JP6860873B2 - Compound composite material and its manufacturing method - Google Patents

Compound composite material and its manufacturing method Download PDF

Info

Publication number
JP6860873B2
JP6860873B2 JP2016045966A JP2016045966A JP6860873B2 JP 6860873 B2 JP6860873 B2 JP 6860873B2 JP 2016045966 A JP2016045966 A JP 2016045966A JP 2016045966 A JP2016045966 A JP 2016045966A JP 6860873 B2 JP6860873 B2 JP 6860873B2
Authority
JP
Japan
Prior art keywords
resin
fiber
composite material
vinyl ester
fine glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016045966A
Other languages
Japanese (ja)
Other versions
JP2017160335A (en
Inventor
藤井 透
藤井  透
大窪 和也
和也 大窪
亮平 藤谷
亮平 藤谷
藤田 幸子
幸子 藤田
欧 柴田
欧 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Doshisha
Original Assignee
DIC Corp
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Doshisha filed Critical DIC Corp
Priority to JP2016045966A priority Critical patent/JP6860873B2/en
Publication of JP2017160335A publication Critical patent/JP2017160335A/en
Application granted granted Critical
Publication of JP6860873B2 publication Critical patent/JP6860873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンパウンド複合材料の製造方法に関する。
The present invention relates to a manufacturing method of the compound composite materials.

炭素繊維強化プラスチックス( Carbon Fiber Reinforced Plastics :以後 CFRP )は母材をプラスチック、強化繊維を炭素繊維とした繊維強化複合材料である。
CFRPは一般の構造用金属材料に比べて軽量で、また比強度・比剛性に優れ、電気的特性や耐腐食性においても優れた特性を有する高性能な材料である.
Carbon Fiber Reinforced Plastics (CFRP) is a fiber-reinforced composite material that uses plastic as the base material and carbon fiber as the reinforcing fiber.
CFRP is a high-performance material that is lighter than general structural metal materials, has excellent specific strength and rigidity, and has excellent electrical characteristics and corrosion resistance.

そこで、近年では、CFRPが、金属材料にとって代わる材料として航空宇宙構造物、自動車・二輪車・船艇の構造用部材、大型の産業用機械部品、スポーツ用品などに多く使用されている(非特許文献1参照) 。
その中でも、近年では自動車への CFRP の適用が盛んに取り組まれている(非特許文献2〜4参照)。
Therefore, in recent years, CFRP has been widely used as an alternative material to metal materials in aerospace structures, structural members of automobiles, motorcycles and boats, large industrial machine parts, sports equipment, etc. (Non-patent documents). 1).
Among them, in recent years, the application of CFRP to automobiles has been actively tackled (see Non-Patent Documents 2 to 4).

また、世界中で環境問題への意識が高まるなか、各国で自動車に求められる燃費の基準が年々高くなっている。
例えば、車体重量は、燃費支配要因の 40 %程度を占めており、そのため自動車の軽量化は自動車業界の課題となっている(非特許文献5参照)。
In addition, as awareness of environmental issues increases around the world, the standards for fuel efficiency required for automobiles in each country are increasing year by year.
For example, the weight of the vehicle body accounts for about 40% of the fuel consumption controlling factor, and therefore, reducing the weight of the automobile is an issue for the automobile industry (see Non-Patent Document 5).

このようなことから、近年では市販車へのCFRP の適用が始まっている。一般的にCFRPを自動車に適用する場合にはその部材にあった成形法が用いられる。
例えば、自動車の骨格などの構造部材には高い強度が必要とされるため、コストは高くても性能の良い成形品を得ることができるプリプレグ法や RTM(Resin Transfer Molding)法で作製された連続繊維強化複合材料を用いられる。
For this reason, in recent years, the application of CFRP to commercial vehicles has begun. Generally, when CFRP is applied to an automobile, a molding method suitable for the member is used.
For example, structural members such as the skeleton of an automobile require high strength, so a continuous product manufactured by the prepreg method or the RTM (Resin Transfer Molding) method, which can obtain a molded product with good performance even at a high cost, is required. A fiber reinforced composite material is used.

しかし、自動車のバンパー、フェンダーなどの準構造部材には、構造部材に使用するCFRPほどの強度は必要とされない。
準構造用部材に求められるのは、コスト及び成形性である。そこで、近年、自動車の準構造材料として注目を集めているのが不連続繊維強化材料である(非特許文献6参照) 。
However, semi-structural members such as automobile bumpers and fenders do not need to be as strong as CFRP used for structural members.
Cost and moldability are required for the quasi-structural member. Therefore, in recent years, discontinuous fiber reinforced materials have been attracting attention as semi-structural materials for automobiles (see Non-Patent Document 6).

そして、この不連続繊維強化材料の成形方法として頻繁に用いられるのがSMC(Sheet Molding Compound)を用いた成形法である。
SMC成形法は他の成形法と比較して成形性及びコスト面に優れるため(非特許文献7参照)、実際の市販車にも強化繊維にガラス繊維を使用した G-SMC(非特許文献8、9参照)、強化繊維に炭素繊維を使用したチョップド炭素繊維強化樹脂複合材料(C - SMC)が一部使用されている(非特許文献10参照)。
A molding method using SMC (Sheet Molding Compound) is frequently used as a molding method for this discontinuous fiber reinforced material.
Since the SMC molding method is superior in moldability and cost as compared with other molding methods (see Non-Patent Document 7), G-SMC (Non-Patent Document 8) in which glass fiber is used as the reinforcing fiber even in an actual commercial vehicle. , 9), a chopped carbon fiber reinforced resin composite material (C-SMC) using carbon fiber as the reinforcing fiber is partially used (see Non-Patent Document 10).

特に、C-SMCは自動車の構造部材として使用されており、現在、注目を集めている。
しかしながら、従来のC-SMCを用いて成形した成形品(以下、C-SMC成形品)は、不連続繊維強化材料特有の繊維先端での局所的な応カ集中により樹脂クラックが発生しやすい。
In particular, C-SMC is used as a structural member of automobiles and is currently attracting attention.
However, in the molded product molded using the conventional C-SMC (hereinafter, C-SMC molded product), resin cracks are likely to occur due to the local concentration of heat applied at the fiber tip peculiar to the discontinuous fiber reinforced material.

その結果、C-SMC 成形品の強度は連続繊維を使用して作製されたCFRPと比較すると、強度が低くなることが明らかになっている。
そのため、チョップド炭素繊維を用いた不連続繊維強化材料の、自動車の構造部材としての適用も一部にとどまっている(非特許文献11〜13参照 )。
As a result, it has been clarified that the strength of the C-SMC molded product is lower than that of CFRP produced using continuous fibers.
Therefore, the application of the discontinuous fiber reinforced material using chopped carbon fiber as a structural member of an automobile is limited to a part (see Non-Patent Documents 11 to 13).

塚本 朗、宇宙・航空、自動車における新材料、デュポンジャパン中央技術研究所(2007)pp.401-406Akira Tsukamoto, New Materials in Space / Aviation and Automotive, DuPont Japan Central Technology Research Institute (2007) pp.401-406 邉 吾 一、濱 田 泰以、八 角 恭介、青 木 義 男、仲 井 浅見、金 炯 秀、杉 本 直、陽 玉 球、自動車の安全設計と信頼性向上に貢献する複合材料技術−「NEDOプロジェクト3」:車体安全設計技術の開発−、日本複合材料学会誌、33、2、(2007)pp.41-47Goichi 邉, Yasushi Hamada, Kyosuke Hakaku, Yoshio Aoki, Asami Nakai, Hide Hide Kin, Nao Sugimoto, Yodama, Composite material technology that contributes to safety design and reliability improvement of automobiles- " NEDO Project 3 ": Development of Body Safety Design Technology-, Journal of Japan Society for Composite Materials, 33, 2, (2007) pp.41-47 北野 彰彦、山口晃司、自動車の安全設計と信頼性向上に貢献する 複合材料技術―IIINEDOプロジェクト:革新的温暖化対策技術プログラム「自動車軽量化炭素繊維強化複合 材料の研究開発動向」の概説、日本複合材料学会誌、32、5、(2006)pp.193-197Akihiko Kitano, Koji Yamaguchi, Composite Material Technology Contribution to Automotive Safety Design and Reliability Improvement-IIINEDO Project: Overview of Innovative Global Warming Countermeasure Technology Program "Research and Development Trends in Automotive Lightweight Carbon Fiber Reinforced Composite Materials", Japan Composite Journal of Materials Science, 32, 5, (2006) pp.193-197 和田原 英輔、北野 彰彦、炭素繊維強化プラスチックによる自動車の軽量化、繊維学会誌、64、9、(2009)pp.295-301Eisuke Wadahara, Akihiko Kitano, Weight reduction of automobiles by carbon fiber reinforced plastic, Journal of Textile Society, 64, 9, (2009) pp.295-301 大聖 泰引、自動車の環境・エネルギー技術に関わる将来展望~従来車の技術改善から電動化へ~、NTN Technical review、No.70 (2011)Yasuhiki Daisei, Future Prospects Related to Environmental and Energy Technology of Automobiles-From Technology Improvement of Conventional Vehicles to Electrification-, NTN Technical review, No.70 (2011) 高堀 恭雄、中山 克産、先端産業における高分子の役割2=自動車産業、(株)本田技術研究所(2011)pp.48-51Yasuo Takahori, Katsusan Nakayama, Role of Polymers in Advanced Industries 2 = Automotive Industry, Honda R & D Co., Ltd. (2011) pp.48-51 合田 公一、繊維強化形複合材料の強度信頼性に関わる界面はく離の役割(モンテカルロ・シミュレーションによる検討) 日本機械学会論文集(A編)63巻606号(1997)pp.233-240Koichi Goda, Role of interface peeling related to strength reliability of fiber reinforced composite materials (examination by Monte Carlo simulation) Proceedings of the Japan Society of Mechanical Engineers (A) Vol. 63, No. 606 (1997) pp.233-240 矯 桂 諒 、鈴 木 恵 、ランダム短繊維SMC複合材料の損傷進展に関する研究、日本材料学会(1988)pp.398-403Ryo Katsura, Megumi Suzuki, Study on Damage Progression of Random Short Fiber SMC Composites, Japan Society of Materials Science (1988) pp.398-403 関根 英樹 、小沢 喜仁、 藤田 淳、SMC複合材料の破壊じん性と微視的破壊、日本材料学会(1986)pp.1016-1022Hideki Sekine, Yoshihito Ozawa, Atsushi Fujita, Fracture Dustability and Microscopic Fracture of SMC Composites, Japan Society of Materials Science (1986) pp.1016-1022 山田寿一、コンパウンド複合材料−III.SMC最新技術動向と今後の展望、日本複合材料学会誌、18、4、(1992)、pp.139-143Juichi Yamada, Compound Composites-III. SMC Latest Technology Trends and Future Prospects, Journal of Japan Society for Composite Materials, 18, 4, (1992), pp.139-143 J.L.Thomason、M.A.Vlug、G.Schipper&H.G.L.T.Krikort、 Influence of fiber length and concentration on the properties of glass fiber reinforced polypropylene: 3. Strength and strain at failure、 CompositesA、27(1996)、pp.1075-1084J.L.Thomason, M.A.Vlug, G.Schipper & H.G.L.T.Krikort, Influence of fiber length and concentration on the properties of glass fiber reinforced polypropylene: 3. Strength and strain at failure, CompositesA, 27 (1996), pp.1075-1084 F.M.Zhao&N.Takeda、Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results、CompositesA、31(2000)、pp.1203-1214F.M.Zhao & N.Takeda, Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber / epoxy composites. Part I: experiment results, CompositesA, 31 (2000), pp.1203-1214 T.Okabe、N.Takeda、Y.Kamoshida、M.Shimizu&W.A.Curtin、 Estimation of strength distribution for a fiber embedded in a single-fiber composite: experiments and statistical simulation based on the elasto-plastic shear-lag approach、Composites Science Technology、66(2001)pp.1773-1787T.Okabe, N.Takeda, Y.Kamoshida, M.Shimizu & W.A.Curtin, Estimation of strength distribution for a fiber embedded in a single-fiber composite: experiments and statistical simulation based on the elasto-plastic shear-lag approach, Composites Science Technology, 66 (2001) pp.1773-1787 北川 正義、木村 将秀、単純せん断におけるポリカーボネイト材のせん断帯挙動、材料Vol. 51 (2002) No. 3Masayoshi Kitagawa, Masahide Kimura, Shear Band Behavior of Polycarbonate Material in Simple Shear, Material Vol. 51 (2002) No. 3

本発明は、上記事情に鑑みて、不連続炭素繊維を強化繊維として用いた機械的強度に優れたCFRPを得ることができるコンパウンド複合材料の製造方法を提供することを目的としている。
The present invention is, in view of the above circumstances, and its object is to provide a manufacturing method of the compound composite materials which can provide excellent CFRP mechanical strength with discontinuous carbon fibers as reinforcing fibers.

上記目的を達成するために、本発明にかかるコンパウンド複合材料の製造方法は、チョップド炭素繊維を強化繊維として母材樹脂中に含むとともに、微細ガラス繊維が母材樹脂中に分散されているコンパウンド複合材料の製造方法であって、前記母材樹脂が、ビニルエステル樹脂であり、前記微細ガラス繊維の繊維径が、50nm〜2μmであるとともに、前記ビニルエステル樹脂に、前記微細ガラス繊維を分散混合した改質母材樹脂を得る工程と、繊維方向がランダムな前記チョップド炭素繊維の不織布状体を得る工程と、真空パックに入れられた状態の前記不織布状体を、金型内に入れ、前記真空パック内を真空状態にしたのち、前記真空パックに接続された樹脂吸引用のホースまたは管を介して、硬化剤が混合された前記改質母材樹脂を前記真空パック内に吸引充填して前記不織布状体に前記硬化剤が混合された改質母材樹脂を含浸させる工程を含むことを特徴としている。
In order to achieve the above object, the method for producing a compound composite material according to the present invention includes a chopped carbon fiber as a reinforcing fiber in a base material resin and a compound composite in which fine glass fibers are dispersed in the base material resin. In the method for producing a material, the base material resin is a vinyl ester resin, the fiber diameter of the fine glass fiber is 50 nm to 2 μm, and the fine glass fiber is dispersed and mixed with the vinyl ester resin. The step of obtaining the modified base material resin, the step of obtaining the non-woven fabric of the chopped carbon fiber having random fiber directions, and the step of obtaining the non-woven fabric in a vacuum pack are placed in a mold and the vacuum is applied. After the inside of the pack is evacuated, the modified base material resin mixed with the curing agent is suction-filled into the vacuum pack via a resin suction hose or tube connected to the vacuum pack. It is characterized by including a step of impregnating a non-woven fabric with a modified base material resin mixed with the curing agent.

本発明において、微細ガラス繊維の配合量は、特に限定されないが、母材樹脂に対して0.01〜1wt%とすることが好ましく、0.1wt%〜1wt%とすることがより好ましく、0.2〜0.4wt%とすることがさらに好ましい。
すなわち、微細ガラス繊維の配合量が少なすぎると、微細ガラス繊維添加の効果があまり望めず、多すぎると、繊維の分散が困難になるおそれがある。
In the present invention, the blending amount of the fine glass fiber is not particularly limited, but is preferably 0.01 to 1 wt%, more preferably 0.1 wt% to 1 wt%, and 0. .2 to 0.4 wt% is more preferable.
That is, if the blending amount of the fine glass fibers is too small, the effect of adding the fine glass fibers cannot be expected so much, and if it is too large, it may be difficult to disperse the fibers.

本発明において、微細ガラス繊維としては、繊維径が、50nm〜2μmのものを用い、100nm〜900nmのものを用いることがより好ましい。
すなわち、繊維径が細すぎると、微細繊維添加の効果がみこめない恐れがあり、太すぎると応力集中源となる恐れがある。
In the present invention, the fine glass fibers, fiber fiber diameter is, have use those 50Nm~2myuemu, it is more preferable to use those 100Nm~900nm.
That is, if the fiber diameter is too small, the effect of adding fine fibers may not be expected, and if the fiber diameter is too large, it may become a stress concentration source.

本発明において、チョップド炭素繊維は、特に限定されないが、その繊維長が、2mm〜50mmのものを用いることが好ましく、20mm〜40mmのものを用いることがより好ましい。
すなわち、繊維長が短すぎると、SMC材料の十分な強度が保障されない恐れがあり、長すぎると,成形性が低下する恐れがある。
In the present invention, the chopped carbon fiber is not particularly limited, but one having a fiber length of 2 mm to 50 mm is preferable, and one having a fiber length of 20 mm to 40 mm is more preferable.
That is, if the fiber length is too short, sufficient strength of the SMC material may not be guaranteed, and if it is too long, the moldability may be deteriorated.

本発明において、チョップド炭素繊維は、特に限定されないが、例えば、炭素繊維の体積含有率が10〜70%となる量を配合することが好ましくい、40〜50%となる量を配合することがより好ましい。
すなわち、配合量が少なすぎると、十分な強度が得られない恐れがあり、多すぎると,成形性が低下する恐れがある。
In the present invention, the chopped carbon fiber is not particularly limited, but for example, it is preferable to add an amount having a volume content of carbon fiber of 10 to 70%, and it is possible to add an amount of 40 to 50%. More preferred.
That is, if the blending amount is too small, sufficient strength may not be obtained, and if the blending amount is too large, the moldability may be deteriorated.

本発明のコンパウンド複合材は、特に限定されないが、硬化剤以外に、必要に応じて、SMCやBMCに用いられる公知の促進剤、増粘剤、重合禁止剤、離型剤、顔料、減粘剤、老化防止剤、可塑剤、難燃剤、抗菌剤、安定剤、光硬化剤等を含有することができる。
い。
The compound composite material of the present invention is not particularly limited, but in addition to the curing agent, if necessary, known accelerators, thickeners, polymerization inhibitors, mold release agents, pigments, and thickeners used for SMC and BMC are used. It can contain agents, antioxidants, plasticizers, flame retardants, antibacterial agents, stabilizers, photocuring agents and the like.
I.

本発明にかかるコンパウンド複合材料の製造方法は、母材樹脂に、微細ガラス繊維を分散混合した改質母材樹脂を得る工程と、繊維方向がランダムなチョップド炭素繊維の不織布状体を得る工程と、前記不織布状体に硬化剤が混合された改質母材樹脂を含浸させる工程を含むことを特徴としている。 The method for producing a compound composite material according to the present invention includes a step of obtaining a modified base material resin in which fine glass fibers are dispersed and mixed in a base material resin, and a step of obtaining a non-woven fabric of chopped carbon fibers having random fiber directions. The non-woven fabric is characterized by including a step of impregnating the modified base material resin in which a curing agent is mixed.

本発明の製造方法において、上記不織布状体は、特に限定されないが、例えば、チョップド炭素繊維を空中で自由落下させて得るようにすることが好ましい。
そして、不織布状体に硬化剤が混合された改質母材樹脂を含浸させる方法としては、特に限定されないが、例えば、真空パックに入れられた状態の不織布状体を、金型内に入れ、前記真空パック内を真空状態にしたのち、前記真空パックに接続された樹脂吸引用のホースまたは管を介して、硬化剤が混合された改質母材樹脂を前記真空パック内に吸引充填して前記不織布状体に硬化剤が混合された改質母材樹脂を含浸させる方法が挙げられる。
In the production method of the present invention, the non-woven fabric is not particularly limited, but it is preferable to obtain chopped carbon fibers by free-falling them in the air, for example.
The method of impregnating the non-woven fabric with the modified base material resin mixed with the curing agent is not particularly limited, but for example, the non-woven fabric in a vacuum-packed state is placed in a mold. After the inside of the vacuum pack is evacuated, the modified base material resin mixed with the curing agent is suction-filled into the vacuum pack via a resin suction hose or tube connected to the vacuum pack. Examples thereof include a method of impregnating the non-woven fabric with a modified base material resin in which a curing agent is mixed.

本発明のコンパウンド複合材料の製造方法は、上記のように、チョップド炭素繊維を強化繊維として母材樹脂中に含むとともに、微細ガラス繊維が母材樹脂中に分散されているコンパウンド複合材料の製造方法であって、前記母材樹脂が、ビニルエステル樹脂であり、前記微細ガラス繊維の繊維径が、50nm〜2μmであるとともに、前記ビニルエステル樹脂に、前記微細ガラス繊維を分散混合した改質母材樹脂を得る工程と、繊維方向がランダムな前記チョップド炭素繊維の不織布状体を得る工程と、真空パックに入れられた状態の前記不織布状体を、金型内に入れ、前記真空パック内を真空状態にしたのち、前記真空パックに接続された樹脂吸引用のホースまたは管を介して、硬化剤が混合された前記改質母材樹脂を前記真空パック内に吸引充填して前記不織布状体に前記硬化剤が混合された改質母材樹脂を含浸させる工程を含むので、得られるCFRP成形体は、応力集中を起こす補強繊維である炭素繊維の端部が微細ガラス繊維によって補強された状態になる。したがって、従来のSMC等のコンパウンド複合材料を用いた不連続炭素樹脂強化のCFRP成形体に比べ、強度的に優れたものとなる。
したがって、従来、製造コストの面で問題のある連続炭素繊維補強CFRPしか用いることができなかった構造材も安価に製造することができるようになる。
As described above, the method for producing a compound composite material of the present invention is a method for producing a compound composite material in which chopped carbon fibers are contained in the base material resin as reinforcing fibers and fine glass fibers are dispersed in the base material resin. The base material resin is a vinyl ester resin, the fiber diameter of the fine glass fibers is 50 nm to 2 μm, and the modified base material is obtained by dispersing and mixing the fine glass fibers with the vinyl ester resin. A step of obtaining a resin, a step of obtaining a non-woven fabric of the chopped carbon fibers having random fiber directions, and a step of putting the non-woven fabric in a vacuum pack into a mold and vacuuming the inside of the vacuum pack. After the state, the modified base material resin mixed with the curing agent is suction-filled into the vacuum pack via a resin suction hose or tube connected to the vacuum pack to form the non-woven fabric. Since the step of impregnating the modified base material resin mixed with the curing agent is included , the obtained CFRP molded body is in a state where the ends of carbon fibers, which are reinforcing fibers that cause stress concentration, are reinforced by fine glass fibers. Become. Therefore, the strength is superior to that of the conventional CFRP molded body reinforced with discontinuous carbon resin using a compound composite material such as SMC.
Therefore, structural materials that could only be used with continuous carbon fiber reinforced CFRP, which has a problem in terms of manufacturing cost, can be manufactured at low cost.

本発明の実施例に用いた微細ガラス繊維を説明する写真写しである。It is a photographic copy explaining the fine glass fiber used in the Example of this invention. X線CTスキャンを用いて、3点曲げ試験の試験後の試験片の内部の損傷状態を観察した結果を対比して示す写真の写しである。It is a copy of a photograph showing the results of observing the damage state inside the test piece after the three-point bending test using an X-ray CT scan in comparison. 疲労試験後の実施例1、2および比較例1、2の試験片1の破断面の繊維先端付近を、それぞれ走査型電子顕微鏡(SEM)を用いて観察した結果を対比して示す写真の写しである。A copy of a photograph showing the results of observing the vicinity of the fiber tip of the fracture surface of the test pieces 1 of Examples 1 and 2 and Comparative Examples 1 and 2 after the fatigue test using a scanning electron microscope (SEM). Is.

以下に、本発明の具体的な実施例を、比較例と併せて説明する。 Hereinafter, specific examples of the present invention will be described together with comparative examples.

(実施例1)
母材樹脂としてのビニルエステル樹脂A(DICマテリアル株式会社製:エクスドーマ 9102-01NP)に図1に示す繊維径500nmの微細ガラス繊維(日本無機株式会社製:FM1700)を母材樹脂に対して0.3wt%の割合となるように加え、プロセスホモジナイザー(シルバーソンニッポン株式会社製:L4-RT)を使用して、30分間、5、000rpmの条件下で撹拌し、樹脂中に微細ガラス繊維が分散混合された改質ビニルエステル樹脂Aを得た。
PAN系炭素繊維(三菱レイヨン株式会社製:TR 3110-MS)を30mmの繊維長にチョップされたチョップド炭素繊維を空中から自由落下させて不織布状体(210mm×130mm)を得た。得られた不織布状体は、繊維方向のランダム性が保障されたものであった。
上記のようにして得られた改質ビニルエステル樹脂A中のボイドを取り除くために、真空含浸機(YTP400-4W01)を使用して脱泡処理を行うとともに、改質ビニルエステル樹脂Aの重量に対して0.3wt%のコバルト系促進剤(DIC株式会社製:Co-OCTOATE 6%X)及び1.0wt%の硬化剤(日油株式会社製:パーキュアーAH)を加え完全に混合して、樹脂コンパウンドAを得た。
つぎに、樹脂コンパウンドAと上記で得た不織布状体を用い、VaRTM法(Vacuum assisted Resin Transfer Molding)を参考にした以下のようなSMC製造方法によってC−SMCサンプルAを得た。
〔SMCの製造方法〕
不織布状体を、真空パックに入れアルミ製の型枠に設置した。エアーコンプレッサーを使用し、真空パック内を真空にし、真空計で真空圧を調整、リークが発生していないことを確認した後に、樹脂吸引用のホースから樹脂コンパウンドAを流し入れた。樹脂排出用のホースに樹脂コンパウンドAが達した時点で不織布状体に樹脂コンパウンドAが含浸したとみなし樹脂コンパウンドAの吸引を中断し、C-SMCサンプルAを得た。
その後、C-SMCサンプルAを常温、1MPaの条件下で1時間、電気炉にて60℃の条件下で3時間保持しアフターキュアをおこなって、炭素繊維強化複合材料Aを得た。
得られた炭素繊維強化複合材料Aの炭素繊維の体積含有率は45wt%であった。
(Example 1)
Vinyl ester resin A (manufactured by DIC Material Co., Ltd .: Exdoma 9102-01NP) as the base metal resin is mixed with fine glass fiber (manufactured by Nippon Inorganic Co., Ltd .: FM1700) having a fiber diameter of 500 nm as shown in FIG. In addition to the ratio of wt%, a process homogenizer (manufactured by Silverson Nippon Co., Ltd .: L4-RT) is used to stir for 30 minutes under the condition of 5,000 rpm, and fine glass fibers are dispersed in the resin. A mixed modified vinyl ester resin A was obtained.
A non-woven fabric (210 mm × 130 mm) was obtained by free-falling chopped carbon fiber chopped from PAN-based carbon fiber (manufactured by Mitsubishi Rayon Co., Ltd .: TR 3110-MS) to a fiber length of 30 mm from the air. The obtained non-woven fabric-like body was guaranteed to have randomness in the fiber direction.
In order to remove the voids in the modified vinyl ester resin A obtained as described above, a vacuum impregnation machine (YTP400-4W01) was used to perform a defoaming treatment, and the weight of the modified vinyl ester resin A was reduced. To this, 0.3 wt% cobalt-based accelerator (manufactured by DIC Corporation: Co-OCTOATE 6% X) and 1.0 wt% curing agent (manufactured by NOF CORPORATION: Percure AH) are added and mixed thoroughly to form a resin compound. I got A.
Next, using the resin compound A and the non-woven fabric obtained above, C-SMC sample A was obtained by the following SMC manufacturing method with reference to the VaRTM method (Vacuum assisted Resin Transfer Molding).
[Manufacturing method of SMC]
The non-woven fabric was placed in a vacuum pack and placed in an aluminum mold. The inside of the vacuum pack was evacuated using an air compressor, the vacuum pressure was adjusted with a vacuum gauge, and after confirming that no leak had occurred, the resin compound A was poured from the resin suction hose. When the resin compound A reached the hose for discharging the resin, it was considered that the non-woven fabric was impregnated with the resin compound A, and the suction of the resin compound A was interrupted to obtain a C-SMC sample A.
Then, C-SMC sample A was held at room temperature and 1 MPa for 1 hour and in an electric furnace at 60 ° C. for 3 hours for aftercure to obtain a carbon fiber reinforced composite material A.
The volume content of the carbon fiber of the obtained carbon fiber reinforced composite material A was 45 wt%.

(実施例2)
母材樹脂としてビニルエステル樹脂B(DICマテリアル株式会社製:レイドーマ DCF-670)を用いた以外は、実施例1と同様にして改質ビニルエステル樹脂Bを得た。
そして、この改質ビニルエステル樹脂Bに、母材樹脂に対して0.3wt%のコバルト系促進剤(DIC株式会社製:Co-OCTOATE 6%X)及び1.0wt%の硬化剤(化薬アクゾ株式会社製:硬化剤328E)を加え完全に混合して、樹脂コンパウンドBを得た。
つぎに、この樹脂コンパウンドBを用いて、実施例1と同様にしてC-SMCサンプルBを得た。
その後、C-SMCサンプルBを常温、1MPaの条件下で1時間、電気炉にて60℃の条件下で3時間保持しアフターキュアをおこなって、炭素繊維強化複合材料Bを得た。
得られた炭素繊維強化複合材料Bの炭素繊維の体積含有率は45wt%であった。
(Example 2)
A modified vinyl ester resin B was obtained in the same manner as in Example 1 except that vinyl ester resin B (manufactured by DIC Material Co., Ltd .: Reidoma DCF-670) was used as the base material resin.
Then, in this modified vinyl ester resin B, 0.3 wt% cobalt-based accelerator (manufactured by DIC Corporation: Co-OCTOATE 6% X) and 1.0 wt% curing agent (chemical drug Axo stock) with respect to the base resin. Made by the company: Hardener 328E) was added and completely mixed to obtain resin compound B.
Next, using this resin compound B, C-SMC sample B was obtained in the same manner as in Example 1.
Then, the C-SMC sample B was held at room temperature and 1 MPa for 1 hour and in an electric furnace at 60 ° C. for 3 hours for aftercure to obtain a carbon fiber reinforced composite material B.
The volume content of the carbon fiber of the obtained carbon fiber reinforced composite material B was 45 wt%.

(比較例1)
改質ビニルエステル樹脂Aに代えて、実施例1に用いた母材樹脂のビニルエステル樹脂(DICマテリアル株式会社製:エクスドーマ 9102-01NP)に、母材樹脂の重量に対して0.3wt%のコバルト系促進剤(DIC株式会社製:Co-OCTOATE 6%X)及び1.0wt%の硬化剤(日油株式会社製:パーキュアーAH)を加え完全に混合して、樹脂コンパウンドCを得た。
つぎに、この樹脂コンパウンドCを用いて、実施例1と同様にしてC-SMCサンプルCを得た。
その後、C-SMCサンプルCを常温、1MPaの条件下で1時間、電気炉にて60℃の条件下で3時間保持しアフターキュアをおこなって、炭素繊維強化複合材料Cを得た。
得られた炭素繊維強化複合材料Cの炭素繊維の体積含有率は45wt%であった。
(Comparative Example 1)
Instead of the modified vinyl ester resin A, the vinyl ester resin (manufactured by DIC Material Co., Ltd .: Exdoma 9102-01NP) of the base resin used in Example 1 was used with 0.3 wt% cobalt based on the weight of the base resin. A system accelerator (manufactured by DIC Corporation: Co-OCTOATE 6% X) and a 1.0 wt% curing agent (manufactured by Nichiyu Co., Ltd .: Percure AH) were added and completely mixed to obtain a resin compound C.
Next, using this resin compound C, C-SMC sample C was obtained in the same manner as in Example 1.
Then, the C-SMC sample C was held at room temperature and 1 MPa for 1 hour and in an electric furnace at 60 ° C. for 3 hours for aftercure to obtain a carbon fiber reinforced composite material C.
The volume content of the carbon fiber of the obtained carbon fiber reinforced composite material C was 45 wt%.

(比較例2)
改質ビニルエステル樹脂Bに代えて、実施例2に用いた母材樹脂のビニルエステル樹脂B(DICマテリアル株式会社製:レイドーマ DCF-670)に、母材樹脂の重量に対して0.3wt%のコバルト系促進剤(DIC株式会社製:Co-OCTOATE 6%X)及び1.0wt%の硬化剤(化薬アクゾ株式会社製:硬化剤328E)を加え完全に混合して、樹脂コンパウンドDを得た。
つぎに、この樹脂コンパウンドDを用いて、実施例1と同様にしてC-SMCサンプルDを得た。
その後、C-SMCサンプルDを常温、1MPaの条件下で1時間、電気炉にて60℃の条件下で3時間保持しアフターキュアをおこなって、炭素繊維強化複合材料Dを得た。
得られた炭素繊維強化複合材料Dの炭素繊維の体積含有率は45wt%であった。
(Comparative Example 2)
Instead of the modified vinyl ester resin B, the base material resin vinyl ester resin B (manufactured by DIC Material Co., Ltd .: Reidoma DCF-670) used in Example 2 was used in an amount of 0.3 wt% based on the weight of the base material resin. A cobalt-based accelerator (manufactured by DIC Co., Ltd .: Co-OCTOATE 6% X) and a 1.0 wt% curing agent (manufactured by Kayaku Akzo Corporation: curing agent 328E) were added and completely mixed to obtain a resin compound D. ..
Next, using this resin compound D, C-SMC sample D was obtained in the same manner as in Example 1.
Then, the C-SMC sample D was held at room temperature and 1 MPa for 1 hour and in an electric furnace at 60 ° C. for 3 hours for aftercure to obtain a carbon fiber reinforced composite material D.
The volume content of the carbon fiber of the obtained carbon fiber reinforced composite material D was 45 wt%.

上記実施例1、2および比較例1、2で得られた炭素繊維強化複合材料A〜Dから、ダイヤモンドカッターを用いて、長さ200mm×幅25mm×厚さ2mmの短冊状の引張試験及び引張-引張疲労試験用の試験片1と、長さ100mm×幅15mm×厚さ2mmの短冊状の曲げ試験用の試験片2を、それぞれ切り分けた。 From the carbon fiber reinforced composite materials A to D obtained in Examples 1 and 2 and Comparative Examples 1 and 2, a strip-shaped tensile test and tension of 200 mm in length × 25 mm in width × 2 mm in thickness using a diamond cutter. -A test piece 1 for a tensile fatigue test and a strip-shaped test piece 2 for a bending test having a length of 100 mm, a width of 15 mm, and a thickness of 2 mm were cut into pieces.

〔引張特性の把握試験〕
上記実施例1、2および比較例1、2で得られた炭素繊維強化複合材料A〜Dの試験片1のそれぞれについて、万能材料試験機(株式会社島津製作所製:オートグラフ、定格荷重 500N)を使用して.JIS K7164 に準拠し以下の試験条件(チャック間距離、クロスヘッドスピード、サンプル数、試験環境)で引張特性の把握試験を行い、その結果を表1に示した。
チャック間距離: 100[mm]
クロスヘッドスピード:1[mm/min]
サンプル数:5
試験環境:実験室温環境下(温度 23℃、湿度 50〜65%)
[Test for grasping tensile properties]
A universal material testing machine (manufactured by Shimadzu Corporation: Autograph, rated load 500N) for each of the test pieces 1 of the carbon fiber reinforced composite materials A to D obtained in Examples 1 and 2 and Comparative Examples 1 and 2 above. using. In accordance with JIS K7164, a grasp test of tensile characteristics was conducted under the following test conditions (distance between chucks, crosshead speed, number of samples, test environment), and the results are shown in Table 1.
Distance between chucks: 100 [mm]
Crosshead speed: 1 [mm / min]
Number of samples: 5
Test environment: Experimental room temperature environment (temperature 23 ° C, humidity 50-65%)

Figure 0006860873
Figure 0006860873

表1から微細ガラス繊維を添加することによって、実施例1改質ビニルエステル樹脂Aは、比較例1ビニルエステル樹脂Aより引張強度が35%以上高くなり、実施例2改質ビニルエステル樹脂Bでは、比較例2ビニルエステル樹脂Bより引張強度が57%以上高くなることがわかる。 By adding the fine glass fibers from Table 1, the tensile strength of Example 1 modified vinyl ester resin A is 35% or more higher than that of Comparative Example 1 vinyl ester resin A, and in Example 2 modified vinyl ester resin B. , Comparative Example 2 It can be seen that the tensile strength is 57% or more higher than that of the vinyl ester resin B.

また、標準偏差は、実施例1改質ビニルエステル樹脂Aの場合±17MPa、比較例1ビニルエステル樹脂Aの場合±21MPaとなり、微細ガラス繊維を添加することによって標準偏差が低減する。ビニルエステル樹脂Bの場合も、比較例2の±23MPaから実施例2の±15MPaと微細ガラス繊維を添加することによって、標準偏差が低減する。このように、微細ガラス繊維添加により引張強度のばらつきの少ない成形品を得られることがわかる。 The standard deviation is ± 17 MPa in the case of Example 1 modified vinyl ester resin A and ± 21 MPa in the case of Comparative Example 1 vinyl ester resin A, and the standard deviation is reduced by adding fine glass fibers. Also in the case of vinyl ester resin B, the standard deviation is reduced by adding fine glass fibers from ± 23 MPa in Comparative Example 2 to ± 15 MPa in Example 2. As described above, it can be seen that by adding fine glass fibers, a molded product with little variation in tensile strength can be obtained.

〔曲げ特性の把握試験〕
上記実施例1、2および比較例1、2で得られた炭素繊維強化複合材料A〜Dの試験片2のそれぞれについて、万能材料試験機(株式会社島津製作所:オートグラフ、定格荷重 500N)を使用して、 JIS K7074に準拠し、以下の試験条件(支点間距離、クロスヘッドスピード、サンプル数、試験環境)で静的3点曲げ試験を行い、その結果を表2に示した。
支点間距離: 80[mm]
クロスヘッドスピード:5[mm/min]
サンプル数:5
試験環境:実験室温環境下(温度 23℃、湿度 50〜65%)
[Bending characteristic grasp test]
For each of the test pieces 2 of the carbon fiber reinforced composite materials A to D obtained in Examples 1 and 2 and Comparative Examples 1 and 2, a universal material testing machine (Shimadzu Seisakusho Co., Ltd .: Autograph, rated load 500N) was used. In accordance with JIS K7074, a static three-point bending test was performed under the following test conditions (distance between fulcrums, crosshead speed, number of samples, test environment), and the results are shown in Table 2.
Distance between fulcrums: 80 [mm]
Crosshead speed: 5 [mm / min]
Number of samples: 5
Test environment: Experimental room temperature environment (temperature 23 ° C, humidity 50-65%)

Figure 0006860873
Figure 0006860873

表2から、微細ガラス繊維を添加することによって、実施例1改質ビニルエステル樹脂Aは、比較例1ビニルエステル樹脂Aより曲げ強度が31%高くなり、実施例2改質ビニルエステル樹脂Bでは、比較例2ビニルエステル樹脂Bより曲げ強度が19%高くなることがわかる。 From Table 2, by adding the fine glass fiber, the bending strength of the modified vinyl ester resin A of Example 1 was 31% higher than that of the vinyl ester resin A of Comparative Example 1, and that of the modified vinyl ester resin B of Example 2 , Comparative Example 2 It can be seen that the bending strength is 19% higher than that of the vinyl ester resin B.

また、標準偏差も微細ガラス繊維を添加することによって、ビニルエステル樹脂Aの場合±56MPaから±43MPaに低減し、ビニルエステル樹脂Bの場合±111MPaから±25MPaに低減することから、微細ガラス繊維の添加によって、曲げ強度のばらつきの少ない成形品を得られることがわかる。 In addition, the standard deviation is also reduced from ± 56 MPa to ± 43 MPa in the case of vinyl ester resin A and from ± 111 MPa to ± 25 MPa in the case of vinyl ester resin B by adding fine glass fibers. It can be seen that by the addition, a molded product with little variation in bending strength can be obtained.

〔疲労特性〕
上記実施例1、2および比較例1、2で得られた炭素繊維強化複合材料A〜Dの試験片1のそれぞれについて、電気油圧式材料試験機(サーボパルサ、定格荷重 50KN、(株)島津製作所)を用い、荷重制御により以下の試験条件(応力比、繰り返し周波数、繰返し負荷荷重、サンプル数、試験環境)で疲労特性を評価するために引張-引張疲労試験を行い、その結果を、表3に示した。
応力比:0.1
繰り返し周波数:5Hz
繰返し負荷荷重:正弦波
サンプル数:3
試験環境:実験室温環境下(温度 23℃、湿度 50〜65%)
[Fatigue characteristics]
For each of the test pieces 1 of the carbon fiber reinforced composite materials A to D obtained in Examples 1 and 2 and Comparative Examples 1 and 2, an electro-hydraulic material tester (servo pulsar, rated load 50KN, Shimadzu Corporation) ), A tensile-tensile fatigue test was performed to evaluate the fatigue characteristics under the following test conditions (stress ratio, repetition frequency, repeated load, number of samples, test environment) by load control, and the results are shown in Table 3. It was shown to.
Stress ratio: 0.1
Repeat frequency: 5Hz
Repeated load Load: Sine wave Number of samples: 3
Test environment: Experimental room temperature environment (temperature 23 ° C, humidity 50-65%)

Figure 0006860873
Figure 0006860873

表3から、微細ガラス繊維を樹脂中に添加することによって、得られる成形品の疲労寿命が向上することが分かる。 From Table 3, it can be seen that the fatigue life of the obtained molded product is improved by adding the fine glass fiber to the resin.

なお、上記疲労試験では、試験後の試験片は完全破断したのに対し、上記3点曲げ試験では完全に破断しなかった。
そこで、上記3点曲げ試験後の炭素繊維強化複合材料A〜Dの試験片2にX線CTスキャンを用いて内部の損傷状態を観察し、その結果を図2(a)、(b)、(c)、(d)に示した。
In the fatigue test, the test piece after the test was completely broken, whereas in the three-point bending test, the test piece was not completely broken.
Therefore, the internal damage state was observed on the test pieces 2 of the carbon fiber reinforced composite materials A to D after the above-mentioned three-point bending test by using an X-ray CT scan, and the results were shown in FIGS. 2 (a) and 2 (b). It is shown in (c) and (d).

図2(a)に示すように、母材樹脂に微細ガラス繊維を無添加のビニルエステル樹脂Aを使用した上記試験片2の場合、最外層でき裂が発生、進展することによって破壊することが分かった。
一方で、母材樹脂に微細ガラス繊維を無添加のビニルエステル樹脂Bを使用した試験片2の破断後の様相は、図2(b)に示すように、最外層でき裂が発生するものの、破壊に至るまでの致命的なき裂には成長せず、その間に中立軸付近で発生したき裂が進展し破壊することが分かった。
As shown in FIG. 2A, in the case of the above-mentioned test piece 2 in which the vinyl ester resin A to which fine glass fibers are not added to the base material resin is used, the outermost layer can be broken by cracks and growth. Do you get it.
On the other hand, as shown in FIG. 2B, the appearance of the test piece 2 using the vinyl ester resin B to which the fine glass fiber is not added as the base material resin after fracture is as shown in FIG. 2B, although cracks occur in the outermost layer. It was found that the cracks did not grow into fatal cracks leading to the destruction, and the cracks generated near the neutral axis developed and destroyed during that time.

他方、母材樹脂に微細ガラス繊維を添加した試験片2の破断後の様相を、改質ビニルエステル樹脂Aを図2(c)に、改質ビニルエステル樹脂Bを図2(d)に示す。いずれの試験片共に、最外層のみならず中立軸付近でも複数のき裂が発生し、連結を繰り返しながら進展し、破壊にいたることがわかった。
以上から微細ガラス繊維を添加することによって最外層で発生するき裂の発生・進展を抑制し、材料の性能を十分に引き出すことが可能となったため、曲げ強度は向上したと考えられる。
On the other hand, the appearance of the test piece 2 in which fine glass fibers are added to the base material resin after fracture is shown in FIG. 2 (c) for the modified vinyl ester resin A and FIG. 2 (d) for the modified vinyl ester resin B. .. It was found that in each of the test pieces, multiple cracks were generated not only in the outermost layer but also in the vicinity of the neutral axis, and they progressed while repeating the connection, leading to fracture.
From the above, it is considered that the bending strength is improved because the addition of the fine glass fiber suppresses the generation and growth of cracks generated in the outermost layer and makes it possible to fully bring out the performance of the material.

次に、上記疲労試験後の実施例1、2および比較例1、2の試験片1の破断面の繊維先端付近を、それぞれ走査型電子顕微鏡(SEM)を用いて観察し、その結果を図3(a)、(b)、(c)、(d)に示した。
図3(a)に示すように、母材樹脂に微細ガラス繊維を無添加のビニルエステル樹脂Aを使用した比較例1の試験片1の破断後の繊維表面の様相は樹脂の残存量が少なく、また繊維間の樹脂の残存も少量である。母材樹脂にビニルエステル樹脂Bを使用した比較例2の試験片1の破断後の繊維表面の様相は、図3(b)に示すように、樹脂の残存量は少ないものの、繊維間には多くの樹脂の残存が見られた。
Next, the vicinity of the fiber tip of the fracture surface of the test pieces 1 of Examples 1 and 2 and Comparative Examples 1 and 2 after the fatigue test was observed using a scanning electron microscope (SEM), and the results are shown in the figure. 3 (a), (b), (c), (d) are shown.
As shown in FIG. 3A, the residual amount of the resin is small in the appearance of the fiber surface after breaking of the test piece 1 of Comparative Example 1 in which the vinyl ester resin A to which the fine glass fiber is not added is used as the base material resin. Also, the amount of resin remaining between the fibers is small. As shown in FIG. 3B, the appearance of the fiber surface after fracture of the test piece 1 of Comparative Example 2 in which the vinyl ester resin B was used as the base material resin is as shown in FIG. A lot of resin remained.

他方、母材樹脂に微細ガラス繊維を添加すると、図3(c)、(d)に示すように、改質ビニルエステル樹脂A、改質ビニルエステル樹脂B共に、炭素繊維表面と繊維先端に樹脂がより多く残存するような破壊形態へと変化した。
したがって、微細ガラス繊維を添加することによって、炭素繊維/樹脂間の界面接着性が向上し、界面破壊が抑制され、破断面に樹脂が多く残存するような破壊形態へと変化したのだと考えられる。また、繊維先端でも同様の傾向が見られたため、繊維先端での応力集中によって発生する炭素繊維先端/樹脂間のはく離が抑制され、強度と疲労特性が向上すると思われる。
On the other hand, when fine glass fibers are added to the base resin, as shown in FIGS. 3 (c) and 3 (d), both the modified vinyl ester resin A and the modified vinyl ester resin B are resin on the carbon fiber surface and the fiber tip. Changed to a form of destruction in which more remains.
Therefore, it is considered that the addition of the fine glass fiber improved the interfacial adhesiveness between the carbon fiber and the resin, suppressed the interfacial fracture, and changed the fracture form so that a large amount of resin remained on the fracture surface. Be done. Further, since the same tendency was observed at the fiber tip, it is considered that the peeling between the carbon fiber tip / resin caused by the stress concentration at the fiber tip is suppressed, and the strength and fatigue characteristics are improved.

本発明のコンパウンド複合材料は、特に限定されないが、例えば、航空宇宙構造物、自動車・二輪車・船艇の構造用部材、大型の産業用機械部品、建築物や構造物、またそれらの補強、スポーツ用品等の成型品に用いることができる。 The compound composite material of the present invention is not particularly limited, but for example, aerospace structures, structural members of automobiles / motorcycles / ships, large industrial mechanical parts, buildings and structures, their reinforcements, and sports. It can be used for molded products such as supplies.

Claims (4)

チョップド炭素繊維を強化繊維として母材樹脂中に含むとともに、微細ガラス繊維が母材樹脂中に分散されているコンパウンド複合材料の製造方法であって、
前記母材樹脂が、ビニルエステル樹脂であり、
前記微細ガラス繊維の繊維径が、50nm〜2μmであるとともに、
前記ビニルエステル樹脂に、前記微細ガラス繊維を分散混合した改質母材樹脂を得る工程と、
繊維方向がランダムな前記チョップド炭素繊維の不織布状体を得る工程と、
真空パックに入れられた状態の前記不織布状体を、金型内に入れ、前記真空パック内を真空状態にしたのち、前記真空パックに接続された樹脂吸引用のホースまたは管を介して、硬化剤が混合された前記改質母材樹脂を前記真空パック内に吸引充填して前記不織布状体に前記硬化剤が混合された改質母材樹脂を含浸させる工程を含むことを特徴とするコンパウンド複合材料の製造方法。
A method for producing a compound composite material in which chopped carbon fibers are contained in the base resin as reinforcing fibers and fine glass fibers are dispersed in the base resin.
The base material resin is a vinyl ester resin,
The fine glass fiber has a fiber diameter of 50 nm to 2 μm and has a fiber diameter of 50 nm to 2 μm.
A step of obtaining a modified base material resin in which the fine glass fibers are dispersed and mixed with the vinyl ester resin, and
A step of obtaining a non-woven fabric of the chopped carbon fibers having random fiber directions, and
The non-woven fabric in the vacuum pack is placed in a mold, the inside of the vacuum pack is evacuated, and then cured via a resin suction hose or tube connected to the vacuum pack. The compound comprises a step of suction-filling the modified base material resin mixed with the agent into the vacuum pack and impregnating the non-woven fabric with the modified base material resin mixed with the curing agent. A method for manufacturing a composite material.
前記微細ガラス繊維が、母材樹脂に対して0.01〜1wt%含まれている請求項1に記載のコンパウンド複合材料の製造方法。The method for producing a compound composite material according to claim 1, wherein the fine glass fiber is contained in an amount of 0.01 to 1 wt% with respect to the base resin. 前記チョップド炭素繊維の繊維長が、2mm〜50mmである請求項1または請求項2に記載のコンパウンド複合材料の製造方法。The method for producing a compound composite material according to claim 1 or 2, wherein the chopped carbon fiber has a fiber length of 2 mm to 50 mm. 前記チョップド炭素繊維の体積含有率10〜70%である請求項1〜請求項3のいずれかに記載のコンパウンド複合材料の製造方法。The method for producing a compound composite material according to any one of claims 1 to 3, wherein the volume content of the chopped carbon fiber is 10 to 70%.
JP2016045966A 2016-03-09 2016-03-09 Compound composite material and its manufacturing method Active JP6860873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045966A JP6860873B2 (en) 2016-03-09 2016-03-09 Compound composite material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045966A JP6860873B2 (en) 2016-03-09 2016-03-09 Compound composite material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017160335A JP2017160335A (en) 2017-09-14
JP6860873B2 true JP6860873B2 (en) 2021-04-21

Family

ID=59853089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045966A Active JP6860873B2 (en) 2016-03-09 2016-03-09 Compound composite material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6860873B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3482656B2 (en) * 1993-06-24 2003-12-22 日東紡績株式会社 Glass fiber powder having flat cross-sectional shape and method for producing the same
US20100143692A1 (en) * 2008-12-10 2010-06-10 Ryan James P Carbon and Glass Fiber Reinforced Composition
JP2012214651A (en) * 2011-04-01 2012-11-08 Mitsubishi Electric Corp Flame-retardant fiber-reinforced composite material, sandwich panel, method of producing them, and elevator car
CN104053711A (en) * 2012-01-17 2014-09-17 独立行政法人产业技术综合研究所 Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method therefor
JP5979426B2 (en) * 2012-07-12 2016-08-24 三菱レイヨン株式会社 Seat molding compound
JP2015174784A (en) * 2014-03-14 2015-10-05 学校法人同志社 Manufacturing method of carbon fiber/carbon composite material
JP5908188B2 (en) * 2014-04-24 2016-04-26 帝人株式会社 Carbon fiber reinforced resin processed product with end face
JP6471377B2 (en) * 2014-06-20 2019-02-20 学校法人同志社 Prepreg laminate

Also Published As

Publication number Publication date
JP2017160335A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
Khan et al. Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: a review
Wong et al. Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres
Saito et al. Experimental evaluation of the damage growth restraining in 90 layer of thin-ply CFRP cross-ply laminates
Xu et al. Improving compression-after-impact performance of carbon–fiber composites by CNTs/thermoplastic hybrid film interlayer
Bortz et al. Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates
KR101996111B1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
Ulus et al. Enhancement of flexural and shear properties of carbon fiber/epoxy hybrid nanocomposites by boron nitride nano particles and carbon nano tube modification
CN109749363B (en) Carbon nanotube toughened high-thermal-conductivity asphalt-based carbon fiber composite material and preparation method thereof
Singh et al. Experimental evaluation of hygrothermal degradation of stainless steel fibre metal laminate
Shukla et al. A comparative study of the mechanical performance of Glass and Glass/Carbon hybrid polymer composites at different temperature environments
İnal et al. Progress in interlaminar toughening of aerospace polymer composites using particles and non-woven veils
Ikbal et al. Effect of hybrid ratio and laminate geometry on compressive properties of carbon/glass hybrid composites
Gupta et al. Applications and challenges of carbon-fibres reinforced composites: a Review
JP6860873B2 (en) Compound composite material and its manufacturing method
Ikbal et al. GF/CF hybrid laminates made through intra-tow hybridization for automobile applications
JP2005306026A (en) Titanium-fiber reinforced plastic laminate
Lee et al. A study on mechanical properties of carbon fiber reinforced plastics by three-point bending testing and transverse static response
Rajak et al. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721
JP2018062119A (en) Carbon fiber-reinforced plastic laminate and method for producing the same
Khan et al. Interlaminar shear properties of CFRP composites with CNF-bucky paper interleaves
Zhong et al. Introduction and Background of Fiber-Reinforced Composite Materials
JP2010059300A (en) Carbon fiber reinforced composite material and method for producing the same
Islam Design and Development of Nanofiber Engineered Polymer Composite Prepregs
De Boer Next generation fibre metal laminates
Ali et al. Mechanical characterization of glass/epoxy polymer composites sprayed with vapor grown carbon nano fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R150 Certificate of patent or registration of utility model

Ref document number: 6860873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150