側通信部24、アーム部25,26、及び給電部27,28等を備えている。 Further, the automatic charging device 20 includes a host computer 21, a charging control unit 22, a connection mechanism control unit 23, a charging side communication unit 24, arm units 25 and 26, power feeding units 27 and 28, and the like.

図2は、本発明の自動充電システム1の移動可能な自動移動体10が走行中の状態の例を示す図である。自動移動体10は、二次電池を動力源として動作する大電流自動充電アプリケーションである。例えば、電気自動車、セグウェイの様な電動自動車、荷物搬送車、ロボット(掃除ロボット、ペットロボット、災害用ロボットなど)等のアプリケータ(アプリケーション)であって、自動移動可能な移動体である。 FIG. 2 is a diagram showing an example of a state in which the movable automatic moving body 10 of the automatic charging system 1 of the present invention is running. The automatic mobile body 10 is a large-current automatic charging application that operates by using a secondary battery as a power source. For example, it is an applicator (application) such as an electric vehicle, an electric vehicle such as Segway, a luggage carrier, a robot (cleaning robot, pet robot, disaster robot, etc.), and is a moving body that can be automatically moved.

図2では、自動移動体10は、地面や路面上を走行する自動走行体であって、設定された軌跡Tを走行する例を示す。なお、自動移動体10がロボットの場合、自動移動体10内の制御部の判断により、自動移動体内で移動(走行)ルートを状況に応じて自ら設定してもよい。あるいは、自動充電装置20や、他のリモコン等から遠隔操作されることにより、自動移動体10の移動ルートが指示されてもよい。 FIG. 2 shows an example in which the automatic moving body 10 is an automatic traveling body that travels on the ground or a road surface, and travels on a set trajectory T. When the automatic moving body 10 is a robot, the moving (running) route in the automatic moving body 10 may be set by itself according to the situation at the discretion of the control unit in the automatic moving body 10. Alternatively, the movement route of the automatic moving body 10 may be instructed by remote control from the automatic charging device 20 or another remote controller.

なお、自動移動体は飛行可能なラジコンや浮遊体等の空中を移動する自動飛翔体であってもよい。 The automatic moving body may be an automatic flying body that moves in the air, such as a radio-controlled model or a floating body that can fly.

図2に示す自動移動体10は蓄電池11の充電が必要になると、自動充電装置20の近傍であって、自動充電装置20によって充電可能なエリアA(充電ステーション、ホームベースともいう)に自分の判断で帰還する。あるいはその充電可能なエリアAに、自動充電装置20からの指示により、帰還させられる。 When the storage battery 11 needs to be charged, the automatic moving body 10 shown in FIG. 2 is located in the vicinity of the automatic charging device 20 and in an area A (also referred to as a charging station or home base) that can be charged by the automatic charging device 20. Return at your discretion. Alternatively, the device is returned to the rechargeable area A according to an instruction from the automatic charging device 20.

図1に戻って、自動移動体10は、電池パック11を電源(メイン電源又はサブ電源)としている。自動移動体10を動作させる電池パック11の電力供給は、自動移動体10内に備えられた受電部12から行われる。受電部12は、外部電源である自動充電装置20から電力が供給される。 Returning to FIG. 1, the automatic moving body 10 uses the battery pack 11 as a power source (main power source or sub power source). The power supply of the battery pack 11 for operating the automatic mobile body 10 is performed from the power receiving unit 12 provided in the automatic mobile body 10. The power receiving unit 12 is supplied with electric power from the automatic charging device 20 which is an external power source.

受電部12には、正極電極121と、負極電極122とが設けられている。 The power receiving unit 12 is provided with a positive electrode 121 and a negative electrode 122.

電池パック11へ供給された電力は、駆動部14、移動体側通信部15、表示部16、温度モニタ部17へと供給されることで、自動移動体10を動作させる。 The electric power supplied to the battery pack 11 is supplied to the drive unit 14, the mobile body side communication unit 15, the display unit 16, and the temperature monitor unit 17, so that the automatic mobile unit 10 is operated.

温度モニタ部13は電池パック11内の温度をモニタし、充放電中の温度異常を検出すると、自動移動体10の充電又は放電を停止させる。例えば、テスト充電中に、移動体側の温度モニタ部13が電池パック11の温度を測定することで、二次電池が劣化しているかどうかを判定することができる。温度モニタ部13は充放電の際の安全を確保する安全装置として機能する。 The temperature monitor unit 13 monitors the temperature inside the battery pack 11, and when it detects a temperature abnormality during charging / discharging, it stops charging or discharging the automatic moving body 10. For example, during test charging, the temperature monitor unit 13 on the moving body side measures the temperature of the battery pack 11, so that it can be determined whether or not the secondary battery has deteriorated. The temperature monitor unit 13 functions as a safety device for ensuring safety during charging / discharging.

移動体側通信部15は、自動移動体10の電池電圧や温度情報等のデータを、自動充電装置20の充電側通信部24とやり取りする。 The mobile body side communication unit 15 exchanges data such as battery voltage and temperature information of the automatic mobile body 10 with the charging side communication unit 24 of the automatic charging device 20.

表示部16は、自動移動体10の状態を表示する。また、表示部16は、タッチパネルなどの、ユーザーによって操作可能なユーザーインターフェースであると好ましい。 The display unit 16 displays the state of the automatic moving body 10. Further, the display unit 16 is preferably a user interface such as a touch panel that can be operated by the user.

また、自動充電装置20では、ホストコンピューター21が自動充電装置20の頭脳となり、充電制御部22、接続機構制御部23、及び充電側通信部24に指示を送る。 Further, in the automatic charging device 20, the host computer 21 serves as the brain of the automatic charging device 20 and sends instructions to the charging control unit 22, the connection mechanism control unit 23, and the charging side communication unit 24.

また、自動移動体10の受電部12の電極121,122に対して自動充電装置20から給電するため、アーム部25,26は自動充電装置20の本体29に対して突出するように伸縮可能である。 Further, since the automatic charging device 20 supplies power to the electrodes 121 and 122 of the power receiving unit 12 of the automatic moving body 10, the arm portions 25 and 26 can be expanded and contracted so as to protrude from the main body 29 of the automatic charging device 20. is there.

アーム部25,26は、アーム部25,26の先端に設けられる給電部27,28の位置を移動させる接続機構(給電部移動部)である。 The arm portions 25 and 26 are connection mechanisms (feeding portion moving portions) for moving the positions of the feeding portions 27 and 28 provided at the tips of the arm portions 25 and 26.

伸縮可能なアーム部25,26は、図1に示すように、正極27に対応する正極アーム25及び負極28に対応する負極アーム26とで、夫々別々に2本備えていてもよいし、あるいは正極、負極をまとめて一本であってもよい。なお、正極アーム25と負極アーム26を区別する必要が無い場合はまとめてアーム部25,26と呼ぶ。 As shown in FIG. 1, two telescopic arm portions 25 and 26 may be separately provided for the positive electrode arm 25 corresponding to the positive electrode 27 and the negative electrode arm 26 corresponding to the negative electrode 28, respectively. The positive electrode and the negative electrode may be combined into one. When it is not necessary to distinguish between the positive electrode arm 25 and the negative electrode arm 26, they are collectively referred to as arm portions 25 and 26.

給電部27,28は、アーム部25,26の先端に接続されている。給電部27,28は、自動移動体10の受電部12と面接触して接触給電させる接点であって、接点接続部(接点接触部)として機能する。 The feeding portions 27 and 28 are connected to the tips of the arm portions 25 and 26. The power feeding units 27 and 28 are contacts that come into surface contact with the power receiving unit 12 of the automatic moving body 10 to supply contact power, and function as a contact connecting unit (contact contact unit).

給電部27,28には、受電部12の電極121,122に対して接触して給電する電極部71,81が設けられている。さらに、給電部27,28には、電極71,81に取りつけられた温度センサ74,84と、近接センサ75,85が設けられている。 The power feeding units 27 and 28 are provided with electrode units 71 and 81 that contact the electrodes 121 and 122 of the power receiving unit 12 to supply power. Further, the power feeding units 27 and 28 are provided with temperature sensors 74 and 84 attached to the electrodes 71 and 81 and proximity sensors 75 and 85.

温度センサ(温度検出手段)74,84は、給電部27,28の電極71,81に取り付けられ、あるいは電極71,81と一体化して構成されており、電極71,81の温度を検知するものである。充電中(テスト充電中、大電流充電中)に、温度センサ74,84により電極71,81の温度を測定することで、充電装置側と移動体側の電極同士の接触状態(接触している面積がどのくらいか)を判定することができる。 The temperature sensors (temperature detecting means) 74, 84 are attached to the electrodes 71, 81 of the feeding units 27, 28, or are integrally formed with the electrodes 71, 81 to detect the temperature of the electrodes 71, 81. Is. By measuring the temperature of the electrodes 71 and 81 with the temperature sensors 74 and 84 during charging (during test charging and high current charging), the contact state (contact area) between the electrodes on the charging device side and the moving body side How much) can be determined.

近接センサ75,85は、給電部27,28、又は、アーム部25,26と給電部27,28との間(図6参照)に取り付けられ、充電側の給電部27,28の電極71,81の少なくとも一部が、移動体側の受電部12の電極121,122に接触したことを検知する。近接センサ75,85は、検知した電極部分の接触の状態により、接続信号の接続/不接続の状態を切り替えて出力する。 The proximity sensors 75 and 85 are mounted between the feeding portions 27 and 28 or between the arm portions 25 and 26 and the feeding portions 27 and 28 (see FIG. 6), and the electrodes 71 of the feeding portions 27 and 28 on the charging side. It is detected that at least a part of 81 is in contact with the electrodes 121 and 122 of the power receiving unit 12 on the moving body side. The proximity sensors 75 and 85 switch and output the connection / disconnection state of the connection signal according to the contact state of the detected electrode portion.

自動充電装置20のホストコンピューター21は、自動移動体10の状態を常時又は定期的に監視する。ホストコンピューター21が自動移動体10の電池電圧が下がったことを認識して、電池パック11を充電させる必要がある場合は自動移動体10に充電側通信部24から指示を送り、自動移動体10を自動充電装置20で充電可能なエリアAに帰還させる。 The host computer 21 of the automatic charging device 20 constantly or periodically monitors the state of the automatic moving body 10. When the host computer 21 recognizes that the battery voltage of the automatic moving body 10 has dropped and it is necessary to charge the battery pack 11, the charging side communication unit 24 sends an instruction to the automatic moving body 10 to charge the automatic moving body 10. Is returned to the area A that can be charged by the automatic charging device 20.

帰還後に、自動移動体10が充電可能なエリアAに帰還したことを通知するため、自動移動体10の移動体側通信部15から自動充電装置20の充電側通信部24に帰還完了信号を送る。 After returning, in order to notify that the automatic moving body 10 has returned to the rechargeable area A, a return completion signal is sent from the moving body side communication unit 15 of the automatic moving body 10 to the charging side communication unit 24 of the automatic charging device 20.

自動充電装置20は接続機構制御部23が作動し、帰還した自動移動体10の受電部12に目掛けて正極アーム25及び負極アーム26が伸長して、先端に設けられる給電部27,28を受電部12と接続させる。 In the automatic charging device 20, the connection mechanism control unit 23 operates, the positive electrode arm 25 and the negative electrode arm 26 extend toward the power receiving unit 12 of the returned automatic moving body 10, and the feeding units 27 and 28 provided at the tips thereof are provided. It is connected to the power receiving unit 12.

給電部27,28と受電部12との接続は、近接センサ75,85が、接続又は非接続の2つの状態を択一的に認識する。 In the connection between the power feeding units 27 and 28 and the power receiving unit 12, the proximity sensors 75 and 85 selectively recognize two states of connection and non-connection.

接続状態を示す接続信号を近接センサ75,85が出力すると、ホストコンピューター21が受け取り、充電制御部22経由で、自動移動体10に搭載されている電池パック11への充電を開始するように、受電部12への電力の供給を開始する。 When the proximity sensors 75 and 85 output the connection signals indicating the connection status, the host computer 21 receives the connection signals and starts charging the battery pack 11 mounted on the automatic mobile body 10 via the charge control unit 22. The supply of electric power to the power receiving unit 12 is started.

充電制御部22は、給電部27,28への充電量(電力の供給量)及び充電の開始・停止のタイミングを指示する。さらに、充電制御部22は、温度センサ74,84により検出された温度から給電部27,28の電極部71,81と受電部12の電極部121,122の接触状態を検知して、充電の状態を把握する接触状態判別手段としても機能する。 The charge control unit 22 instructs the charge amount (power supply amount) to the power supply units 27 and 28 and the timing of starting / stopping charging. Further, the charge control unit 22 detects the contact state between the electrode units 71 and 81 of the power supply units 27 and 28 and the electrode units 121 and 122 of the power receiving unit 12 from the temperature detected by the temperature sensors 74 and 84, and charges the battery. It also functions as a contact state determination means for grasping the state.

接続機構制御部(制御手段)23は、充電の前御のタイミングで、給電部27,28と受電部12とが接続するように、接続機構であるアーム部25,26の伸縮を指示する。また、充電制御部22(接触状態判別手段)で検知された電極部の接触状態や、自動移動体10の温度モニタ部13で検出された電池パック11の温度に基づいて、大電流充電の前に、アーム部25,26を調整して(やり直しを指示し)、給電部27,28と受電部12との接触ズレを補正する。 The connection mechanism control unit (control means) 23 instructs the arm units 25 and 26, which are connection mechanisms, to expand and contract so that the power supply units 27 and 28 and the power receiving unit 12 are connected at the timing before charging. Further, before high-current charging, based on the contact state of the electrode unit detected by the charge control unit 22 (contact state determination means) and the temperature of the battery pack 11 detected by the temperature monitor unit 13 of the automatic moving body 10. In addition, the arm portions 25 and 26 are adjusted (instructing to redo) to correct the contact deviation between the power feeding portions 27 and 28 and the power receiving portion 12.

電極同士の接続状態を考慮した、受電部12への給電の制御について、図4のフローを用いて詳述する。 The control of power supply to the power receiving unit 12 in consideration of the connection state between the electrodes will be described in detail with reference to the flow of FIG.

<アーム部と受電部との接触回路>
図3は本発明の一実施形態に係る自動充電システム1の接触充電に係る部分の回路例を示す。
<Contact circuit between arm and power receiving section>
FIG. 3 shows a circuit example of a portion related to contact charging of the automatic charging system 1 according to the embodiment of the present invention.

図3を参照して、自動移動体10側では、電池パック11と、サーミスタ131と、受電部12とが設けられている。 With reference to FIG. 3, a battery pack 11, a thermistor 131, and a power receiving unit 12 are provided on the automatic moving body 10 side.

電池パック11は、複数の蓄電池(図3では4つの蓄電池)が直列して構成されている。 The battery pack 11 is composed of a plurality of storage batteries (four storage batteries in FIG. 3) in series.

受電部12は、正極電極121と、負極電極122を含み、夫々の電極は電流用の電極部と電圧用の電極部を含んでいる。詳しくは、正極電極121は、正極用電流電極部121i、正極用電圧電極部121vを備え、負極電極122は、負極用電流電極122i、負極用電圧電極部122vを備えている。 The power receiving portion 12 includes a positive electrode portion 121 and a negative electrode electrode 122, and each electrode includes an electrode portion for current and an electrode portion for voltage. Specifically, the positive electrode 121 includes a positive electrode current electrode portion 121i and a positive electrode voltage electrode portion 121v, and the negative electrode electrode 122 includes a negative electrode current electrode 122i and a negative electrode voltage electrode portion 122v.

温度モニタ部13は、例えば、サーミスタ131によって構成されており、電池パック11内の複数の蓄電池の温度を検出する。サーミスタ131は電池パック11の近傍に配置されている。 The temperature monitor unit 13 is composed of, for example, a thermistor 131, and detects the temperatures of a plurality of storage batteries in the battery pack 11. The thermistor 131 is arranged in the vicinity of the battery pack 11.

一方、自動充電装置20側では、充電に係る回路として、給電部27,28と、充電制御部22とを備えている。 On the other hand, the automatic charging device 20 side includes power feeding units 27 and 28 and a charging control unit 22 as circuits related to charging.

充電装置側の給電部27,28は、正極電極71と負極電極81とを備えており、正極用、負極用の夫々の電極71,81では、図中外側に示す電流用電極部71i,81iと図中内側に示す電圧用電極部71v,81vとを備えている。 The power feeding units 27 and 28 on the charging device side include a positive electrode 71 and a negative electrode 81, and the positive electrode and the negative electrode 71 and 81 for the positive electrode and the negative electrode 71i and 81i for current shown on the outside in the figure. And the voltage electrode portions 71v and 81v shown on the inner side in the figure are provided.

ここで、充電装置側で、温度センサ74,84は、電流用電極部71i,81iの温度を検知可能に設けられている。 Here, on the charging device side, the temperature sensors 74 and 84 are provided so as to be able to detect the temperature of the current electrode portions 71i and 81i.

充電制御部22は、充電用の主制御部である、5Vのマイクロプロセッサ(図3では5VμPと示す、マイコンともいう)221、変圧用のDCDCコンバータ222、微充電用のテスト電源回路223と、スイッチ224と、抵抗225と、コンデンサ226等とを備えている。 The charge control unit 22 includes a 5 V microprocessor (also referred to as a microcomputer, which is referred to as 5 VμP in FIG. 3) 221 which is a main control unit for charging, a DCDC converter 222 for transformation, and a test power supply circuit 223 for fine charging. It includes a switch 224, a resistor 225, a capacitor 226, and the like.

このような充電制御部22では、DCDCコンバータ222が、大電流用の電力を生成し、テスト電源回路223が、充電用の大電流よりも小さい、テスト用の微電流の電力を生成する。 In such a charge control unit 22, the DCDC converter 222 generates electric power for a large current, and the test power supply circuit 223 generates electric power for a small current for testing, which is smaller than the large current for charging.

マイコン221が指示することにより、スイッチ224の接続先を切り替えて、給電に用いる電力を、大電流用とテスト用(微電流用)とで切り替えることができる。 When the microcomputer 221 instructs, the connection destination of the switch 224 can be switched, and the power used for power supply can be switched between a large current and a test (small current).

抵抗225、コンデンサ226はノイズ対策用の回路である。 The resistor 225 and the capacitor 226 are circuits for noise suppression.

ここで、電力(P)は「P=I×R」の関係により、電流と抵抗に依存する。したがって、大電流充電(I=大)をすることで、時間短縮はできるが発熱の要因にもなる。 Here, the electric power (P) depends on the current and the resistance due to the relationship of "P = I × R 2". Therefore, by charging with a large current (I = large), the time can be shortened, but it also causes heat generation.

また、接触部である、充電装置側の電極71,81と、移動体側の電極121,122とが不完全な状態で接触していると、接触面積が小さくなり、電極間に接続される抵抗値は上がり(R=大)、さらなる発熱要因となる。 Further, if the electrodes 71 and 81 on the charging device side and the electrodes 121 and 122 on the moving body side, which are contact portions, are in an incomplete contact, the contact area becomes small and the resistance connected between the electrodes becomes small. The value rises (R = large), which causes further heat generation.

よって、大電流で充電する前に、微電流充電であるテスト充電を行って抵抗値と連動して変化する電極の温度を測定することで、充電装置側と移動体側の電極間の接触が完全かどうかを確認することができる。 Therefore, before charging with a large current, by performing test charging, which is a small current charge, and measuring the temperature of the electrodes that change in conjunction with the resistance value, the contact between the electrodes on the charging device side and the moving body side is complete. You can check if it is.

そのために、自動充電装置20の給電部27,28には、一対の電極71,81の電流用電極部71i,81iに取り付けられた温度センサ(温度検出回路)74,84を搭載しており、電極同士の接触温度の検出が可能である。 Therefore, the power feeding units 27 and 28 of the automatic charging device 20 are equipped with temperature sensors (temperature detection circuits) 74 and 84 attached to the current electrode units 71i and 81i of the pair of electrodes 71 and 81. It is possible to detect the contact temperature between electrodes.

自動移動体10の受電部12の電極121,122と自動充電装置20の給電部27,28の電極71,81が接触した状態で充電が開始される。 Charging is started in a state where the electrodes 121 and 122 of the power receiving unit 12 of the automatic moving body 10 and the electrodes 71 and 81 of the feeding units 27 and 28 of the automatic charging device 20 are in contact with each other.

そのため、充電中は常に接触部である充電装置側の給電部27,28の電極71,81の温度を監視し、電極の温度が、ある閾値を越えた場合は、温度センサ74,84は温度情報をマイコン221に送り、充電を停止させる。 Therefore, during charging, the temperature of the electrodes 71, 81 of the feeding units 27, 28 on the charging device side, which is the contact portion, is constantly monitored, and when the temperature of the electrodes exceeds a certain threshold value, the temperature sensors 74, 84 are the temperature. Information is sent to the microcomputer 221 to stop charging.

また、移動体側で検出されるサーミスタ131で検知される電池パック11の温度情報も、マイコン221に送られるものとする。 Further, the temperature information of the battery pack 11 detected by the thermistor 131 detected on the moving body side is also sent to the microcomputer 221.

そして、テスト充電の期間中、電極部の温度の上昇が正常の範囲内であることを確認し、さらにサーミスタ131で検知される電池パック11の温度上昇が正常の範囲内であることが確認したら、マイコン221はテスト充電から大電流充電へと移行させる。詳しくは、マイコン221は、スイッチ224の接続先をテスト電源回路223からDCDCコンバータ222に切り替えて、テスト充電を終了させ、大電流充電へと移行させる。 Then, during the test charging period, if it is confirmed that the temperature rise of the electrode portion is within the normal range, and further, if it is confirmed that the temperature rise of the battery pack 11 detected by the thermistor 131 is within the normal range. , Microcomputer 221 shifts from test charging to high current charging. Specifically, the microcomputer 221 switches the connection destination of the switch 224 from the test power supply circuit 223 to the DCDC converter 222, ends the test charging, and shifts to the large current charging.

<フロー>
図4は本発明に係る自動充電システム1のフローチャートである。
<Flow>
FIG. 4 is a flowchart of the automatic charging system 1 according to the present invention.

まず、自動移動体10が充電可能エリアに帰還したら自動移動体10から送信される移動体帰還信号を、自動充電装置20のホストコンピューター21が受信すると、充電動作フローを開始する(START)。 First, when the host computer 21 of the automatic charging device 20 receives the moving body return signal transmitted from the automatic moving body 10 when the automatic moving body 10 returns to the rechargeable area, the charging operation flow is started (START).

自動移動体10が充電可能エリア内で確実に停止していることを認識すると(ステップS1)、自動充電ステーションにおいて、電極(給電部)が先端に設けられている接続機構のアーム部25,26を稼動させ、移動可能な状態にする(ステップS2)。 When it is recognized that the automatic moving body 10 is surely stopped in the chargeable area (step S1), in the automatic charging station, the arm portions 25 and 26 of the connection mechanism provided with the electrode (feeding portion) at the tip thereof. Is operated to make it movable (step S2).

そして、給電部27,28を、自動移動体10の受電部12に接続させるために、アーム部25,26を待機位置から伸長させる(ステップS3)。 Then, in order to connect the power feeding units 27 and 28 to the power receiving unit 12 of the automatic moving body 10, the arm units 25 and 26 are extended from the standby position (step S3).

アーム部25,26を伸長させた後、給電部27,28が、自動移動体10の受電部12に接続しているかどうか判断する(ステップS4)。上述のように、この給電部27,28と受電部12との接続、未接続はアーム部25,26の先端又は給電部27,28に搭載されている近接センサ(近接検出手段)75,85が判断し、接触/非接触を示す接続信号を出力するものとする。 After extending the arm portions 25 and 26, it is determined whether or not the power feeding portions 27 and 28 are connected to the power receiving portion 12 of the automatic moving body 10 (step S4). As described above, the connection and disconnection between the power feeding units 27 and 28 and the power receiving unit 12 are connected or not connected to the tips of the arm units 25 and 26 or the proximity sensors (proximity detection means) 75 and 85 mounted on the power feeding units 27 and 28. Judges and outputs a connection signal indicating contact / non-contact.

ステップS4で、近接センサ75,85の接続信号のセンサ値が非接続であることを検知する場合は(No)、一旦アーム部25,26を引っ込めた後、再度アーム部25,26を伸長させて、給電部27,28を受電部12に接続しにいく(ステップS5,S3)。 If it is detected in step S4 that the sensor values of the connection signals of the proximity sensors 75 and 85 are not connected (No), the arm portions 25 and 26 are retracted once, and then the arm portions 25 and 26 are extended again. Then, the power feeding units 27 and 28 are connected to the power receiving unit 12 (steps S5 and S3).

このようにアーム部25,26の伸長動作をリトライすることで、アーム部25,26の先端に設けられた給電部27,28の位置を調整することになり、給電部27,28と受電部12との接触ズレを補正させる。 By retrying the extension operation of the arm portions 25 and 26 in this way, the positions of the power supply portions 27 and 28 provided at the tips of the arm portions 25 and 26 are adjusted, and the power supply portions 27 and 28 and the power receiving unit are adjusted. The contact deviation with 12 is corrected.

詳しくは、ステップS4で、近接センサ値が非接続状態を示す場合は(No)、ステップS5に進み、リトライ回数が所定回数(n回)以下かどうか判定する。 Specifically, in step S4, if the proximity sensor value indicates a non-connected state (No), the process proceeds to step S5, and it is determined whether or not the number of retries is a predetermined number (n times) or less.

ステップS5の前提として、再接続には予めリトライができる回数(所定回数:n回)を設定しておき、複数回リトライしても近接センサ値の確実な検知ができない場合は(ステップS5,No)、一旦走行モードにすることで充電可能エリア外に自動移動体10を誘導するか、走行停止とする。 As a premise of step S5, the number of retries (predetermined number: n times) is set in advance for reconnection, and if the proximity sensor value cannot be reliably detected even after retries a plurality of times (steps S5, No). ), Once the traveling mode is set, the automatic moving body 10 is guided to the outside of the rechargeable area, or the traveling is stopped.

リトライ回数が所定回数(n回)以下の場合は、ステップS3に戻って、アーム部25,26の伸長による、先端にある給電部27,28の受電部12への接続動作をやり直す。 If the number of retries is less than or equal to the predetermined number of times (n times), the process returns to step S3, and the connection operation of the power feeding units 27 and 28 at the tip to the power receiving unit 12 by extending the arm units 25 and 26 is repeated.

一方、ステップS4で、近接センサ値が接続していると検知している場合は(Yes)、給電部27,28と受電部12の電極が接続されたと判断し、ステップS6で、接続状態(ON)を示す接続信号を、ホストコンピューター21から充電制御部22に送信する。 On the other hand, if it is detected in step S4 that the proximity sensor values are connected (Yes), it is determined that the electrodes of the power feeding units 27 and 28 and the power receiving unit 12 are connected, and in step S6, the connection state (Yes). A connection signal indicating ON) is transmitted from the host computer 21 to the charge control unit 22.

そして、ステップS7で、充電制御部22によって微電流充電であるテスト充電を開始する。ここで、テスト充電では、後段の大電流充電と比較して、非常に小さい数十mA程度の電流を流す。 Then, in step S7, the charge control unit 22 starts test charging, which is a minute current charge. Here, in the test charging, a current of about several tens of mA, which is very small as compared with the large current charging in the subsequent stage, is passed.

そして、テスト充電が行われているときに、流れる電流及び抵抗値に起因する、温度を測定することで、電極部が正常に接続されたかを確認する。 Then, when the test charge is being performed, it is confirmed whether the electrode portion is normally connected by measuring the temperature caused by the flowing current and the resistance value.

詳しくは、S4の近接センサ75,85による接続検知では、給電部27,28の電極71,81の少なくとも一部が、自動移動体10の受電部12の電極121,122と接触したら検知ONとなる。そのため、給電部27,28と受電部12の電極同士が接触している部位がどのくらいの面積であるのかまでの判別はできない。 Specifically, in the connection detection by the proximity sensors 75 and 85 of S4, the detection is turned on when at least a part of the electrodes 71 and 81 of the power feeding units 27 and 28 comes into contact with the electrodes 121 and 122 of the power receiving unit 12 of the automatic moving body 10. Become. Therefore, it is not possible to determine how large the area where the electrodes of the power feeding units 27 and 28 and the electrodes of the power receiving unit 12 are in contact with each other.

そこで、充電中、電極同士の接触面積が広く正常の接触状態(面接触)である場合は温度の上昇が少ないのに対して、導電部の接触面積が小さい場合(点接触)は温度が急激に上昇する特性を利用して、テスト充電中の電極部の温度を測定することで接触面積を把握することができる。 Therefore, during charging, when the contact area between the electrodes is wide and the contact state is normal (surface contact), the temperature rise is small, whereas when the contact area of the conductive portion is small (point contact), the temperature rises sharply. The contact area can be grasped by measuring the temperature of the electrode portion during the test charge by utilizing the characteristic of rising to.

ステップS8で、充電制御部22のマイコン221は、温度センサ74,84で検出された電極部の温度に応じて、電極部同士が正常に接続されているかどうか判断する。これにより、給電部27,28と受電部12の電極同士の接触面積が正常の範囲内かどうかを判断する。 In step S8, the microcomputer 221 of the charge control unit 22 determines whether or not the electrode units are normally connected to each other according to the temperature of the electrode units detected by the temperature sensors 74 and 84. Thereby, it is determined whether or not the contact area between the electrodes of the power feeding units 27 and 28 and the power receiving unit 12 is within the normal range.

上述のように電極部の温度の上昇が大きい場合、接触面積が小さく、接触不良や異物の噛み込み等があると考えられるため、S5でリトライ回数を確認した後、ステップS3に戻って、アーム部25,26の伸長による、先端にある給電部27,28の受電部12への接続動作をやり直す。これにより、電極部の接触面積に基づいて、給電部27,28と受電部12との接触ズレを補正させる。 When the temperature rise of the electrode portion is large as described above, it is considered that the contact area is small and there is poor contact or foreign matter is caught. Therefore, after confirming the number of retries in S5, the process returns to step S3 and the arm By extending the parts 25 and 26, the connection operation of the power feeding parts 27 and 28 at the tip to the power receiving part 12 is redone. As a result, the contact deviation between the power feeding units 27 and 28 and the power receiving unit 12 is corrected based on the contact area of the electrode unit.

このように、受電部、給電部間に異物が挟まっていたり、完全な接触がされていなかったりすることによる接触面積の減少による抵抗成分の増加による発熱を、大電流充電の前に検知して不具合が無いことを確認する。 In this way, heat generation due to an increase in the resistance component due to a decrease in the contact area due to foreign matter being caught between the power receiving part and the power feeding part or not being completely contacted is detected before high current charging. Check that there are no problems.

したがって、給電側で事前に、外部との短絡等を防ぎ、ズレ分を補正や吸収することができるため、安全に、安定的な大電流による充電が可能となる。 Therefore, it is possible to prevent a short circuit with the outside and correct or absorb the deviation in advance on the power feeding side, so that it is possible to safely and stably charge with a large current.

さらに、ステップS9で、充電制御部22のマイコン221は、テスト充電中の、移動体側の電池パック11の近傍に設けられた、サーミスタ131の温度に応じて、正常な電池かどうかを判断する。 Further, in step S9, the microcomputer 221 of the charge control unit 22 determines whether or not the battery is normal according to the temperature of the thermistor 131 provided in the vicinity of the battery pack 11 on the moving body side during test charging.

上記の接触面積の違いに起因する、温度の上昇の際は電極部で発生するが、電池パック11を構成する二次電池自体が劣化している場合は、電池の温度が上昇する。 When the temperature rises due to the difference in contact area, it occurs at the electrode portion, but when the secondary battery itself constituting the battery pack 11 is deteriorated, the temperature of the battery rises.

したがって、テスト充電の際に、温度モニタ部13を構成するサーミスタ131が電池パック11の温度を検出することで、電池の劣化を判断することができる。 Therefore, at the time of test charging, the thermistor 131 constituting the temperature monitor unit 13 can detect the temperature of the battery pack 11 to determine the deterioration of the battery.

なお、予め、大電流充電の許容回数を設定しておき、閾値に達した場合は、異常電池と判断してもよい。なお、本フローはS9でテスト充電中に検知される電池パック11の温度を用いて、異常電池か判断する例を示しているが、許容回数で充電を判断する場合は、フローが始まる前にフローを開始するか否かを判断してもよい。 It should be noted that the permissible number of times of high current charging may be set in advance, and when the threshold value is reached, it may be determined that the battery is abnormal. Note that this flow shows an example of determining whether the battery is abnormal by using the temperature of the battery pack 11 detected during test charging in S9, but when determining charging by the allowable number of times, before the flow starts. You may decide whether to start the flow.

そして、テスト充電により、正常に接続されている(ステップS8、Yes)、且つ正常電池と判断した場合(ステップS9、Yes)、ステップS10で、自動移動体10の電池パック11に対して、正常充電を実施する。 Then, when it is determined that the battery is normally connected (step S8, Yes) and the battery is normal (step S9, Yes) by the test charge, the battery pack 11 of the automatic moving body 10 is normally connected in step S10. Carry out charging.

詳しくは、図3に示した充電制御部22のマイコン221は、スイッチ224を切り替えて、電力の供給源を、テスト電源回路223からDCDCコンバータ222へ切り替えて、大電流充電を開始させる。 Specifically, the microcomputer 221 of the charge control unit 22 shown in FIG. 3 switches the switch 224 to switch the power supply source from the test power supply circuit 223 to the DCDC converter 222 to start high-current charging.

充電中は、温度センサ74,84は、接触部である電極71,81の温度を随時検知し、異常が無いかを確認する(ステップS11)。この監視により、安定した充電を確認できる。 During charging, the temperature sensors 74 and 84 detect the temperature of the electrodes 71 and 81, which are the contact portions, at any time, and confirm whether or not there is any abnormality (step S11). By this monitoring, stable charging can be confirmed.

充電開始時に異常がなくても、充電中に、例えば、風や振動などの外的要因により、受電部の電極と、接続機構の先端にある給電部の電極の位置関係がズレると、接触不良等や異物の噛み込み等で接触部の接触面積が小さくなり、抵抗が大きくなることが考えられる。よって、大電流充電中は、常に接触部の温度を検知し、監視し続けることで、安定充電を確保できる。 Even if there is no abnormality at the start of charging, if the positional relationship between the electrode of the power receiving unit and the electrode of the power feeding unit at the tip of the connection mechanism is misaligned due to external factors such as wind or vibration during charging, contact failure will occur. It is conceivable that the contact area of the contact portion becomes smaller and the resistance becomes larger due to the biting of foreign matter or the like. Therefore, during high-current charging, stable charging can be ensured by constantly detecting and monitoring the temperature of the contact portion.

しかし、例えば、上記の位置ズレにより接触部の抵抗が大きくなることで、通常の温度上昇範囲(上限閾値X℃)を超えて、温度が上昇すると(T≧X℃)(ステップS11,Yes)、充電を停止する(ステップS12)。 However, for example, when the resistance of the contact portion increases due to the above-mentioned positional deviation and the temperature rises beyond the normal temperature rise range (upper limit threshold value X ° C.) (T ≧ X ° C.) (step S11, Yes). , Stop charging (step S12).

なお、ユーザーは、ユーザーインターフェース(表示部16、図1参照)を介して、接続機構のリトライの回数、給電部の上昇閾値温度、冷却閾値温度の少なくともいずれか一つを変更できる。ここで、充電を実施する場合の給電部での温度上昇及びそれに伴う閾値は、給電部を構成する素材の耐熱の程度により大きく異なることから、ユーザーインターフェースにて、個々の温度設定を適宜行うことができると好適である。 The user can change at least one of the number of retries of the connection mechanism, the rising threshold temperature of the feeding unit, and the cooling threshold temperature via the user interface (display unit 16, see FIG. 1). Here, since the temperature rise in the power feeding unit and the threshold value associated therewith when charging is performed greatly differ depending on the degree of heat resistance of the material constituting the power feeding unit, individual temperature settings should be appropriately set in the user interface. It is preferable to be able to.

そして、ステップS12で温度の上昇により充電を一旦停止した場合は、アーム部25,26を短くして、給電部27,28を、受電部12から離間させ、格納位置まで格納する(ステップS13)。この制御により、高温になっている接点部である給電部27,28を自動充電装置20の外に放置することなく安全に運用できる。 Then, when charging is temporarily stopped due to an increase in temperature in step S12, the arm portions 25 and 26 are shortened, the power feeding portions 27 and 28 are separated from the power receiving portion 12, and are stored up to the storage position (step S13). .. By this control, the power feeding units 27 and 28, which are the contact parts that are hot, can be safely operated without being left outside the automatic charging device 20.

アーム部25,26格納後も電極同士の接点部温度を常に検知しておき、ある閾値以下まで下がった場合は(ステップS14)、接点部リトライ信号を送り(ステップS15)、ステップS2へ戻って、再度アーム部25,26を接触させる充電シーケンスに移行する。 Even after the arms 25 and 26 are retracted, the contact temperature between the electrodes is always detected, and if the temperature drops below a certain threshold (step S14), a contact retry signal is sent (step S15), and the process returns to step S2. , The process shifts to the charging sequence in which the arm portions 25 and 26 are brought into contact with each other again.

このように、電極の温度をモニタし充電可能温度まで低下してから、再度充電を実施しにいくので、安全な状態での再充電が可能となる。 In this way, after the temperature of the electrode is monitored and the temperature drops to the rechargeable temperature, charging is performed again, so that recharging in a safe state is possible.

S2に戻った後は、アーム部25,26を稼働し、伸長しての接続からやり直しとする。そして、このアーム部25,26の接続に関してもリトライ回数が設定されている。なお、途中で中断した場合のリトライ回数は、積算ではなく、途中停止した場合はゼロからカウントし直すものとする。ここで、上記と同様に、設定回数以上リトライを続けると(ステップS5でNo)、一旦走行モードか、走行停止とする。 After returning to S2, the arm portions 25 and 26 are operated, and the connection is extended and restarted. The number of retries is also set for the connection of the arm portions 25 and 26. It should be noted that the number of retries when interrupted in the middle is not integrated, but is recounted from zero when stopped in the middle. Here, similarly to the above, if the retry is continued more than the set number of times (No in step S5), the traveling mode is temporarily set or the traveling is stopped.

そして、再度、ステップS4での近接センサ75,85による接触検知、テスト充電中の電極部及び電池パックの温度確認(ステップS8,S9)を再度行って、リトライした状態で、充電を再開できる。 Then, the contact detection by the proximity sensors 75 and 85 in step S4, the temperature confirmation of the electrode portion and the battery pack during the test charging (steps S8 and S9) are performed again, and the charging can be restarted in the state of retrying.

一方、通常の充電である大電流充電の期間中に、接触部温度が異常温度まで上がらない場合は(T<X℃、ステップS16でYes)、満充電まで充電を行い、正常に充電停止を行う(ステップS17)。 On the other hand, if the contact temperature does not rise to an abnormal temperature during the period of high current charging, which is normal charging (T <X ° C., Yes in step S16), charging is performed until full charging, and charging is stopped normally. (Step S17).

このような、大電流充電の前のテスト充電の温度監視、及び大電流充電の最中の温度監視により、安全に安定的な大電流による充電が可能となる。 By monitoring the temperature of the test charge before the large current charge and the temperature monitor during the large current charge, it is possible to safely and stably charge with the large current.

≪アーム部及び給電部と受電部の構成≫
図5〜図8を用いて、自動充電装置20側のアーム部25,26及び給電部27,28と、自動移動体10の受電部12の複数の構成例を説明する。
≪Structure of arm part, power supply part and power receiving part≫
A plurality of configuration examples of the arm portions 25, 26 and the feeding portions 27, 28 on the automatic charging device 20 side and the power receiving portion 12 of the automatic moving body 10 will be described with reference to FIGS. 5 to 8.

<接触面の構成例1>
図5は、本発明の自動充電システム1における、自動充電装置20の給電部27,28での電極71,81と自動移動体10の受電部12の電極121,122の構成の一例を示す図である。
<Structure example 1 of contact surface>
FIG. 5 is a diagram showing an example of the configuration of the electrodes 71 and 81 of the power feeding units 27 and 28 of the automatic charging device 20 and the electrodes 121 and 122 of the power receiving unit 12 of the automatic moving body 10 in the automatic charging system 1 of the present invention. Is.

自動充電装置20のアーム部25,26の先端にある給電部27,28と、自動移動体10の受電部12との接触を確実にするために、充電装置側の給電部27,28に設けられる電極71,81は先端が細くなっている凸状形状であることが望ましい。そこで、図5に示すように、給電部27A,28Aの先端面に設けられる電極71A,81Aは、受電部の各電極121A,122Aに対応する逆V型の凸形状である。 In order to ensure contact between the power feeding units 27 and 28 at the tips of the arm portions 25 and 26 of the automatic charging device 20 and the power receiving unit 12 of the automatic moving body 10, the power feeding units 27 and 28 on the charging device side are provided. It is desirable that the electrodes 71 and 81 to be formed have a convex shape having a tapered tip. Therefore, as shown in FIG. 5, the electrodes 71A and 81A provided on the tip surfaces of the feeding portions 27A and 28A have an inverted V-shaped convex shape corresponding to the electrodes 121A and 122A of the power receiving portion.

図5の例では、自動移動体10の受電部12側の電極121A,122Aの、給電部27A,28Aとの接触面は、隣り合う2つの平面(123A,124A),(125A,126A)で構成されるV型の凹み形状である。図5では、電極(電極凹部)121A,122Aの凹み形状が鋭角な例を示している。 In the example of FIG. 5, the contact surfaces of the electrodes 121A and 122A on the power receiving portion 12 side of the automatic moving body 10 with the feeding portions 27A and 28A are two adjacent planes (123A and 124A) and (125A and 126A). It is a V-shaped recessed shape. FIG. 5 shows an example in which the concave shapes of the electrodes (electrode recesses) 121A and 122A have an acute angle.

なお、図5の例では、充電装置側のアーム部(接続機構)が、2つの給電部27A,28Aに対して共通となる1本である例を示している。 In the example of FIG. 5, an example is shown in which the arm portion (connection mechanism) on the charging device side is one that is common to the two feeding portions 27A and 28A.

このように、給電部27A,28Aにおける電極部71A,81Aの先端が細くなって嵌合することにより、受電部12の電極部121A,122Aに対してアーム部25A,26Aの先端の給電部27A,28Aを、押し込んだ際に位置補正も容易にできる。自動移動体10側の正極側の給電部27A、負極側の給電部28Aの電極凹部の窪み内の2面は電極端子となっている。そして、電極部71A,81Aの周りは、絶縁部材76A,86Aとする。 In this way, the tips of the electrode portions 71A and 81A of the feeding portions 27A and 28A are narrowed and fitted, so that the feeding portions 27A at the tips of the arm portions 25A and 26A are fitted to the electrode portions 121A and 122A of the power receiving portion 12. When the 28A is pushed in, the position can be easily corrected. The two surfaces in the recesses of the electrode recesses of the feeding portion 27A on the positive electrode side and the feeding portion 28A on the negative electrode side on the automatic moving body 10 side are electrode terminals. Insulating members 76A and 86A are formed around the electrode portions 71A and 81A.

横からの押し当ての場合でも、接触により、自動移動体10が動かないことが必須となる。そのため、自動移動体10の車輪等は固定されているものとする。 Even in the case of pressing from the side, it is essential that the automatic moving body 10 does not move due to contact. Therefore, it is assumed that the wheels and the like of the automatic moving body 10 are fixed.

<接触面の構成例2>
図6は、本発明の一実施形態に係る自動充電装置のアーム部25B,26B及び給電部27B,28Bと、自動移動体10の受電部12Bの構成を示す概略図である。
<Structure example 2 of contact surface>
FIG. 6 is a schematic view showing the configurations of the arm portions 25B and 26B and the feeding portions 27B and 28B of the automatic charging device according to the embodiment of the present invention and the power receiving portion 12B of the automatic moving body 10.

図6の例では、自動移動体10の受電部12側の電極121B,122Bでの、給電部27B,28Bとの接触面は、隣り合う2つの平面(123B,124B),(125B,126B)で構成されるV型の凹み形状である。図6では、電極(電極凹部)121B,122Bの凹み形状が鈍角である例を示している。 In the example of FIG. 6, the contact surfaces of the electrodes 121B and 122B on the power receiving portion 12 side of the automatic moving body 10 with the feeding portions 27B and 28B are two adjacent planes (123B and 124B) and (125B and 126B). It is a V-shaped recessed shape composed of. FIG. 6 shows an example in which the recessed shapes of the electrodes (electrode recesses) 121B and 122B have an obtuse angle.

また、自動充電装置20の給電部27B,28Bは、受電部12のV型の凹み形状の電極121B,122Bの2つの平面と密接可能な、2つの平面(72B,73B)、(82B,83B)を側面とする三角柱形状で構成されている。 Further, the power feeding units 27B and 28B of the automatic charging device 20 can be in close contact with the two planes of the V-shaped recessed electrodes 121B and 122B of the power receiving unit 12, and the two planes (72B and 73B) and (82B and 83B). ) Is a triangular prism shape on the side.

即ち、給電部27B,28Bの先端面に設けられる電極71B,81Bは、V型の凹み形状である、受電部12Bの各電極121B,122Bに対して逆V型の2面(72B,73B)、(82B,83B)を有する凸形状である。 That is, the electrodes 71B and 81B provided on the tip surfaces of the power feeding portions 27B and 28B have two V-shaped concave surfaces (72B and 73B) with respect to the electrodes 121B and 122B of the power receiving portion 12B. , (82B, 83B).

さらに、図6の例では、接触機構であるアーム部25B,26Bの伸縮方向が水平方向である場合を示している。 Further, in the example of FIG. 6, the case where the expansion and contraction directions of the arm portions 25B and 26B, which are contact mechanisms, is the horizontal direction is shown.

この構成では、受電部12の夫々の電極121B,122Bの2つの平面(123B,124B),(125B,126B)は、伸縮方向に対して均等に傾斜している。また、上記電極121Bでの2つの平面(123B,124B)と、電極122Bでの2つの平面(125B,126B)は水平方向の上辺、下辺の長さが夫々等しく、合同の形なので、給電部27B,28Bは、図6中、上面と下面が二等辺三角形である、二等辺三角柱形状で構成される。 In this configuration, the two planes (123B, 124B) and (125B, 126B) of the electrodes 121B and 122B of the power receiving unit 12 are evenly inclined with respect to the expansion and contraction direction. Further, the two planes (123B, 124B) at the electrode 121B and the two planes (125B, 126B) at the electrode 122B have the same lengths of the upper side and the lower side in the horizontal direction, respectively, and have a congruent shape. 27B and 28B are formed in an isosceles triangular prism shape in which the upper surface and the lower surface are isosceles triangles in FIG.

図6の構成では、接続機構としてのアーム部は、2つのアーム25B,26Bによって構成されているが、給電部27B,28Bの先端が細くなる逆V型の2面を有する凸形状で、受電部12Bと嵌合することにより、2つのアーム25B,26Bの軸のバラツキを吸収することができる。 In the configuration of FIG. 6, the arm portion as the connection mechanism is composed of two arms 25B and 26B, but the feeding portions 27B and 28B have a convex shape having two inverted V-shaped surfaces in which the tips are narrowed to receive power. By fitting with the portion 12B, it is possible to absorb the variation in the shafts of the two arms 25B and 26B.

ここで、アーム部25B,26Bは、図6に示すように、複数の大きさの違う筒P1,P2,P3が重なり合うテレスコピック構造によって、伸縮が可能になっている。 Here, as shown in FIG. 6, the arm portions 25B and 26B can be expanded and contracted by a telescopic structure in which a plurality of cylinders P1, P2 and P3 having different sizes are overlapped.

また給電部27,28Bは、接触面とは反対側の背面側が板状の支持部材53,63によって支持されており、支持部材53,63は、アーム部25,26Bの最も先端側の筒P3と、ジョイント54,64を介して連結されている。 Further, the power feeding portions 27 and 28B are supported by plate-shaped support members 53 and 63 on the back side opposite to the contact surface, and the support members 53 and 63 are the cylinders P3 on the most tip side of the arm portions 25 and 26B. And are connected via joints 54 and 64.

また、アーム部25B,26Bと、給電部27B,28Bとの間には、180度可動するジョイント54,64が設けられている。よって、ジョイント54,64によって、アーム部25,26に対して、給電部27B,28Bの角度を、図6の白矢印方向に180度調整することができる。 Further, joints 54 and 64 that can move 180 degrees are provided between the arm portions 25B and 26B and the feeding portions 27B and 28B. Therefore, the angles of the feeding portions 27B and 28B can be adjusted by 180 degrees in the direction of the white arrow in FIG. 6 with respect to the arm portions 25 and 26 by the joints 54 and 64.

さらに、ジョイント54,64の両サイドから支持部材53,63が、バネ(55l,55r)、(65l,65r)で引っ張られることで、給電部26B,28Bの平行度を保っている。 Further, the support members 53 and 63 are pulled by the springs (55l, 55r) and (65l, 65r) from both sides of the joints 54 and 64 to maintain the parallelism of the feeding portions 26B and 28B.

また、図6に示すように、ジョイント54,64の近傍に、近接センサ75,85を設けてもよい。何も触れていない状態から、ジョイント54,64の角度が少しでも変更されると、近接センサ75,85がジョイント54,64の角度の変更を検知して、給電部27B,28Bの少なくとも一部が、受電部12の電極121B,122Bに接触したと感知する。 Further, as shown in FIG. 6, proximity sensors 75 and 85 may be provided in the vicinity of the joints 54 and 64. If the angles of the joints 54 and 64 are changed even a little from the state where nothing is touched, the proximity sensors 75 and 85 detect the change in the angles of the joints 54 and 64 and at least a part of the feeding units 27B and 28B. Detects that it has come into contact with the electrodes 121B and 122B of the power receiving unit 12.

この構成では、アーム部25B,26Bを受電部12Bに向かって伸長させると、先端の給電部27B,28Bの電極凸部71B,81Bに、自動移動体10の受電部12Bが接触した後、逆V状の凸状形状の先端凸部を、V状の2面間に滑り込ませる。 In this configuration, when the arm portions 25B and 26B are extended toward the power receiving portion 12B, the power receiving portions 12B of the automatic moving body 10 come into contact with the electrode convex portions 71B and 81B of the feeding portions 27B and 28B at the tips, and then reverse. The V-shaped convex tip convex portion is slid between the two V-shaped surfaces.

そして、滑り込んだ後は、180度可動のジョイント54,64を補助するように、バネ(55l,55r)、(65l,65r)の弾性力を使い、電極同士を2面で密接させるように、給電部27B,28Bの位置(角度)を調整して接触させる。 Then, after sliding, the elastic forces of the springs (55l, 55r) and (65l, 65r) are used to assist the joints 54 and 64 that can move 180 degrees, so that the electrodes are brought into close contact with each other on two surfaces. The positions (angles) of the power feeding units 27B and 28B are adjusted and brought into contact with each other.

なお、図6では見えないが、温度センサ74,84は例えば夫々給電部27,28の内部であって電極71,81の内側近傍に設けられている。 Although not visible in FIG. 6, the temperature sensors 74 and 84 are provided, for example, inside the feeding portions 27 and 28, respectively, and near the inside of the electrodes 71 and 81.

<接触面の構成例3>
図7は本発明の自動充電装置20の給電部27C,28Cの電極71C,81Cと自動移動体10の受電部12Cの電極121C,122Cの構成の他の例を示す図である。図7の接続方法は、例えば、自動移動体10自体に重さが少ない飛翔体や軽量の移動体など、横からの押圧で動いてしまう自動移動体10に用いられる。
<Structure example 3 of contact surface>
FIG. 7 is a diagram showing another example of the configuration of the electrodes 71C and 81C of the feeding units 27C and 28C of the automatic charging device 20 of the present invention and the electrodes 121C and 122C of the power receiving unit 12C of the automatic moving body 10. The connection method of FIG. 7 is used for an automatic moving body 10 that moves by pressing from the side, such as a flying body having a small weight on the automatic moving body 10 itself or a lightweight moving body.

図7は、接触機構であるアーム部25C,26Cの伸縮方向が水平方向に対して傾斜して、斜め下方向に伸長する場合を示している。 FIG. 7 shows a case where the expansion and contraction directions of the arm portions 25C and 26C, which are contact mechanisms, are inclined with respect to the horizontal direction and extend diagonally downward.

図7の例では、自動移動体10の受電部12の電極121C,122Cの接触面を構成する2つの平面のうちどちらか一方の面123C,125Cが伸縮方向と同一方向に延伸しており、どちらか他方の面124C,126Cが伸縮方向に対して傾斜している。 In the example of FIG. 7, one of the two planes 123C and 125C constituting the contact surfaces of the electrodes 121C and 122C of the power receiving portion 12 of the automatic moving body 10 is extended in the same direction as the expansion and contraction direction. Either of the other surfaces 124C and 126C is inclined with respect to the expansion / contraction direction.

そして、給電部27C,28Cの電極凸部71C,81Cは伸縮方向と同一方向に延伸している面72C,82Cと、その他の平面73C,83Cを含む2面を有している。そして、電極71C,81Cの周りは、絶縁部材76C,86Cとする。 The electrode convex portions 71C and 81C of the feeding portions 27C and 28C have two surfaces including surfaces 72C and 82C extending in the same direction as the expansion and contraction direction and other planes 73C and 83C. Insulating members 76C and 86C are formed around the electrodes 71C and 81C.

この構成では、接続のためにアーム部25C,26Cが伸長する際、給電部27C,28Cの電極凸部71C,81Cで同一方向に延伸している面72C,82Cが、受電部12Cの電極121C,122Cの一方の面123C,125Cに沿って凹み形状の奥部に案内される。 In this configuration, when the arm portions 25C and 26C are extended for connection, the surfaces 72C and 82C extending in the same direction at the electrode convex portions 71C and 81C of the feeding portions 27C and 28C are the electrodes 121C of the power receiving portion 12C. , 122C is guided to the inner part of the concave shape along one surface 123C, 125C.

このような構成により、横方向からではなく、斜め方向の力を利用して押し当てることで接触度(密着度)を高めることができる。 With such a configuration, the degree of contact (adhesion) can be increased by pressing the force using a force in the diagonal direction instead of from the lateral direction.

ここで、一般的な電気自動車を駐車可能にした車両に設置されている充電システムで使用される頂面を有するコネクタ(プラグ)と比較すると、上記の図5〜図7に示す2面で接触する接触構造では、すべての接触面(二面)の接触面積(接点)を大きくすることができる。 Here, when compared with a connector (plug) having a top surface used in a charging system installed in a vehicle in which a general electric vehicle can be parked, contact is made on the two surfaces shown in FIGS. 5 to 7 above. In the contact structure, the contact area (contact) of all the contact surfaces (two surfaces) can be increased.

したがって、接触部における温度の部分的な上昇を抑えることができるため、所定の閾値(例えば、30℃)に達するまでの時間が長くなり、大電流充電の長時間の充電が可能になる。 Therefore, since it is possible to suppress a partial increase in the temperature at the contact portion, it takes a long time to reach a predetermined threshold value (for example, 30 ° C.), and it becomes possible to charge a large current for a long time.

また、接触面が大きいため、無人の移動体で自動充電を行う際に、コンセントと嵌合するコネクタ形状よりも、嵌合の精度を向上させることができる。 Further, since the contact surface is large, when automatic charging is performed by an unmanned moving body, the accuracy of fitting can be improved as compared with the shape of the connector that fits with the outlet.

<アーム部構成例>
図8は、本発明の自動充電装置のアーム部の説明図である。
<Example of arm configuration>
FIG. 8 is an explanatory view of an arm portion of the automatic charging device of the present invention.

図8において、(a)は、アーム部25B,26Bの斜視図であり、(b)は、アーム部25B,26Bにおける導電体52(62)の部分を示し、(c)はアーム部25(26)における、略筒状絶縁体51(61)の部分を示し、(d)は、(a)のX面断面図を示す。 In FIG. 8, (a) is a perspective view of the arm portions 25B and 26B, (b) shows the portion of the conductor 52 (62) in the arm portions 25B and 26B, and (c) is the arm portion 25 (c). The portion of the substantially tubular insulator 51 (61) in 26) is shown, and FIG. 26D shows an X-plane cross-sectional view of FIG. 26A.

図6、図8(a)に示す例では、接続機構であるアーム部25B,26Bは、複数の大きさの違う筒P1,P2,P3が重なり合った、テレスコピック構造により伸縮が可能である。 In the example shown in FIGS. 6 and 8A, the arm portions 25B and 26B, which are connection mechanisms, can be expanded and contracted by a telescopic structure in which a plurality of cylinders P1, P2, and P3 having different sizes are overlapped.

図8(a),(c)に示すように、アーム部25B(26B)において、アーム状の略筒状絶縁体51(61)には、内側に埋め込む導電体52(62)と同等サイズの窪みを設ける。例えば3連の筒で構成されるアームであればそれぞれ3連分の窪みを設ける。 As shown in FIGS. 8A and 8C, in the arm portion 25B (26B), the arm-shaped substantially tubular insulator 51 (61) has the same size as the conductor 52 (62) embedded inside. Make a dent. For example, in the case of an arm composed of three cylinders, three recesses are provided for each.

そして、その窪みに合う導電体52(62)(図8(b))を、図8(d)に示すように、アーム状の略筒状絶縁体51(61)の窪みに嵌め込む。 Then, the conductor 52 (62) (FIG. 8 (b)) that fits the recess is fitted into the recess of the arm-shaped substantially tubular insulator 51 (61) as shown in FIG. 8 (d).

即ち、その導電体は、複数の筒P1,P2,P3の側面の一部には伸縮方向に延在している組み込まれる配線領域である。このようアーム部25B,26B内の配線領域によって、自動充電装置20の本体にある制御部と、先端である給電部27B,28Bの電極凸部71B,81Bとを接続する。嵌め込んだ導電体52(62)は、アーム部25B,27Bが伸長、縮短しても導通を維持し続ける。 That is, the conductor is a wiring region that extends in the expansion / contraction direction on a part of the side surfaces of the plurality of cylinders P1, P2, and P3. In this way, the wiring region in the arm portions 25B and 26B connects the control portion in the main body of the automatic charging device 20 and the electrode convex portions 71B and 81B of the feeding portions 27B and 28B which are the tips. The fitted conductor 52 (62) continues to maintain continuity even when the arm portions 25B and 27B extend and contract.

このように、給電部27,28と自動充電装置20の本体29とを繋ぐのに、アーム部25,26内に導電体を設け連結させ電流を流し電流経路として線材を使わない方式をとることで線材の挟み込みによる断線を無くすことができる。 In this way, in order to connect the power feeding units 27 and 28 and the main body 29 of the automatic charging device 20, a method is adopted in which a conductor is provided in the arm portions 25 and 26 to connect the conductors, and a current flows and no wire is used as the current path. It is possible to eliminate the disconnection due to the pinching of the wire rod.

そして、電流量に応じて導電体52(62)の厚み幅を変えることで大電流にも対応できる。 Then, by changing the thickness width of the conductor 52 (62) according to the amount of current, it is possible to cope with a large current.

更に、大電流に対応するとなると配線を相当太くする必要がある。仮に配線を別に設ける場合では、配線が太くなるとアームの圧縮、縮小において線材を自由に制御するのが困難になるが、本発明では、図8に示すように、アーム部25B,26Bにおいて、略筒状絶縁体51(52)の内部に配線領域である導電体52(62)を埋め込んでいる。したがって、従来例などで発生した、太い配線を設けることに起因してその配線の弾性によってアーム部が変形すること等、を気にする必要が、本発明ではなくなる。 Furthermore, when dealing with large currents, it is necessary to make the wiring considerably thicker. If the wiring is provided separately, it becomes difficult to freely control the wire in the compression and contraction of the arm if the wiring becomes thick. However, in the present invention, as shown in FIG. 8, the arm portions 25B and 26B are omitted. The conductor 52 (62), which is a wiring region, is embedded inside the tubular insulator 51 (52). Therefore, it is no longer necessary to be concerned about the deformation of the arm portion due to the elasticity of the wiring caused by the provision of the thick wiring, which has occurred in the conventional example.

また、電流経路以外にもアーム部のスペースを活用することで信号ラインも設けることができる。導電体以外のアーム部を放熱特性の良い素材を活用することで大電流による発熱を抑えることができる。さらに、長期使用することに起因して導電膜の周囲に酸化膜形成が発生しても、アーム部が可動することで酸化膜を削ることができる。 In addition to the current path, a signal line can also be provided by utilizing the space of the arm portion. By using a material with good heat dissipation characteristics for the arm part other than the conductor, it is possible to suppress heat generation due to a large current. Further, even if an oxide film is formed around the conductive film due to long-term use, the oxide film can be scraped by moving the arm portion.

以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態に示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することができ、その応用形態に応じて適切に定めることができる。 Although the present invention has been described above based on each embodiment, the present invention is not limited to the requirements shown in the above embodiments. With respect to these points, the gist of the present invention can be changed without impairing the gist of the present invention, and can be appropriately determined according to the application form thereof.

1 自動充電システム
10 自動充電装置
11 電池パック
12,12A,12B,12C 受電部
121,121A,121B,121C 電極(正極電極)
121i 正極用電流電極部
121v 正極用電圧電極部
122,122A,122B,122C 電極(負極電極)
122i 負極用電流電極部
122v 負極用電圧電極部
123A,124A,123B,124B,123C,124C 正極を構成する平面
125A,126A,125B,126B,125C,126C 負極を構成する平面
13 温度モニタ部
14 駆動部
15 移動体側通信部
16 表示部(ユーザーインターフェース)
17 温度モニタ部
18 車輪(移動部)
20 自動移動体
21 ホストコンピューター
22 充電制御部(接触状態判別手段)
23 接続機構制御部(制御手段)
24 充電側通信部
25 正極アーム(アーム部、接続機構)
26 負極アーム(アーム部、接続機構)
51,61 略筒状絶縁体
52,62 導電体(配線領域)
53,63 支持部材
54,64 ジョイント
55l,55r、65l,65r バネ
27,28,27A,28A,27B,28B,27C,28C 給電部(接点接続部)
71 電極部(正極電極、電極凸部)
71i 正極用電流電極部
71v 正極用電圧電極部
72A,73A,72B,73B,72C,73C 正極を構成する平面
81 電極部(負極電極、電極凸部)
81i 負極用電流電極部
81v 負極用電圧電極部
82A,83A,82B,83B,82C,83C 負極を構成する平面
74,84 温度センサ(温度検出手段)
75,85 近接センサ(近接検出手段)
76,86 絶縁部
P1,P2、P3 筒部
T 軌跡(走路)
1 Automatic charging system 10 Automatic charging device 11 Battery pack 12, 12A, 12B, 12C Power receiving unit 121, 121A, 121B, 121C Electrode (positive electrode)
121i Positive electrode current electrode section 121v Positive electrode voltage electrode section 122, 122A, 122B, 122C electrode (negative electrode)
122i Current electrode part for negative electrode 122v Voltage electrode part for negative electrode 123A, 124A, 123B, 124B, 123C, 124C Plane 125A, 126A, 125B, 126B, 125C, 126C Plane constituting the positive electrode 13 Temperature monitor unit 14 Drive Unit 15 Mobile side communication unit 16 Display unit (user interface)
17 Temperature monitor 18 Wheels (moving part)
20 Automatic mobile 21 Host computer 22 Charge control unit (contact state determination means)
23 Connection mechanism control unit (control means)
24 Charging side communication unit 25 Positive electrode arm (arm unit, connection mechanism)
26 Negative electrode arm (arm part, connection mechanism)
51,61 Approximately tubular insulator 52,62 Conductor (wiring area)
53,63 Support member 54,64 Joint 55l, 55r, 65l, 65r Spring 27,28,27A, 28A, 27B, 28B, 27C, 28C Power supply part (contact connection part)
71 Electrode part (positive electrode, electrode convex part)
71i Positive electrode current electrode part 71v Positive electrode voltage electrode part 72A, 73A, 72B, 73B, 72C, 73C Plane 81 electrode part (negative electrode electrode, electrode convex part)
81i Current electrode part for negative electrode 81v Voltage electrode part for negative electrode 82A, 83A, 82B, 83B, 82C, 83C Plane 74,84 temperature sensor (temperature detecting means) constituting the negative electrode
75,85 Proximity sensor (proximity detection means)
76,86 Insulation part P1, P2, P3 Cylinder part T locus (runway)

特許第5855894号公報Japanese Patent No. 5855894

Claims (14)

自動的に移動可能な自動移動体と、該自動移動体に対して給電をする自動充電装置を備える自動充電システムであって、
前記自動移動体は、電源となる充放電可能な蓄電池と、前記自動充電装置から給電され、前記蓄電池へ電力を供給する受電部とを備えており、
前記自動充電装置は、
前記自動移動体の前記受電部に接触給電する給電部と、
先端が前記給電部と接続され、前記給電部の位置を移動可能な接続機構と、
前記接続機構を制御駆動させる制御手段と、
前記給電部の温度を検出する温度検出手段と、
前記温度検出手段により検出された温度から前記給電部と前記受電部の接触状態を検知する接触状態判別手段と、を備えており、
前記制御手段は、前記接触状態判別手段で検知された前記接触状態に基づいて、大電流充電の前に、
微電流充電を行って前記温度検出手段によって前記給電部の温度を検出し、
前記接触状態判別手段は、前記微電流充電での前記給電部の温度に応じて、前記給電部と前記受電部との接触状態で接触面積が正常範囲内かどうかを検知し、
前記接触状態判別手段が前記接触状態で接触面積が小さいと検知した場合は、前記制御手段は、
前記接続機構を調整して、前記給電部と前記受電部との接触ズレを補正する、
自動充電システム。
An automatic charging system including an automatic moving body that can move automatically and an automatic charging device that supplies power to the automatic moving body.
The automatic mobile body includes a rechargeable and dischargeable storage battery that serves as a power source, and a power receiving unit that is supplied with power from the automatic charging device and supplies power to the storage battery.
The automatic charging device is
A power supply unit that contacts and supplies power to the power receiving unit of the automatic mobile body,
A connection mechanism whose tip is connected to the power supply unit and can move the position of the power supply unit,
A control means for controlling and driving the connection mechanism,
A temperature detecting means for detecting the temperature of the power feeding unit, and
It is provided with a contact state determining means for detecting a contact state between the power feeding unit and the power receiving unit from the temperature detected by the temperature detecting means.
The control means, based on the contact state detected by the contact state determination means, before the large current charge,
A small current charge is performed, and the temperature of the power feeding unit is detected by the temperature detecting means.
The contact state determining means detects whether or not the contact area is within the normal range in the contact state between the power feeding unit and the power receiving unit according to the temperature of the power feeding unit in the microcurrent charging.
When the contact state determining means detects that the contact area is small in the contact state, the control means determines the contact state.
The connection mechanism is adjusted to correct the contact deviation between the power feeding unit and the power receiving unit.
Automatic charging system.
自動的に移動可能な自動移動体と、該自動移動体に対して給電をする自動充電装置を備える自動充電システムであって、
前記自動移動体は、電源となる充放電可能な蓄電池と、前記自動充電装置から給電され、前記蓄電池へ電力を供給する受電部とを備えており、
前記自動充電装置は、
前記自動移動体の前記受電部に接触給電する給電部と、
先端が前記給電部と接続され、前記給電部の位置を移動可能な接続機構と、
前記接続機構を制御駆動させる制御手段と、
前記給電部の温度を検出する温度検出手段と、
前記温度検出手段により検出された温度から前記給電部と前記受電部の接触状態を検知する接触状態判別手段と、を備えており、
前記制御手段は、前記接触状態判別手段で検知された前記接触状態に基づいて、大電流充電の前に、前記接続機構を調整して、前記給電部と前記受電部との接触ズレを補正し、前記制御手段は、前記接続機構の位置を調整して、前記給電部と前記受電部との接触ズレを補正させる場合、調整のリトライ回数に閾値を設定し、
前記リトライ回数の閾値に達しても、接触ズレが補正できない場合は、前記自動移動体を前記自動充電装置から離間させてから近接させることで前記自動移動体の位置を調整する、
自動充電システム。
An automatic charging system including an automatic moving body that can move automatically and an automatic charging device that supplies power to the automatic moving body.
The automatic mobile body includes a rechargeable and dischargeable storage battery that serves as a power source, and a power receiving unit that is supplied with power from the automatic charging device and supplies power to the storage battery.
The automatic charging device is
A power supply unit that contacts and supplies power to the power receiving unit of the automatic mobile body,
A connection mechanism whose tip is connected to the power supply unit and can move the position of the power supply unit,
A control means for controlling and driving the connection mechanism,
A temperature detecting means for detecting the temperature of the power feeding unit, and
It is provided with a contact state determining means for detecting a contact state between the power feeding unit and the power receiving unit from the temperature detected by the temperature detecting means.
Based on the contact state detected by the contact state determining means, the control means adjusts the connection mechanism before charging the large current to correct the contact deviation between the power feeding unit and the power receiving unit. said control means adjusts the position of the connecting mechanism, case of correcting the contact deviation between said feeding portion and the power receiving unit, a threshold value is set retry count adjustment,
If the contact deviation cannot be corrected even if the threshold value of the number of retries is reached, the position of the automatic moving body is adjusted by separating the automatic moving body from the automatic charging device and then bringing the automatic moving body close to the automatic charging device.
Automatic charging system.
前記自動充電装置は、前記給電部と前記自動移動体の前記受電部との接触状態を検知して、接触/非接触を示す接続信号を出力する近接検出手段を備えており、
前記接続機構により前記給電部が前記自動移動体の前記受電部と接触可能な位置に移動した後、前記近接検出手段が前記接触が無しと検知すると、前記制御手段は、前記接続機構を調整して、前記給電部と前記受電部との接触ズレを補正させる、
請求項1に記載の自動充電システム。
The automatic charging device includes a proximity detecting means that detects a contact state between the power feeding unit and the power receiving unit of the automatic moving body and outputs a connection signal indicating contact / non-contact.
After the power feeding unit is moved to a position where it can contact the power receiving unit of the automatic moving body by the connection mechanism, when the proximity detecting means detects that there is no contact, the control means adjusts the connecting mechanism. To correct the contact deviation between the power feeding unit and the power receiving unit.
The automatic charging system according to claim 1.
前記給電部が先端に設けられる前記接続機構は、前記自動充電装置において、前記自動移動体の前記受電部と接触可能な位置と、充電を行わない場合の格納位置との間で、前記給電部の位置を、伸縮により移動可能なアーム部を含む、
請求項1乃至のいずれか一項に記載の自動充電システム。
In the automatic charging device, the connection mechanism provided with the power feeding unit at the tip thereof is located between a position where the automatic moving body can contact the power receiving unit and a storage position when charging is not performed. The position of, including the arm part that can be moved by expansion and contraction,
The automatic charging system according to any one of claims 1 to 3.
前記接触状態判別手段は、大電流充電を実施中、前記温度検出手段で検出される前記給電部の温度情報を監視し、温度が上昇閾値よりも高く上昇したときには前記大電流充電を停止し、前記制御手段は、前記アーム部を前記格納位置に格納する、
請求項記載の自動充電システム。
The contact state determining means monitors the temperature information of the power feeding unit detected by the temperature detecting means during the large current charging, and stops the large current charging when the temperature rises higher than the rise threshold value. The control means stores the arm portion in the storage position.
The automatic charging system according to claim 4.
前記制御手段は、充電による温度上昇のために前記大電流充電を停止させたとき、前記アーム部を前記格納位置に格納させた状態で、前記給電部の温度が所定の温度まで低下するまで待機させ、温度が前記所定の温度まで低下したら、前記アーム部を接触位置へと移動させて、再充電を開始させる、
請求項記載の自動充電システム。
When the large current charging is stopped due to the temperature rise due to charging, the control means waits until the temperature of the feeding portion drops to a predetermined temperature in a state where the arm portion is stored in the storage position. When the temperature drops to the predetermined temperature, the arm portion is moved to the contact position to start recharging.
The automatic charging system according to claim 5.
前記接続機構の前記アーム部は、複数の大きさの違う筒が重なり合ったテレスコピック構造により伸縮が可能であり、
前記複数の筒の側面の一部には伸縮方向に延在している配線領域が組み込まれ、前記配線領域によって、前記自動充電装置の本体と前記給電部とを接続する、
請求項乃至のいずれか一項に記載の自動充電システム。
The arm portion of the connection mechanism can be expanded and contracted by a telescopic structure in which a plurality of cylinders of different sizes are overlapped.
A wiring area extending in the expansion / contraction direction is incorporated in a part of the side surface of the plurality of cylinders, and the main body of the automatic charging device and the power feeding unit are connected by the wiring area.
The automatic charging system according to any one of claims 4 to 6.
前記自動移動体の前記受電部の前記給電部との接触する面は隣り合う2つの平面で構成されるV型の凹み形状であり、
前記自動充電装置の前記アーム部の先端に設けられる前記給電部は、前記受電部の前記V型の凹み形状と密接可能な2つの平面が、前記受電部に対して逆V型の凸形状である、
請求項乃至のいずれか一項に記載の自動充電システム。
The surface of the automatic moving body in contact with the power feeding portion of the power receiving portion has a V-shaped concave shape composed of two adjacent planes.
The power feeding portion provided at the tip of the arm portion of the automatic charging device has two planes that can be closely attached to the V-shaped concave shape of the power receiving portion, and has an inverted V-shaped convex shape with respect to the power receiving portion. is there,
The automatic charging system according to any one of claims 4 to 7.
前記接続機構において、前記給電部は支持部材で背面側が支持され、伸縮可能な前記アーム部と、前記支持部材と間には、前記アーム部に対する前記給電部の角度を可動にするジョイントが設けられ、
前記ジョイントの両側に、前記給電部を支持する支持部材を引っ張ることで、前記給電部と前記受電部との接触状態を保つバネが配置されている、
請求項に記載の自動充電システム。
In the connection mechanism, the back side of the feeding portion is supported by a support member, and a joint is provided between the expandable arm portion and the supporting member to move the angle of the feeding portion with respect to the arm portion. ,
On both sides of the joint, springs are arranged to maintain a contact state between the power feeding portion and the power receiving portion by pulling support members for supporting the feeding portion.
The automatic charging system according to claim 8.
前記接続機構の伸縮方向が水平方向である場合、
前記受電部の前記2つの平面は、前記伸縮方向に対して均等に傾斜しており、
前記給電部は、2つの平面を側面とする二等辺三角柱形状である、
請求項又はに記載の自動充電システム。
When the expansion / contraction direction of the connection mechanism is the horizontal direction,
The two planes of the power receiving portion are evenly inclined with respect to the expansion / contraction direction.
The feeding portion has an isosceles triangular prism shape with two planes as side surfaces.
The automatic charging system according to claim 8 or 9.
前記接続機構の伸縮方向が水平方向に対して傾斜している場合、
前記受電部の前記2つの平面のうちどちらか一方が前記伸縮方向と同一方向に延伸しており、どちらか他方が前記伸縮方向に対して傾斜しており、
前記給電部は前記伸縮方向と同一方向に延伸している面を有し、
前記接続機構が伸長する際、前記給電部の前記同一方向に延伸している面が、前記受電部の前記一方の面に沿って前記受電部の前記凹み形状の奥部に案内される、
請求項又はに記載の自動充電システム。
When the expansion / contraction direction of the connection mechanism is inclined with respect to the horizontal direction,
One of the two planes of the power receiving portion extends in the same direction as the expansion / contraction direction, and one of the two planes is inclined with respect to the expansion / contraction direction.
The feeding portion has a surface extending in the same direction as the expansion / contraction direction.
When the connection mechanism extends, the surface of the power feeding unit extending in the same direction is guided along the one surface of the power receiving unit to the inner portion of the recessed shape of the power receiving unit.
The automatic charging system according to claim 8 or 9.
前記自動充電装置は、前記接続機構のリトライの回数、前記給電部の上昇閾値温度、冷却閾値温度の少なくともいずれか一つを変更できるユーザーインターフェースを備えている、
請求項1乃至11のいずれか一項に記載の自動充電システム。
The automatic charging device includes a user interface capable of changing at least one of the number of retries of the connection mechanism, the rising threshold temperature of the feeding unit, and the cooling threshold temperature.
The automatic charging system according to any one of claims 1 to 11.
自動的に移動可能な自動移動体と、該自動移動体に対して給電をする自動充電装置を備える自動充電システムの自動充電方法であって、
前記自動移動体は、電源となる充放電可能な蓄電池と、前記自動充電装置から給電され、前記蓄電池へ電力を供給する受電部とを備えており、
前記自動移動体の前記受電部に接触給電する給電部が先端に接続される接続機構を前記受電部に対して接近させるステップと、
微電流充電を行って、前記給電部の温度を検出する温度検出ステップと、
前記微電流充電での前記給電部の温度に応じて、前記給電部と前記受電部との接触状態で接触面積が正常範囲内かどうか判断するステップと、
前記接触状態で接触面積が小さいと判断した場合は、前記接続機構の位置を調整して、前記給電部と前記受電部との接触ズレを補正させるステップと、前記接触ズレの補正後に、大電流充電を行うステップと、を有する、
自動充電方法。
It is an automatic charging method of an automatic charging system including an automatic moving body that can move automatically and an automatic charging device that supplies power to the automatic moving body.
The automatic mobile body includes a rechargeable and dischargeable storage battery that serves as a power source, and a power receiving unit that is supplied with power from the automatic charging device and supplies power to the storage battery.
A step of bringing a connection mechanism in which a power feeding unit that contacts and supplies power to the power receiving unit of the automatic moving body is connected to the tip thereof closer to the power receiving unit.
A temperature detection step of performing a small current charge to detect the temperature of the power feeding unit, and
A step of determining whether or not the contact area is within the normal range in the contact state between the power supply unit and the power receiving unit according to the temperature of the power supply unit in the microcurrent charging.
When it is determined that the contact area is small in the contact state, a large current is obtained after the step of adjusting the position of the connection mechanism to correct the contact deviation between the power feeding unit and the power receiving unit and the correction of the contact deviation. Has a step to charge,
Automatic charging method.
自動的に移動可能な自動移動体と、該自動移動体に対して給電をする自動充電装置を備える自動充電システムの自動充電方法であって、
前記自動移動体は、電源となる充放電可能な蓄電池と、前記自動充電装置から給電され、前記蓄電池へ電力を供給する受電部とを備えており、
前記自動移動体の前記受電部に接触給電する給電部が先端に接続される接続機構を前記受電部に対して接近させるステップと、
微電流充電を行って、前記給電部の温度を検出する温度検出ステップと、
前記微電流充電での前記給電部の温度に応じて、前記給電部と前記受電部との接触状態で接触不具合の有無を判断するステップと、
前記接触状態で接触不具合があると判断した場合は、前記接続機構の位置を調整して、前記給電部と前記受電部との接触ズレを補正させるステップと、
前記接触ズレの補正後に、大電流充電を行うステップと、を有し、
前記接続機構の位置を調整して、前記給電部と前記受電部との接触ズレを補正させる場合、調整のリトライ回数に閾値を設定し、
前記リトライ回数の閾値に達しても、接触ズレが補正できない場合は、前記自動移動体を前記自動充電装置から離間させてから近接させることで前記自動移動体の位置を調整する
自動充電方法。
It is an automatic charging method of an automatic charging system including an automatic moving body that can move automatically and an automatic charging device that supplies power to the automatic moving body.
The automatic mobile body includes a rechargeable and dischargeable storage battery that serves as a power source, and a power receiving unit that is supplied with power from the automatic charging device and supplies power to the storage battery.
A step of bringing a connection mechanism in which a power feeding unit that contacts and supplies power to the power receiving unit of the automatic moving body is connected to the tip thereof closer to the power receiving unit.
A temperature detection step of performing a small current charge to detect the temperature of the power feeding unit, and
A step of determining whether or not there is a contact failure in the contact state between the power feeding unit and the power receiving unit according to the temperature of the power feeding unit in the microcurrent charging.
When it is determined that there is a contact failure in the contact state, the step of adjusting the position of the connection mechanism to correct the contact misalignment between the power feeding unit and the power receiving unit, and
After the correction of the contact deviation, the step of performing a large current charge is provided.
When adjusting the position of the connection mechanism to correct the contact deviation between the power feeding unit and the power receiving unit, a threshold value is set for the number of adjustment retries.
If the contact deviation cannot be corrected even if the threshold value of the number of retries is reached, the position of the automatic moving body is adjusted by separating the automatic moving body from the automatic charging device and then bringing it close to the automatic moving body.
Automatic charging method.
JP2017005930A 2017-01-17 2017-01-17 Automatic charging system and automatic charging method Active JP6870335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005930A JP6870335B2 (en) 2017-01-17 2017-01-17 Automatic charging system and automatic charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005930A JP6870335B2 (en) 2017-01-17 2017-01-17 Automatic charging system and automatic charging method

Publications (2)

Publication Number Publication Date
JP2018117433A JP2018117433A (en) 2018-07-26
JP6870335B2 true JP6870335B2 (en) 2021-05-12

Family

ID=62984458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005930A Active JP6870335B2 (en) 2017-01-17 2017-01-17 Automatic charging system and automatic charging method

Country Status (1)

Country Link
JP (1) JP6870335B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799631B (en) * 2021-09-03 2023-07-14 恩益达电源科技(苏州)有限公司 Intelligent charging equipment and application method thereof
CN117996924B (en) * 2024-04-03 2024-06-04 江苏科萝交通科技有限公司 Battery charging device and charging method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118743U (en) * 1991-04-03 1992-10-23 株式会社豊田自動織機製作所 Automatic charging device for vehicles
JP4494760B2 (en) * 2003-11-12 2010-06-30 パナソニック電工株式会社 Power supply device for moving body
JP2006081310A (en) * 2004-09-09 2006-03-23 Matsushita Electric Works Ltd Feeder device
JP2010187833A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Ultrasonic probe charger, charge method, and ultrasonic diagnostic apparatus
DE102009034886A1 (en) * 2009-07-27 2011-02-03 Rwe Ag Charging cable plug for connecting an electric vehicle to a charging station
JP5914879B2 (en) * 2012-10-31 2016-05-11 パナソニックIpマネジメント株式会社 Non-contact power supply system, movable device, and control method for power supply device of non-contact power supply system

Also Published As

Publication number Publication date
JP2018117433A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
CN108377009B (en) Power supply system
US7323846B2 (en) Battery having an extended terminal
JP6870335B2 (en) Automatic charging system and automatic charging method
EP3471991B1 (en) Device for charging an electric vehicle and a method for verifying the contact between a device for charging an electric vehicle and the electric vehicle
US20040247994A1 (en) Storage battery device and power source apparatus comprising it
US20150258908A1 (en) Battery charging management system of automated guided vehicle and battery charging management method
JP6902201B2 (en) Vehicle power supply
WO2012090473A1 (en) Battery module charging system
US20050156567A1 (en) Rechargeable electrical power supply unit for an electronic device of a bicycle
CN105264689A (en) Circuit board for secondary battery and battery pack comprising same
KR20190087910A (en) Drone recharging system and dron station with the same
JP2008129696A (en) Mobile robot, mobile robot charging system, and mobile robot charging method
JP2017046490A (en) Charger
JP2017135035A (en) System of detecting relay fixation
JP2009026775A (en) External power connecting device for mobile robot
US11372044B2 (en) System and method for detecting fault of quick charge relay
US11127989B2 (en) Battery pack
CN110509795B (en) Automatic charging method and device for mobile trolley and plug-in type charging male head assembly
US20230347772A1 (en) Status detection system and connection cable
EP3141416A2 (en) Fixing device, charging system using the same, fixing method thereof and wheel axis kits thereof
JP4540429B2 (en) Power supply for vehicle
JP6787208B2 (en) Battery pack charge control device and charge control method
CN210191183U (en) Charging stand, charging head, charging system, unmanned guided vehicle and power supply device
JP6636793B2 (en) Battery pack
JP2020072611A (en) Vehicle charging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R151 Written notification of patent or utility model registration

Ref document number: 6870335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151