JP6865456B2 - Method of utilizing marine heterotrophic algae having an amino acid composition suitable for feed as a protein component of feed - Google Patents

Method of utilizing marine heterotrophic algae having an amino acid composition suitable for feed as a protein component of feed Download PDF

Info

Publication number
JP6865456B2
JP6865456B2 JP2016099054A JP2016099054A JP6865456B2 JP 6865456 B2 JP6865456 B2 JP 6865456B2 JP 2016099054 A JP2016099054 A JP 2016099054A JP 2016099054 A JP2016099054 A JP 2016099054A JP 6865456 B2 JP6865456 B2 JP 6865456B2
Authority
JP
Japan
Prior art keywords
algae
mass
feed
amino acid
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016099054A
Other languages
Japanese (ja)
Other versions
JP2017205045A (en
Inventor
洋 水間
洋 水間
浩 岡元
浩 岡元
純一 伊藤
純一 伊藤
信 渡邉
信 渡邉
吉田 昌樹
昌樹 吉田
順子 伊藤
順子 伊藤
清志 多田
清志 多田
Original Assignee
株式会社MoBiol藻類研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MoBiol藻類研究所 filed Critical 株式会社MoBiol藻類研究所
Priority to JP2016099054A priority Critical patent/JP6865456B2/en
Publication of JP2017205045A publication Critical patent/JP2017205045A/en
Application granted granted Critical
Publication of JP6865456B2 publication Critical patent/JP6865456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、飼料に好適なアミノ酸組成である微細藻類を飼料のタンパク質成分として利用する方法に関する。 The present invention relates to a method of utilizing microalgae having an amino acid composition suitable for feed as a protein component of feed.

魚介類養殖用飼料で使用されている主なタンパク質源は魚粉であり、我が国はチリおよびペルーから主にカタクチイワシ、マアジ魚粉を輸入している。しかし、水産資源の減少や、世界的に養殖・畜産業が盛んになったことによる魚粉の需要の増大により、魚粉価格が高騰している。その輸入価格は、平成16年には76円/kgであったのに対し、平成25年には154円/kgと2倍にまで高騰している。 The main protein source used in the feed for fish and shellfish farming is fish meal, and Japan mainly imports anchovy and horse mackerel fish meal from Chile and Peru. However, the price of fishmeal is rising due to the decrease in fishery resources and the increase in demand for fishmeal due to the global aquaculture and livestock industry. The import price was 76 yen / kg in 2004, but has doubled to 154 yen / kg in 2013.

魚粉は、魚介類養殖用飼料のみならず、ニワトリやブタなどの飼料に配合され、さまざまな家畜の動物性タンパク質源として利用されている。 Fish meal is blended not only in feed for aquaculture of seafood but also in feed for chickens and pigs, and is used as an animal protein source for various livestock.

近年では魚粉に頼らない低魚粉飼料の開発が盛んに行われている。低魚粉飼料は、魚粉の代わりに大豆粕やコーングルテンミール等の植物性タンパク質やミートミール、フェザーミール等の動物性タンパク質が用いられているが、それらはアミノ酸組成が魚粉と大きく異なり、大豆粕ではメチオニンが、コーングルテンミールではリジンが第1制限アミノ酸となっている。それゆえ、低魚粉飼料には結晶のアミノ酸を飼料に添加する必要があり、製造コストを押し上げることが障害となっている。また、植物性タンパク質源には、トリプシンインヒビター、フィチン酸、難消化性糖質などの生理阻害物質が含まれているため、配合量を高めると魚類の成長を阻害し、腸管の炎症等の抗病性の低下を招くことも報告されている。 In recent years, the development of low fish meal feed that does not rely on fish meal has been actively carried out. In low fish meal feed, vegetable proteins such as soybean meal and corn gluten meal and animal proteins such as meat meal and feather meal are used instead of fish meal, but their amino acid composition is significantly different from that of fish meal, and soybean meal. Methionine is the first limiting amino acid in corn gluten meal, and lysine is the first limiting amino acid in corn gluten meal. Therefore, it is necessary to add crystalline amino acids to the feed for low fish meal feed, and it is an obstacle to increase the production cost. In addition, since the vegetable protein source contains physiological inhibitors such as trypsin inhibitor, phytic acid, and indigestible sugar, increasing the amount of the vegetable protein source inhibits the growth of fish and prevents inflammation of the intestinal tract. It has also been reported to lead to reduced morbidity.

ブリやマダイ等の海水魚は、必須アミノ酸に加え、十分量のタウリンを体内で合成することができないため、餌飼料からタウリンを摂取しなければならない。植物性タンパク質はタウリンが少なく、低魚粉飼料ではタウリン不足による成長の低下や緑肝症、脱鱗がしばしば観察され、市場価値を下げることが問題であった。平成21年にはタウリンの重要性が認められて飼料添加物に認定され、低魚粉飼料の開発に拍車がかかった。 Saltwater fish such as yellowtail and red sea bream cannot synthesize a sufficient amount of taurine in the body in addition to essential amino acids, so taurine must be ingested from the diet. Vegetable protein is low in taurine, and in low fish meal feed, decreased growth due to taurine deficiency, green liver disease, and scales are often observed, and it has been a problem to reduce the market value. In 2009, the importance of taurine was recognized and it was certified as a feed additive, spurring the development of low fish meal feed.

発明者らは、上記植物性タンパク質供給源のように生理阻害物質を含有せず、タウリンを含有する培養微細藻類の、低魚粉飼料への配合を検討した。斯かる低魚粉飼料に配合され得る微細藻類の例として、ラビリンチュラ類(Labyrinthulomycetes)に属する藻類が挙げられる。ラビリンチュラ類は様々な炭化水素や油脂を生産するものが報告されており、ドコサヘキサエン酸(DHA)やエイコサペンタエン酸(EPA)等の高度不飽和脂肪酸を多量に蓄積する性質を有するもの(SR21株、特許文献1)や、スクアレンを生産するものが知られている(非特許文献1、2、3)。それらの増殖速度は光合成藻類に比べて極めて速く、7日間の培養で乾燥重量100g/Lの藻体を生産することができ(非特許文献4)、高タンパク、高脂質要求の魚類にとって理想的な飼料原料である。 The inventors examined the formulation of cultured microalgae containing taurine, which does not contain a physiological inhibitor like the above-mentioned vegetable protein source, into a low fish meal feed. Examples of microalgae that can be blended in such low fish meal feed include algae belonging to Labyrinthulomyces. Labyrinthulas have been reported to produce various hydrocarbons and fats and oils, and have the property of accumulating a large amount of highly unsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) (SR21 strain). , Patent Document 1) and those that produce squalene are known (Non-Patent Documents 1, 2, and 3). Their growth rate is extremely faster than that of photosynthetic algae, and algae with a dry weight of 100 g / L can be produced by culturing for 7 days (Non-Patent Document 4), which is ideal for high-protein, high-lipid-requiring fish. It is a raw material for feed.

:特許第2764572号公報: Japanese Patent No. 2764572

:G. Chen. et al. New Biotechnology 27, 382−289 (2010): G. Chen. et al. New Biotechnology 27, 382-289 (2010) :Q. Li et al., J. Agric. Food Chem. 57(10), 4267−4272 (2009): Q. Li et al. , J. Agric. Food Chem. 57 (10), 4267-4272 (2009) :K. W. Fan et al., World J. Microbiol. Biotechnol. 26, 1303−1309 (2010): K. W. Fan et al. , World J. Microbiol. Biotechnol. 26, 1303-1309 (2010) :A Jakobsen et al., Appl Microbiol Biotechnol 80(2), 297-306 (2008): A Jakobsen et al. , Appl Microbiol Biotechnol 80 (2), 297-306 (2008) :Journal of Applied Phycology, February 2014, Vol. 26, Issue 1, 29−41: Journal of Applied Phycology, February 2014, Vol. 26, Issue 1, 29-41

本発明は、アミノ酸組成を最適化した微細藻類を魚介類養殖用飼料のタンパク質源として利用する手法および養殖方法を提供することを目的とする。 An object of the present invention is to provide a method and a method for utilizing microalgae having an optimized amino acid composition as a protein source for a feed for aquaculture of seafood.

発明者らは、微細藻類のアミノ酸組成を、培養方法や培地組成を調整することで、魚粉に近いアミノ酸組成に最適化させる技術を開発した。斯かる技術は、生産コスト増大を伴わずに低魚粉飼料の品質を向上させ、魚粉の価格、供給量に左右されることなく、魚介類養殖用飼料の安定生産および水産資源の保全に寄与することに繋がる。 The inventors have developed a technique for optimizing the amino acid composition of microalgae to an amino acid composition close to that of fish meal by adjusting the culture method and medium composition. Such technology improves the quality of low-fish meal feed without increasing production costs, and contributes to the stable production of feed for fish and shellfish farming and the conservation of marine resources regardless of the price and supply of fish meal. It leads to.

DHAを蓄積するオーランチオキトリウム・リマシナム(Aurantiochytrium limacinum)4W−1b株を通常のGTY培地で培養したところ、収量は乾燥藻体13g/L、藻体の魚粉を基準とした必須アミノ酸指数(後述)は83.8であった。しかし、同株を、GTY培地に炭素源としてグルコースを流加して培養を行ったところ、収量が乾燥藻体50g/Lに顕著に増大し、更に、藻体の魚粉を基準とした必須アミノ酸指数は96.4まで上昇した。これは、オーランチオキトリウム藻類を、炭素源を流加しながら培養することで、収量増大に加えて、そのアミノ酸組成を魚粉のアミノ酸組成に近付けることが出来ることを示す。 When Aurantiochytrium limacinum 4W-1b strain, which accumulates DHA, was cultured in a normal GTY medium, the yield was 13 g / L of dried algae, and the essential amino acid index based on the fish meal of the algae (described later). ) Was 83.8. However, when this strain was cultured by fed-batch glucose as a carbon source into GTY medium, the yield increased remarkably to 50 g / L of dried algae, and further, essential amino acids based on algae fish meal. The index rose to 96.4. This indicates that by culturing Aurantiochytrium algae while feeding a carbon source, in addition to increasing the yield, the amino acid composition can be brought closer to that of fish meal.

また、炭素源流加を要さずに良好なアミノ酸組成をとる藻類も存在する。スクアレンを細胞内に蓄積するオーランチオキトリウムtsukuba−3株(受託番号:FERM AP−220147)は、GTY培地で培養すると6g/Lの藻体が生産可能であり、必須アミノ酸指数は91.2と極めて魚粉に近いアミノ酸組成となり、魚粉の代替タンパク質源として有望である。 There are also algae that have a good amino acid composition without the need for carbon source infusion. Aurantiochytrium tsukuba-3 strain (accession number: FERM AP-220147), which accumulates squalene in cells, can produce 6 g / L algae when cultured in GTY medium, and has an essential amino acid index of 91.2. It has an amino acid composition extremely close to that of fishmeal, and is promising as an alternative protein source for fishmeal.

発明者らは、このようなアミノ酸組成に優れるオーランチオキトリウム属藻類を配合した飼料を与えて魚介類を養殖することにより、魚粉主体の飼料と同等の飼育成績が得られることも明らかにした。 The inventors have also clarified that by feeding fish and shellfish with a feed containing Aurantiochytrium algae having an excellent amino acid composition, breeding results equivalent to those of a fish meal-based feed can be obtained. ..

従って、本願は、以下の発明を提供する。
1.タンパク質を構成する全アミノ酸中、メチオニンの占める割合が1.5−4.6質量%、イソロイシンの占める割合が2.2−6.5質量%、フェニルアラニンの占める割合が2.3−6.9質量%、リジンの占める割合が3.9−11.6質量%、である、海産従属栄養性藻類。
2.タンパク質を構成する全アミノ酸中、トレオニンの占める割合が2.5−7.6質量%、バリンの占める割合が2.9−8.8質量%、ロイシンの占める割合が3.4−10.2質量%、ヒスチジンの占める割合が1.7−5.0質量%、アルギニンの占める割合が2.8−8.5質量%である、項目1に記載の海産従属栄養性藻類。
3.タウリンを0.2−0.7質量%含む、項目1又は2に記載の海産従属栄養性藻類。
4.魚粉の必須アミノ酸組成に基づく必須アミノ酸指数が90以上である、項目1〜3のいずれか1項に記載の海産従属栄養性藻類。
5.オーランチオキトリウム属の藻類である、項目1〜4のいずれか1項に記載の海産従属栄養性藻類。
6.オーランチオキトリウムFERM BP−11442株である、項目5に記載の海産従属栄養性藻類。
7.培養槽に炭素源を流加する培養工程を含む、項目1〜6のいずれか1項に記載の海産従属栄養性藻類の生産方法。
8.項目1〜6のいずれか1項に記載の海産従属栄養性藻類を、全質量に対して、乾燥藻体換算で1.0〜75.0質量%含有する、魚介類養殖用飼料組成物。
9.項目8に記載の飼料組成物を給餌する工程を含む、魚介類の養殖方法。
Therefore, the present application provides the following inventions.
1. 1. Of all the amino acids that make up the protein, methionine accounts for 1.5-4.6% by mass, isoleucine accounts for 2.2-6.5% by mass, and phenylalanine accounts for 2.3-6.9. Marine dependent trophic algae, which are 3.9-11.6 mass% by mass and lysine accounts for 3.9-11.6 mass%.
2. Of all the amino acids that make up a protein, threonine accounts for 2.5-7.6% by mass, valine accounts for 2.9-8.8% by mass, and leucine accounts for 3.4-10.2. The marine dependent trophic algae according to item 1, wherein the proportion of mass%, histidine is 1.7-5.0 mass%, and the proportion of arginine is 2.8-8.5 mass%.
3. 3. The marine heterotrophic alga according to item 1 or 2, which contains 0.2-0.7% by mass of taurine.
4. The marine heterotrophic alga according to any one of items 1 to 3, wherein the essential amino acid index based on the essential amino acid composition of fish meal is 90 or more.
5. The marine heterotrophic alga according to any one of items 1 to 4, which is an alga of the genus Aurantiochytrium.
6. The marine heterotrophic alga according to item 5, which is Aurantiochytrium FERM BP-11442 strain.
7. The method for producing a marine heterotrophic alga according to any one of items 1 to 6, which comprises a culturing step of feeding a carbon source into a culturing tank.
8. A feed composition for aquaculture of seafood containing 1.0 to 75.0% by mass of the marine heterotrophic algae according to any one of items 1 to 6 in terms of dry algae with respect to the total mass.
9. A method for culturing seafood, which comprises a step of feeding the feed composition according to item 8.

本発明により、魚粉の代替として利用可能な優れたアミノ酸組成を有する微細藻類を養殖飼料のタンパク質源として利用することができれば、水産資源量や魚粉価格に左右されずに、安定的に高品質の魚介類養殖用飼料を供給することが可能になる。下記実施例にて示すように、本発明に係るオーランチオキトリウムの乾燥藻体を配合した養殖飼料を用いてクルマエビ飼育試験を行った結果、タウリンおよび結晶のアミノ酸の補足なしで、魚粉主体の飼料と同等の成績が得られることが見出された。従って、本発明に係る藻類は、魚介類養殖用飼料のタンパク質源として非常に優れていると言え、水産養殖において画期的な進歩をもたらすものである。 According to the present invention, if microalgae having an excellent amino acid composition that can be used as a substitute for fishmeal can be used as a protein source for aquaculture feed, stable and high quality can be achieved regardless of the amount of fishery resources and the price of fishmeal. It will be possible to supply feed for fish and shellfish farming. As shown in the following examples, as a result of conducting a prawn breeding test using a farmed feed containing the dried algae of Aurantiochytrium according to the present invention, fish meal was mainly used without supplementation of taurine and crystalline amino acids. It was found that results equivalent to those of feed were obtained. Therefore, it can be said that the algae according to the present invention are extremely excellent as a protein source for feed for fish and shellfish farming, and bring about epoch-making progress in aquaculture.

図1は、GTY培地で培養した藻類の、魚粉を基準とした必須アミノ酸組成を示す。FIG. 1 shows the essential amino acid composition of algae cultured in GTY medium based on fish meal. 図2は、GTY培地にグルコースを流加した培養方法で培養した藻類の、魚粉を基準とした必須アミノ酸組成を示す。FIG. 2 shows the essential amino acid composition of algae cultured by a culture method in which glucose is fed into a GTY medium, based on fish meal.

本発明において、魚粉の代替として利用可能な微細藻類は、海産従属栄養性藻類である。当該藻類の例として、限定されないが、オーランチオキトリウム属、シゾキトリウム属、パリエティキトリウム属、ボトリオキトリウム属、スラウストキトリウム属、アプラノキトリウム属、シキオイドキトリウム属などのヤブレツボカビ科の藻類、またはこれらを起源とする藻類変異体、組換え藻類が挙げられる。好ましくは、本発明の微細藻類は、オーランチオキトリウム属藻類である。 In the present invention, the microalgae that can be used as a substitute for fish meal are marine heterotrophic algae. Examples of such algae include, but are not limited to, Aurantiochytrium, Sizochitrium, Parieticitorium, Botriochitrium, Slaustochytrium, Applanochytrium, Siquioidocytrium, and other species. Examples thereof include algae, algae variants originating from these, and recombinant algae. Preferably, the microalgae of the present invention are Aurantiochytrium algae.

本発明の微細藻類は、増殖能力の優れた株を用いるのが好ましい。そのような藻類株は、天然に採取及び分離されたものであっても、突然変異誘導及びスクリーニングを経てクローニングされたものであっても、あるいは遺伝子組み換え技術を利用して樹立されたものであってもよい。当該藻類株において改善され得る特性は、増殖効率、最適ではない培養条件(日照、栄養、温度、pH、成分組成等)に対する耐性、又は藻体が飼料として配合された場合の魚介類の成長速度等、本発明において飼料に配合されるタンパク質源として調製されるのに有利な任意の特性である。 For the microalgae of the present invention, it is preferable to use a strain having excellent growth ability. Such algae strains, whether naturally harvested and isolated, cloned through mutagenesis and screening, or established using genetic engineering techniques. You may. The properties that can be improved in the algae strain are growth efficiency, resistance to non-optimal culture conditions (sunshine, nutrition, temperature, pH, composition, etc.), or growth rate of fish and shellfish when the algae are added as feed. Etc., any property that is advantageous to be prepared as a protein source to be incorporated into feed in the present invention.

上記微細藻類の培養は、当該技術分野において確立された方法を基礎とする。即ち、通常の維持培養は、適切に成分調製した培地に藻類を播種し、定法に従い行われる。 The culture of microalgae is based on methods established in the art. That is, the usual maintenance culture is carried out according to a standard method by sowing algae in a medium in which the components are appropriately prepared.

微細藻類を培養するための培地は、本質的に、塩分、炭素供給源及び窒素供給源を含有する。一般的に、微細藻類の培養には、いわゆるGTY培地(人工海水塩10−40g/L、D(+)グルコース20−200g/L、トリプトン10−60g/L、酵母抽出物5−40g/L)が用いられる。本発明に関する培地も、基本的にはこれらの3つの要素を組み合わせて構成される。 The medium for culturing microalgae essentially contains a salt, carbon source and nitrogen source. Generally, for culturing microalgae, so-called GTY medium (artificial seawater salt 10-40 g / L, D (+) glucose 20-200 g / L, tryptone 10-60 g / L, yeast extract 5-40 g / L). ) Is used. The medium according to the present invention is also basically composed of a combination of these three elements.

炭素源としてはグルコース、フルクトース、スクロース等の糖類がある。これらの炭素源を、例えば、培地1リットル当たり20〜200gの濃度で添加する。 Carbon sources include sugars such as glucose, fructose, and sucrose. These carbon sources are added, for example, at a concentration of 20-200 g per liter of medium.

前記微細藻類の培養培地には、グルタミン酸ナトリウム、尿素等の有機窒素、又は酢酸アンモニウム、硫酸アンモニウム、塩化アンモニウム、硝酸ナトリウム、硝酸アンモニウム等の無機窒素、又は酵母抽出物、コーンスチープリカー、ポリペプトン、ペプトン、トリプトン等の生物由来消化物等の、様々な窒素源が添加され得る。 The culture medium for microalgae includes organic nitrogen such as sodium glutamate and urea, inorganic nitrogen such as ammonium acetate, ammonium sulfate, ammonium chloride, sodium nitrate and ammonium nitrate, yeast extract, corn steep liquor, polypeptone, peptone and tripton. Various nitrogen sources can be added, such as biological digests such as.

海洋性藻類を培養する場合、培地には適切な量の人工海水又は天然海水が添加される。好ましくは、人工海水は、最終的な培地の塩分濃度が海水(塩分濃度3.4%(w/v))の約10%(v/v)〜約100%(v/v)、例えば塩分濃度が約1.0〜3.0%(w/v)となるように添加される。 When culturing marine algae, an appropriate amount of artificial seawater or natural seawater is added to the medium. Preferably, the artificial seawater has a salinity of about 10% (v / v) to about 100% (v / v) of the seawater (salinity 3.4% (w / v)) in the final medium, for example, salt content. It is added so that the concentration is about 1.0 to 3.0% (w / v).

微細藻類の培養は、培養温度5〜40℃、好ましくは10〜35℃、より好ましくは15〜30℃にて行われる。継代は、藻類株の増殖速度に応じて、通常1〜10日間、好ましくは3〜7日間置きに行われる。培養は通気攪拌培養、振とう培養又は静置培養で行うことができるが、好ましくは通気攪拌培養又は振とう培養で培養する。藻類株の長期の保存には、液体培地に1.0〜3.0%濃度の寒天を加えて凝固させた寒天培地を用いてもよく、より長期の保存に際しては、藻類株は定法に従い凍結保存されてもよい。 Culturing of microalgae is carried out at a culture temperature of 5 to 40 ° C., preferably 10 to 35 ° C., more preferably 15 to 30 ° C. Subculture is usually carried out every 1 to 10 days, preferably every 3 to 7 days, depending on the growth rate of the algae strain. The culture can be carried out by aeration stirring culture, shaking culture or static culture, but is preferably cultured by aeration stirring culture or shaking culture. For long-term storage of the algae strain, an agar medium obtained by adding 1.0 to 3.0% concentration of agar to a liquid medium and coagulating it may be used, and for longer-term storage, the algae strain is frozen according to a conventional method. It may be saved.

好ましい態様において、本発明の微細藻類は、炭素源が流加される条件下で培養される。流加プロセスにおいては、微細藻類の培養系に、所望の炭素源が逐次添加される。斯かる流加により、培養系中に存在する炭素源の濃度が微細藻類による消費に拘らず一定のレベルに維持される。炭素源の流加の条件(流加系の設計、炭素源の種類、濃度、流加速度等)は、具体的な培養条件、培養する藻類種、目標とするアミノ酸組成に応じて当業者が適宜調整することが出来る。 In a preferred embodiment, the microalgae of the present invention are cultured under conditions in which a carbon source is fed. In the fed-batch process, the desired carbon source is sequentially added to the microalgae culture system. By such feeding, the concentration of the carbon source present in the culture system is maintained at a constant level regardless of the consumption by microalgae. Conditions for fed-batch of carbon source (design of fed-batch system, type of carbon source, concentration, flow acceleration, etc.) are appropriately determined by those skilled in the art according to specific culture conditions, algae species to be cultured, and target amino acid composition. It can be adjusted.

流加される炭素源としてはグルコース、フルクトース、スクロース等の糖類がある。当該炭素源は、当初の培養培地に添加されている炭素源と同一であっても異なるものであってもよい。好ましくは、流加される炭素源はグルコースである。好ましい態様において、炭素源は、1日当たり5〜100g/L、10〜80g/L、15〜60g/L、又は20〜40g/Lの濃度で添加される。好ましくは、培養過程で添加される炭素源の量は、合計で60〜240g/L、80〜220g/L、100〜200g/L、120〜170g/L、又は130〜150g/Lとなる。好ましい態様において、グルコースの流加量は、培養系内のグルコースが枯渇せず、かつ過剰なグルコースが藻類の増殖を阻害しないように、適宜調整される。 The carbon source to be fed-batch includes sugars such as glucose, fructose, and sucrose. The carbon source may be the same as or different from the carbon source added to the original culture medium. Preferably, the carbon source to be fed is glucose. In a preferred embodiment, the carbon source is added at a concentration of 5-100 g / L, 10-80 g / L, 15-60 g / L, or 20-40 g / L per day. Preferably, the total amount of carbon sources added during the culturing process is 60-240 g / L, 80-220 g / L, 100-200 g / L, 120-170 g / L, or 130-150 g / L. In a preferred embodiment, the glucose feed rate is appropriately adjusted so that the glucose in the culture system is not depleted and the excess glucose does not inhibit the growth of algae.

培養によって取得された微細藻類は、必須アミノ酸の組成が評価される。好ましくは、本発明の培養によって取得された微細藻類は、タンパク質を構成する全アミノ酸中、メチオニンを1.5−4.6質量%、イソロイシンを2.2−6.5質量%、フェニルアラニンを2.3−6.9質量%、リジンを3.9−11.6質量%含有する。より好ましくは、当該藻類は、タンパク質を構成する全アミノ酸中、トレオニンを2.5−7.6質量%、バリンを2.9−8.8質量%、ロイシンを3.4−10.2質量%、ヒスチジンを1.7−5.0質量%、アルギニンを2.8−8.5質量%含有する。尚もより好ましくは、当該藻類は、タウリンを0.2−0.7質量%含む。 The microalgae obtained by culturing are evaluated for the composition of essential amino acids. Preferably, the microalgae obtained by the culture of the present invention contains 1.5-4.6% by mass of methionine, 2.2-6.5% by mass of isoleucine, and 2% by mass of phenylalanine among all the amino acids constituting the protein. It contains .3-6.9% by mass and 3.9-11.6% by mass of lysine. More preferably, the algae contains 2.5-7.6% by mass of threonine, 2.9-8.8% by mass of valine, and 3.4-10.2% by mass of leucine in all the amino acids constituting the protein. %, 1.7-5.0% by mass of histidine, and 2.8-8.5% by mass of arginine. Even more preferably, the algae contain 0.2-0.7% by weight of taurine.

前記微細藻類の必須アミノ酸組成は、魚粉を基準にした必須アミノ酸指数の値によって評価されてもよい。好ましくは、本発明の微細藻類の魚粉を基準にした必須アミノ酸指数は、85以上、86以上、87以上、88以上、89以上、90以上、91以上、92以上、93以上、94以上、95以上、96以上、97以上、98以上又は99以上である。 The essential amino acid composition of the microalgae may be evaluated by the value of the essential amino acid index based on fish meal. Preferably, the essential amino acid index based on the fish meal of the microalga of the present invention is 85 or more, 86 or more, 87 or more, 88 or more, 89 or more, 90 or more, 91 or more, 92 or more, 93 or more, 94 or more, 95. Above, 96 or above, 97 or above, 98 or above, or 99 or above.

培養によって取得された微細藻類は、飼料に配合するための適切な形態に加工される。本発明の飼料に配合する微細藻類の形態は、培養物、濃縮藻体、乾燥藻体、ホモジネート、脂質抽出後残渣等、性状は問わないが、いずれも簡素な手順で調製が可能なものである。例えば、前記培養物から遠心分離にて固形分を回収することでウェットな藻体を得て、これをスプレードライ、ドラム乾燥機等で乾燥することで乾燥藻体を取得する。特定の態様において、飼料への培養微細藻類の配合率は、乾燥藻体換算で0.5〜80質量%、好ましくは1.0〜30.0質量%、より好ましくは2.5〜20.0質量%であるが、実際の配合率は、養殖される魚介類の種類や配合される藻類の種類、タンパク質含量に応じて、当業者が容易に決定できる。 The microalgae obtained by culturing are processed into a suitable form for inclusion in feed. The form of the microalgae to be blended in the feed of the present invention may be any property such as culture, concentrated algae, dried algae, homogenate, residue after lipid extraction, etc., but all of them can be prepared by a simple procedure. is there. For example, a wet algae is obtained by centrifuging the solid content from the culture, and the dried algae is obtained by drying this with a spray dry, a drum dryer, or the like. In a specific embodiment, the blending ratio of the cultured microalgae in the feed is 0.5 to 80% by mass, preferably 1.0 to 30.0% by mass, more preferably 2.5 to 20% by mass in terms of dry algae. Although it is 0% by mass, the actual blending ratio can be easily determined by a person skilled in the art according to the type of fish and shellfish to be cultivated, the type of algae to be blended, and the protein content.

本発明において、前記魚介類養殖用飼料は、魚粉と代替可能な養殖用飼料に好適なアミノ酸組成を有する微細藻類を含有する。 In the present invention, the seafood aquaculture feed contains microalgae having an amino acid composition suitable for aquaculture feed that can replace fish meal.

本発明において、魚介類養殖用飼料は、魚介類の養殖に適切な任意の飼料成分を含有する。当業者は、養殖する魚介類の種類や具体的な養殖の条件を考慮して、適切な飼料を選択し、又は飼料成分を配合することを承知している。 In the present invention, the feed for aquaculture of seafood contains any feed component suitable for aquaculture of seafood. Those skilled in the art are aware that an appropriate feed is selected or a feed component is blended in consideration of the type of fish and shellfish to be cultivated and specific aquaculture conditions.

前記飼料成分として、好ましくは、具体的な魚介類の養殖の条件に適合するように、動物又は植物由来の加工物又は抽出物、油脂、炭水化物、有機酸、ビタミン、ミネラル、抗生物質、香料、着色料、保存料、賦形剤、増量剤、増粘剤、接着剤、水和剤、崩壊剤、乳化剤、pH調整剤等の、飼料調製に通常利用される材料を含有する。 As the feed component, preferably, processed or extracts derived from animals or plants, fats and oils, carbohydrates, organic acids, vitamins, minerals, antibiotics, fragrances, etc., so as to meet specific seafood cultivation conditions. Contains materials commonly used in feed preparation such as colorants, preservatives, excipients, bulking agents, thickeners, adhesives, wettable powders, disintegrants, emulsifiers, pH regulators and the like.

前記魚介類養殖用飼料は、任意の適切な形態、例えばペースト、粉末、モイストペレット、ドライペレット、エクストルーダーペレット、フレーク、ケーキ若しくは錠剤の形態であってもよい。 The seafood farming feed may be in any suitable form, such as pastes, powders, moist pellets, dry pellets, extruder pellets, flakes, cakes or tablets.

本発明において、当該培養微細藻類を配合した飼料を与えて、魚介類が養殖される。養殖の諸条件は、養殖される魚介類の種類に応じて当業者が適宜選択することが出来る。 In the present invention, seafood is cultivated by feeding a feed containing the cultured microalgae. The conditions for aquaculture can be appropriately selected by those skilled in the art according to the type of seafood to be cultivated.

本発明の魚介類養殖用飼料を与えて養殖される魚介類としては、当該飼料によって養殖が可能なあらゆる養殖魚介類が想定され、限定されないが、ブリ、マダイ、カワハギ、カンパチ、マグロ、フグ、シマアジ、スズキ、ヒラメ、アジ、サバ、ハタ類、サーモンなどの海産養殖魚類、また、ニジマス、コイ、ウナギ、アユ、アマゴ、イワナなどの淡水養殖魚類、クルマエビ、ウシエビ、ホワイトシュリンプ、タイショウエビ、テンジクエビ、ブルーシュリンプ、オニテナガエビ等の海産および淡水エビ類、ガザミ、タラバガニ、ズワイガニ、ケガニ、シャコ等のカニ類を含む。 The fish and shellfish cultivated by feeding the feed for cultivating the fish and shellfish of the present invention are assumed to be all cultivated fish and shellfish that can be cultivated by the feed, and are not limited to shrimp, madai, kawahagi, kanpachi, tuna, pufferfish, and the like. Marine farmed fish such as Shimaji, Suzuki, Hirame, Aji, Saba, Hata, Salmon, Freshwater farmed fish such as Nijimasu, Koi, Eel, Ayu, Amago, Iwana, Kuruma shrimp, Cow shrimp, White shrimp, Taisho shrimp, Tenjiku shrimp , Blue shrimp, marine and freshwater shrimp such as onitenaga shrimp, crabs such as gazami, taraba crab, zuwai crab, kegani, shako.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定するものではない。また、実施例中「%」で表示されているものは、特記されていなければ「質量%」の意味である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In addition, what is indicated by "%" in the examples means "mass%" unless otherwise specified.

実施例1.オーランチオキトリウムの培養
オーランチオキトリウム・リマシナム(Aurantiochytrium limacinum)4W−1b株の凍結保存品1.2mlを、坂口フラスコ中の200mlのGTY培地に植菌し、100rpm、25℃で3日間振盪培養した。この培養物1mlを、500mlフラスコ中のGTY培地に植菌し、100rpm、25℃で7日間培養した。得られた培養物から単離した藻類のアミノ酸組成を、図1に示す。
Example 1. Culture of Aurantiochytrium 1.2 ml of cryopreserved Aurantiochytrium 4W-1b strain was inoculated into 200 ml of GTY medium in a Sakaguchi flask and shaken at 100 rpm and 25 ° C for 3 days. It was cultured. 1 ml of this culture was inoculated into GTY medium in a 500 ml flask and cultured at 100 rpm at 25 ° C. for 7 days. The amino acid composition of the algae isolated from the obtained culture is shown in FIG.

炭素源を流加する培養は、上記の7日間の振盪培養において、1日当たりグルコースを20〜40g/Lの濃度で添加し、培養過程で添加したグルコース量は、合計で130〜150g/Lであった。得られた培養物から単離した藻類のアミノ酸組成を、図2に示す。 In the culture in which a carbon source is fed, glucose is added at a concentration of 20 to 40 g / L per day in the above-mentioned 7-day shaking culture, and the total amount of glucose added during the culture process is 130 to 150 g / L. there were. The amino acid composition of the algae isolated from the obtained culture is shown in FIG.

上記両単離藻類のアミノ酸組成を、魚粉の必須アミノ酸組成を基準とした、必須アミノ酸指数によって評価した。必須アミノ酸指数は、
(100a/ae×100b/be×100c/ce×・・・・×100j/je)1/n
で求められ、ここで、
a,b,c・・・j=試験タンパク質の各必須アミノ酸含量(%)
ae,be,ce・・・je=魚粉の各必須アミノ酸含量(%)
n=必須アミノ酸の数
である。魚類における必須アミノ酸は、メチオニン、イソロイシン、フェニルアラニン、リジン、トレオニン、バリン、ロイシン、ヒスチジン、アルギニン及びトリプトファンの10種類であるが、本試験において、魚粉の必須アミノ酸は、トリプトファンの分析を行わなかったため、残りの9種類の必須アミノ酸に関して評価を行った。いずれかの必須アミノ酸において藻類における含量が魚粉における含量を上回るとその項の値が100を超えるが、その場合はその項の値を100として必須アミノ酸指数を求めた。
The amino acid composition of both isolated algae was evaluated by the essential amino acid index based on the essential amino acid composition of fish meal. The essential amino acid index is
(100a / ae × 100b / be × 100c / ce × ・ ・ ・ ・ × 100j / je) 1 / n
Asked for, here,
a, b, c ... j = Essential amino acid content (%) of the test protein
ae, be, ce ... je = Each essential amino acid content of fish meal (%)
n = number of essential amino acids. The essential amino acids in fish are methionine, isoleucine, phenylalanine, lysine, threonine, valine, leucine, histidine, arginine and tryptophan. The remaining 9 essential amino acids were evaluated. When the content of any of the essential amino acids in algae exceeds the content in fish meal, the value of that term exceeds 100. In that case, the value of that term is set to 100 to obtain the essential amino acid index.

魚粉を基準とした必須アミノ酸指数は、最大で100となり(必須アミノ酸組成が魚粉と同一)、必須アミノ酸組成が魚粉に近い程大きくなる。図1にアミノ酸組成を示す通常の培養で得られた藻類の必須アミノ酸指数は、83.8であった。一方、図2にアミノ酸組成を示す、炭素源の流加を行った培養で得られた藻類の必須アミノ酸指数は、96.4であった。この結果は、炭素源の流加により、培養藻類の必須アミノ酸組成が、魚粉に近いものに改質したことを示す。 The essential amino acid index based on fish meal is 100 at the maximum (the essential amino acid composition is the same as that of fish meal), and the closer the essential amino acid composition is to fish meal, the larger the index. The essential amino acid index of algae obtained by normal culture showing the amino acid composition in FIG. 1 was 83.8. On the other hand, the essential amino acid index of algae obtained by fed-batch culture with a carbon source, which shows the amino acid composition in FIG. 2, was 96.4. This result indicates that the essential amino acid composition of cultured algae was modified to be close to that of fish meal by fed-batch of carbon source.

魚介類の理想的なアミノ酸組成は、同魚介類の全魚体または筋肉中のアミノ酸組成であると言われており、藻類株、培養方法、培地成分を任意に変えることによって、同魚介類に最適なアミノ酸組成のタンパク質源を作り出すことができる。 The ideal amino acid composition of fish and shellfish is said to be the amino acid composition in the whole fish body or muscle of the fish and shellfish, and it is optimal for the fish and shellfish by arbitrarily changing the algae strain, culture method, and medium composition. It is possible to create a protein source having a different amino acid composition.

実施例2.クルマエビにおける飼育試験
オーランチオキトリウム・マングロベイ(Aurantiochytrium mangrovei)を定法に従い培養し、藻体を回収し、乾燥藻体を調製した。斯かる乾燥藻体の魚粉を基準とした必須アミノ酸指数を上記のようにして求めたところ、91.2であった。クルマエビ養殖用飼料の魚粉の代わりに当該乾燥藻体を0、2.5、5.0、10.0、20.0%配合した飼料を作製し、それらを与えてクルマエビにおける代替タンパク源としての評価を行った。
Example 2. Breeding test in prawns Aurantiochytrium mangrovei was cultured according to a conventional method, and algae were collected to prepare dried algae. The essential amino acid index based on the fish meal of such dried algae was calculated as described above and found to be 91.2. Instead of fish meal for tiger prawn farming feed, a feed containing 0, 2.5, 5.0, 10.0, 20.0% of the dried algae was prepared, and they were given as an alternative protein source for tiger prawns. Evaluation was performed.

供試魚および飼育方法
株式会社ヒガシマルの臨海研究所で人工種苗生産した平均体重1.09gのクルマエビを、100L容角型水槽に15尾ずつ収容して5試験区を設けた。各水槽には加温濾過海水を注水し、期間中の平均水温は19.0℃であった。
Test fish and breeding method Five test plots were set up by accommodating 15 prawns with an average weight of 1.09 g produced by artificial seedlings at the Seaside Research Institute of Higashimaru Co., Ltd. in a 100 L square aquarium. Warm filtered seawater was injected into each tank, and the average water temperature during the period was 19.0 ° C.

表1に示した試験飼料組成に従い、試験飼料を作製した。各原料を秤量・混合した後、微粉砕し、外割で30%の水を加えて混練した後、ペレットマシンを用いて直径約2mmのペレットを成型した。これを熱風乾燥機により乾燥し試験飼料を作製した。飼育期間は56日間とし、1日1回日没後に各試験飼料を給与した。翌朝に残餌、脱皮殻、糞を回収し、残餌量に応じて給餌量を決定した。試験区は各試験飼料につき3反復区を設けたが、飼育試験終了後は同一試験区である45尾の供試魚をプールし、ミンチにして分析に用いた。統計処理に関して、得られた結果は一元分散分析で有意差を確認した後、Tukeyの多重比較検定法で各試験区における平均値の有意差判定を行った(p<0.05)。

Figure 0006865456
A test feed was prepared according to the test feed composition shown in Table 1. Each raw material was weighed and mixed, finely pulverized, 30% water was added by external division and kneaded, and then pellets having a diameter of about 2 mm were molded using a pellet machine. This was dried with a hot air dryer to prepare a test feed. The breeding period was 56 days, and each test feed was fed once a day after sunset. The next morning, residual food, molting shells, and feces were collected, and the amount of feed was determined according to the amount of residual food. In the test plot, 3 repeat plots were set for each test feed, but after the breeding test was completed, 45 test fish in the same test plot were pooled, minced and used for analysis. Regarding the statistical processing, after confirming the significant difference in the obtained results by one-way analysis of variance, the significant difference of the average value in each test group was judged by Tukey's multiple comparison test method (p <0.05).
Figure 0006865456

飼育成績
飼育成績を表2に示した。平均体重、平均増重率、生残率、飼料効率に有意差はないが、日間摂餌率は試験区4が有意に高くなったことから、オーランチオキトリウム藻体は摂餌を促進させる効果があることが示唆された。これらの結果から、オーランチオキトリウムは成長に関して魚粉主体の飼料と差はないことが確認された。

Figure 0006865456
Breeding results Table 2 shows the breeding results. There was no significant difference in average body weight, average weight gain rate, survival rate, and feed efficiency, but the daily feeding rate was significantly higher in Test Group 4, so Aurantiochytrium algae promote feeding. It was suggested that it was effective. From these results, it was confirmed that Aurantiochytrium is not different from the fishmeal-based feed in terms of growth.
Figure 0006865456

表3に開始時および終了時における全魚体の一般成分を示した。魚粉主体の対照飼料と全ての区で差は認められなかった。

Figure 0006865456
Table 3 shows the general components of the whole fish at the start and end. No difference was observed between the fish meal-based control feed and all plots.
Figure 0006865456

FERM AP−220147
FERM BP−11442
FERM AP-220147
FERM BP-11442

Claims (6)

魚介類養殖飼料用組成物であって、タンパク質源としてオーランチオキトリウム属藻類及び魚粉を含有し、当該オーランチオキトリウム属藻類が含有するタンパク質を構成する全アミノ酸中のメチオニンの占める割合が1.5−4.6質量%、イソロイシンの占める割合が2.2−6.5質量%、フェニルアラニンの占める割合が2.3−6.9質量%、リジンの占める割合が3.9−11.6質量%であり、当該オーランチオキトリウム属藻類の含有量が当該魚粉に対し10重量%以上である、魚介類養殖飼料用組成物。 A composition for algae culture feed, which contains Aurantiochytrium algae and fish meal as a protein source, and the proportion of methionine in all amino acids constituting the protein contained in the Aurantiochytrium algae is 1. .5-4.6% by mass, isoleucine in 2.2-6.5% by mass, phenylalanine in 2.3-6.9% by mass, lysine in 3.9-11. 6% by mass is, the content of the O-lunch Oki thorium algae is 10 wt% or more based on the fish meal, fish and shellfish aquaculture feed composition. 更に、前記オーランチオキトリウム属藻類が含有するタンパク質を構成する全アミノ酸中のトレオニンの占める割合が2.5−7.6質量%、バリンの占める割合が2.9−8.8質量%、ロイシンの占める割合が3.4−10.2質量%、ヒスチジンの占める割合が1.7−5.0質量%、アルギニンの占める割合が2.8−8.5質量%である、請求項1に記載の魚介類養殖飼料用組成物。 Further, threonine accounts for 2.5-7.6% by mass and valine accounts for 2.9-8.8% by mass in all amino acids constituting the protein contained in the algae of the genus Oranthiochitrium. Claim 1 that leucine accounts for 3.4-10.2% by mass, histidine accounts for 1.7-5.0% by mass, and arginine accounts for 2.8-8.5% by mass. The composition for algae culture feed according to. 前記オーランチオキトリウム属藻類がタウリンを0.2−0.7質量%含む、請求項1又は2に記載の魚介類養殖飼料用組成物。 The composition for aquaculture feed according to claim 1 or 2, wherein the Aurantiochytrium alga contains 0.2 to 0.7% by mass of taurine. 前記オーランチオキトリウム属藻類が、オーランチオキトリウムFERM BP−11442株である、請求項1〜3のいずれか1項に記載の魚介類養殖飼料用組成物。 The composition for aquaculture feed according to any one of claims 1 to 3, wherein the Aurantiochytrium algae is Aurantiochytrium FERM BP-11442 strain. 前記オーランチオキトリウム属藻類が、前記魚介類養殖飼料用組成物の全質量に対して、乾燥藻体換算で1.0〜75.0質量%配合される、請求項1〜4のいずれか1項に記載の魚介類養殖飼料用組成物。 Any of claims 1 to 4, wherein the Aurantiochytrium algae is blended in an amount of 1.0 to 75.0% by mass in terms of dry algae with respect to the total mass of the composition for aquaculture feed for seafood. The composition for aquaculture feed according to item 1. 請求項1〜5のいずれか1項に記載の魚介類養殖飼料用組成物を給餌する工程を含む、魚介類の養殖方法。 A method for aquaculture of seafood, which comprises a step of feeding the composition for aquaculture feed according to any one of claims 1 to 5.
JP2016099054A 2016-05-17 2016-05-17 Method of utilizing marine heterotrophic algae having an amino acid composition suitable for feed as a protein component of feed Active JP6865456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099054A JP6865456B2 (en) 2016-05-17 2016-05-17 Method of utilizing marine heterotrophic algae having an amino acid composition suitable for feed as a protein component of feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099054A JP6865456B2 (en) 2016-05-17 2016-05-17 Method of utilizing marine heterotrophic algae having an amino acid composition suitable for feed as a protein component of feed

Publications (2)

Publication Number Publication Date
JP2017205045A JP2017205045A (en) 2017-11-24
JP6865456B2 true JP6865456B2 (en) 2021-04-28

Family

ID=60414576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099054A Active JP6865456B2 (en) 2016-05-17 2016-05-17 Method of utilizing marine heterotrophic algae having an amino acid composition suitable for feed as a protein component of feed

Country Status (1)

Country Link
JP (1) JP6865456B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054088B2 (en) * 2017-11-29 2022-04-13 国立研究開発法人水産研究・教育機構 A method for producing seedlings of marine fish, which comprises feeding particles containing marine heterotrophic algae.
WO2020026794A1 (en) * 2018-08-01 2020-02-06 MoBiol株式会社 Method for culturing heterotrophic microalgae using palm oil mill effluent (pome) and method for producing dha
JPWO2023007656A1 (en) * 2021-07-29 2023-02-02
JP7248772B1 (en) 2021-12-21 2023-03-29 マルハニチロ株式会社 Seriola farmed fish and method for raising Seriola farmed fish
CN114287521B (en) * 2021-12-27 2023-06-20 中国海洋大学 Compound enzymolysis preparation method of laminarin for replacing fish meal for cottonseed protein compound feed and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077799A1 (en) * 2010-12-09 2012-06-14 国立大学法人筑波大学 Novel microorganism having high squalene-producing ability, and method for producing squalene by means of same
FR3019559B1 (en) * 2014-04-03 2018-01-05 Fermentalg PROCESS FOR CULTIVATION OF MICROALGUES OF THE GENUS AURANTIOCHYTRIUM IN A SODIUM-CHLORIDE REDUCED CULTURE MEDIUM FOR THE PRODUCTION OF DHA
JP5747360B1 (en) * 2014-07-11 2015-07-15 国立大学法人東北大学 Nutrient recovery method of algal lipid extraction residue, algae culture method, and algae culture medium
WO2016010149A1 (en) * 2014-07-18 2016-01-21 国立大学法人筑波大学 Method of acclimating algae belonging to aurantiochytrium sp. to low-salt conditions

Also Published As

Publication number Publication date
JP2017205045A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
Guedes et al. Application of microalgae protein to aquafeed
Harel et al. Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs
JP6865456B2 (en) Method of utilizing marine heterotrophic algae having an amino acid composition suitable for feed as a protein component of feed
JP6779450B2 (en) Feed for aquaculture of seafood containing cultured microalgae that have accumulated squalene
US11930832B2 (en) Feed supplement material for use in aquaculture feed
Arai Eel, Anguilla spp.
de Cruz et al. Evaluation of microalgae concentrates as partial fishmeal replacements for hybrid striped bass Morone sp.
CN107529411B (en) Compound feed for soft-shell crabs of scylla paramamosain and preparation method thereof
CN105166455A (en) New-type environmentally protective, nutritional, and high-efficient pelteobagrus fulvidraco compound feed
CN108271951B (en) Algae-derived composite protein mixture for replacing fish meal in aquatic feed and application
CN106306551A (en) Efficient growth-promoting functional compound feed for micropterus salmoides
Lim et al. Practical feeding—penaeid shrimps
CN104920833A (en) Penaeus vannamei compound feed and processing method thereof
CN102379376B (en) Forage capable of improving broodstock reproductive performance of Cherax quadricarionatus
Radhakrishnan et al. Different animal feeds and their role in aquaculture
Fall et al. Effects of partial substitution of fishmeal by crustacean (Callianassa) meal on the growth performance, feed efficiency and survival rate of Nile tilapia (Oreochromis niloticus)
Bilen et al. Effects of different protein sources on growth performance and food consumption of goldfish, Carassius auratus
Verma et al. Effect of special fish feed prepared using food industrial waste on Labeo rohita
Jaseera et al. Thraustochytrids in aquaculture: Can it replace fish meal in Aquafeed?
Aktaş et al. The changes in the molecular weight profiles and biochemical compositions of potential feed ingredients for sustainable aquaculture
Khan et al. Alternative sources of proteins in farm animal feeding
JPH0723718A (en) Feed for culture fish
Arai Practical Feeding—Eels
KR101879776B1 (en) Feed composition in the formulated feed for abalone
WO2021130078A1 (en) Aquaculture feed

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6865456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250