JP6860933B2 - Electrolytic nickel (alloy) plating solution - Google Patents

Electrolytic nickel (alloy) plating solution Download PDF

Info

Publication number
JP6860933B2
JP6860933B2 JP2018518251A JP2018518251A JP6860933B2 JP 6860933 B2 JP6860933 B2 JP 6860933B2 JP 2018518251 A JP2018518251 A JP 2018518251A JP 2018518251 A JP2018518251 A JP 2018518251A JP 6860933 B2 JP6860933 B2 JP 6860933B2
Authority
JP
Japan
Prior art keywords
nickel
plating solution
electrolytic
electrolytic nickel
pyridinium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018518251A
Other languages
Japanese (ja)
Other versions
JPWO2017199835A1 (en
Inventor
和也 柴田
和也 柴田
祐樹 大平原
祐樹 大平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pure Chemical Co Ltd
Original Assignee
Japan Pure Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pure Chemical Co Ltd filed Critical Japan Pure Chemical Co Ltd
Publication of JPWO2017199835A1 publication Critical patent/JPWO2017199835A1/en
Application granted granted Critical
Publication of JP6860933B2 publication Critical patent/JP6860933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/18Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Description

本発明は、電解ニッケルめっき液や電解ニッケル合金めっき液(以下、これらを総称して「電解ニッケル(合金)めっき液」という場合がある。)に関し、更に詳しくは、電子部品内の微小孔や微小凹部のめっき充填用に適した電解ニッケル(合金)めっき液に関する。
また、本発明は、かかる電解ニッケル(合金)めっき液を使用した微小孔や微小凹部のめっき充填方法や、微小三次元構造体の製造方法に関する。
The present invention relates to an electrolytic nickel plating solution and an electrolytic nickel alloy plating solution (hereinafter, these may be collectively referred to as "electrolytic nickel (alloy) plating solution"). The present invention relates to an electrolytic nickel (alloy) plating solution suitable for plating and filling minute recesses.
The present invention also relates to a method for plating and filling micropores and microrecesses using such an electrolytic nickel (alloy) plating solution, and a method for manufacturing microthree-dimensional structures.

半導体やプリント基板に代表される電子回路部品は、配線形成のためのビア、スルーホール、トレンチ等の微小孔や微小凹部を有している。従来複数の回路基板を積層させた多層プリント基板の製造においては、ビアの壁面をコンフォーマル銅めっき(追従めっき)した後に、食い違い配列で他層と接続させるスタガードビア構造が主流であった。しかし、近年の電子機器の小型化、高機能化に伴い、ビアを銅めっきで充填し、そのまま他層を重ねて層間接続させるスタックビア構造による省スペース化が必要不可欠なものとなっている。 Electronic circuit components typified by semiconductors and printed circuit boards have minute holes and minute recesses such as vias, through holes, and trenches for forming wiring. Conventionally, in the production of a multilayer printed circuit board in which a plurality of circuit boards are laminated, a staggered via structure in which the wall surface of a via is conformally copper-plated (follow-up plating) and then connected to another layer in a staggered arrangement has been the mainstream. However, with the recent miniaturization and higher functionality of electronic devices, it is indispensable to save space by a stack via structure in which vias are filled with copper plating and other layers are layered and connected as they are.

電解銅めっきによる充填技術は半導体製造技術にも適用され、ダマシンプロセスやシリコン貫通電極(TSV:Through Silicon Via)と呼ばれる技術が登場し、ビアを電解銅めっきで充填させて三次元的に配線構造を形成することが可能となってきている。 The filling technology by electrolytic copper plating is also applied to semiconductor manufacturing technology, and a technology called damascene process and silicon through electrode (TSV: Through Silicon Via) has appeared, and vias are filled with electrolytic copper plating to create a three-dimensional wiring structure. It has become possible to form.

微小孔や微小凹部の充填用の電解銅めっき液は、複数の添加剤を含有させ、それらの濃度バランスを最適にコントロールすることでビアを充填しているが、数μm程度のマクロボイドがなく充填できたとしても、添加剤の副作用としてnmオーダーのマイクロボイドが残留するという問題があった。銅は融点がそれほど高くない金属であり(1083℃)、電解銅めっき後の室温放置においても再結晶が起こることは良く知られている。この再結晶過程においてnmオーダーのマイクロボイドが凝集した結果、マクロなボイドを形成してしまうという問題があった。
例えば、非特許文献1には、添加剤であるポリエチレングリコール(PEG)が銅皮膜中に一部取り込まれ、銅皮膜中にnmオーダーのマイクロボイドが生じ、銅の再結晶過程において、室温放置により、直径70nmに達する大きなボイドを形成することが記載されている。
The electrolytic copper plating solution for filling micropores and microrecesses contains multiple additives and fills vias by optimally controlling the concentration balance of them, but there are no macrovoids of about several μm. Even if it could be filled, there was a problem that microvoids on the order of nm remained as a side effect of the additive. Copper is a metal whose melting point is not so high (1083 ° C.), and it is well known that recrystallization occurs even when left at room temperature after electrolytic copper plating. As a result of the aggregation of nm-order microvoids in this recrystallization process, there is a problem that macrovoids are formed.
For example, in Non-Patent Document 1, polyethylene glycol (PEG), which is an additive, is partially incorporated into a copper film, and nm-order microvoids are generated in the copper film. , Forming large voids up to 70 nm in diameter.

従って、電解銅めっき液を使用した銅充填方法ではこのような課題を潜在的に抱えていることになり、配線の更なる微細化が進んだ際にはマイクロボイド凝集に伴うボイド成長やボイド移動により、配線信頼性の低下が顕在化するおそれがある。 Therefore, the copper filling method using the electrolytic copper plating solution potentially has such a problem, and when the wiring is further miniaturized, void growth and void movement due to microvoid aggregation As a result, the deterioration of wiring reliability may become apparent.

そこで、めっき添加剤起因のマイクロボイドが残留したとしても、室温再結晶が起こりにくい高融点金属、特に電子部品の下地めっきとして一般的なニッケル(融点:1455℃)で微小孔や微小凹部を充填することができれば、ボイドの凝集が起きず信頼性の高い配線になり得ると本発明者は推測した。 Therefore, even if microvoids caused by the plating additive remain, the micropores and microrecesses are filled with a refractory metal that is unlikely to recrystallize at room temperature, especially nickel (melting point: 1455 ° C.), which is common as a base plating for electronic components. The present inventor speculates that if this can be done, void aggregation will not occur and the wiring can be highly reliable.

電解ニッケルめっきで凹部を充填する試みも検討はされている。
非特許文献2では、電解ニッケルめっき液に、様々な添加剤を加えた場合のトレンチ内の充填性を検討し、チオ尿素を添加することで微小凹部(トレンチ)が充填されるとしている。
しかしながら、本発明者らの追試(後述の実施例)によると、非特許文献2に記載の電解ニッケルめっき液での充填性は未だ不十分でありボイドの発生を抑制できず、また、析出物にクラックが入り、構造体として不良であることが判明した。
Attempts to fill the recesses with electrolytic nickel plating are also being considered.
In Non-Patent Document 2, the filling property in the trench when various additives are added to the electrolytic nickel plating solution is examined, and it is stated that the minute recesses (trench) are filled by adding thiourea.
However, according to a follow-up test by the present inventors (examples described later), the filling property with the electrolytic nickel plating solution described in Non-Patent Document 2 is still insufficient, the generation of voids cannot be suppressed, and the precipitates. It was found that the structure was defective due to cracks in the structure.

電子回路の微細化は、益々進行しており、かかる公知技術では、微小孔・微小凹部の充填性が不十分であり、ボイド等の欠陥やクラック等が発生しないニッケル充填方法の開発が望まれていた。 The miniaturization of electronic circuits is progressing more and more, and it is desired to develop a nickel filling method in which the filling properties of minute holes and minute recesses are insufficient with such known technology and defects such as voids and cracks do not occur. Was there.

表面技術 Vol.52, No.1, pp.34-38(2001)Surface Technology Vol.52, No.1, pp.34-38 (2001) エレクトロニクス実装学会誌, Vol.17, No.2, pp.143-148(2014)Journal of Electronics Packaging Society, Vol.17, No.2, pp.143-148 (2014)

本発明は上記背景技術に鑑みてなされたものであり、その課題は、電子回路部品内の微小孔や微小凹部をニッケル又はニッケル合金で充填するに際し、ボイドやシーム等の欠陥を発生させることなく充填することのできる電解ニッケル(合金)めっき液を提供することにあり、また、かかる電解ニッケル(合金)めっき液を用いたニッケル又はニッケル合金めっき充填方法や、微小三次元構造体の製造方法を提供することにある。 The present invention has been made in view of the above background technology, and the problem is that when filling micropores and microrecesses in electronic circuit parts with nickel or nickel alloy, defects such as voids and seams are not generated. The purpose is to provide an electrolytic nickel (alloy) plating solution that can be filled, and also to provide a nickel or nickel alloy plating filling method using such an electrolytic nickel (alloy) plating solution, and a method for manufacturing a micro three-dimensional structure. To provide.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、特定のN置換カルボニルピリジニウム化合物を含有させた電解ニッケルめっき液を使用して電気めっきすることによって、微小孔や微小凹部内に、ボイド等の欠陥を発生させることなくニッケルを充填することができることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor has performed electroplating using an electrolytic nickel plating solution containing a specific N-substituted carbonyl pyridinium compound, thereby forming micropores and microrecesses. In addition, they have found that nickel can be filled without causing defects such as voids, and have completed the present invention.

すなわち、本発明は、ニッケル塩と、pH緩衝剤と、下記一般式(A)で表されるN置換カルボニルピリジニウム化合物を含有することを特徴とする電解ニッケルめっき液又は電解ニッケル合金めっき液を提供するものである。 That is, the present invention provides an electrolytic nickel plating solution or an electrolytic nickel alloy plating solution, which comprises a nickel salt, a pH buffer, and an N-substituted carbonyl pyridinium compound represented by the following general formula (A). To do.

Figure 0006860933
Figure 0006860933

[一般式(A)において、mは0又は1である。−Rは−R1a又は−NR1b1cである(R1aは炭素数1〜6のアルキル基;R1bは水素原子又は炭素数1〜6のアルキル基;R1cは水素原子、炭素数1〜6のアルキル基、又はアミノ基(−NH))。−Rは水素原子又は炭素数1〜6の炭化水素基である。Xは任意の陰イオンである。][In the general formula (A), m is 0 or 1. -R 1 is -R 1a or -NR 1b R 1c (R 1a is an alkyl group having 1 to 6 carbon atoms; R 1b is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 1c is a hydrogen atom and carbon. Alkyl group or amino group (-NH 2 ) of the number 1-6. -R 2 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. X is any anion. ]

また、本発明は、ニッケル塩と、pH緩衝剤と、下記一般式(B)で表されるN置換カルボニルピリジニウム化合物を含有することを特徴とする電解ニッケルめっき液又は電解ニッケル合金めっき液を提供するものである。 The present invention also provides an electrolytic nickel plating solution or an electrolytic nickel alloy plating solution, which comprises a nickel salt, a pH buffer, and an N-substituted carbonyl pyridinium compound represented by the following general formula (B). To do.

Figure 0006860933
Figure 0006860933

[一般式(B)において、mは0又は1である。−Rは−R1a又は−NR1b1cである(R1aは炭素数1〜6のアルキル基;R1bは水素原子又は炭素数1〜6のアルキル基;R1cは水素原子、炭素数1〜6のアルキル基、又はアミノ基(−NH))。−Rは−R3a−SO (R3aは炭素数1〜6のアルキレン基)である。][In the general formula (B), m is 0 or 1. -R 1 is -R 1a or -NR 1b R 1c (R 1a is an alkyl group having 1 to 6 carbon atoms; R 1b is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 1c is a hydrogen atom and carbon. Alkyl group or amino group (-NH 2 ) of the number 1-6. −R 3 is −R 3a −SO 3 (R 3a is an alkylene group having 1 to 6 carbon atoms). ]

また、本発明は、電子回路部品内に形成された微小孔又は微小凹部の表面に予め電解めっき用シード層を施した後、該電子回路部品を上記の電解ニッケルめっき液又は電解ニッケル合金めっき液に浸漬し、外部電源を使用して電解めっきをすることを特徴とするニッケル又はニッケル合金めっき充填方法を提供するものである。 Further, in the present invention, after a seed layer for electrolytic plating is previously applied to the surface of micropores or microrecesses formed in an electronic circuit component, the electronic circuit component is subjected to the above-mentioned electrolytic nickel plating solution or electrolytic nickel alloy plating solution. The present invention provides a nickel or nickel alloy plating filling method, which comprises immersing in and performing electrolytic plating using an external power source.

また、本発明は、上記のニッケル又はニッケル合金めっき充填方法により微小孔又は微小凹部にめっき充填する工程を含むことを特徴とする微小三次元構造体の製造方法を提供するものである。 The present invention also provides a method for producing a micro three-dimensional structure, which comprises a step of plating and filling micropores or microrecesses by the above-mentioned nickel or nickel alloy plating filling method.

本発明によれば、ニッケルめっき又はニッケル合金めっきを使用することにより、電子回路部品内の微小孔又は微小凹部を、ボイドやシーム等の欠陥を発生させることなく充填することができる。 According to the present invention, by using nickel plating or nickel alloy plating, it is possible to fill minute holes or minute recesses in an electronic circuit component without causing defects such as voids and seams.

また、本発明では、融点が高く、室温再結晶が起こりにくいニッケルで微小孔や微小凹部を充填できるので、配線の更なる微細化が進んでも、ボイドの凝集に伴う不具合が起こりにくく、微細化が進んでいる三次元配線形成や三次元MEMS(Micro Electro Mechanical Systems)部品等に広く応用することができる。 Further, in the present invention, since the micropores and the microrecesses can be filled with nickel having a high melting point and less likely to recrystallize at room temperature, even if the wiring is further miniaturized, problems due to the aggregation of voids are unlikely to occur and the miniaturization It can be widely applied to three-dimensional wiring formation and three-dimensional MEMS (Micro Electro Mechanical Systems) parts, which are being advanced.

実施例で使用した評価用プリント基板の被めっき部周辺の断面を示す模式図である。It is a schematic diagram which shows the cross section around the part to be plated of the evaluation printed circuit board used in an Example. 実施例で使用した評価用プリント基板の表面の配線パターンの写真である。It is a photograph of the wiring pattern of the surface of the evaluation printed circuit board used in the Example. めっき充填後の基板断面の顕微鏡写真である(実施例1)。It is a micrograph of the cross section of a substrate after plating filling (Example 1). めっき充填後の基板断面の顕微鏡写真である(実施例2)。It is a micrograph of the cross section of the substrate after plating filling (Example 2). めっき充填後の基板断面の顕微鏡写真である(実施例3)。It is a micrograph of the cross section of the substrate after plating filling (Example 3). めっき充填後の基板断面の顕微鏡写真である(実施例4)。It is a micrograph of the cross section of the substrate after plating filling (Example 4). めっき充填後の基板断面の顕微鏡写真である(比較例1)。It is a micrograph of the cross section of the substrate after plating filling (Comparative Example 1). めっき充填後の基板断面の顕微鏡写真である(比較例2)。It is a micrograph of the cross section of the substrate after plating filling (Comparative Example 2). めっき充填後の基板断面の顕微鏡写真である(比較例3)。It is a micrograph of the cross section of the substrate after plating filling (Comparative Example 3).

以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。 Hereinafter, the present invention will be described, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out.

<電解ニッケル(合金)めっき液>
本発明の電解ニッケル(合金)めっき液(以下、単に「本発明のめっき液」と略記する場合がある。)は、ニッケル塩と、pH緩衝剤と、下記一般式(A)又は下記一般式(B)で表されるN置換カルボニルピリジニウム化合物を含有する。
<Electrolytic nickel (alloy) plating solution>
The electrolytic nickel (alloy) plating solution of the present invention (hereinafter, may be simply abbreviated as "plating solution of the present invention") includes a nickel salt, a pH buffer, and the following general formula (A) or the following general formula. It contains an N-substituted carbonylpyridinium compound represented by (B).

Figure 0006860933
Figure 0006860933

[一般式(A)において、mは0又は1である。−Rは−R1a又は−NR1b1cである(R1aは炭素数1〜6のアルキル基;R1bは水素原子又は炭素数1〜6のアルキル基;R1cは水素原子、炭素数1〜6のアルキル基、又はアミノ基(−NH))。−Rは水素原子又は炭素数1〜6の炭化水素基である。Xは任意の陰イオンである。][In the general formula (A), m is 0 or 1. -R 1 is -R 1a or -NR 1b R 1c (R 1a is an alkyl group having 1 to 6 carbon atoms; R 1b is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 1c is a hydrogen atom and carbon. Alkyl group or amino group (-NH 2 ) of the number 1-6. -R 2 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. X is any anion. ]

Figure 0006860933
Figure 0006860933

[一般式(B)において、mは0又は1である。−Rは−R1a又は−NR1b1cである(R1aは炭素数1〜6のアルキル基;R1bは水素原子又は炭素数1〜6のアルキル基;R1cは水素原子、炭素数1〜6のアルキル基、又はアミノ基(−NH))。−Rは−R3a−SO (R3aは炭素数1〜6のアルキレン基)である。][In the general formula (B), m is 0 or 1. -R 1 is -R 1a or -NR 1b R 1c (R 1a is an alkyl group having 1 to 6 carbon atoms; R 1b is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 1c is a hydrogen atom and carbon. Alkyl group or amino group (-NH 2 ) of the number 1-6. −R 3 is −R 3a −SO 3 (R 3a is an alkylene group having 1 to 6 carbon atoms). ]

本発明のめっき液に含有させるニッケル塩としては、水溶性や充填性の観点から、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、炭酸ニッケル、硝酸ニッケル、ギ酸ニッケル、酢酸ニッケル、クエン酸ニッケル、ホウフッ化ニッケル等が挙げられるが、これらに限定されるものではない。
これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
The nickel salt contained in the plating solution of the present invention includes nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, nickel carbonate, nickel nitrate, nickel formate, nickel acetate, and citric acid from the viewpoint of water solubility and filling property. Examples thereof include nickel and nickel borofluoride, but the present invention is not limited thereto.
These may be used individually by 1 type, or may be used in combination of 2 or more type.

上記ニッケル塩の合計含有量は、ニッケルイオンとして、10g/L以上180g/L以下が好ましく、50g/L以上130g/L以下が特に好ましい。
上記範囲内であると、ニッケルの析出速度を十分にすることができ、また、ボイドを発生することなく微小孔や微小凹部を充填することができる。
The total content of the nickel salts is preferably 10 g / L or more and 180 g / L or less, and particularly preferably 50 g / L or more and 130 g / L or less as nickel ions.
Within the above range, the deposition rate of nickel can be made sufficient, and micropores and microrecesses can be filled without generating voids.

本発明のめっき液に含有させるpH緩衝剤としては、ホウ酸、メタホウ酸、酢酸、酒石酸、クエン酸や、それらの塩等が挙げられるが、これらに限定されるものではない。
これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
Examples of the pH buffering agent contained in the plating solution of the present invention include, but are not limited to, boric acid, metaboric acid, acetic acid, tartaric acid, citric acid, and salts thereof.
These may be used individually by 1 type, or may be used in combination of 2 or more type.

pH緩衝剤の合計含有量は、1g/L以上100g/L以下が好ましく、5g/L以上50g/L以下が特に好ましい。
上記範囲内であると、上記一般式(A)又は一般式(B)で表されるN置換カルボニルピリジニウム化合物(以下、「特定N置換カルボニルピリジニウム化合物」という場合がある。)の作用を阻害しにくく、本発明の効果が保たれる。
The total content of the pH buffer is preferably 1 g / L or more and 100 g / L or less, and particularly preferably 5 g / L or more and 50 g / L or less.
Within the above range, the action of the N-substituted carbonylpyridinium compound represented by the general formula (A) or the general formula (B) (hereinafter, may be referred to as “specific N-substituted carbonylpyridinium compound”) is inhibited. It is difficult and the effect of the present invention is maintained.

本発明のめっき液は、特定N置換カルボニルピリジニウム化合物を含有する。
特定N置換カルボニルピリジニウム化合物の作用により、本発明のめっき液は、微小孔や微小凹部をボイドの発生なく充填することができる。
The plating solution of the present invention contains a specific N-substituted carbonylpyridinium compound.
Due to the action of the specific N-substituted carbonylpyridinium compound, the plating solution of the present invention can fill micropores and microrecesses without generating voids.

上記一般式(A)及び上記一般式(B)のR1a、R1b、R1c、Rが、炭素数1〜6のアルキル基である場合は、該R1a、R1b、R1c、Rは何れも、異なっていてもよい炭素数1〜4のアルキル基が好ましく、炭素数1〜3のアルキル基がより好ましく、炭素数1又は2のアルキル基が特に好ましい。
また、上記一般式(B)のR3aが炭素数1〜6のアルキレン基である場合は、炭素数1〜4のアルキレン基が好ましく、炭素数1〜3のアルキレン基がより好ましく、炭素数1又は2のアルキレン基が特に好ましい。
When R 1a , R 1b , R 1c , and R 2 of the general formula (A) and the general formula (B) are alkyl groups having 1 to 6 carbon atoms, the R 1a , R 1b , and R 1c , both R 2 is preferably an alkyl group which may having 1 to 4 carbon atoms or different, and more preferably an alkyl group having 1 to 3 carbon atoms, particularly preferably an alkyl group having 1 or 2 carbon atoms.
When R 3a of the general formula (B) is an alkylene group having 1 to 6 carbon atoms, an alkylene group having 1 to 4 carbon atoms is preferable, an alkylene group having 1 to 3 carbon atoms is more preferable, and an alkylene group having 1 to 3 carbon atoms is more preferable. One or two alkylene groups are particularly preferred.

上記一般式(A)において、−Rの具体例としては、−CH、−CHCH、−NH、−N(CH、−N(C、−NHNH等が挙げられる。
−Rの具体例としては、−H、−CH、−C、−C等が挙げられる。
の具体例としては、ハロゲン化物イオン(塩化物イオン、臭化物イオン、ヨウ化物イオン)等が挙げられる。
In the above general formula (A), specific examples of -R 1 include -CH 3 , -CH 2, CH 3 , -NH 2 , -N (CH 3 ) 2 , -N (C 2 H 5 ) 2 , and-. NHNH 2 and the like can be mentioned.
Specific examples of -R 2 include -H, -CH 3 , -C 2 H 5 , -C 3 H 7, and the like.
Specific examples of X include halide ions (chloride ion, bromide ion, iodide ion) and the like.

上記一般式(A)で表される特定N置換カルボニルピリジニウム化合物の具体例としては、1−カルバモイルピリジニウム、1−(カルバモイルメチル)ピリジニウム、1−(ジメチルカルバモイル)ピリジニウム、1−(ジエチルカルバモイル)ピリジニウム、1−(ヒドラジノカルボニルメチル)ピリジニウム、及び、1−アセトニルピリジニウムのハロゲン化物(塩化物、臭化物、ヨウ化物)等が挙げられる。 Specific examples of the specific N-substituted carbonylpyridinium compound represented by the above general formula (A) include 1-carbamoylpyridinium, 1- (carbamoylmethyl) pyridinium, 1- (dimethylcarbamoyl) pyridinium, 1- (diethylcarbamoyl) pyridinium. , 1- (hydrazinocarbonylmethyl) pyridinium, and halides (chlorides, bromides, iodides) of 1-acetonylpyridinium and the like.

上記一般式(B)において、−Rの具体例としては、一般式(A)の場合と同様のものが挙げられる。
−Rの具体例としては、−C−SO 、−C−SO 等が挙げられる。
In the general formula (B), specific examples of -R 1, it is the same as those of the case of general formula (A).
Specific examples of the -R 3, -C 2 H 4 -SO 3 -, -C 3 H 6 -SO 3 - , and the like.

上記一般式(B)で表される特定N置換カルボニルピリジニウム化合物の具体例としては、1−(カルバモイルメチル)−4−(2−スルホエチル)ピリジニウムヒドロキシド分子内塩、1−(カルバモイルメチル)−4−(2−スルホプロピル)ピリジニウムヒドロキシド分子内塩、1−(カルバモイル)−4−(2−スルホエチル)ピリジニウムヒドロキシド分子内塩、1−(カルバモイル)−4−(2−スルホプロピル)ピリジニウムヒドロキシド分子内塩、1−(ジメチルカルバモイル)−4−(2−スルホエチル)ピリジニウムヒドロキシド分子内塩、1−(ジメチルカルバモイル)−4−(2−スルホプロピル)ピリジニウムヒドロキシド分子内塩等が挙げられる。 Specific examples of the specific N-substituted carbonyl pyridinium compound represented by the above general formula (B) include 1- (carbamoylmethyl) -4- (2-sulfoethyl) pyridinium hydroxide intramolecular salt and 1- (carbamoylmethyl)-. 4- (2-Sulfopropyl) pyridinium hydroxide intramolecular salt, 1- (carbamoyl) -4- (2-sulfoethyl) pyridinium hydroxide intramolecular salt, 1- (carbamoyl) -4- (2-sulfopropyl) pyridinium Hydroxylide intramolecular salt, 1- (dimethylcarbamoyl) -4- (2-sulfoethyl) pyridinium hydroxide intramolecular salt, 1- (dimethylcarbamoyl) -4- (2-sulfopropyl) pyridinium hydroxide intramolecular salt, etc. Can be mentioned.

特定N置換カルボニルピリジニウム化合物は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
また、本発明のめっき液における特定N置換カルボニルピリジニウム化合物の合計含有量は、0.01g/L以上100g/L以下が好ましく、0.1g/L以上10g/L以下が特に好ましい。
上記範囲内であると、微小孔や微小凹部の外部のニッケル析出量を多くすることができ、微小孔や微小凹部にボイドを発生させることなく充填することができる。
The specific N-substituted carbonylpyridinium compound may be used alone or in combination of two or more.
The total content of the specific N-substituted carbonylpyridinium compound in the plating solution of the present invention is preferably 0.01 g / L or more and 100 g / L or less, and particularly preferably 0.1 g / L or more and 10 g / L or less.
Within the above range, the amount of nickel deposited outside the micropores and microrecesses can be increased, and the micropores and microrecesses can be filled without generating voids.

本発明のめっき液は、ニッケル塩と、pH緩衝剤と、特定N置換カルボニルピリジニウム化合物を必須成分として含有する。
本発明のめっき液を調製する際には、上記必須成分をどのような順序で水に添加してもよい。また、保管の際には、上記必須成分のうち、任意の成分のみを水に溶解した水溶液の状態で保管し、使用時に、他の成分を添加することにより、全ての必須成分を含有する本発明のめっき液を調製してもよい。
The plating solution of the present invention contains a nickel salt, a pH buffer, and a specific N-substituted carbonyl pyridinium compound as essential components.
When preparing the plating solution of the present invention, the above essential components may be added to water in any order. In addition, when storing, the book contains all the essential components by storing only any of the above essential components in an aqueous solution dissolved in water and adding other components at the time of use. The plating solution of the present invention may be prepared.

本発明のめっき液が、電解ニッケル合金めっき液である場合、ニッケルとの合金用の金属イオンについては、例えば、タングステン、モリブデン、コバルト、鉄、亜鉛、錫、銅、パラジウム、金等が挙げられる。これらの金属源としては、公知の化合物を使用できる。
また、金属ではないものの、ニッケル又はニッケル合金皮膜に、炭素、硫黄、窒素、リン、ホウ素、塩素、臭素等を含有してもよい。
When the plating solution of the present invention is an electrolytic nickel alloy plating solution, examples of metal ions for alloying with nickel include tungsten, molybdenum, cobalt, iron, zinc, tin, copper, palladium, and gold. .. Known compounds can be used as these metal sources.
Further, although it is not a metal, carbon, sulfur, nitrogen, phosphorus, boron, chlorine, bromine and the like may be contained in the nickel or nickel alloy film.

本発明のめっき液には、本発明の効果を阻害しない範囲内で、ピット防止剤、1次光沢剤、2次光沢剤、界面活性剤等を必要に応じて添加することができる。 A pit inhibitor, a primary brightener, a secondary brightener, a surfactant and the like can be added to the plating solution of the present invention as necessary, as long as the effects of the present invention are not impaired.

本発明のめっき液は、電子回路部品内に形成された微小孔又は微小凹部の充填用として使用するのに適している。後述の実施例のように、本発明のめっき液により、微小孔や微小凹部を充填した場合、微小孔や微小凹部の内部の析出量が、微小孔や微小凹部の外部の析出量よりも多くなり、微小孔や微小凹部にニッケル(又はニッケル合金)を十分に埋め込むことができる。また、微小孔や微小凹部の内部にボイド(穴)やシーム(溝)が発生しにくい。
このため、ニッケルの融点の高さも相俟って、本発明のめっき液により微小孔や微小凹部を充填した電子回路部品は、高い信頼性を持つことが期待される。
The plating solution of the present invention is suitable for use for filling micropores or microrecesses formed in electronic circuit components. When the micropores and microrecesses are filled with the plating solution of the present invention as in the examples described later, the amount of precipitation inside the micropores and microrecesses is larger than the amount of precipitation outside the micropores and microrecesses. Therefore, nickel (or nickel alloy) can be sufficiently embedded in the micropores and the microrecesses. In addition, voids (holes) and seams (grooves) are less likely to occur inside the minute holes and the minute recesses.
Therefore, in combination with the high melting point of nickel, it is expected that the electronic circuit component in which the micropores and the microrecesses are filled with the plating solution of the present invention has high reliability.

<ニッケル(合金)めっき充填方法・微小三次元構造体の製造方法>
本発明は、電子回路部品内に形成された微小孔又は微小凹部の表面に予め電解めっき用シード層を施した後、該電子部品を前記の電解ニッケル(合金)めっき液に浸漬し、外部電源を使用して電解めっきをすることを特徴とするニッケル又はニッケル合金めっき充填方法でもある。
また、本発明は、かかるニッケル又はニッケル合金めっき充填方法により微小孔又は微小凹部にめっき充填する工程を含むことを特徴とする微小三次元構造体の製造方法でもある。
<Nickel (alloy) plating filling method / manufacturing method of micro-three-dimensional structure>
In the present invention, a seed layer for electroplating is previously applied to the surface of micropores or microrecesses formed in an electronic circuit component, and then the electronic component is immersed in the electrolytic nickel (alloy) plating solution to obtain an external power source. It is also a nickel or nickel alloy plating filling method characterized by electroplating using.
The present invention is also a method for manufacturing a micro three-dimensional structure, which comprises a step of plating and filling micropores or microrecesses by such a nickel or nickel alloy plating filling method.

「微小孔又は微小凹部」とは、半導体やプリント基板等の電子回路部品内に形成されたビア、スルーホール、トレンチ等の微小な窪んだ部分であり、電解めっき等により、金属を充填されることにより、配線部として機能する部分をいい、上から見た形状は限定されない。また、「微小孔」に関しては、貫通していてもいなくてもよい。 "Micropores or microrecesses" are minute recessed parts such as vias, through holes, and trenches formed in electronic circuit parts such as semiconductors and printed circuit boards, and are filled with metal by electroplating or the like. As a result, it refers to a part that functions as a wiring part, and the shape seen from above is not limited. Further, the "micropores" may or may not penetrate.

本発明を実施するには、電子回路部品内の被めっき基板上に、微小孔や微小凹部を形成することが必要である。 In order to carry out the present invention, it is necessary to form micropores and microrecesses on the substrate to be plated in the electronic circuit component.

被めっき基材に特に制限はなく、具体的には電子回路部品として多用されるガラスエポキシ材、BT(Bismaleimide-Triazine)レジン材、ポリプロピレン材、ポリイミド材、セラミック材、シリコン材、金属材、ガラス材等が挙げられる。 The substrate to be plated is not particularly limited, and specifically, glass epoxy material, BT (Bismaleimide-Triazine) resin material, polypropylene material, polyimide material, ceramic material, silicon material, metal material, and glass, which are often used as electronic circuit parts. Materials and the like can be mentioned.

被めっき基材に微小孔や微小凹部を形成する方法に制限はなく、公知の方法が適宜使用できる。例えば、レーザー加工やイオンエッチングによる方法が挙げられ、開口部が100μm以下、アスペクト比が0.5以上の深さで微小凹部を形成させることができる。
その後必要に応じてフォトレジスト等で被めっき基材表面にパターンを形成させる。
There is no limitation on the method of forming micropores or microrecesses on the base material to be plated, and a known method can be appropriately used. For example, a method by laser processing or ion etching can be mentioned, and a minute recess can be formed at a depth of 100 μm or less and an aspect ratio of 0.5 or more.
Then, if necessary, a pattern is formed on the surface of the substrate to be plated with a photoresist or the like.

微小凹部を形成した被めっき基材が絶縁基材の場合には、基材表面と微小凹部の内表面に電解めっき用シード層を形成させる。シード層の形成方法に制限はないが、具体的にはスパッタリングによる金属堆積や無電解めっき法等が挙げられる。
シード層を構成する金属としては特に制限はなく、銅、ニッケル、パラジウム等が例示できる。
When the base material to be plated on which the micro-recesses are formed is an insulating base material, a seed layer for electrolytic plating is formed on the surface of the base material and the inner surface of the micro-recesses. The method for forming the seed layer is not limited, and specific examples thereof include metal deposition by sputtering and electroless plating.
The metal constituting the seed layer is not particularly limited, and copper, nickel, palladium and the like can be exemplified.

電解めっき用シード層を形成した後に、本発明の電解ニッケル(合金)めっき液に被めっき基材を浸漬し、外部電源を用いて電解ニッケル(合金)めっきを実施し、微小孔や微小凹部に、ニッケル又はニッケル合金を充填する。
なお、シード層形成後に一度乾燥した被めっき基材にめっきする場合は、常法に従って脱脂、酸洗浄を行った後に、本発明のめっき液を用いて電気めっきすればよい。
After forming the seed layer for electrolytic plating, the base material to be plated is immersed in the electrolytic nickel (alloy) plating solution of the present invention, and electrolytic nickel (alloy) plating is performed using an external power source to form fine pores and minute recesses. , Nickel or nickel alloy.
When plating the base material to be plated once dried after forming the seed layer, the base material to be plated may be degreased and acid-cleaned according to a conventional method, and then electroplated using the plating solution of the present invention.

本発明のニッケル又はニッケル合金めっき充填方法により、微小孔又は微小凹部にめっき充填する工程を含む方法により、微小孔や微小凹部がニッケル又はニッケル合金で充填された微小三次元回路配線又は微小三次元構造体を製造することができる。 By the method including the step of plating and filling the micropores or the microrecesses by the nickel or nickel alloy plating filling method of the present invention, the micropores or the microrecesses are filled with the nickel or nickel alloy. The structure can be manufactured.

めっき温度は、30℃以上が好ましく、40℃以上が特に好ましい。また、70℃以下が好ましく、60℃以下が特に好ましい。
上記範囲内であると、微小孔や微小凹部の充填性に優れ、コスト的にも有利である。
The plating temperature is preferably 30 ° C. or higher, and particularly preferably 40 ° C. or higher. Further, 70 ° C. or lower is preferable, and 60 ° C. or lower is particularly preferable.
When it is within the above range, the filling property of the minute holes and the minute recesses is excellent, and it is also advantageous in terms of cost.

めっきの際の電流密度は、0.1A/dm以上が好ましく、1A/dm以上が特に好ましい。また、10A/dm以下が好ましく、5A/dm以下が特に好ましい。
上記範囲内であると、微小孔や微小凹部の充填性に優れ、コスト的にも有利である。
The current density at the time of plating is preferably 0.1 A / dm 2 or more, and particularly preferably 1 A / dm 2 or more. Further, 10 A / dm 2 or less is preferable, and 5 A / dm 2 or less is particularly preferable.
When it is within the above range, the filling property of the minute holes and the minute recesses is excellent, and it is also advantageous in terms of cost.

また、電流密度は、めっき充填中に常に一定にしてもよいし、一定でなくてもよい(例えば、初期の電流密度を低くし、徐々に電流密度を上げていく;パルス電流とする;等)。
電流密度は、めっき充填中に常に一定(又は、めっき充填中の大半の時間において一定)とした方が、ボイドを生ずることなく充填しやすく、好ましい。
Further, the current density may or may not be constant during plating filling (for example, the initial current density is lowered and the current density is gradually increased; the pulse current is used; etc.). ).
It is preferable that the current density is always constant during plating filling (or constant during most of the plating filling) because it is easy to fill without forming voids.

めっき時間は、5分以上が好ましく、10分以上が特に好ましい。また、360分以下が好ましく、60分以下が特に好ましい。
上記範囲内であると、微小孔や微小凹部の充填性に優れ、コスト的にも有利である。
The plating time is preferably 5 minutes or more, and particularly preferably 10 minutes or more. Further, 360 minutes or less is preferable, and 60 minutes or less is particularly preferable.
When it is within the above range, the filling property of the minute holes and the minute recesses is excellent, and it is also advantageous in terms of cost.

以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例及び比較例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples as long as the gist thereof is not exceeded.

実施例1〜4、比較例1〜3
微小凹部のモデルとして、アスペクト比0.88(φ45μm×40μmD)のレーザービアを有した12mm角の評価用プリント基板(日本サーキット株式会社製)を使用した。
Examples 1-4, Comparative Examples 1-3
As a model of the minute recess, a 12 mm square evaluation printed circuit board (manufactured by Nippon Circuit Co., Ltd.) having a laser via with an aspect ratio of 0.88 (φ45 μm × 40 μm D) was used.

被めっき部周辺10の断面図を図1に示す。厚さ0.4mmのBT(Bismaleimide-Triazine)製の基材11のビアホール形成部分に厚さ12μmの銅箔13を張り付けた上で、厚さ60μmのプリプレグタイプのビルドアップ樹脂12を積層後、レーザーにてφ45μm、深さ40μmのブラインドビアホール(以下、単に「ビアホール」又は「ビア」と略記する場合がある。)14を作成し、基板外表面(ビルドアップ樹脂12の表面)及びビア14内壁面に、無電解銅めっきで、シード層15を約1μm形成した。
更に、ドライフィルムレジスト(DFR)16にて、図2に示す配線パターンを形成し、ビア14を有するパッド(開口部)17(φ190μm)を開口させたものを評価用プリント基板1とした。
A cross-sectional view of the area around the portion to be plated 10 is shown in FIG. A copper foil 13 having a thickness of 12 μm is attached to a via hole forming portion of a base material 11 made of BT (Bismaleimide-Triazine) having a thickness of 0.4 mm, and a prepreg type build-up resin 12 having a thickness of 60 μm is laminated. A blind via hole (hereinafter, may be simply abbreviated as "via hole" or "via") 14 having a diameter of 45 μm and a depth of 40 μm is created by a laser, and the outer surface of the substrate (the surface of the build-up resin 12) and the inside of the via 14 are created. A seed layer 15 was formed on the wall surface by electroless copper plating in an amount of about 1 μm.
Further, the dry film resist (DFR) 16 was used to form the wiring pattern shown in FIG. 2, and the pad (opening) 17 (φ190 μm) having the via 14 was opened as the evaluation printed circuit board 1.

図2において、白色部が銅めっき部で、黒色部がドライフィルムレジスト部である。白色部のうち、配線が接続されている最もサイズの大きい円形部分が図1の円形パッド17(φ190μm)に相当する。円形パッド17の全てに、図1に示した微小凹部であるビアホール14が形成されている。 In FIG. 2, the white portion is the copper-plated portion and the black portion is the dry film resist portion. Of the white parts, the largest circular part to which the wiring is connected corresponds to the circular pad 17 (φ190 μm) in FIG. Beer holes 14, which are minute recesses shown in FIG. 1, are formed in all of the circular pads 17.

<電解ニッケルめっき液の調製>
スルファミン酸ニッケルを600g/L、塩化ニッケルを10g/L、ホウ酸を30g/Lとなるように脱イオン水に溶解し、電解ニッケルめっき液を調製した。
上記電解ニッケルめっき液に対し、表1に示す添加剤を、表1に示す添加量となるように添加し、溶解した。
次いで100g/Lのスルファミン酸水溶液を適量加えてpHを3.6に調整し、本発明の電解ニッケルめっき液を調製した。
<Preparation of electrolytic nickel plating solution>
An electrolytic nickel plating solution was prepared by dissolving nickel sulfamate at 600 g / L, nickel chloride at 10 g / L, and boric acid at 30 g / L in deionized water.
The additives shown in Table 1 were added to the electrolytic nickel plating solution in the amount shown in Table 1 and dissolved.
Next, an appropriate amount of a 100 g / L sulfamic acid aqueous solution was added to adjust the pH to 3.6, and the electrolytic nickel plating solution of the present invention was prepared.

Figure 0006860933
Figure 0006860933

<電解ニッケルめっきによるビアの充填>
上記評価用プリント基板1に対して、表2に示す工程で、電解ニッケルめっきを行なった。電解ニッケルめっき工程では、外部電源を使用して電流密度1.0A/dmとなるようにした。
なお、めっき面積は、ビア14の側面を含んだ表面積ではなく、開口部(パッド)17平面のみの面積として計算した。
<Bear filling by electrolytic nickel plating>
The evaluation printed circuit board 1 was subjected to electrolytic nickel plating in the steps shown in Table 2. In the electrolytic nickel plating step, an external power source was used to achieve a current density of 1.0 A / dm 2 .
The plating area was calculated as the area of only the opening (pad) 17 plane, not the surface area including the side surface of the via 14.

Figure 0006860933
Figure 0006860933

<めっき充填性評価試験>
めっき後の基板を研磨用の樹脂に埋没固定後に断面研磨し、金属顕微鏡にてビアの充填具合を観察した。
充填性について、ビアホール内部の析出量がビアホール外部の析出量よりも多い状態で、ビアホール内部にボイド(穴)やシーム(溝)が観測されない場合を「○」、それ以外の場合を「×」とした。
また、ビアホール外部におけるクラック(亀裂)の発生の有無を観測した。
充填性が「○」で、クラックの発生が無い場合を「良好」、それ以外の場合を「不良」と評価した。
<Plating fillability evaluation test>
The plated substrate was embedded and fixed in a resin for polishing, and then the cross section was polished, and the filling condition of vias was observed with a metallurgical microscope.
Regarding the filling property, when the amount of precipitation inside the via hole is larger than the amount of precipitation outside the via hole, no voids (holes) or seams (grooves) are observed inside the via hole, "○", otherwise "×". And said.
In addition, the presence or absence of cracks outside the via hole was observed.
When the filling property was "◯" and no cracks were generated, it was evaluated as "good", and when it was not, it was evaluated as "bad".

めっき充填後の基板断面の顕微鏡写真を、図3〜9に示す。また、評価結果を表3に示す。 Micrographs of the cross section of the substrate after plating filling are shown in FIGS. 3 to 9. The evaluation results are shown in Table 3.

Figure 0006860933
Figure 0006860933

実施例1〜4では、析出ニッケル18の量は、ビアホール外部よりも微小凹部であるビアホールの方が多く、ボイドやシームがなく良好に充填されていた。また、ビアホールの外部にクラックは観察されなかった。 In Examples 1 to 4, the amount of precipitated nickel 18 was larger in the via hole, which is a minute recess, than in the outside of the via hole, and was well filled without voids or seams. No cracks were observed outside the via hole.

比較例1では、ビアホールの内部と外部で、析出ニッケル18の量が同程度なコンフォーマルめっき(追従めっき)であり、充填性は不良であった。 In Comparative Example 1, conformal plating (follow-up plating) in which the amount of precipitated nickel 18 was about the same inside and outside the via hole, and the filling property was poor.

比較例2では、ビアの内部にボイドVが有り、充填性は不良であった。 In Comparative Example 2, there was a void V inside the via, and the filling property was poor.

比較例3では、ビアの内部にボイドはなく、充填性は良好であるが、析出部が非常に脆く、クラックが発生しており、研磨後にビア上部で析出ニッケル18の著しい剥離が見られた。従って、微小三次元構造体としては不良であった。 In Comparative Example 3, there were no voids inside the via and the filling property was good, but the precipitated portion was very brittle and cracks were generated, and remarkable peeling of the precipitated nickel 18 was observed at the upper part of the via after polishing. .. Therefore, it was poor as a micro-three-dimensional structure.

実施例1〜4、比較例1〜3の結果が示すように、一般式(A)又は一般式(B)で表されるN置換カルボニルピリジニウム化合物を含有する電解ニッケルめっき液で電解めっきすることにより、電子部品内に形成された微小孔をニッケルで良好に充填することができ、微小三次元構造体を作成することが可能となった。 As the results of Examples 1 to 4 and Comparative Examples 1 to 3 show, electroplating is performed with an electrolytic nickel plating solution containing an N-substituted carbonylpyridinium compound represented by the general formula (A) or the general formula (B). As a result, the micropores formed in the electronic component can be satisfactorily filled with nickel, and a microthree-dimensional structure can be produced.

本発明の特定N置換カルボニルピリジニウム化合物を含有する電解ニッケル(合金)めっき液は、電子回路部品内の微小孔又は微小凹部を信頼性高く充填することができ、配線の更なる微細化に対応できるため、三次元配線形成や三次元MEMS部品等に広く応用することができる。 The electrolytic nickel (alloy) plating solution containing the specific N-substituted carbonyl pyridinium compound of the present invention can reliably fill micropores or microrecesses in electronic circuit components, and can cope with further miniaturization of wiring. Therefore, it can be widely applied to three-dimensional wiring formation, three-dimensional MEMS parts, and the like.

1 評価用プリント基板
10 被めっき部周辺
11 基材
12 ビルドアップ樹脂
13 銅箔
14 ブラインドビアホール
15 シード層
16 ドライフィルムレジスト
17 パッド
18 析出ニッケル
V ボイド
1 Printed circuit board for evaluation 10 Peripheral area to be plated 11 Base material 12 Build-up resin 13 Copper foil 14 Blind via hole 15 Seed layer 16 Dry film resist 17 Pad 18 Precipitated nickel V void

Claims (10)

ニッケル塩と、pH緩衝剤と、下記一般式(A)で表されるN置換カルボニルピリジニウム化合物を含有することを特徴とする電解ニッケルめっき液又は電解ニッケル合金めっき液。
Figure 0006860933
[一般式(A)において、mは0又は1である。−Rは−R1a又は−NR1b1cである(R1aは炭素数1〜6のアルキル基;R1bは水素原子又は炭素数1〜6のアルキル基;R1cは水素原子、炭素数1〜6のアルキル基、又はアミノ基(−NH))。−Rは水素原子又は炭素数1〜6の炭化水素基である。Xは任意の陰イオンである。]
An electrolytic nickel plating solution or an electrolytic nickel alloy plating solution, which comprises a nickel salt, a pH buffer, and an N-substituted carbonyl pyridinium compound represented by the following general formula (A).
Figure 0006860933
[In the general formula (A), m is 0 or 1. -R 1 is -R 1a or -NR 1b R 1c (R 1a is an alkyl group having 1 to 6 carbon atoms; R 1b is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 1c is a hydrogen atom and carbon. Alkyl group or amino group (-NH 2 ) of the number 1-6. -R 2 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. X is any anion. ]
がハロゲン化物イオンである請求項1に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。The electrolytic nickel plating solution or the electrolytic nickel alloy plating solution according to claim 1, wherein X − is a halide ion. ニッケル塩と、pH緩衝剤と、下記一般式(B)で表されるN置換カルボニルピリジニウム化合物を含有することを特徴とする電解ニッケルめっき液又は電解ニッケル合金めっき液。
Figure 0006860933
[一般式(B)において、mは0又は1である。−Rは−R1a又は−NR1b1cである(R1aは炭素数1〜6のアルキル基;R1bは水素原子又は炭素数1〜6のアルキル基;R1cは水素原子、炭素数1〜6のアルキル基、又はアミノ基(−NH))。−Rは−R3a−SO (R3aは炭素数1〜6のアルキレン基)である。]
An electrolytic nickel plating solution or an electrolytic nickel alloy plating solution, which comprises a nickel salt, a pH buffer, and an N-substituted carbonyl pyridinium compound represented by the following general formula (B).
Figure 0006860933
[In the general formula (B), m is 0 or 1. -R 1 is -R 1a or -NR 1b R 1c (R 1a is an alkyl group having 1 to 6 carbon atoms; R 1b is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 1c is a hydrogen atom and carbon. Alkyl group or amino group (-NH 2 ) of the number 1-6. −R 3 is −R 3a −SO 3 (R 3a is an alkylene group having 1 to 6 carbon atoms). ]
上記ニッケル塩が、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、炭酸ニッケル、硝酸ニッケル、ギ酸ニッケル、酢酸ニッケル、クエン酸ニッケル及びホウフッ化ニッケルからなる群より選ばれた1種以上である請求項1ないし請求項3の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。 The nickel salt is at least one selected from the group consisting of nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, nickel carbonate, nickel nitrate, nickel formate, nickel acetate, nickel citrate and nickel borofluoride. The electrolytic nickel plating solution or the electrolytic nickel alloy plating solution according to any one of claims 1 to 3. 上記pH緩衝剤が、ホウ酸、メタホウ酸、酢酸、酒石酸及びクエン酸、並びにそれらの塩からなる群より選ばれた1種以上である請求項1ないし請求項4の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。 The claim according to any one of claims 1 to 4, wherein the pH buffer is at least one selected from the group consisting of boric acid, metaboric acid, acetic acid, tartaric acid and citric acid, and salts thereof. Electrolytic nickel plating solution or electrolytic nickel alloy plating solution. 一般式(A)で表されるN置換カルボニルピリジニウム化合物が、1−カルバモイルピリジニウムのハロゲン化物、1−(カルバモイルメチル)ピリジニウムのハロゲン化物、1−(ジメチルカルバモイル)ピリジニウムのハロゲン化物、1−(ジエチルカルバモイル)ピリジニウムのハロゲン化物、1−(ヒドラジノカルボニルメチル)ピリジニウムのハロゲン化物及び1−アセトニルピリジニウムのハロゲン化物からなる群より選ばれた1種以上の化合物である請求項2、請求項4又は請求項5に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。 The N-substituted carbonylpyridinium compound represented by the general formula (A) is a halide of 1-carbamoylpyridinium, a halide of 1- (carbamoylmethyl) pyridinium, a halide of 1- (dimethylcarbamoyl) pyridinium, 1- (diethyl). Claim 2, claim 4 or one or more compounds selected from the group consisting of halides of carbamoyl) pyridinium, halides of 1- (hydrazinocarbonylmethyl) pyridinium and halides of 1-acetonylpyridinium. The electrolytic nickel plating solution or electrolytic nickel alloy plating solution according to claim 5. 一般式(B)で表されるN置換カルボニルピリジニウム化合物が、1−(カルバモイルメチル)−4−(2−スルホエチル)ピリジニウムヒドロキシド分子内塩、1−(カルバモイルメチル)−4−(2−スルホプロピル)ピリジニウムヒドロキシド分子内塩、1−(カルバモイル)−4−(2−スルホエチル)ピリジニウムヒドロキシド分子内塩、1−(カルバモイル)−4−(2−スルホプロピル)ピリジニウムヒドロキシド分子内塩、1−(ジメチルカルバモイル)−4−(2−スルホエチル)ピリジニウムヒドロキシド分子内塩及び1−(ジメチルカルバモイル)−4−(2−スルホプロピル)ピリジニウムヒドロキシド分子内塩からなる群より選ばれた1種以上の化合物である請求項3ないし請求項5の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。 The N-substituted carbonyl pyridinium compound represented by the general formula (B) is 1- (carbamoylmethyl) -4- (2-sulfoethyl) pyridinium hydroxide intramolecular salt, 1- (carbamoylmethyl) -4- (2-sulfo). Propyl) pyridinium hydroxide intramolecular salt, 1- (carbamoyl) -4- (2-sulfoethyl) pyridinium hydroxide intramolecular salt, 1- (carbamoyl) -4- (2-sulfopropyl) pyridinium hydroxide intramolecular salt, 1 selected from the group consisting of 1- (dimethylcarbamoyl) -4- (2-sulfoethyl) pyridinium hydroxide intramolecular salt and 1- (dimethylcarbamoyl) -4- (2-sulfopropyl) pyridinium hydroxide intramolecular salt 1 The electrolytic nickel plating solution or the electrolytic nickel alloy plating solution according to any one of claims 3 to 5, which is a compound of more than one kind. 電子回路部品内に形成された微小孔又は微小凹部の充填用である請求項1ないし請求項7の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液。 The electrolytic nickel plating solution or the electrolytic nickel alloy plating solution according to any one of claims 1 to 7, which is used for filling micropores or microrecesses formed in electronic circuit components. 電子回路部品内に形成された微小孔又は微小凹部の表面に予め電解めっき用シード層を施した後、該電子回路部品を請求項1ないし請求項8の何れかの請求項に記載の電解ニッケルめっき液又は電解ニッケル合金めっき液に浸漬し、外部電源を使用して電解めっきをすることを特徴とするニッケル又はニッケル合金めっき充填方法。 The electrolytic nickel according to any one of claims 1 to 8 after a seed layer for electroplating is previously applied to the surface of micropores or microrecesses formed in the electronic circuit component. A nickel or nickel alloy plating filling method characterized by immersing in a plating solution or an electrolytic nickel alloy plating solution and performing electrolytic plating using an external power source. 請求項9に記載のニッケル又はニッケル合金めっき充填方法により微小孔又は微小凹部にめっき充填する工程を含むことを特徴とする微小三次元構造体の製造方法。 A method for producing a micro three-dimensional structure, which comprises a step of plating and filling micropores or microrecesses by the nickel or nickel alloy plating filling method according to claim 9.
JP2018518251A 2016-05-18 2017-05-11 Electrolytic nickel (alloy) plating solution Active JP6860933B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016099184 2016-05-18
JP2016099184 2016-05-18
PCT/JP2017/017832 WO2017199835A1 (en) 2016-05-18 2017-05-11 Electrolytic nickel (alloy) plating solution

Publications (2)

Publication Number Publication Date
JPWO2017199835A1 JPWO2017199835A1 (en) 2019-03-14
JP6860933B2 true JP6860933B2 (en) 2021-04-21

Family

ID=60325868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518251A Active JP6860933B2 (en) 2016-05-18 2017-05-11 Electrolytic nickel (alloy) plating solution

Country Status (5)

Country Link
JP (1) JP6860933B2 (en)
KR (1) KR102354192B1 (en)
CN (1) CN109154093B (en)
TW (1) TWI726101B (en)
WO (1) WO2017199835A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383073A (en) * 1981-08-20 1983-05-10 The Dow Chemical Company Cationic resin curable with acid catalyzed cross-linkers
US5547832A (en) * 1992-07-07 1996-08-20 Eastman Kodak Company Method for hardening photographic materials
PL2103717T3 (en) * 2008-02-29 2010-07-30 Atotech Deutschland Gmbh Pyrophosphate-based bath for depositing tin alloy layers
EP2801640A1 (en) * 2013-05-08 2014-11-12 ATOTECH Deutschland GmbH Galvanic nickel or nickel alloy electroplating bath for depositing a semi-bright nickel or nickel alloy
WO2014204620A1 (en) * 2013-06-17 2014-12-24 Applied Materials, Inc. Method for copper plating through silicon vias using wet wafer back contact
JP6214355B2 (en) * 2013-11-25 2017-10-18 日本高純度化学株式会社 Electrolytic gold plating solution and gold film obtained using the same

Also Published As

Publication number Publication date
KR20190008232A (en) 2019-01-23
CN109154093B (en) 2020-11-27
JPWO2017199835A1 (en) 2019-03-14
TW201807261A (en) 2018-03-01
KR102354192B1 (en) 2022-01-20
TWI726101B (en) 2021-05-01
WO2017199835A1 (en) 2017-11-23
CN109154093A (en) 2019-01-04

Similar Documents

Publication Publication Date Title
JP5568250B2 (en) How to fill copper
JP4816901B2 (en) Electro copper plating bath
JP2015029027A (en) Printed wiring board
KR20150078689A (en) a copper plating solution containing pyridinium leveler and copper plating method using the same
JP6079150B2 (en) Copper filling method of through hole by plating
JP5578697B2 (en) Copper filling method
KR20150079077A (en) a copper plating solution containing quinolinium leveler and copper plating method using the same
JP2014225521A (en) Printed wiring board
JPWO2006018872A1 (en) Additive for copper plating and method for producing electronic circuit board using the same
JP2004250791A (en) Electroplating composition
JP7021781B2 (en) Electrolytic nickel (alloy) plating solution
JP6860933B2 (en) Electrolytic nickel (alloy) plating solution
KR20150047057A (en) a solution for copper plating and copper plating methods using the same
JP2014224304A (en) Copper plating solution composition for printed wiring board, and via hole filling method using the same
KR102277675B1 (en) The electrolyte solution containing bromide ion for copper electrodeposition and copper electrodeposition method using the same
KR101754913B1 (en) THE ELECTROLYTE SOLUTION CONTAINING IODIDE ION FOR Cu ELECTRODEPOSITION AND Cu ELECTRODEPOSITION METHOD USING THE SAME
JP4354139B2 (en) Wiring board manufacturing method
JP2002302789A (en) Electrolyte
JP2006339483A (en) Wiring board and manufacturing method thereof
KR102445575B1 (en) Leveller for plating, composition for plating comprising the same and method of forming copper wire
JP2018115391A (en) Composition for substrate plating, and plating method using the same
KR20230099459A (en) Composition for Plating Copper
JP2005307259A (en) Copper sulfate plating liquid for embedment, and copper plating method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6860933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250