JP6868761B2 - On-off valve for fluid and air conditioner using it - Google Patents

On-off valve for fluid and air conditioner using it Download PDF

Info

Publication number
JP6868761B2
JP6868761B2 JP2015245858A JP2015245858A JP6868761B2 JP 6868761 B2 JP6868761 B2 JP 6868761B2 JP 2015245858 A JP2015245858 A JP 2015245858A JP 2015245858 A JP2015245858 A JP 2015245858A JP 6868761 B2 JP6868761 B2 JP 6868761B2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
less
air conditioner
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015245858A
Other languages
Japanese (ja)
Other versions
JP2017110265A (en
Inventor
正雄 犬井
正雄 犬井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59056321&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6868761(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015245858A priority Critical patent/JP6868761B2/en
Priority to DE112016005810.1T priority patent/DE112016005810T5/en
Priority to MYPI2017702139A priority patent/MY191315A/en
Priority to CN201680007752.8A priority patent/CN107208190B/en
Priority to PCT/JP2016/005106 priority patent/WO2017104127A1/en
Publication of JP2017110265A publication Critical patent/JP2017110265A/en
Application granted granted Critical
Publication of JP6868761B2 publication Critical patent/JP6868761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/02Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle
    • F16K1/04Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle with a cut-off member rigid with the spindle, e.g. main valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Valve Housings (AREA)
  • Temperature-Responsive Valves (AREA)
  • Lift Valve (AREA)

Description

本発明は、冷凍サイクルの冷媒配管系に介装する二方弁や三方弁等の流体用開閉弁に関し、特に環境負荷を低減可能な開閉弁とそれを用いた空気調和機に関するものである。 The present invention relates to an on-off valve for fluids such as a two-way valve and a three-way valve interposed in a refrigerant piping system of a refrigeration cycle, and particularly to an on-off valve capable of reducing an environmental load and an air conditioner using the on-off valve.

一般に、冷凍サイクルを用いた機器、例えば空気調和機は、室内機と室外機を冷媒配管により接続して構成され、その冷媒回路には、配管接続後にエアーパージ及び冷媒封入するためサービスポートを有する三方弁を備えている(例えば、特許文献1参照)。 Generally, equipment using a refrigeration cycle, for example, an air conditioner is configured by connecting an indoor unit and an outdoor unit by a refrigerant pipe, and the refrigerant circuit has a service port for air purging and filling the refrigerant after the pipe is connected. It is provided with a three-way valve (see, for example, Patent Document 1).

図7は特許文献1記載の空気調和機を示し、この空気調和機は室外機100と室内機101を冷媒配管103a、103bで接続して構成してあり、その冷媒配管103a、103bの接続部に二方弁104と三方弁105を介装している。そして、上記三方弁105のサービスポート106を開閉して配管接続後のエアーパージ及び冷媒封入を行っている(特許文献1の段落0044)。 FIG. 7 shows an air conditioner described in Patent Document 1, which is configured by connecting an outdoor unit 100 and an indoor unit 101 with refrigerant pipes 103a and 103b, and connecting portions of the refrigerant pipes 103a and 103b. A two-way valve 104 and a three-way valve 105 are interposed in the air conditioner. Then, the service port 106 of the three-way valve 105 is opened and closed to perform air purging and refrigerant filling after connecting the pipes (paragraph 0044 of Patent Document 1).

特開2009−250274号公報Japanese Unexamined Patent Publication No. 2009-250274

上記従来の空気調和機は、三方弁105を利用して冷媒を漏洩させることなくエアーパージすることができ、冷媒を漏出させてしまって環境に負荷を与えるようなことなく施工性することができる利点がある。 The conventional air conditioner can perform air purging without leaking the refrigerant by using the three-way valve 105, and can be installed without causing a load on the environment by leaking the refrigerant. There are advantages.

しかしながら、上記二方弁104や三方弁105は形状が複雑で高い精度を必要とするため、加工性の良い材料用いて構成してあり、現状では鉛を含む黄銅合金によって形成してある。この黄銅合金は、耐食性、被削性、機械的性質などの特性に優れるため複雑かつ精度の高い開閉弁には好適な材料であるが、鉛を含んでいるため開閉弁が環境負荷の大きな部品となっている。 However, since the two-way valve 104 and the three-way valve 105 have a complicated shape and require high accuracy, they are constructed by using a material having good workability, and are currently formed of a brass alloy containing lead. This brass alloy is a suitable material for complicated and highly accurate on-off valves because it has excellent properties such as corrosion resistance, machinability, and mechanical properties. However, because it contains lead, the on-off valve is a component with a large environmental load. It has become.

そこで、上記開閉弁を、鉛含有量が1000ppm以下と実質的に鉛レスといえる黄銅合金製の開閉弁とすることが考えられる。 Therefore, it is conceivable that the on-off valve is made of a brass alloy having a lead content of 1000 ppm or less, which can be said to be substantially lead-less.

しかしながら、上記開閉弁を鉛レスとすると、開閉弁を構成する黄銅合金が大気中に含まれるアンモニアに反応して応力腐食割れを生じてしまう。 However, if the on-off valve is lead-less, the brass alloy constituting the on-off valve reacts with ammonia contained in the atmosphere to cause stress corrosion cracking.

特に、冷媒配管に介装されて使用される二方弁や三方弁等の流体用開閉弁は、室外機に設けられていて、常時大気に曝露されており、この大気は犬、猫等の小動物の***物から発生するアンモニアに触れやすくなっているところから、前記した応力腐食割れが生じやすい。 In particular, fluid on-off valves such as two-way valves and three-way valves that are used via refrigerant piping are provided in the outdoor unit and are constantly exposed to the atmosphere, and this atmosphere is used by dogs, cats, etc. The stress corrosion cracking described above is likely to occur because it is easily exposed to the ammonia generated from the excrement of small animals.

また、これに加え、冷媒配管に介装されて使用される二方弁や三方弁等の流体用開閉弁は、当該開閉弁内を流れる冷媒によってその温度が60℃程度と大気よりもかなり高くなることもあってアンモニアとの反応に対する感度が高くなり、応力腐食割れが生じやすくなる、という特殊かつ過酷な使用条件下にある。 In addition to this, fluid on-off valves such as two-way valves and three-way valves, which are used by being interposed in the refrigerant piping, have a temperature of about 60 ° C, which is considerably higher than that of the atmosphere, due to the refrigerant flowing in the on-off valve. It is under special and harsh usage conditions that the sensitivity to the reaction with ammonia becomes high and stress corrosion cracking easily occurs.

そこで本発明はこのような点をも考慮して鉛レス化を推し進めなしたもので、応力腐食割れを実用レベルで防止した実質的鉛レスの流体用開閉弁及びそれを用いた空気調和機の提供を目的としたものである。 Therefore, the present invention has been promoted to lead-less in consideration of such a point, and is a substantially lead-less fluid on-off valve that prevents stress corrosion cracking at a practical level and an air conditioner using the same. It is intended to be provided.

本発明は、上記目的を達成するため、鉛の含有量が1000ppm以下であって、Snを0.8%以上含む黄銅合金で流体用開閉弁を形成してある。 In order to achieve the above object, the present invention forms a fluid on-off valve with a brass alloy having a lead content of 1000 ppm or less and a Sn content of 0.8% or more.

これにより、冷媒配管に介装されて使用されることにより、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアとの反応が進みやすい流体用開閉弁であっても、応力腐食割れを防止することができる。 As a result, even if it is a fluid on-off valve that is exposed to the atmosphere containing a large amount of ammonia and whose temperature is higher than that of the atmosphere and easily reacts with ammonia by being used by being interposed in a refrigerant pipe. Stress corrosion cracking can be prevented.

本発明は、環境負荷を低減しつつ、流体用開閉弁の応力腐食割れを防止することができ、流体用開閉弁及びこれを用いた空気調和機の信頼性を向上させることができる。 INDUSTRIAL APPLICABILITY The present invention can prevent stress corrosion cracking of a fluid on-off valve while reducing an environmental load, and can improve the reliability of a fluid on-off valve and an air conditioner using the same.

本発明の実施の形態1における空気調和機の冷媒回路図Refrigerant circuit diagram of the air conditioner according to the first embodiment of the present invention (a)同空気調和機の室外機の外観を示す正面図、(b)同室外機の配管カバーの一部を破断して示す側面図(A) Front view showing the appearance of the outdoor unit of the air conditioner, (b) Side view showing a part of the piping cover of the outdoor unit broken. 同空気調和機の三方弁を示す断面図Cross-sectional view showing the three-way valve of the air conditioner 同空気調和機の三方弁を示す分解断面図An exploded sectional view showing a three-way valve of the air conditioner. 本発明の試験品の試験状態を示す写真Photograph showing the test state of the test product of the present invention 本発明の実施の形態2における空気調和機の二方弁を示す断面図Sectional drawing which shows the two-way valve of the air conditioner in Embodiment 2 of this invention 従来の空気調和機の冷媒回路図Refrigerant circuit diagram of conventional air conditioner

第1の発明は、鉛の含有量が1000ppm以下であって、Snを0.8%以上含む黄銅合金で流体用開閉弁を形成してある。 In the first invention, the on-off valve for a fluid is formed of a brass alloy having a lead content of 1000 ppm or less and a Sn content of 0.8% or more.

これにより、冷媒配管に介装されて使用されることにより、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアと反応しやすい流体用開閉弁であっても、応力腐食割れを防止することができる。 As a result, even if the on-off valve for a fluid is exposed to an atmosphere containing a large amount of ammonia and has a higher temperature than the atmosphere and easily reacts with ammonia by being used by being interposed in a refrigerant pipe, stress corrosion is caused. Cracking can be prevented.

第2の発明は、第1の発明において、流体用開閉弁は更にBiを1.6%以上含む黄銅合金で形成してある。 In the second invention, in the first invention, the on-off valve for fluid is further formed of a brass alloy containing 1.6% or more of Bi.

これにより、鉛レス黄銅合金としていてもBiによって良好な加工性を維持することができる。 As a result, even if it is a leadless brass alloy, good workability can be maintained by Bi.

第3の発明は、鉛の含有量が1000ppm以下であって、Siを0.001%以上(0.001%を含まず)含む黄銅合金で流体用開閉弁を形成してある。 In the third invention, the on-off valve for a fluid is formed of a brass alloy having a lead content of 1000 ppm or less and a Si content of 0.001% or more (excluding 0.001%).

これにより、冷媒配管に介装されて使用されることにより、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアと反応しやすい流体用開閉弁であっても、応力腐食割れを防止することができる。 As a result, even if the on-off valve for a fluid is exposed to an atmosphere containing a large amount of ammonia and has a higher temperature than the atmosphere and easily reacts with ammonia by being used by being interposed in a refrigerant pipe, stress corrosion is caused. Cracking can be prevented.

第4の発明は、前記第1〜第3のいずれかの発明の流体用開閉弁を設けた空気調和機である。 A fourth invention is an air conditioner provided with an on-off valve for a fluid according to any one of the first to third inventions.

これにより、流体用開閉弁の応力腐食割れを防止し、流体用開閉弁及びこれを用いた空気調和機の信頼性を低下させることなく環境負荷を低減させることができる。 As a result, stress corrosion cracking of the fluid on-off valve can be prevented, and the environmental load can be reduced without deteriorating the reliability of the fluid on-off valve and the air conditioner using the same.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は本発明の実施の形態1における空気調和機の冷媒回路図、図2は(a)同空気調和機の室外機の外観を示す正面図、(b)同室外機の配管カバーの一部を破断して示す側面図、図3は同空気調和機の三方弁を示す断面図、図4は同空気調和機の三方弁を示す分解断面図である。
(Embodiment 1)
FIG. 1 is a refrigerant circuit diagram of the air conditioner according to the first embodiment of the present invention, FIG. 2 is (a) a front view showing the appearance of the outdoor unit of the air conditioner, and (b) one of the piping covers of the outdoor unit. A side view showing a portion is broken, FIG. 3 is a cross-sectional view showing a three-way valve of the air conditioner, and FIG. 4 is an exploded cross-sectional view showing the three-way valve of the air conditioner.

図1において、本実施の形態における空気調和機は、冷媒を圧縮する圧縮機1、冷房暖房運転時の冷媒回路を切り替える四方弁2、冷媒と外気の熱を交換する室外熱交換器3、冷媒を減圧する減圧器4を有す室外機5と、冷媒と室内空気の熱を交換する室内熱交換器6を有す室内機7と、室内機7と室外機5を接続する液接続配管8、ガス接続配管9とで構成されている。そして、室外機5の上記ガス接続配管9への接続口と四方弁2との間の配管に第1の開閉弁10が、液接続配管8への接続口と減圧器4との間の配管に第2の開閉弁11が、それぞれ設けられている。 In FIG. 1, the air conditioner according to the present embodiment includes a compressor 1 for compressing a refrigerant, a four-way valve 2 for switching a refrigerant circuit during cooling and heating operation, an outdoor heat exchanger 3 for exchanging heat between the refrigerant and the outside air, and a refrigerant. An outdoor unit 5 having a compressor 4 for depressurizing the refrigerant, an indoor unit 7 having an indoor heat exchanger 6 for exchanging heat between the refrigerant and the indoor air, and a liquid connection pipe 8 connecting the indoor unit 7 and the outdoor unit 5. , It is composed of a gas connection pipe 9. Then, a first on-off valve 10 is provided in the pipe between the connection port of the outdoor unit 5 to the gas connection pipe 9 and the four-way valve 2, and a pipe between the connection port to the liquid connection pipe 8 and the decompressor 4. A second on-off valve 11 is provided in each of the above.

また、上記圧縮機1、四方弁2、室外熱交換器3、減圧器4、第2の開閉弁11、液接続配管8、室内熱交換器6、ガス接続配管9、第1の開閉弁10を配管で環状に接続し冷媒回路を構成している。 Further, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the decompressor 4, the second on-off valve 11, the liquid connection pipe 8, the indoor heat exchanger 6, the gas connection pipe 9, and the first on-off valve 10. Is connected in a ring shape by piping to form a refrigerant circuit.

上記第1の開閉弁10は配管接続後のエアーパージ及び冷媒封入をおこなう三方弁で構成してあり、第2の開閉弁11は二方弁で構成してある。そして、上記いずれの開閉弁10、11も、図2に示すように室外機5の側面に露出させて設け、配管カバー5aによって覆っているが、地面等に近い位置で大気に曝露されるような形となっている。そして上記いずれの開閉弁10、11も黄銅合金を用い鍛造によって形成してある。 The first on-off valve 10 is composed of a three-way valve that purges air after connecting the pipe and fills the refrigerant, and the second on-off valve 11 is composed of a two-way valve. As shown in FIG. 2, any of the above-mentioned on-off valves 10 and 11 are provided so as to be exposed on the side surface of the outdoor unit 5 and covered with the piping cover 5a, but are exposed to the atmosphere at a position close to the ground or the like. It has a good shape. All of the above-mentioned on-off valves 10 and 11 are formed by forging using a brass alloy.

また本実施の形態による空気調和機を構成する冷媒回路には、テトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した環境負荷の小さいハイドロフルオロオレフィン冷媒を使用している。具体的には、R32等のHFC系冷媒やHFO−1234yf等炭素の二重結合を持つフッ化水素系冷媒の単一冷媒またはそれらを主成分とする混合冷媒を使用している。 Further, in the refrigerant circuit constituting the air conditioner according to the present embodiment, tetrafluoropropene or trifluoropropene is used as a base component, and difluoromethane or pentafluoroethane or tetrafluoroethane is used, and the global warming potential is 5 or more, 750. A hydrofluoroolefin refrigerant having a small environmental load is used, which is a mixture of two components or a mixture of three components, preferably 350 or less, and more preferably 150 or less, respectively. Specifically, a single refrigerant such as an HFC-based refrigerant such as R32, a hydrogen fluoride-based refrigerant having a carbon double bond such as HFO-1234yf, or a mixed refrigerant containing them as a main component is used.

冷房運転時には、四方弁2を圧縮機1の吐出側と室外熱交換器3とが連通するように切り換える。これにより、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通って室外熱交換器3に送られる。そして、外気と熱交換して放熱し、高圧の液冷媒となり、減圧器4に送られる。減圧器4では減圧されて低温低圧の二相冷媒となり、第2の開閉弁11、液接続配管8を通って室内機7に送られる。室内機7では、冷媒は室内熱交換器6に入り室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時室内空気は冷却されて室内を冷房する。さらに冷媒はガス接続配管9を通って、室外機5に戻り、第1の開閉弁10、四方弁2を経由して圧縮機1に戻される。 During the cooling operation, the four-way valve 2 is switched so that the discharge side of the compressor 1 and the outdoor heat exchanger 3 communicate with each other. As a result, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is sent to the outdoor heat exchanger 3 through the four-way valve 2. Then, it exchanges heat with the outside air to dissipate heat, becomes a high-pressure liquid refrigerant, and is sent to the decompressor 4. In the pressure reducing device 4, the pressure is reduced to become a low-temperature low-pressure two-phase refrigerant, which is sent to the indoor unit 7 through the second on-off valve 11 and the liquid connection pipe 8. In the indoor unit 7, the refrigerant enters the indoor heat exchanger 6, exchanges heat with the indoor air, absorbs heat, evaporates and vaporizes, and becomes a low-temperature gas refrigerant. At this time, the indoor air is cooled to cool the room. Further, the refrigerant returns to the outdoor unit 5 through the gas connection pipe 9, and is returned to the compressor 1 via the first on-off valve 10 and the four-way valve 2.

暖房運転時には、四方弁2を圧縮機1の吐出側と第1の開閉弁10とが連通するように切り換える。これにより、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2、第1の開閉弁10、ガス接続配管9を通り、室内機7に送られる。高温高圧の冷
媒は室内熱交換器6に入り、室内空気と熱交換して放熱し、冷却され高圧の液冷媒となる。この時、室内空気は加熱されて室内を暖房する。その後、冷媒は液接続配管8を通って、第2の開閉弁11、減圧器4に送られ、減圧器4において減圧されて低温低圧の二相冷媒となり、室外熱交換器3に送られて外気と熱交換して蒸発気化し、四方弁2を経由して圧縮機1へ戻される。
During the heating operation, the four-way valve 2 is switched so that the discharge side of the compressor 1 and the first on-off valve 10 communicate with each other. As a result, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is sent to the indoor unit 7 through the four-way valve 2, the first on-off valve 10, and the gas connection pipe 9. The high-temperature and high-pressure refrigerant enters the indoor heat exchanger 6, exchanges heat with the indoor air to dissipate heat, and is cooled to become a high-pressure liquid refrigerant. At this time, the indoor air is heated to heat the room. After that, the refrigerant is sent to the second on-off valve 11 and the compressor 4 through the liquid connection pipe 8, is depressurized by the compressor 4, becomes a low-temperature low-pressure two-phase refrigerant, and is sent to the outdoor heat exchanger 3. It exchanges heat with the outside air, evaporates and vaporizes, and is returned to the compressor 1 via the four-way valve 2.

次に図2、図3を用いて、本実施の形態の空気調和機に用いている流体用開閉弁の一つである第1の開閉弁10の構成を説明する。 Next, the configuration of the first on-off valve 10, which is one of the on-off valves for fluid used in the air conditioner of the present embodiment, will be described with reference to FIGS. 2 and 3.

第1の開閉弁10は三方弁であり、その弁本体21は、室内配管側ポート22と、室外配管側ポート23と、サービスポート24と、弁棒25が螺着される弁棒受入部26が設けられている。 The first on-off valve 10 is a three-way valve, and the valve body 21 is a valve rod receiving portion 26 to which the indoor piping side port 22, the outdoor piping side port 23, the service port 24, and the valve rod 25 are screwed. Is provided.

室内配管側ポート22には、室内熱交換器6に接続されたガス接続配管9がフレアナット27を介して接続され、室外配管側ポート23には、銅管28がフラックス剤を介してロウ付け接続されて同様に室外熱交換器3側からの配管29(図1の冷媒回路図参照)に接続されるようになっている。 A gas connection pipe 9 connected to the indoor heat exchanger 6 is connected to the indoor pipe side port 22 via a flare nut 27, and a copper pipe 28 is brazed to the outdoor pipe side port 23 via a flux agent. It is connected and similarly connected to the pipe 29 (see the refrigerant circuit diagram of FIG. 1) from the outdoor heat exchanger 3 side.

サービスポート24には、バルブコア30が挿入されておりサービスポートキャップ31が螺着されている。通常は密封されているが、空気調和機の設置時には、このサービスポート24から真空引きを行う。 A valve core 30 is inserted into the service port 24, and a service port cap 31 is screwed into the service port 24. Normally, it is sealed, but when the air conditioner is installed, vacuum is drawn from the service port 24.

弁棒受入部26には弁棒キャップ32が螺着してあり、弁棒受入部26内に外部から塵埃が侵入するのを防止している。弁棒受入部26内の弁棒25は、図4に示すように雄ネジ部25a、六角レンチ用挿入穴25b、Oリング25cを介装する溝部25dを一体に備えている。弁棒25の雄ネジ部25aは、弁棒受入部26に設けた雌ネジ部26aと螺合しており、六角レンチ用挿入穴25bに六角レンチ(図示せず)を挿入して回転操作することにより弁棒25を進退させ、室外配管側ポート弁座23aを開閉することができるようになっている。 A valve rod cap 32 is screwed to the valve rod receiving portion 26 to prevent dust from entering the valve rod receiving portion 26 from the outside. As shown in FIG. 4, the valve rod 25 in the valve rod receiving portion 26 is integrally provided with a male screw portion 25a, a hexagon wrench insertion hole 25b, and a groove portion 25d for interposing an O-ring 25c. The male screw portion 25a of the valve rod 25 is screwed with the female screw portion 26a provided in the valve rod receiving portion 26, and a hexagon wrench (not shown) is inserted into the hexagon wrench insertion hole 25b to rotate the valve rod 25. As a result, the valve rod 25 can be moved forward and backward, and the outdoor piping side port valve seat 23a can be opened and closed.

上記したような構成からなる三方弁の弁本体21は既述した通り黄銅合金を用い鍛造によって形成してあり、その黄銅合金は鉛の含有量が1000ppm以下の鉛レス黄銅合金が用いてある。 The valve body 21 of the three-way valve having the above-described configuration is formed by forging using a brass alloy as described above, and the brass alloy is a leadless brass alloy having a lead content of 1000 ppm or less.

上記鉛の含有量が1000ppm以下とした鉛レス黄銅合金は背景技術でも述べたように大気中に含まれる開閉弁を構成する黄銅合金がアンモニアに反応して応力腐食割れを生じてしまう。 In the lead-less brass alloy having a lead content of 1000 ppm or less, as described in the background art, the brass alloy constituting the on-off valve contained in the atmosphere reacts with ammonia to cause stress corrosion cracking.

そこで、この発明では、開閉弁は、鉛の含有量が1000ppm以下であって、Snを0.220%以上(0.220%を含まず)、好ましくは更にBiを1.320%以上(1.320%を含まず)含む鉛レス黄銅合金で形成してある。 Therefore, in the present invention, the on-off valve has a lead content of 1000 ppm or less, Sn of 0.220% or more (excluding 0.220%), and preferably Bi of 1.320% or more (1). It is made of a leadless brass alloy containing (not including 320%).

表1は当該鉛レス黄銅合金で形成した三方弁の応力腐食割れを評価するために行ったアンモニア応力腐食割れ試験の結果を示す。 Table 1 shows the results of the ammonia stress corrosion cracking test conducted to evaluate the stress corrosion cracking of the three-way valve formed of the leadless brass alloy.

試験は、図5に示すように14%のアンモニア水を入れたデシケータ内のアンモニア水上方に通気板を配置し、その上に後述する試験品を置き、当該試験品をアンモニア雰囲気中に曝露させ、72時間放置した後、取り出して硝酸液で洗浄し目視にて観察した。観察の結果、ひび割れがないものが○、ひび割れがあるものは×である。なお、アンモニア水の上面と通気板との距離tは約100mmであり、試験品はアンモニア水と非接触の状態
である。
In the test, as shown in FIG. 5, a ventilation plate is placed above the ammonia water in the desiccator containing 14% ammonia water, and a test product described later is placed on the ventilation plate, and the test product is exposed to the ammonia atmosphere. After leaving it for 72 hours, it was taken out, washed with a nitric acid solution, and visually observed. As a result of observation, those without cracks are ○, and those with cracks are ×. The distance t between the upper surface of the ammonia water and the ventilation plate is about 100 mm, and the test product is in a non-contact state with the ammonia water.

また、試験品は図2に示す三方弁で、室内配管側ポート22と、サービスポート24と、弁棒受入部26の各部寸法と締め付けトルクは表2の通りである。 The test product is a three-way valve shown in FIG. 2, and the dimensions and tightening torque of each part of the indoor piping side port 22, the service port 24, and the valve stem receiving portion 26 are as shown in Table 2.

Figure 0006868761
Figure 0006868761

Figure 0006868761
Figure 0006868761

なお、応力腐食割れとしては締め付けトルクが大きい室内配管側ポート22部分ならびにフレアナット27が最も過酷な条件となっているため、この室内配管側ポート22部分ならびにフレアナット27の結果で評価した。 Since the indoor piping side port 22 portion and the flare nut 27 having a large tightening torque are the most severe conditions for stress corrosion cracking, the results of the indoor piping side port 22 portion and the flare nut 27 were evaluated.

この試験結果から、鉛の含有量を1000ppm以下とした鉛レス黄銅合金であっても、Snを0.8%以上、好ましくは1.050%以上含む黄銅合金とすれば応力腐食割れを防止できることがわかる。 From this test result, even if the lead-less brass alloy has a lead content of 1000 ppm or less, stress corrosion cracking can be prevented if the brass alloy contains Sn of 0.8% or more, preferably 1.050% or more. I understand.

これにより、冷媒配管に介装されて使用される二方弁や三方弁等の流体用開閉弁、すなわち、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアと反応しやすい流体用開閉弁であっても、応力腐食割れを防止することができる。 As a result, it is exposed to a fluid on-off valve such as a two-way valve or a three-way valve used by being interposed in a refrigerant pipe, that is, an atmosphere containing a large amount of ammonia, and the temperature becomes higher than that of the atmosphere to react with ammonia. Even an easy on-off valve for fluid can prevent stress corrosion cracking.

また、この実施の形態で示したようにR32等のHFC系冷媒やHFO−1234yf等炭素の二重結合を持つフッ化水素系冷媒の単一冷媒またはそれらを主成分とする温暖化係数の低い冷媒を用いた空気調和機にあっては、圧縮機による冷媒圧縮圧が高く、従来の例えば410A冷媒を用いた空気調和機に使用している開閉弁に比べ高い圧縮応力を受けることになっても強力に応力腐食割れを防止することができる。従って、上記低温暖化係数冷媒の採用と鉛レス黄銅合金製開閉弁の使用とによって環境負荷を大きく軽減することができる。 Further, as shown in this embodiment, a single refrigerant such as an HFC-based refrigerant such as R32 or a hydrogen fluoride-based refrigerant having a carbon double bond such as HFO-1234yf or a single refrigerant containing them as a main component has a low warming coefficient. In an air conditioner using a refrigerant, the refrigerant compression pressure by the compressor is high, and a higher compressive stress is applied than the on-off valve used in a conventional air conditioner using a 410A refrigerant, for example. Can also strongly prevent stress corrosion cracking. Therefore, the environmental load can be greatly reduced by adopting the above-mentioned low global warming coefficient refrigerant and using a leadless brass alloy on-off valve.

なお、Snは過剰に含有すると鋳造品内部に巣が発生し、切削加工性を低下させ、或いは伸びを低下させるので、2.5%以下、好ましくは2.0%以下にするのが良い(Sn:0.220%以上(0.220%を含まず)〜2.5%以下)。 If Sn is contained in an excessive amount, cavities are generated inside the cast product, which lowers the machinability or the elongation. Therefore, it is preferable to set it to 2.5% or less, preferably 2.0% or less (). Sn: 0.220% or more (excluding 0.220%) to 2.5% or less).

また、Biは1.320%以上(1.320%を含まず)、好ましくは1.890%以上にすればよい。このBiは切削性を向上させる特性を持つので、これを含有させることによって鉛レス黄銅合金としたことによって生じる切削等の加工性の悪化を抑制することができ、これにより複数のポートを有していてそのポート内外周にネジを形成する開閉弁の生産性を高めることができ、好ましい。このBiは過剰に含有すると、引張強さ、伸びを低下させるので、2.120%未満にするのが好ましい(Bi:1.320%以上(1.320%を含まず)〜2.120%未満)。 Further, Bi may be 1.320% or more (excluding 1.320%), preferably 1.890% or more. Since this Bi has a property of improving machinability, it is possible to suppress deterioration of workability such as cutting caused by making a leadless brass alloy by containing it, thereby having a plurality of ports. This is preferable because it can increase the productivity of the on-off valve that forms a screw on the inner and outer circumferences of the port. If this Bi is excessively contained, the tensile strength and elongation are lowered, so it is preferably less than 2.120% (Bi: 1.320% or more (excluding 1.320%) to 2.120%. Less than).

なお、上記試験で用いた鉛レス黄銅合金は、表1に示すようにCuが58.300%〜61.720%で、Snが0.220%〜1.050%以下、Biが1.320%以上(1.320%を含まず)〜2.120%未満で、残部がZnと不純物からなっているが、Cuは加工性等の観点から59.500%以上(59.500%を含まず)が良く、66.00%までよいものである(Cu:59.500%以上(59.500%を含まず)〜66.00%以下)。 As shown in Table 1, the leadless brass alloy used in the above test had Cu of 58.300% to 61.720%, Sn of 0.220% to 1.050% or less, and Bi of 1.320. % Or more (excluding 1.320%) to less than 2.120%, and the balance is composed of Zn and impurities, but Cu contains 59.500% or more (59.500%) from the viewpoint of workability and the like. (Zinc) is good, up to 66.00% (Cu: 59.500% or more (not including 59.500%) to 66.00% or less).

(実施の形態2)
本実施の形態は、鉛の含有量を1000ppm以下として応力腐食割れを抑制した鉛レス黄銅合金製開放弁の他の例を示す。
(Embodiment 2)
This embodiment shows another example of a leadless brass alloy open valve in which stress corrosion cracking is suppressed by setting the lead content to 1000 ppm or less.

この開閉弁の鉛レス黄銅合金は、鉛の含有量が1000ppm以下であって、Siを含有する、好ましくはSiを0.001%以上、より好ましくはSiを3.060%以上含む黄銅合金で開閉弁を形成してある。 The lead-less brass alloy of this on-off valve is a brass alloy having a lead content of 1000 ppm or less and containing Si, preferably 0.001% or more of Si, and more preferably 3.060% or more of Si. An on-off valve is formed.

表3は当該鉛レス黄銅合金で形成した三方弁の応力腐食割れを評価するために行ったアンモニア応力腐食割れ試験の結果を示す。 Table 3 shows the results of the ammonia stress corrosion cracking test conducted to evaluate the stress corrosion cracking of the three-way valve formed of the leadless brass alloy.

試験は、実施の形態1の場合と同様14%のアンモニア水を入れたデシケータ内に通気板を配置し、その上に後述する試験品を置き、当該試験品をアンモニア雰囲気中に曝露させ、72時間放置した後、取り出して硝酸液で洗浄し目視にて観察した。観察の結果、ひび割れがないものが○、ひび割れがあるものは×である。なお、アンモニア水の上面と中板との距離tは約100mmであり、試験品はアンモニア水と非接触の状態である。 In the test, as in the case of the first embodiment, a ventilation plate is placed in a desiccator containing 14% ammonia water, a test product described later is placed on the desiccator, and the test product is exposed to an ammonia atmosphere. After leaving it for a while, it was taken out, washed with a nitric acid solution, and visually observed. As a result of observation, those without cracks are ○, and those with cracks are ×. The distance t between the upper surface and the middle plate of the ammonia water is about 100 mm, and the test product is in a non-contact state with the ammonia water.

また、試験品は図2に示す三方弁で、室内配管側ポート22と、サービスポート24と、弁棒受入部26各部の寸法と締め付けトルクは前記実施の形態1で説明した前記表2の通りである。 The test product is a three-way valve shown in FIG. 2, and the dimensions and tightening torque of each of the indoor piping side port 22, the service port 24, and the valve stem receiving portion 26 are as shown in Table 2 described in the first embodiment. Is.

Figure 0006868761
Figure 0006868761

なお、この実施の形態においても、応力腐食割れとしては締め付けトルクが大きい室内配管側ポート22部分ならびにフレアナット27が最も過酷な条件となっているため、この室内配管側ポート22部分ならびにフレアナット27の結果で評価した。 Also in this embodiment, since the indoor piping side port 22 portion and the flare nut 27 having a large tightening torque are the most severe conditions for stress corrosion cracking, the indoor piping side port 22 portion and the flare nut 27 are also the most severe conditions. It was evaluated by the result of.

この試験結果から、鉛の含有量を1000ppm以下とした鉛レス黄銅合金であっても、Siを0.001%以上、より好ましくはSiを3.060%以上含む黄銅合金とすれば、Siが耐応力腐蝕割れ性を改善するので応力腐食割れを防止できる。なお、上記Siは耐応力腐蝕割れ性を改善するとともに被削性も改善するのであるが、4.0%以上になるとそれに見合う被削性改善効果が得られなくなるので、4.0%未満までとするのが好ましい(Si:0.001%以上〜4.0%未満)。 From this test result, even if the lead-less brass alloy has a lead content of 1000 ppm or less, if the brass alloy contains 0.001% or more of Si, more preferably 3.060% or more of Si, Si can be obtained. Since the stress corrosion cracking resistance is improved, stress corrosion cracking can be prevented. The above Si improves the stress corrosion cracking resistance and the machinability, but when it exceeds 4.0%, the machinability improvement effect corresponding to it cannot be obtained, so it is up to less than 4.0%. (Si: 0.001% or more and less than 4.0%).

これにより、前記実施の形態1と同様、冷媒配管に介装されて使用される流体用開閉弁、すなわち、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアと反応しやすい流体用開閉弁であっても、応力腐食割れを防止することができる。 As a result, as in the first embodiment, the on-off valve for fluid used is interposed in the refrigerant pipe, that is, the fluid is exposed to the atmosphere containing a large amount of ammonia, and the temperature becomes higher than that of the atmosphere to react with the ammonia. Even an easy on-off valve for fluid can prevent stress corrosion cracking.

なお、上記試験で用いた鉛レス黄銅合金は、表3から明らかなようにCuが59.060%〜75.170%、Siが0.001%以上(換言すると少なくともSiを含有している)〜3.060%以上で、残部がZnと不純物からなっており、Siが3.060%以上であればCuの含有量は79%までよく、好ましくは75.170%までがよい(Cu:59.060%以上(59.060%を含まず)〜79%以下)。 As is clear from Table 3, the lead-less brass alloy used in the above test contains 59.060% to 75.170% Cu and 0.001% or more Si (in other words, contains at least Si). If it is ~ 3.060% or more and the balance is Zn and impurities, and if Si is 3.060% or more, the Cu content may be up to 79%, preferably up to 75.170% (Cu: 59.060% or more (excluding 59.060%) to 79% or less).

(実施の形態3)
図6は実施の形態3における流体用開閉弁を示し、この流体用開閉弁は二方弁である。この二方弁は室内配管側ポート22と、室外配管側ポート23と、弁棒25が螺着される弁棒受入部26を備えている。
(Embodiment 3)
FIG. 6 shows a fluid on-off valve according to the third embodiment, and the fluid on-off valve is a two-way valve. This two-way valve includes an indoor piping side port 22, an outdoor piping side port 23, and a valve rod receiving portion 26 to which the valve rod 25 is screwed.

室内配管側ポート22には、室内熱交換器6に接続された液接続配管8がフレアナット27を介して接続され、室外配管側ポート23には、銅管28がフラックス剤を介してロウ付け接続されて同様に室外熱交換器3側からの配管29a(図1の冷媒回路図参照)に接続される。 A liquid connection pipe 8 connected to the indoor heat exchanger 6 is connected to the indoor pipe side port 22 via a flare nut 27, and a copper pipe 28 is brazed to the outdoor pipe side port 23 via a flux agent. It is connected and similarly connected to the pipe 29a (see the refrigerant circuit diagram of FIG. 1) from the outdoor heat exchanger 3 side.

この二方弁もこれを構成する黄銅合金は実施の形態1で説明した鉛レス黄銅合金、或いは実施の形態2で説明した鉛レス黄銅合金で形成してある。 The brass alloy constituting this two-way valve is also formed of the lead-less brass alloy described in the first embodiment or the lead-less brass alloy described in the second embodiment.

したがって、前記実施の形態1あるいは実施の形態2と同様の作用効果を奏することになる。 Therefore, the same effect as that of the first embodiment or the second embodiment will be obtained.

以上、本発明に係る流体用開閉弁及びこれを用いた空気調和機について、上記実施の形態を用いて説明してきたが、本発明は、これに限定されるものではない。すなわち、今回
開示された実施の形態は一例であって制限的なものではないと考えられるべきである。つまり、本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
Although the on-off valve for fluid and the air conditioner using the valve for fluid according to the present invention have been described above using the above-described embodiment, the present invention is not limited thereto. That is, it should be considered that the embodiments disclosed this time are examples and are not restrictive. That is, the scope of the present invention is indicated by the scope of claims rather than the above description, and it is intended that all modifications within the meaning and scope equivalent to the scope of claims are included.

なお、上記空気調和機とは、冷凍サイクルを搭載した機器を指すものであり、一般的なエアコンはもとより、除湿機、ヒートポンプ給湯機等の機器も含むことは言うまでもない。 It goes without saying that the above-mentioned air conditioner refers to a device equipped with a refrigeration cycle, and includes not only general air conditioners but also devices such as dehumidifiers and heat pump water heaters.

本発明は、上記説明から明らかなように、鉛レス黄銅合金であっても応力腐食割れのない流体用開閉弁とこれを用いた空気調和機を提供することができ、流体用開閉弁や空気調和機を含む、冷凍サイクルを搭載した機器の信頼性を低下させることなく環境負荷を低減させることができる。 As is clear from the above description, the present invention can provide a fluid on-off valve and an air conditioner using the same, which are free from stress corrosion cracking even in a leadless brass alloy, and can provide a fluid on-off valve and air. The environmental load can be reduced without degrading the reliability of equipment equipped with a refrigeration cycle, including air conditioners.

1 圧縮機
2 四方弁
3 室外熱交換器
4 減圧器
5 室外機
6 室内熱交換器
7 室内機
8 液接続配管
9 ガス接続配管
10 第1の開閉弁(流体用開閉弁)
11 第2の開閉弁(流体用開閉弁)
21 弁本体
22 室内配管側ポート
23 室外配管側ポート
24 サービスポート
25 弁棒
26 弁棒受入部
27 フレアナット
28 銅管
29、29a 配管
30 バルブコア
31 サービスポートキャップ
32 弁棒キャップ
1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Decompressor 5 Outdoor unit 6 Indoor heat exchanger 7 Indoor unit 8 Liquid connection piping 9 Gas connection piping 10 First on-off valve (fluid on-off valve)
11 Second on-off valve (fluid on-off valve)
21 Valve body 22 Indoor piping side port 23 Outdoor piping side port 24 Service port 25 Valve rod 26 Valve rod receiving part 27 Flare nut 28 Copper pipe 29, 29a Piping 30 Valve core 31 Service port cap 32 Valve rod cap

Claims (2)

空気調和機であって、
冷媒配管に介装され、温度が大気よりも高い環境下で用いられ、HFC系冷媒、若しくは炭素の二重結合を持つフッ化水素系冷媒の単一冷媒、または、それらを主成分とする混合冷媒であり、かつ地球温暖化係数が5以上750以下の冷媒が内部を流れるように構成され、
鉛の含有量が1000wtppm以下であって、Cuを59.500wt%超から66.00wt%以下、Snを0.8wt%以上から2.5wt%以下、Biを1.320wt%超から2.120wt%未満、残部がZn及び不純物からなる黄銅合金で形成した流体用開閉弁を備える空気調和機。
It ’s an air conditioner,
An HFC-based refrigerant, a single refrigerant of a hydrogen fluoride-based refrigerant having a carbon double bond, or a mixture containing them as a main component, which is interposed in a refrigerant pipe and used in an environment where the temperature is higher than the atmosphere. It is configured so that a refrigerant that is a refrigerant and has a global warming potential of 5 or more and 750 or less flows inside.
The lead content is 1000 wt ppm or less, Cu is more than 59.500 wt% to 66.00 wt% or less, Sn is 0.8 wt% or more and 2.5 wt% or less, and Bi is 1.320 wt% to 2 An air conditioner equipped with a fluid on-off valve made of a brass alloy having less than 120 wt% and the balance consisting of Zn and impurities.
空気調和機であって、
冷媒配管に介装され、温度が大気よりも高い環境下で用いられ、HFC系冷媒、若しくは炭素の二重結合を持つフッ化水素系冷媒の単一冷媒、または、それらを主成分とする混合冷媒であり、かつ地球温暖化係数が5以上750以下の冷媒が内部を流れるように構成され、
鉛の含有量が1000wtppm以下であって、Cuを59.060wt%超から79wt%以下、Siを3.060wt%以上から4.0wt%未満、残部がZn及び不純物からなる黄銅合金で形成した流体用開閉弁を備える空気調和機。
It ’s an air conditioner,
An HFC-based refrigerant, a single refrigerant of a hydrogen fluoride-based refrigerant having a carbon double bond, or a mixture containing them as a main component, which is interposed in a refrigerant pipe and used in an environment where the temperature is higher than the atmosphere. It is configured so that a refrigerant that is a refrigerant and has a global warming potential of 5 or more and 750 or less flows inside.
A the content of lead less 1000 wt ppm, Cu 79wt% or less from 59.060Wt% greater, 4.0 wt% less than the Si from above 3.060wt%, the balance being shaped brass alloy consisting of Zn and impurities An air conditioner equipped with an on-off valve for fluid.
JP2015245858A 2015-12-17 2015-12-17 On-off valve for fluid and air conditioner using it Active JP6868761B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015245858A JP6868761B2 (en) 2015-12-17 2015-12-17 On-off valve for fluid and air conditioner using it
DE112016005810.1T DE112016005810T5 (en) 2015-12-17 2016-12-12 FLUID OPEN / CLOSE VALVE AND AIR CONDITIONER FOR USE
MYPI2017702139A MY191315A (en) 2015-12-17 2016-12-12 Fluid on-off valve and air conditioner using the same
CN201680007752.8A CN107208190B (en) 2015-12-17 2016-12-12 Fluid open and close valve and the air conditioner for using it
PCT/JP2016/005106 WO2017104127A1 (en) 2015-12-17 2016-12-12 Fluid control valve and air conditioner using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015245858A JP6868761B2 (en) 2015-12-17 2015-12-17 On-off valve for fluid and air conditioner using it

Publications (2)

Publication Number Publication Date
JP2017110265A JP2017110265A (en) 2017-06-22
JP6868761B2 true JP6868761B2 (en) 2021-05-12

Family

ID=59056321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015245858A Active JP6868761B2 (en) 2015-12-17 2015-12-17 On-off valve for fluid and air conditioner using it

Country Status (5)

Country Link
JP (1) JP6868761B2 (en)
CN (1) CN107208190B (en)
DE (1) DE112016005810T5 (en)
MY (1) MY191315A (en)
WO (1) WO2017104127A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045129A (en) * 2017-09-05 2019-03-22 ダイキン工業株式会社 Air conditioning system
WO2019049746A1 (en) * 2017-09-05 2019-03-14 ダイキン工業株式会社 Air conditioning system and refrigerant branching unit
JP6536641B2 (en) * 2017-09-05 2019-07-03 ダイキン工業株式会社 Refrigerant branch unit
EP3680583A4 (en) 2017-09-05 2021-06-09 Daikin Industries, Ltd. Air conditioning system and refrigerant branching unit
DE102021103063A1 (en) 2021-02-10 2022-08-11 Viessmann Climate Solutions Se heat pump

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3734372B2 (en) * 1998-10-12 2006-01-11 三宝伸銅工業株式会社 Lead-free free-cutting copper alloy
JP4225540B2 (en) * 2003-05-19 2009-02-18 前澤工業株式会社 Water gate valves and valves
JP4522736B2 (en) * 2004-03-30 2010-08-11 株式会社キッツ Copper-base alloy for die casting and ingots and products using this alloy
CN101573462B (en) * 2006-12-28 2012-10-10 株式会社开滋 Lead-free brass alloy with excellent resistance to stress corrosion cracking
CN101012521A (en) * 2007-02-12 2007-08-08 罗凡 Environment-friendly type selenium-bismuth-brass alloy material
JP2010255966A (en) * 2009-04-28 2010-11-11 Hitachi Appliances Inc Air conditioner
JP2011202722A (en) * 2010-03-25 2011-10-13 Panasonic Corp Three-way valve for air conditioner
EP2565460B1 (en) * 2010-04-28 2019-06-26 Panasonic Corporation Rotary compressor
MX363089B (en) * 2010-10-25 2019-03-08 Mitsubishi Shindo Kk Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure.
JP5816006B2 (en) * 2011-07-05 2015-11-17 株式会社不二工機 Assembling method of 3-way valve with check valve
JP2013124801A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
AU2013340034B2 (en) * 2012-10-31 2018-03-22 Kitz Corporation Brass alloy and processed part and wetted part

Also Published As

Publication number Publication date
WO2017104127A1 (en) 2017-06-22
CN107208190B (en) 2019-03-29
MY191315A (en) 2022-06-15
JP2017110265A (en) 2017-06-22
CN107208190A (en) 2017-09-26
DE112016005810T5 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6868761B2 (en) On-off valve for fluid and air conditioner using it
KR101740444B1 (en) Structure for connecting refrigerant tube in air conditioner
JP5775238B2 (en) High corrosion resistance copper tube
WO2007053697A3 (en) Compositions comprising fluoroolefins and uses thereof
EP1724535A3 (en) Intercooler
JP6041014B1 (en) Method for manufacturing evaporator of refrigeration equipment
US9217521B2 (en) Lead-free high temperature/pressure piping components and methods of use
WO2018135238A1 (en) Indoor unit
JP6777177B2 (en) Units for joint members and air conditioners
EP3376138B1 (en) Air conditioner
US20100107682A1 (en) Line Set
KR20170073726A (en) Copper alloys and heat exchanger tubes
JP4811672B2 (en) Soluble stopper alloy and fusible stopper
WO2015143700A1 (en) Refrigeration valve component, refrigeration valve and manufacturing method therefor
JP6865809B2 (en) Air conditioner
JP4043042B2 (en) Fusible stopper
JP4967256B2 (en) Refrigeration cycle system and working fluid suitable for the refrigeration cycle system
JP2021042872A (en) Refrigeration cycle device
JP2011027280A (en) Heat transfer pipe for hot water supply
KR20140096641A (en) Lead-free and corrosion resistant copper alloy for cast
CN103469018A (en) Aluminum alloy rivet
JP2006234027A (en) Three-way valve of air-conditioning device
CN104911390A (en) Antimicrobial corrosion-resistant heat exchanger copper tube

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R151 Written notification of patent or utility model registration

Ref document number: 6868761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151