JP6860715B2 - 物性値評価装置及び方法 - Google Patents

物性値評価装置及び方法 Download PDF

Info

Publication number
JP6860715B2
JP6860715B2 JP2020017690A JP2020017690A JP6860715B2 JP 6860715 B2 JP6860715 B2 JP 6860715B2 JP 2020017690 A JP2020017690 A JP 2020017690A JP 2020017690 A JP2020017690 A JP 2020017690A JP 6860715 B2 JP6860715 B2 JP 6860715B2
Authority
JP
Japan
Prior art keywords
coil
capacitance
evaluated
frequency
evaluation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020017690A
Other languages
English (en)
Other versions
JP2020073928A (ja
Inventor
小林 徳康
徳康 小林
聡一 上野
聡一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020017690A priority Critical patent/JP6860715B2/ja
Publication of JP2020073928A publication Critical patent/JP2020073928A/ja
Application granted granted Critical
Publication of JP6860715B2 publication Critical patent/JP6860715B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明の実施形態は、物性値評価装置及び方法に関する。
金属材料の元素濃度変化、あるいは疲労、歪み、脆化等による劣化が生じると、金属材料の抵抗率、あるいは金属材料が強磁性体である場合は透磁率も変化する。この現象を利用して金属材料の抵抗率又は透磁率を測定することで、金属材料の元素濃度変化又は劣化具合を評価する技術が知られている。
従来では、例えばコイルを用いて金属材料である鋼材に渦電流を誘起し、鋼材の抵抗率を測定する技術があり、これにより鋼材の元素濃度を測定している。また、この技術は、鋼材が強磁性体であるため、元素濃度変化が透磁率にも影響を与える。この透磁率が変化することで、抵抗率の測定精度を低下させている。
また、金属材料である被評価材料の近傍に配置したコイルにより被評価材料に渦電流を誘起させることで、被評価材料の影響を受けた状態での抵抗成分やインダクタンス成分を求める方法が従来から知られている。
特許第3948594号公報 C. C. Cheng, C. V. Dodd, and W. E. Deeds : "General Analysis of Probe Coils Near Stratified Conductors", Int. J. Nondestructive Testing, Vol.3, pp.109-130
従来では、透磁率への影響を抑制するため、被評価材料に対して飽和磁化レベル近傍まで直流磁場を印加している。しかし、この飽和磁化レベル近傍まで直流磁場を印加するためには、渦電流誘起用のコイルよりも大きなコイル及び直流電源が必要になる。その結果、装置の大型化及び高コスト化を招くという課題がある。
また、被評価材料が強磁性体の場合には、飽和磁化レベル近傍まで直流磁場を印加すると、装置の大型化や高コスト化を招くという課題がある。
本実施形態が解決しようとする課題は、被評価材料が強磁性体の場合でも、小型で被評価材料の抵抗率及び透磁率の双方を評価することが可能な物性値評価装置及び方法を提供することにある。
上記課題を解決するために、本実施形態に係る物性値評価装置は、被評価材料に渦電流を誘起する第1のコイルと、前記第1のコイルに交流電流を供給する交流電源と、前記交流電源の周波数を掃引する周波数掃引手段と、前記周波数掃引手段と前記第1のコイルとの間に接続され、前記第1のコイルの浮遊容量と異なる静電容量素子と、前記静電容量素子を追加接続および切り離し可能な静電容量切替手段と、前記第1のコイルの浮遊容量に対する第1の共振周波数と前記静電容量素子を追加接続したときの静電容量に対する第2の共振周波数に基づき、前記被評価材料の抵抗成分とインダクタンス成分を求める手段と、を備えることを特徴とする。
本実施形態の物性値評価方法は、被評価材料に第1のコイルの浮遊容量を介して周波数を掃引しながら渦電流を誘起して前記被評価材料の前記第1のコイルの浮遊容量に対する第1の共振周波数を測定し、前記被評価材料に前記第1のコイルの浮遊容量と異なる静電容量素子を介して周波数を掃引しながら渦電流を誘起して前記被評価材料の前記静電容量素子を追加接続したときの静電容量に対する第2の共振周波数を測定し、前記第1の共振周波数と前記第2の共振周波数に基づき、前記被評価材料の抵抗成分とインダクタンス成分を求めることを特徴とする。
本実施形態によれば、小型で被評価材料の抵抗率及び透磁率の双方を評価することが可能になる。
第1実施形態の物性値評価装置を示す回路図である。 第1実施形態の物性値評価装置の電圧測定結果の例を示す波形図である。 (a),(b)は第1実施形態の物性値評価装置を示す等価回路図である。 第1実施形態の変形例の物性値評価装置を示す回路図である。 第2実施形態の物性値評価装置を示す回路図である。
以下、本実施形態に係る物性値評価装置及び方法について、図面を参照して説明する。
(第1実施形態)
(構 成)
図1は第1実施形態の物性値評価装置を示す回路図である。図2は第1実施形態の物性値評価装置の電圧測定結果の例を示す波形図である。
図1に示すように、被評価材料1の表面には、第1のコイル2が設置される。被評価材料1としては、例えば強磁性体の金属材料が用いられる。第1のコイル2は、被評価材料1に渦電流を誘起する。第1のコイル2には、交流電源4が接続されている。交流電源4は、第1のコイル2に交流電流を供給する。第1のコイル2の両端には、その両端電圧を測定するための電圧測定回路5が接続されている。
交流電源4と第1のコイル2との間には、周波数掃引手段の一例としての周波数掃引回路6が接続されている。この周波数掃引回路6は、交流電源4の周波数を掃引する。具体的には、周波数掃引回路6は、交流電源4からの電流又は電圧の周波数を変化させる回路であり、与えられた任意の周波数の範囲内で連続的あるいは離散的に周波数を変化させること(周波数スキャン,周波数スイープ)ができるように構成される。周波数掃引回路6としては、例えばオシロスコープ、ネットワークアナライザ、及びFFT(スペクトルアナライザ)に用いられる周波数を変化させる回路を適用したり、あるいはこれらの回路と同様にして構成することが可能である。なお、周波数掃引回路6が周波数を離散的に変化させるように構成される場合、離散的な周波数変化の幅は、周波数の掃引を行なう際に与えられる任意の周波数の幅に対して十分に小さいことが望ましい。
第1のコイル2と周波数掃引回路6との間には、静電容量切替手段の一例としての静電容量切替回路7が接続されている。この静電容量切替回路7は、第1の静電容量とこの第1静電容量と異なる第2の静電容量を切り替える回路である。
具体的には、図1に示した本実施形態において静電容量切替回路7は、並列に設けられた第1の静電容量素子としての第1のコンデンサ3と、第2の静電容量素子としての第2のコンデンサ10と、これら第1のコンデンサ3と第2のコンデンサ10との接続を切り替えるスイッチ9と、を備える。第1のコイル2には、静電容量切替回路7、周波数掃引回路6及び交流電源4が直列に接続されて閉回路を構成する。
(作 用)
交流電源4から第1のコイル2に交流電流を供給すると、被評価材料1の表層に渦電流が誘起される。このとき、電圧測定回路5により第1のコイル2の両端電圧を測定すると、渦電流が作る反作用磁束の大きさに応じて、ある一定の電圧が測定される。
この状態から周波数掃引回路6により任意の範囲で交流電源4の周波数を掃引する(すなわち周波数を離散的あるいは連続的に変化させる周波数スキャン(周波数スイープ)を行なう)と、図2に実線で示す第1のコンデンサ3での測定結果のように、第1のコイル2の両端電圧は、ある周波数fr1で極大値をとる。そして、この極大値を示す周波数fr1が第1のコンデンサ3での共振周波数である。
次に、図1に示すスイッチ9を用いて、第1のコイル2に接続するコンデンサを、第1のコンデンサ3とは静電容量の異なる第2のコンデンサ10に切り替え、第1のコンデンサ3の場合と同様に、周波数掃引回路6により任意の範囲で交流電源4の周波数を掃引しながら第1のコイル2の両端電圧を測定する。
すると、図2に破線で示す第2のコンデンサ10での測定結果のように、第1のコイル2の両端電圧は、第1のコンデンサ3での共振周波数fr1とは異なる周波数fr2で極大値をとる。そして、この極大値を示す周波数fr2が第2のコンデンサ10での共振周波数である。
図3(a),(b)は第1実施形態の物性値評価装置を示す等価回路図である。
図3(a)は、第1のコイル2及び交流電源4を含む閉回路と、被評価材料1の抵抗13と被評価材料1のインダクタンス14を含む閉回路との間の相互誘導を表している。図3(b)は、相互誘導を考慮して図3(a)に示す2つの閉回路を合成した等価回路である。このとき、図3(b)に示す等価回路の入力インピーダンスZは(1)式で表される。
Z=R+jX (1)
ここで、Rは入力インピーダンスZの抵抗成分、Xは入力インピーダンスZのリアクタンス成分である。そして、抵抗成分R、リアクタンス成分X共に(2)式、(3)式に示すように、第1のコンデンサ3(C)又は第2のコンデンサ10(C)、第1のコイル2の巻線抵抗15(R)、第1のコイル2の浮遊容量16(C)、相互誘導を考慮した抵抗成分17(R’)、相互誘導を考慮したインダクタンス成分18(L’)、交流電源4の周波数fの関数である。
R=R(C,C,R,C,R’,L’,f) (2)
X=X(C,C,R,C,R’,L’,f) (3)
ここで、上記回路定数の内、第1のコンデンサ3(C)又は第2のコンデンサ10(C)、第1のコイル2の巻線抵抗15(R)、第1のコイル2の浮遊容量16(C)、交流電源4の周波数fは測定可能な既知数であり、相互誘導を考慮した抵抗成分17(R’)、相互誘導を考慮したインダクタンス成分18(L’)が未知数として扱われる。図3(b)に示す等価回路が共振状態にあるときは(4)式が成立する。
X(C,C,R,C,R’,L’,f)=0 (4)
先に測定した第1のコンデンサ3での共振周波数fr1、第2のコンデンサ10での共振周波数fr2を代入すると、次の(5)式、(6)式が得られる。
X(C,R,C,R’,L’,fr1)=0 (5)
X(C,R,C,R’,L’,fr2)=0 (6)
(5)式と(6)式は、2つの未知数である相互誘導を考慮した抵抗成分17(R’)、相互誘導を考慮したインダクタンス成分18(L’)を含む2つの方程式であるため、(5)式と(6)式を連立して解くことで、2つの未知数である相互誘導を考慮した抵抗成分17(R’)、相互誘導を考慮したインダクタンス成分18(L’)を求めることができる。
また、非特許文献1等の記載に基づけば、上記で求めた相互誘導を考慮した抵抗成分17(R’)、相互誘導を考慮したインダクタンス成分18(L’)と測定可能な既知数である第1のコイル2のインダクタンス19(L)から、被評価材料1の抵抗13(R)、あるいは被評価材料1のインダクタンス14(L)を求めることができ、さらにこれらに基づいて被評価材料1の抵抗13(R)に係る抵抗率ρや、被評価材料1と第1のコイル2との間の相互インダクタンス20(M12)に係る透磁率μを求めることができる。
このようにして求められた被評価材料1の抵抗13やインダクタンス14(あるいは抵抗率ρや透磁率μ)を、例えば劣化が生じていない健全な材料のものと比較することで、被評価材料1の疲労、歪み、脆化等による劣化の度合いを評価することが可能となる。あるいは、被評価材料1の抵抗13やインダクタンス14(あるいは抵抗率ρや透磁率μ)の経時的な変化を見ることで、劣化の度合いを評価するようにしてもよい。
このように本実施形態によれば、渦電流誘起用の第1のコイル2のみを用いて被評価材料1の抵抗率ρ及び透磁率μの双方を評価することができるため、小型で、低コストの物性値評価装置を提供することが可能になる。
(第1実施形態の変形例)
図4は第1実施形態の変形例の物性値評価装置を示す回路図である。なお、前記第1実施形態と同一の部分には、同一の符号を付して重複する説明は省略する。
図4に示すように、本変形例は、静電容量切替回路7Aが第1の静電容量素子としての第1のコンデンサ3と、第1のコンデンサ3に直列に接続可能な第2の静電容量素子としての第2のコンデンサ10と、を備えている。
具体的には、静電容量切替回路7Aは、第1のコンデンサ3と、第2のコンデンサ10と、第1のコンデンサ3に対して第2のコンデンサ10を直列に接続するか否かを切り替えるスイッチ9と、を備える。
その他の構成及び作用は、前記第1実施形態と同様であるので、その説明を省略する。
このように本変形例によれば、静電容量切替回路7Aが第1のコンデンサ3と、この第1のコンデンサ3に直列に接続可能な第2のコンデンサ10と、を備えることにより、前記第1実施形態と同様に、小型で、低コストの物性値評価装置を提供することが可能になる。
(第2実施形態)
図5は第2実施形態の物性値評価装置を示す回路図である。なお、前記第1実施形態と同一又は対応する部分には、同一の符号を付して重複する説明を省略する。
図5に示すように、本実施形態では、前記第1実施形態において第1のコイル2の両端電圧を測定する代わりに、第1のコイル2の近傍に第2のコイル21を配置し、この第2のコイル21の両端電圧を測定している。具体的には、第2のコイル21は、第1のコイル2により被評価材料1に誘起された渦電流による誘導起電力を測定するために用いられる。
そして、前記第1実施形態では、第1のコイル2及び交流電源4を含む閉回路と、被評価材料1の抵抗13と被評価材料1のインダクタンス14を含む閉回路との間の相互誘導を考慮した等価回路を用いていた。
本実施形態では、この等価回路に加えて第1のコイル2及び交流電源4を含む閉回路と第2のコイル21を含む閉回路との間の相互誘導、第2のコイル21を含む閉回路と被評価材料1の抵抗13及び被評価材料1のインダクタンス14を含む閉回路との間の相互誘導を考慮した等価回路を用いている。これにより、前記第1実施形態と同様の手法から被評価材料1の抵抗13(R)に係る抵抗率ρや、被評価材料1と第1のコイル2との間の相互インダクタンス20(M12)に係る透磁率μを求めることができる。
なお、本実施形態では、第1のコイル2の上方近傍に第2のコイル21を配置しているが、これに限らず第1のコイル2の上方に第2のコイル21を接触させるか、あるいは第1のコイル2の周囲に配置してもよく、要するに第2のコイル21は、被評価材料1に誘起された渦電流が作る反作用磁束の影響を受ける位置に配置すればよい。
このように本実施形態によれば、前記第1実施形態の効果に加えて、例えば第2のコイル21の巻線数を増加するか、あるいは外径を小さくする等して電圧測定に特化したコイルを用いることができる。そのため、測定電圧の感度及び分解能が向上する等、高精度な物性値評価が可能になる。
(その他の実施形態)
本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
なお、上記各実施形態及び変形例では、第1のコンデンサ3と、第2のコンデンサ10の2つのコンデンサを直列又は並列に接続した例について説明したが、これに限らず3つ以上のコンデンサを接続するようにしてもよい。
また、第1のコイル2が浮遊容量を有していることから、この浮遊容量を第1の静電容量とし、この第1静電容量と異なる第2の静電容量として第1のコンデンサ3又は第2のコンデンサ10を用いてもよい。そして、これらを直列又は並列に接続するようにしてもよい。
さらに、実施形態にかかる物性評価装置は、第1のコンデンサ3や第2のコンデンサ10等を第1のコイル2に直列に挿入可能な端子を静電容量切替手段として備えるものであってもよい。このような実施形態の物性評価装置とする場合の物性評価方法として、例えば、第1のコンデンサ3を静電容量切替手段としての端子間に接続して第1のコンデンサ3での共振周波数fr1を測定した後、この第1のコンデンサ3を端子間から取り外し、代わりに第2のコンデンサ10を端子間に接続して第2のコンデンサ10での共振周波数fr2を測定する、といった方法を用いることができる。このようにする場合、物性評価装置には前記第1実施形態とその変形例で説明したような静電容量切替回路7,7Aを備えなくても実施形態にかかる物性評価方法を実施することができる。
1…被評価材料、2…第1のコイル、3…第1のコンデンサ(第1の静電容量素子)、4…交流電源、5…電圧測定回路、6…周波数掃引回路(周波数掃引手段)、7…静電容量切替回路(静電容量切替手段)、7A…静電容量切替回路(静電容量切替手段)、9…スイッチ、10…第2のコンデンサ(第2の静電容量素子)、13…被評価材料の抵抗、14…被評価材料のインダクタンス、15…第1のコイルの巻線抵抗、16…第1のコイルの浮遊容量、17…相互誘導を考慮した抵抗成分、18…相互誘導を考慮したインダクタンス成分、19…第1のコイルのインダクタンス、20…被評価材料と第1のコイルとの間の相互インダクタンス、21…第2のコイル

Claims (5)

  1. 被評価材料に渦電流を誘起する第1のコイルと、
    前記第1のコイルに交流電流を供給する交流電源と、
    前記交流電源の周波数を掃引する周波数掃引手段と、
    前記周波数掃引手段と前記第1のコイルとの間に接続され、前記第1のコイルの浮遊容量と異なる静電容量素子と、
    前記静電容量素子を追加接続および切り離し可能な静電容量切替手段と、
    前記第1のコイルの浮遊容量に対する第1の共振周波数と前記静電容量素子を追加接続したときの静電容量に対する第2の共振周波数に基づき、前記被評価材料の抵抗成分とインダクタンス成分を求める手段と、
    を備えることを特徴とする物性値評価装置。
  2. 前記静電容量切替手段は、前記第1のコイルと並列に前記静電容量素子を追加接続および切り離し可能な切り替えスイッチを備えることを特徴とする請求項1に記載の物性評価装置。
  3. 前記静電容量切替手段は、前記第1のコイルと直列に前記静電容量素子を追加接続および切り離し可能な切り替えスイッチを備えることを特徴とする請求項1に記載の物性評価装置。
  4. 前記第1のコイルにより前記被評価材料に誘起された渦電流による誘導起電力を測定するための第2のコイルをさらに備えたことを特徴とする請求項1乃至3のいずれか1項に記載の物性値評価装置。
  5. 被評価材料に第1のコイルの浮遊容量を介して周波数を掃引しながら渦電流を誘起して前記被評価材料の前記第1のコイルの浮遊容量に対する第1の共振周波数を測定し、
    前記被評価材料に前記第1のコイルの浮遊容量と異なる静電容量素子を介して周波数を掃引しながら渦電流を誘起して前記被評価材料の前記静電容量素子を追加接続したときの静電容量に対する第2の共振周波数を測定し、
    前記第1の共振周波数と前記第2の共振周波数に基づき、前記被評価材料の抵抗成分とインダクタンス成分を求めることを特徴とする物性値評価方法。
JP2020017690A 2020-02-05 2020-02-05 物性値評価装置及び方法 Active JP6860715B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020017690A JP6860715B2 (ja) 2020-02-05 2020-02-05 物性値評価装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020017690A JP6860715B2 (ja) 2020-02-05 2020-02-05 物性値評価装置及び方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016241806A Division JP6659527B2 (ja) 2016-12-14 2016-12-14 物性値評価装置及び方法

Publications (2)

Publication Number Publication Date
JP2020073928A JP2020073928A (ja) 2020-05-14
JP6860715B2 true JP6860715B2 (ja) 2021-04-21

Family

ID=70610507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020017690A Active JP6860715B2 (ja) 2020-02-05 2020-02-05 物性値評価装置及び方法

Country Status (1)

Country Link
JP (1) JP6860715B2 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526116B2 (ja) * 1972-05-15 1977-02-18
JPS62273447A (ja) * 1986-05-22 1987-11-27 Kansai Electric Power Co Inc:The 材料劣化度測定方法及びその装置
US5017869A (en) * 1989-12-14 1991-05-21 General Electric Company Swept frequency eddy current system for measuring coating thickness
US5394084A (en) * 1991-12-23 1995-02-28 The Boeing Company Method and apparatus for reducing errors in eddy-current conductivity measurements due to lift-off by interpolating between a plurality of reference conductivity measurements
JP3603996B2 (ja) * 1999-04-28 2004-12-22 シャープ株式会社 シート抵抗測定器
JP3632832B2 (ja) * 2000-04-27 2005-03-23 シャープ株式会社 シート抵抗測定方法
EP2762875B1 (en) * 2011-09-26 2019-07-17 Kabushiki Kaisha Toshiba Eddy current flaw detector
GB2495104A (en) * 2011-09-28 2013-04-03 Oxford Rf Sensors Ltd Rotor blade sensor
JP5967989B2 (ja) * 2012-03-14 2016-08-10 ソニー株式会社 検知装置、受電装置、送電装置及び非接触給電システム

Also Published As

Publication number Publication date
JP2020073928A (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
Hu et al. Transfer function characterization for HFCTs used in partial discharge detection
Fava et al. Calculation and simulation of impedance diagrams of planar rectangular spiral coils for eddy current testing
US11221380B2 (en) Method and apparatus for analyzing a sample volume comprising magnetic particles
US3667034A (en) Method of testing an electrical winding including the step of connecting the winding to provide a tank circuit
US3378763A (en) Eddy current probe with temperature compensation
JP6860715B2 (ja) 物性値評価装置及び方法
EP2577337A1 (en) Coil comprising a winding comprising a multi-axial cable
Nirgude et al. Frequency response analysis approach for condition monitoring of transformer
Wilk et al. Investigations on sensitivity of FRA method in diagnosis of interturn faults in transformer winding
Mitchell et al. The influence of complex permeability on the broadband frequency response of a power transformer
JP6659527B2 (ja) 物性値評価装置及び方法
Doan et al. Development of a broad bandwidth Helmholtz coil for biomagnetic application
WO2006059497A1 (ja) 超電導体の臨界電流密度測定方法及び装置
Picher et al. Experience with frequency response analysis (FRA) for the mechanical condition assessment of transformer windings
Ushakov et al. Traditional Electrical Diagnostic Methods
Gmyrek et al. Modified single sheet tester system for engineering measurements
RU2305291C1 (ru) Способ определения короткозамкнутых витков в электрических обмотках
KR101091142B1 (ko) 코로나 방전 검출 프로브 및 이를 포함하는 검출 시스템
Utsuzawa et al. Transformer-coupled NMR probe
Hamzehbahmani et al. An overview of the recent developments of the inter-laminar short circuit fault detection methods in magnetic cores
Tavakoli An fra transformer model with application on time domain reflectometry
Hiraide et al. Frequency response analysis for exact power transformer impedance
Korenciak et al. Comparison of time and frequency method in fault detection for transformer windings
Gojiya et al. Effect of Test Cable Termination on Frequency Response of Transformer Winding
Nakajima et al. Investigation of the influences of residual magnetic flux and injection voltage level on FRA open circuit test of transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150