JP6860193B2 - Cylinder unit and transfer device - Google Patents

Cylinder unit and transfer device Download PDF

Info

Publication number
JP6860193B2
JP6860193B2 JP2016237120A JP2016237120A JP6860193B2 JP 6860193 B2 JP6860193 B2 JP 6860193B2 JP 2016237120 A JP2016237120 A JP 2016237120A JP 2016237120 A JP2016237120 A JP 2016237120A JP 6860193 B2 JP6860193 B2 JP 6860193B2
Authority
JP
Japan
Prior art keywords
cylinder
peripheral surface
shape
movable
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016237120A
Other languages
Japanese (ja)
Other versions
JP2018091288A (en
Inventor
中村 太郎
太郎 中村
泰之 山田
泰之 山田
舜 吉浜
舜 吉浜
恭太 芦垣
恭太 芦垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Original Assignee
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University filed Critical Chuo University
Priority to JP2016237120A priority Critical patent/JP6860193B2/en
Priority to US16/335,404 priority patent/US10975973B2/en
Priority to PCT/JP2017/034165 priority patent/WO2018056378A1/en
Priority to CN201780058403.3A priority patent/CN109790834B/en
Publication of JP2018091288A publication Critical patent/JP2018091288A/en
Application granted granted Critical
Publication of JP6860193B2 publication Critical patent/JP6860193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Description

本発明は、筒ユニット及び搬送装置に関する。 The present invention relates to a cylinder unit and a transport device.

従来、液体、気液混合体又は固液混合体などの被搬送物を搬送する搬送装置のための筒ユニットとして、弾性変形可能であるとともに筒状をなす、内筒と、内筒の外周面との間に、該外周面と接し、加圧媒体の供給・排出に伴い内筒を弾性変形させて膨張・収縮する、加圧空間を形成する、外筒と、を備えるものが知られている(例えば、特許文献1参照)。このような筒ユニットは、加圧媒体の供給・排出に伴い加圧空間を膨張・収縮させることで、内筒を弾性変形させて、被搬送物を内筒の径方向内側の空間内から外部へ搬送することができる。 Conventionally, as a cylinder unit for a transport device for transporting an object to be transported such as a liquid, a gas-liquid mixture, or a solid-liquid mixture, an inner cylinder that is elastically deformable and has a tubular shape, and an outer peripheral surface of the inner cylinder. It is known that the inner cylinder is elastically deformed to expand / contract with the supply / discharge of the pressurizing medium, forms a pressurizing space, and has an outer cylinder, which is in contact with the outer peripheral surface. (See, for example, Patent Document 1). Such a cylinder unit elastically deforms the inner cylinder by expanding and contracting the pressure space with the supply and discharge of the pressure medium, and moves the object to be transported from the inside of the space inside the inner cylinder in the radial direction to the outside. Can be transported to.

特開2013−174139号公報Japanese Unexamined Patent Publication No. 2013-174139

しかしながら、特許文献1に記載されるような従来の筒ユニットでは、例えば、円筒状の内筒の周上の所定位置における座屈を誘発して内筒を径方向内側へ弾性変形させるため等の目的で、内筒に局所的な突起又は溝等が設けられていた。しかしながら、より安定した内筒の弾性変形を実現できれば望ましい。 However, in the conventional cylinder unit as described in Patent Document 1, for example, in order to induce buckling at a predetermined position on the circumference of the cylindrical inner cylinder and elastically deform the inner cylinder inward in the radial direction. For the purpose, a local protrusion or groove was provided on the inner cylinder. However, it is desirable if more stable elastic deformation of the inner cylinder can be realized.

本発明は、このような問題に鑑みてなされたもので、内筒の安定した弾性変形を実現できる筒ユニット及び搬送装置を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a cylinder unit and a transport device capable of realizing stable elastic deformation of an inner cylinder.

本発明に係る筒ユニットは、
弾性変形可能であるとともに筒状をなす、内筒と、
前記内筒の外周面との間に、該外周面と接し、加圧媒体の供給・排出に伴い前記内筒を弾性変形させて膨張・収縮する、加圧空間を形成する、外筒と、を備え、
前記内筒は、前記加圧空間に接する軸方向の長さ部分である、可動筒部を有し、
前記可動筒部は、その外周面及び内周面の少なくとも一方における前記軸方向と直交する断面形状が非円形状をなすように形成されていることを特徴とする。
The cylinder unit according to the present invention is
An inner cylinder that is elastically deformable and has a tubular shape,
An outer cylinder that is in contact with the outer peripheral surface of the inner cylinder to form a pressure space that elastically deforms the inner cylinder to expand and contract with the supply and discharge of the pressurizing medium. With
The inner cylinder has a movable cylinder portion which is an axially long portion in contact with the pressurized space.
The movable cylinder portion is characterized in that the cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface thereof is formed so as to form a non-circular shape.

また、本発明に係る筒ユニットでは、前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の全長に亘って一定の非円形状をなすように形成されていることが好ましい。 Further, in the cylinder unit according to the present invention, it is preferable that the movable cylinder portion is formed so that the cross-sectional shape forming the non-circular shape is a constant non-circular shape over the entire length in the axial direction. ..

また、本発明に係る筒ユニットでは、前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の全長に亘って一定の大きさとなるように形成されていることが好ましい。 Further, in the cylinder unit according to the present invention, it is preferable that the movable cylinder portion is formed so that the cross-sectional shape forming the non-circular shape has a constant size over the entire length in the axial direction.

また、本発明に係る筒ユニットでは、前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に応じて周方向に回転するように形成されていることも好ましい。 Further, in the tubular unit according to the present invention, it is also preferable that the movable tubular portion is formed so that the non-circular cross-sectional shape rotates in the circumferential direction in response to a change in the axial position. ..

また、本発明に係る筒ユニットでは、前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に対して一定の割合で周方向に回転するように形成されていることも好ましい。 Further, in the tubular unit according to the present invention, the movable tubular portion is formed so that the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to a change in the axial position. It is also preferable to have.

また、本発明に係る筒ユニットでは、前記加圧空間及び前記可動筒部を複数組備えることも好ましい。 Further, it is also preferable that the cylinder unit according to the present invention includes a plurality of sets of the pressure space and the movable cylinder portion.

また、本発明に係る筒ユニットでは、前記非円形状は、略三角形状であることが好ましい。 Further, in the tubular unit according to the present invention, the non-circular shape is preferably substantially triangular.

また、本発明に係る筒ユニットでは、前記略三角形状は、略正三角形状であることも好ましい。 Further, in the tubular unit according to the present invention, it is also preferable that the substantially triangular shape is a substantially regular triangular shape.

また、本発明に係る筒ユニットでは、前記非円形状は、星形形状であることも好ましい。 Further, in the tubular unit according to the present invention, it is also preferable that the non-circular shape is a star shape.

また、本発明に係る筒ユニットでは、前記内筒は押出し成形品であることが好ましい。 Further, in the cylinder unit according to the present invention, it is preferable that the inner cylinder is an extruded product.

また、本発明に係る筒ユニットでは、前記外筒は、その中心軸線に直交する方向に曲げ変形可能であることも好ましい。 Further, in the cylinder unit according to the present invention, it is also preferable that the outer cylinder can be bent and deformed in a direction orthogonal to the central axis thereof.

さらに、本発明に係る筒ユニットでは、前記外筒の内周面と前記可動筒部の外周面とは、前記軸方向と直交する断面形状が、互いに前記軸方向の全長に亘って相似形状をなしていることも好ましい。 Further, in the cylinder unit according to the present invention, the inner peripheral surface of the outer cylinder and the outer peripheral surface of the movable cylinder portion have similar cross-sectional shapes to each other over the entire length in the axial direction. It is also preferable to do so.

また、本発明に係る搬送装置は、
本発明に係る筒ユニットと、
前記筒ユニットにおける前記加圧媒体の供給・排出を制御する、圧力制御部と、を備えることを特徴とする。
Further, the transport device according to the present invention is
The cylinder unit according to the present invention and
It is characterized by including a pressure control unit that controls the supply / discharge of the pressure medium in the cylinder unit.

本発明によれば、内筒の安定した弾性変形を実現できる筒ユニット及び搬送装置を提供することができる。 According to the present invention, it is possible to provide a cylinder unit and a transport device capable of realizing stable elastic deformation of the inner cylinder.

図1(a)は、本発明の第1実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図1(b)は、図1(a)のA−A断面図であり、図1(c)は、図1(a)に示す筒ユニットを示す斜視図である。1 (a) is a vertical sectional view showing a cylinder unit and a conveying device according to the first embodiment of the present invention, and FIG. 1 (b) is a sectional view taken along the line AA of FIG. 1 (a). FIG. 1 (c) is a perspective view showing a cylinder unit shown in FIG. 1 (a). 図1(a)に示す単一の筒ユニットで構成されたポンプ装置を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing a pump device composed of a single cylinder unit shown in FIG. 1 (a). 図1(a)に示す筒ユニットを複数用いて構成されたポンプ装置を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing a pump device configured by using a plurality of cylinder units shown in FIG. 1 (a). 図1(a)に示す筒ユニットを複数用いて循環路を形成するように構成された混合装置を示す平面図である。FIG. 3 is a plan view showing a mixing device configured to form a circulation path by using a plurality of tubular units shown in FIG. 1A. 本発明の第2実施形態に係る筒ユニット及び搬送装置を示す縦断面図である。It is a vertical cross-sectional view which shows the cylinder unit and the transport device which concerns on 2nd Embodiment of this invention. 図6(a)は、本発明の第3実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図6(b)は、図6(a)のB−B断面図であり、図6(c)は、図6(a)のC−C断面図である。6 (a) is a vertical sectional view showing a cylinder unit and a conveying device according to a third embodiment of the present invention, and FIG. 6 (b) is a sectional view taken along the line BB of FIG. 6 (a). FIG. 6 (c) is a cross-sectional view taken along the line CC of FIG. 6 (a). 図7(a)は、本発明の第4実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図7(b)は、図7(a)のD−D断面図であり、図7(c)は、図7(a)に示す筒ユニットを示す斜視図である。7 (a) is a vertical cross-sectional view showing a cylinder unit and a transport device according to a fourth embodiment of the present invention, and FIG. 7 (b) is a DD cross-sectional view of FIG. 7 (a). FIG. 7 (c) is a perspective view showing the cylinder unit shown in FIG. 7 (a). 図8(a)は、本発明の第5実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図8(b)は、図8(a)のE−E断面図であり、図8(c)は、図8(a)のF−F断面図であり、図8(d)は、図8(a)のG−G断面図である。8 (a) is a vertical sectional view showing a cylinder unit and a conveying device according to a fifth embodiment of the present invention, and FIG. 8 (b) is a sectional view taken along the line EE of FIG. 8 (a). 8 (c) is a sectional view taken along the line FF of FIG. 8 (a), and FIG. 8 (d) is a sectional view taken along the line GG of FIG. 8 (a). 図9(a)は、本発明の第6実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図9(b)は、図9(a)のH−H断面図であり、図9(c)は、図9(a)に示す筒ユニットを示す斜視図である。9 (a) is a vertical sectional view showing a cylinder unit and a transport device according to a sixth embodiment of the present invention, and FIG. 9 (b) is a sectional view taken along the line HH of FIG. 9 (a). 9 (c) is a perspective view showing the cylinder unit shown in FIG. 9 (a). 図10(a)は、本発明の第7実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図10(b)は、図10(a)のI−I断面図であり、図10(c)は、図10(a)のJ−J断面図である。10 (a) is a vertical sectional view showing a cylinder unit and a conveying device according to a seventh embodiment of the present invention, and FIG. 10 (b) is a sectional view taken along the line II of FIG. 10 (a). 10 (c) is a cross-sectional view taken along the line JJ of FIG. 10 (a). 図11(a)は、本発明の第8実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図11(b)は、図11(a)のK−K断面図であり、図11(c)は、図11(a)に示す筒ユニットを示す斜視図である。11 (a) is a vertical sectional view showing a cylinder unit and a conveying device according to an eighth embodiment of the present invention, and FIG. 11 (b) is a KK sectional view of FIG. 11 (a). 11 (c) is a perspective view showing the cylinder unit shown in FIG. 11 (a). 図12(a)は、本発明の第9実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図12(b)は、図12(a)のL−L断面図であり、図12(c)は、図12(a)のM−M断面図であり、図12(d)は、図12(a)のN−N断面図である。12 (a) is a vertical sectional view showing a cylinder unit and a conveying device according to a ninth embodiment of the present invention, and FIG. 12 (b) is an LL sectional view of FIG. 12 (a). 12 (c) is a sectional view taken along the line MM of FIG. 12 (a), and FIG. 12 (d) is a sectional view taken along the line NN of FIG. 12 (a). 図13(a)は、本発明の第10実施形態に係る筒ユニット及び搬送装置を示す縦断面図であり、図13(b)は、図13(a)のP−P断面図であり、図13(c)は、図13(a)に示す筒ユニットを示す斜視図である。13 (a) is a vertical sectional view showing a cylinder unit and a transport device according to a tenth embodiment of the present invention, and FIG. 13 (b) is a PP sectional view of FIG. 13 (a). 13 (c) is a perspective view showing the cylinder unit shown in FIG. 13 (a).

以下、図面を参照して、本発明の様々な実施形態に係る筒ユニット及び搬送装置について、詳細に例示説明する。なお、本明細書において、内筒の軸方向とは、内筒の中心軸線O1に沿う方向を意味する。また、外筒の軸方向とは、外筒の中心軸線O2に沿う方向を意味する。なお、各実施形態において、内筒の中心軸線O1と外筒の中心軸線O2とは一致しているが、これらの中心軸線O1、O2は一致していなくてもよい。また、「接合」とは、接着剤等による接着や、溶着等による固定に限られず、ねじ、ボルト、ナット、リベットなどによる固定、嵌合等による固定も含むものとする。 Hereinafter, the cylinder unit and the transport device according to various embodiments of the present invention will be described in detail with reference to the drawings. In the present specification, the axial direction of the inner cylinder means a direction along the central axis O1 of the inner cylinder. Further, the axial direction of the outer cylinder means a direction along the central axis O2 of the outer cylinder. In each embodiment, the central axis O1 of the inner cylinder and the central axis O2 of the outer cylinder are the same, but these central axes O1 and O2 do not have to be the same. Further, "joining" is not limited to adhesion by adhesive or the like and fixing by welding or the like, but also includes fixing by screws, bolts, nuts, rivets or the like, or fixing by fitting or the like.

まず、図1〜図4を参照して、本発明の第1実施形態に係る筒ユニット1a及び搬送装置2aについて、詳細に例示説明する。図1に示すように、本実施形態に係る筒ユニット1aは、弾性変形可能であるとともに円筒状をなす、内筒3aを備える。また、筒ユニット1aは、内筒3aの外周面との間に、該外周面と接し、加圧媒体の供給・排出に伴い内筒3aを弾性変形させて膨張・収縮する、加圧空間4aを形成する、外筒5aを備える。加圧空間4aが膨張し、内筒3aが径方向内側へ膨張変形したときの状態を、図1(a)〜(b)中に二点鎖線で示す。内筒3aは、加圧空間4aに接する軸方向の長さ部分である、可動筒部6aを有する。本実施形態では、可動筒部6aは、その外周面及び内周面における軸方向と直交する断面形状が軸方向の全長に亘って一定の非円形状をなすように形成されている。なお、このような構成に代えて、可動筒部6aの外周面及び内周面の少なくとも一方における軸方向と直交する断面形状が、非円形状をなす構成としてもよい。例えば、また、可動筒部6aの外周面及び内周面における軸方向と直交する断面形状が、可動筒部6aの軸方向の一端部では図1(b)に示すような略三角形状である一方、他端部では図13(b)に示すような星形形状である構成としてもよい。可動筒部6aの外周面及び内周面の少なくとも一方における軸方向と直交する断面形状が、軸方向の全長に亘って一定の非円形状をなす構成としてもよい。 First, with reference to FIGS. 1 to 4, the cylinder unit 1a and the transport device 2a according to the first embodiment of the present invention will be described in detail. As shown in FIG. 1, the cylinder unit 1a according to the present embodiment includes an inner cylinder 3a that is elastically deformable and has a cylindrical shape. Further, the cylinder unit 1a is in contact with the outer peripheral surface of the inner cylinder 3a, and the inner cylinder 3a is elastically deformed to expand and contract with the supply and discharge of the pressurizing medium. The outer cylinder 5a is provided. The state when the pressurizing space 4a expands and the inner cylinder 3a expands and deforms inward in the radial direction is shown by a two-dot chain line in FIGS. 1 (a) to 1 (b). The inner cylinder 3a has a movable cylinder portion 6a which is an axially long portion in contact with the pressurizing space 4a. In the present embodiment, the movable tubular portion 6a is formed so that the cross-sectional shape orthogonal to the axial direction on the outer peripheral surface and the inner peripheral surface forms a constant non-circular shape over the entire length in the axial direction. Instead of such a configuration, the cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface of the movable cylinder portion 6a may be a non-circular shape. For example, the cross-sectional shape of the movable cylinder portion 6a on the outer peripheral surface and the inner peripheral surface which is orthogonal to the axial direction is substantially triangular as shown in FIG. 1B at one end of the movable cylinder portion 6a in the axial direction. On the other hand, the other end may have a star shape as shown in FIG. 13 (b). A cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface of the movable tubular portion 6a may form a constant non-circular shape over the entire length in the axial direction.

本実施形態では、前記非円形状は略三角形状であり、より具体的には略正三角形状である。ここで、略三角形状及び略正三角形状の頂点は、図1(a)に示されるように湾曲していてもよい。また、前記非円形状は、適宜、被搬送物の種類等に応じて最適な略三角形状に変更することが可能である。 In the present embodiment, the non-circular shape is a substantially triangular shape, and more specifically, a substantially regular triangular shape. Here, the vertices having a substantially triangular shape and a substantially regular triangular shape may be curved as shown in FIG. 1 (a). Further, the non-circular shape can be appropriately changed to an optimum substantially triangular shape according to the type of the object to be transported and the like.

本実施形態では、可動筒部6aは、前記非円形状をなす断面形状が、軸方向の全長に亘って一定の大きさとなるように形成されている。なお、可動筒部6aの外周面の前記非円形状をなす断面形状の大きさが、軸方向の位置の変化に応じて変化するようになっていてもよいし、可動筒部6aの内周面の前記非円形状をなす断面形状の大きさが、軸方向の位置の変化に応じて変化するようになっていてもよいし、可動筒部6aの外周面の前記非円形状をなす断面形状の大きさと、可動筒部6aの内周面の前記非円形状をなす断面形状の大きさとの両方が、軸方向の位置の変化に応じて変化するようになっていてもよい。 In the present embodiment, the movable tubular portion 6a is formed so that the non-circular cross-sectional shape has a constant size over the entire length in the axial direction. The size of the non-circular cross-sectional shape of the outer peripheral surface of the movable cylinder portion 6a may be changed according to a change in the axial position, or the inner circumference of the movable cylinder portion 6a. The size of the non-circular cross-sectional shape of the surface may change according to a change in the axial position, or the non-circular cross-section of the outer peripheral surface of the movable cylinder portion 6a. Both the size of the shape and the size of the non-circular cross-sectional shape of the inner peripheral surface of the movable cylinder portion 6a may change in response to a change in the axial position.

本実施形態では、可動筒部6aは、前記非円形状をなす断面形状が、軸方向の全長に亘って周方向に回転しないように形成されている。可動筒部6aは、前記非円形状をなす断面形状が、軸方向の位置の変化に応じて周方向に回転するように形成されていてもよく、そのような構成の例は、第3実施形態として後述する。 In the present embodiment, the movable cylinder portion 6a is formed so that the non-circular cross-sectional shape does not rotate in the circumferential direction over the entire length in the axial direction. The movable tubular portion 6a may be formed so that the non-circular cross-sectional shape rotates in the circumferential direction in response to a change in the axial position, and an example of such a configuration is described in the third embodiment. The form will be described later.

本実施形態では、内筒3aは、例えばゴム又は軟質の合成樹脂等の弾性材料からなる押出し成形品である。しかしながら、内筒3aの素材は弾性材料に限られず、また、内筒3aは押出し成形品に限られない。 In the present embodiment, the inner cylinder 3a is an extruded product made of an elastic material such as rubber or a soft synthetic resin. However, the material of the inner cylinder 3a is not limited to the elastic material, and the inner cylinder 3a is not limited to the extruded product.

本実施形態では、加圧空間4aは加圧媒体の供給・排出に伴い内筒3aのみを弾性変形させて膨張・収縮するようになっている。すなわち、外筒5aは、加圧空間4aへの加圧媒体の供給時に径方向外側へ実質的に膨張変形しない程度の径方向の剛性を有している。なお、外筒5aは、その中心軸線O2に直交する方向に曲げ変形可能に構成されていてもよい。例えば、外筒5aを、スリーブ状に編み込んだ繊維コードをゴム又は軟質の合成樹脂等の弾性材料中に埋設させた構成とすることができる。このような構成によれば、被搬送物の搬送方向を所望の方向へ曲げることができる。 In the present embodiment, the pressurizing space 4a expands and contracts by elastically deforming only the inner cylinder 3a with the supply and discharge of the pressurizing medium. That is, the outer cylinder 5a has a radial rigidity that does not substantially expand and deform radially outward when the pressurizing medium is supplied to the pressurizing space 4a. The outer cylinder 5a may be configured to be bendable and deformable in a direction orthogonal to its central axis O2. For example, the outer cylinder 5a can be configured by embedding a fiber cord woven into a sleeve shape in an elastic material such as rubber or a soft synthetic resin. According to such a configuration, the transport direction of the object to be transported can be bent in a desired direction.

本実施形態では、外筒5aの内周面と可動筒部6aの外周面とは、軸方向と直交する断面形状が、互いに軸方向の全長に亘って周方向の向きが揃った相似形状をなしている。このような構成によれば、加圧媒体として気体等の圧縮性流体を用いる場合に、加圧媒体の供給・排出による内筒3aの弾性変形の応答速度を高めて被搬送物の搬送速度を高めることができ、また、必要となる加圧媒体の流量を低減することができる。また、外筒5aの内周面と可動筒部6aの外周面とを互いになるべく沿わせることにより、このような効果(すなわち、加圧媒体の供給・排出による内筒3aの弾性変形の応答速度を高めて被搬送物の搬送速度を高めることができ、また、必要となる加圧媒体の流量を低減することができるという効果)をさらに高めることができる。 In the present embodiment, the inner peripheral surface of the outer cylinder 5a and the outer peripheral surface of the movable cylinder portion 6a have similar shapes in which the cross-sectional shapes orthogonal to the axial direction are aligned with each other over the entire length of the axial direction. I'm doing it. According to such a configuration, when a compressible fluid such as gas is used as the pressurizing medium, the response speed of elastic deformation of the inner cylinder 3a due to the supply / discharge of the pressurizing medium is increased to increase the transport speed of the transported object. It can be increased and the required flow rate of the pressurizing medium can be reduced. Further, by aligning the inner peripheral surface of the outer cylinder 5a and the outer peripheral surface of the movable cylinder portion 6a as much as possible, such an effect (that is, the response speed of elastic deformation of the inner cylinder 3a due to the supply / discharge of the pressure medium) It is possible to increase the transport speed of the object to be transported, and further enhance the effect that the flow rate of the required pressure medium can be reduced).

本実施形態では、内筒3aは、加圧空間4aに接しない軸方向の長さ部分である、不動筒部7aを軸方向の両端部に有している。不動筒部7aは、全周に亘って外筒5aの内周面に流体密に接合されている。また、外筒5aの内周面には、全周に亘って周方向に延びる周溝8aが形成されている。周溝8aは、加圧空間4aが収縮した状態においても、可動筒部6aの外周面との間に空間を形成するようになっている。すなわち、外筒5aの内周面における可動筒部6aと対向する部分は、加圧空間4aが収縮したときに、周溝8aの部分を除いた全面が可動筒部6aに接するようになっている。また、周溝8aは、本実施形態では、可動筒部6aの軸方向中央部に配置されている。しかしながら、周溝8aの軸方向の位置は適宜変更が可能である。このような周溝8aを設けることにより、周溝8aを設けない場合と比べ、特に高速の動作周期(加圧媒体の供給・排出の周期)で、被搬送物の搬送速度を向上することができる。なお、周溝8aを設けずに、外筒5aの内周面における可動筒部6aと対向する部分の全面が、加圧空間4aが収縮したときに可動筒部6aに接するように構成することも可能である。 In the present embodiment, the inner cylinder 3a has immovable cylinder portions 7a, which are axially long portions that do not contact the pressurizing space 4a, at both ends in the axial direction. The immovable cylinder portion 7a is fluid-tightly joined to the inner peripheral surface of the outer cylinder 5a over the entire circumference. Further, on the inner peripheral surface of the outer cylinder 5a, a peripheral groove 8a extending in the circumferential direction is formed over the entire circumference. The peripheral groove 8a forms a space between the peripheral groove 8a and the outer peripheral surface of the movable cylinder portion 6a even when the pressure space 4a is contracted. That is, when the pressure space 4a contracts, the entire surface of the inner peripheral surface of the outer cylinder 5a excluding the peripheral groove 8a comes into contact with the movable cylinder portion 6a. There is. Further, in the present embodiment, the peripheral groove 8a is arranged at the central portion in the axial direction of the movable cylinder portion 6a. However, the axial position of the peripheral groove 8a can be changed as appropriate. By providing such a peripheral groove 8a, it is possible to improve the transport speed of the object to be transported, especially in a high-speed operation cycle (cycle of supply / discharge of the pressurizing medium) as compared with the case where the peripheral groove 8a is not provided. it can. It should be noted that the entire surface of the inner peripheral surface of the outer cylinder 5a facing the movable cylinder portion 6a is configured to come into contact with the movable cylinder portion 6a when the pressurizing space 4a contracts, without providing the peripheral groove 8a. Is also possible.

本実施形態では、加圧空間4aが全周に亘って連続的に形成されている。したがって、周方向の1箇所で加圧媒体を供給・排出すればよいため、構成を簡素化することができる。なお、加圧空間4aを全周に亘って間欠的に形成する構成としてもよい。あるいは、加圧空間4aを周方向の1箇所のみ(例えば、前記略三角形状の底面部分のみ)に形成する構成としてもよい。しかしながら、被搬送物の高い搬送速度を確保するためには、加圧空間4aを全周に亘って連続又は間欠的に形成することが好ましい。また、本実施形態では、可動筒部6aの外周面と外筒5aの内周面と外筒5aの外周面とは、軸方向と直交する断面形状が、互いに軸方向の全長に亘って周方向の向きが揃った相似形状をなしている。このような構成によれば、筒ユニット1aを用いた搬送装置2aを複数並列に配置する場合などにおいて、外筒5aの外周面の断面形状が円形の場合と比べ、外筒5a同士をより密に配置することができ、省スペース化を図ることができる。 In the present embodiment, the pressurized space 4a is continuously formed over the entire circumference. Therefore, since the pressurizing medium only needs to be supplied and discharged at one location in the circumferential direction, the configuration can be simplified. The pressurized space 4a may be formed intermittently over the entire circumference. Alternatively, the pressurizing space 4a may be formed at only one location in the circumferential direction (for example, only the substantially triangular bottom surface portion). However, in order to secure a high transfer speed of the object to be conveyed, it is preferable to form the pressurizing space 4a continuously or intermittently over the entire circumference. Further, in the present embodiment, the outer peripheral surface of the movable cylinder portion 6a, the inner peripheral surface of the outer cylinder 5a, and the outer peripheral surface of the outer cylinder 5a have cross-sectional shapes orthogonal to the axial direction, which are circumferential to each other over the entire length in the axial direction. It has a similar shape with the same direction. According to such a configuration, when a plurality of transport devices 2a using the cylinder unit 1a are arranged in parallel, the outer cylinders 5a are closer to each other than when the cross-sectional shape of the outer peripheral surface of the outer cylinder 5a is circular. It can be arranged in, and space can be saved.

また、本実施形態に係る搬送装置2aは、前述した筒ユニット1aと、該筒ユニット1aにおける加圧媒体の供給・排出を制御する、圧力制御部9aと、を備える。圧力制御部9aは、加圧空間4aへの加圧媒体の供給(図1(a)中の上向き矢印参照)と、加圧空間4aからの加圧媒体の排出(図1(a)中の下向き矢印参照)とを制御することができる。また、圧力制御部9aは、例えば、コンプレッサ等の圧力発生源と、配管などの流路形成部と、流路切替弁(電磁弁等)と、によって構成することができる。加圧媒体としては、任意の流体を用いることができるが、例えば、空気又は二酸化炭素等の気体が好ましく、油、水等の液体であってもよい。 Further, the transport device 2a according to the present embodiment includes the above-mentioned cylinder unit 1a and a pressure control unit 9a that controls the supply / discharge of the pressurizing medium in the cylinder unit 1a. The pressure control unit 9a supplies the pressurizing medium to the pressurizing space 4a (see the upward arrow in FIG. 1A) and discharges the pressurizing medium from the pressurizing space 4a (in FIG. 1A). (See down arrow) and can be controlled. Further, the pressure control unit 9a can be composed of, for example, a pressure generation source such as a compressor, a flow path forming unit such as a pipe, and a flow path switching valve (solenoid valve or the like). Any fluid can be used as the pressurizing medium, but for example, a gas such as air or carbon dioxide is preferable, and a liquid such as oil or water may be used.

かかる構成になる筒ユニット1aは、例えば、ポンプ装置や混合装置を構成するために用いることができる。例えば、図2に示すように、内筒3aの軸方向の両端部に、それぞれ、被搬送物の通路となる管体Tを接続するとともに、これら両管体Tにそれぞれ、軸方向の一方側への被搬送物の通過を許容する一方、他方側への通過を阻止する逆止弁Vを配置することにより、ポンプ装置を構成することができる。この場合、筒ユニット1aの内筒3aを、圧力制御部9aによる加圧によって弾性変形させることにより、被搬送物を軸方向の一方側へ搬送することができる。ここで、筒ユニット1aに搬送される被搬送物としては、液体、気液混合体、固液混合体又は粉体などの流動物質が挙げられる。 The cylinder unit 1a having such a configuration can be used, for example, to configure a pump device or a mixing device. For example, as shown in FIG. 2, a tubular body T serving as a passage for an object to be transported is connected to both ends of the inner cylinder 3a in the axial direction, and one side of each of these tubular bodies T in the axial direction is connected. The pump device can be configured by arranging a check valve V that allows the passage of the object to be transported to the other side while blocking the passage of the object to be transported to the other side. In this case, the inner cylinder 3a of the cylinder unit 1a is elastically deformed by the pressurization by the pressure control unit 9a, so that the object to be conveyed can be conveyed to one side in the axial direction. Here, examples of the object to be transported to the cylinder unit 1a include a fluid substance such as a liquid, a gas-liquid mixture, a solid-liquid mixture, or a powder.

また、図3に示すように、複数の筒ユニット1aを準備し、これらを軸方向に接続するとともに、例えば、隣接する筒ユニット1a同士の間で時間差を設けて順次加圧を行うことにより、内筒3aを順次弾性変形させて、被搬送物を搬送することもできる。このような蠕動運動による搬送によれば、特に、スラリーなどの固液混合体や、粉体などをスムーズに搬送することが可能となる。本実施形態では、内筒3aが略三角形状をなしているため、その膨張変形する底面の広い面積を確保することができ、特に粉体の搬送速度を向上することができる。また、本実施形態では、外筒5aの外周面は、軸方向と直交する断面形状が略三角形状をなしているため、例えば複数のポンプ装置を並列に配置する際などに、外筒5aの外周面の断面形状が円形の場合と比べ、外筒5a同士をより密に配置することができ、省スペース化を図ることができる。なお、外筒5aの外周面は、略三角形状に代えて、他の略多角形状としてもよい。なお、筒ユニット1aの軸方向の両端面の少なくとも一方が中心軸線O1、O2に対して傾斜した構成としてもよく、このように傾斜した筒ユニット1aを連結して用いることにより、色々な形状の搬送経路を形成することができる。また、連結する筒ユニット1a間で、可動筒部6aの断面形状が異なっていてもよい(例えば、一方が略三角形状で他方が星形形状など)。さらに、連結する筒ユニット1a間で、可動筒部6aの断面形状の周方向の向きが互いに異なっていてもよい(例えば、一方が上向きの略三角形状で他方が下向きの略三角形状など)。 Further, as shown in FIG. 3, a plurality of cylinder units 1a are prepared, these are connected in the axial direction, and for example, a time difference is provided between adjacent cylinder units 1a to sequentially pressurize the cylinder units 1a. It is also possible to sequentially elastically deform the inner cylinder 3a to convey the object to be conveyed. According to the transfer by such a peristaltic motion, in particular, a solid-liquid mixture such as a slurry or a powder can be smoothly conveyed. In the present embodiment, since the inner cylinder 3a has a substantially triangular shape, it is possible to secure a large area of the bottom surface that expands and deforms, and in particular, it is possible to improve the powder transport speed. Further, in the present embodiment, since the outer peripheral surface of the outer cylinder 5a has a substantially triangular cross-sectional shape orthogonal to the axial direction, for example, when a plurality of pump devices are arranged in parallel, the outer cylinder 5a Compared with the case where the cross-sectional shape of the outer peripheral surface is circular, the outer cylinders 5a can be arranged more closely, and space can be saved. The outer peripheral surface of the outer cylinder 5a may have another substantially polygonal shape instead of the substantially triangular shape. In addition, at least one of both end faces in the axial direction of the cylinder unit 1a may be inclined with respect to the central axis lines O1 and O2, and by connecting and using the cylinder unit 1a inclined in this way, various shapes can be obtained. A transport path can be formed. Further, the cross-sectional shape of the movable tubular portion 6a may be different between the tubular units 1a to be connected (for example, one is substantially triangular and the other is star-shaped). Further, the directions of the cross-sectional shapes of the movable tubular portions 6a in the circumferential direction may be different from each other between the tubular units 1a to be connected (for example, one is substantially triangular upward and the other is substantially triangular downward).

また、前述したように構成されるポンプ装置は、被搬送物の搬送に伴って被搬送物が押し潰されるので、混合装置としての機能も発揮することができる。すなわち、被搬送物として例えば固液混合体を用いる場合に、固体と液体との混合を促進することができ、また、複数種類の液体、固液混合体又は粉体等を用いる場合にも、それらの混合を促進することができる。筒ユニット1aによって混合装置を構成する場合には、例えば図4に示すように、被搬送物の流路が環状をなす(すなわち、循環路を形成する)ように構成することが好ましい。なお、図4に示す細線矢印は、循環路に適宜のタイミングで供給される被搬送物と、循環路から適宜のタイミングで排出される被搬送物とを表す。また、このような構成に代えて、例えば、相互接続した複数の筒ユニット1aを貫く被搬送物の流路の両端部を閉塞可能に構成し、これら両端部を閉塞した状態で、被搬送物を当該流路の一端部と他端部との間で往復させるように搬送してもよい。さらに、単一の筒ユニット1aを用い、その内筒3aにおける軸方向の両端部を閉塞した状態で、内筒3aを作動させることによって内筒3aの径方向内側の空間内の物質を混合してもよい。 Further, the pump device configured as described above can also function as a mixing device because the object to be transported is crushed as the object to be transported is conveyed. That is, for example, when a solid-liquid mixture is used as the object to be transported, mixing of a solid and a liquid can be promoted, and when a plurality of types of liquids, solid-liquid mixtures, powders, etc. are used, Mixing them can be promoted. When the mixing device is configured by the tubular unit 1a, it is preferable that the flow path of the object to be transported forms an annular shape (that is, forms a circulation path), for example, as shown in FIG. The thin arrow shown in FIG. 4 represents an object to be transported that is supplied to the circulation path at an appropriate timing and an object to be transported that is discharged from the circulation path at an appropriate timing. Further, instead of such a configuration, for example, both ends of the flow path of the object to be transported penetrating the plurality of interconnected tubular units 1a are configured to be able to be closed, and the object to be transported is in a state where both ends thereof are closed. May be reciprocated between one end and the other end of the flow path. Further, using a single cylinder unit 1a, the substances in the space inside the inner cylinder 3a in the radial direction are mixed by operating the inner cylinder 3a in a state where both ends in the axial direction of the inner cylinder 3a are closed. You may.

また、筒ユニット1aを用いる前述した種々のポンプ装置(混合装置)は、水平方向への搬送に限らず、傾斜方向、さらには鉛直方向上方への搬送にも用いることができる。このような傾斜方向又は鉛直方向上方への搬送に用いる場合には、内筒3aの可動筒部6aは、加圧空間4aへの加圧による膨張変形時に、3方向から中心軸線O1に向けて互いに接近する部分によって、内筒3aの径方向内側の空間ができるだけ閉塞されるように構成することが好ましい。そのような構成としては、例えば、加圧空間4aに供給する加圧媒体の量を多く設定して可動筒部6aの膨張変形量を大きくする構成が挙げられる。また、内筒3aの軸方向と直交する断面形状を、そのような閉塞を促進するような形状に設定してもよい。 Further, the various pump devices (mixing devices) described above using the cylinder unit 1a can be used not only for transportation in the horizontal direction but also for transportation in the inclined direction and further upward in the vertical direction. When used for such upward transportation in the inclined direction or the vertical direction, the movable cylinder portion 6a of the inner cylinder 3a is expanded and deformed by pressurizing the pressurizing space 4a from three directions toward the central axis O1. It is preferable that the space inside the inner cylinder 3a in the radial direction is closed as much as possible by the portions approaching each other. As such a configuration, for example, a configuration in which a large amount of the pressurizing medium supplied to the pressurizing space 4a is set to increase the amount of expansion and deformation of the movable cylinder portion 6a can be mentioned. Further, the cross-sectional shape orthogonal to the axial direction of the inner cylinder 3a may be set to a shape that promotes such blockage.

以上説明したように、本実施形態に係る筒ユニット1aは、可動筒部6aの外周面及び内周面の少なくとも一方(より具体的には両方)における軸方向と直交する断面形状が、軸方向の全長に亘って一定の非円形状をなしている、という構成になっているので、内筒部3aの安定した弾性変形(膨張変形)を実現することができる。 As described above, the tubular unit 1a according to the present embodiment has a cross-sectional shape orthogonal to the axial direction on at least one (more specifically, both) of the outer peripheral surface and the inner peripheral surface of the movable tubular portion 6a in the axial direction. Since the structure is such that a constant non-circular shape is formed over the entire length of the inner cylinder portion 3a, stable elastic deformation (expansion deformation) of the inner cylinder portion 3a can be realized.

次に、本発明の第2実施形態に係る筒ユニット1b及び搬送装置2bについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット1aは、内筒3aと外筒5aとの両方が、その軸方向に収縮性を有していない構成であったが、本実施形態に係る筒ユニット1bは、そのような収縮性を有するように構成されている。図5に示すように、筒ユニット1bは、内筒3bと外筒5bとの両方が、その軸方向に収縮性を有するように、すなわち、加圧空間4bへの加圧によって、内筒3bが径方向内側へ膨張変形するとともに外筒5bが径方向外側へ膨張変形することに伴い、内筒3bと外筒5bとの両方が、その軸方向に収縮変形するように、構成されている。その他の構成は、前述した筒ユニット1a及び搬送装置2aの場合と同一の構成となっている。本実施形態に係る筒ユニット1bによっても、前述した筒ユニット1aの場合と同様に、ポンプ装置や混合装置等を構成することができる。 Next, the cylinder unit 1b and the transport device 2b according to the second embodiment of the present invention will be described in detail. The cylinder unit 1a according to the first embodiment described above has a configuration in which neither the inner cylinder 3a nor the outer cylinder 5a has shrinkage in the axial direction thereof, but the cylinder unit 1b according to the present embodiment. Is configured to have such contractility. As shown in FIG. 5, in the cylinder unit 1b, both the inner cylinder 3b and the outer cylinder 5b have contractility in the axial direction thereof, that is, by pressurizing the pressurizing space 4b, the inner cylinder 3b Is configured to expand and deform inward in the radial direction and expand and deform outward in the radial direction, so that both the inner cylinder 3b and the outer cylinder 5b contract and deform in the axial direction. .. Other configurations are the same as those of the cylinder unit 1a and the transport device 2a described above. The cylinder unit 1b according to the present embodiment can also form a pump device, a mixing device, and the like, as in the case of the cylinder unit 1a described above.

また、本実施形態に係る筒ユニット1bによれば、加圧空間4bへの加圧時に、図5中の二点鎖線で示すように、筒ユニット1bの軸方向の長さを収縮させることができるので、例えば、筒ユニット1bの軸方向の一端部を固定しておくことで、可動筒部6bの軸方向の長さを超える長さの棒状物を、筒ユニット1bの軸方向の一端部側から他端部側へ搬送することができる。また、筒ユニット1bによれば、粘度の高い液体を、特に有利に搬送することができる。なお、前記したような収縮性を得るためには、例えば、外筒5b及び内筒3bの一方を、弾性筒状体の内部に該弾性筒状体の軸方向に延在する複数の繊維コードが埋設された、軸方向繊維強化型の弾性筒状体で構成する一方、外筒5b及び内筒3bの他方を、そのような繊維強化構造を有さない弾性筒状体で構成すればよい。なお、外筒5b及び内筒3bの両方を、軸方向繊維強化型の弾性筒状体で構成してもよい。また、外筒5bを、このような軸方向繊維強化型の弾性筒状体に代えて、弾性筒状体の外側がスリーブ状に編み込まれた繊維コードで覆われた、スリーブ状繊維強化型の弾性筒状体で構成してもよい。一方、前述した筒ユニット1aのように、前述したような収縮性を有さない構成とした場合には、粉体を、特に有利に搬送することができる。 Further, according to the tubular unit 1b according to the present embodiment, when the pressurizing space 4b is pressurized, the axial length of the tubular unit 1b can be contracted as shown by the alternate long and short dash line in FIG. Therefore, for example, by fixing one end of the tubular unit 1b in the axial direction, a rod-shaped object having a length exceeding the axial length of the movable tubular portion 6b can be formed at one end of the tubular unit 1b in the axial direction. It can be transported from the side to the other end side. Further, according to the cylinder unit 1b, a liquid having a high viscosity can be conveyed particularly advantageously. In order to obtain the contractility as described above, for example, a plurality of fiber cords having one of the outer cylinder 5b and the inner cylinder 3b extending inside the elastic tubular body in the axial direction of the elastic tubular body. The outer cylinder 5b and the inner cylinder 3b may be formed of an elastic tubular body having no such fiber reinforced structure, while the outer cylinder 5b and the inner cylinder 3b may be formed of an elastic tubular body having an axial fiber reinforced structure in which the above-mentioned material is embedded. .. Both the outer cylinder 5b and the inner cylinder 3b may be formed of an elastic tubular body reinforced with axial fibers. Further, the outer cylinder 5b is replaced with such an elastic tubular body of the axial fiber reinforced type, and the outer side of the elastic tubular body is covered with a fiber cord woven into a sleeve shape to form a sleeve-shaped fiber reinforced type. It may be composed of an elastic tubular body. On the other hand, when the tubular unit 1a described above has a structure that does not have the shrinkage property as described above, the powder can be conveyed particularly advantageously.

次に、本発明の第3実施形態に係る筒ユニット1c及び搬送装置2cについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット1aにおいては、可動筒部6aは、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の全長に亘って周方向に回転しないように形成されていたが、本実施形態では、図6に示すように、可動筒部6cは、その外周面及び内周面における前記非円形状(略正三角形状)をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成されている。より具体的には、本実施形態では、前記非円形状をなす断面形状は、軸方向の位置の変化に対して一定の割合で周方向に回転している。本実施形態では、可動筒部6cの軸方向の両端部間の回転角θは、60°となっている。なお、回転角θは、例えば30°など、任意の角度に変更が可能である。また、可動筒部6cは、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の位置の変化に対して一定でない割合で周方向に回転するように形成されていてもよい。また、本実施形態では、外筒5cは、その内周面及び外周面における断面形状が軸方向の位置の変化に応じて内筒3cの断面形状の回転と一致して回転するように形成されている。その他の構成は、前述した筒ユニット1a及び搬送装置2aの場合と同一の構成となっている。本実施形態に係る筒ユニット1cによっても、前述した筒ユニット1aの場合と同様に、ポンプ装置や混合装置等を構成することができる。また、本実施形態のような周方向の回転を含む構成によれば、被搬送物を搬送する際の搬送速度及び/又は混合効率等を高めることができる。 Next, the cylinder unit 1c and the transport device 2c according to the third embodiment of the present invention will be described in detail. In the tubular unit 1a according to the first embodiment described above, the movable tubular portion 6a has a non-circular cross-sectional shape on its outer peripheral surface and inner peripheral surface so as not to rotate in the circumferential direction over the entire length in the axial direction. However, in the present embodiment, as shown in FIG. 6, the movable tubular portion 6c has a cross-sectional shape having the non-circular shape (substantially regular triangular shape) on the outer peripheral surface and the inner peripheral surface in the axial direction. It is formed so as to rotate in the circumferential direction according to the change in the position of. More specifically, in the present embodiment, the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position. In the present embodiment, the rotation angle θ between both ends of the movable cylinder portion 6c in the axial direction is 60 °. The rotation angle θ can be changed to any angle such as 30 °. Further, even if the movable tubular portion 6c is formed so that the non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface rotates in the circumferential direction at a rate that is not constant with respect to the change in the axial position. Good. Further, in the present embodiment, the outer cylinder 5c is formed so that the cross-sectional shapes on the inner peripheral surface and the outer peripheral surface rotate in accordance with the rotation of the cross-sectional shape of the inner cylinder 3c according to the change in the position in the axial direction. ing. Other configurations are the same as those of the cylinder unit 1a and the transport device 2a described above. The cylinder unit 1c according to the present embodiment can also form a pump device, a mixing device, and the like, as in the case of the cylinder unit 1a described above. Further, according to the configuration including rotation in the circumferential direction as in the present embodiment, it is possible to increase the transport speed and / or the mixing efficiency when transporting the object to be transported.

次に、本発明の第4実施形態に係る筒ユニット1d及び搬送装置2dについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット1aは、加圧空間4a及び可動筒部6aを1組備えた構成となっていたが、図7に示すように、本実施形態に係る筒ユニット1dは、加圧空間4d及び可動筒部6dを複数組、より具体的には2組備える構成となっている。なお、2組に限らず、3組以上備える構成としてもよい。その他の構成は、前述した筒ユニット1a及び搬送装置2aの場合と同一の構成となっている。本実施形態に係る筒ユニット1dによっても、前述した筒ユニット1aの場合と同様に、ポンプ装置や混合装置等を構成することができる。 Next, the cylinder unit 1d and the transport device 2d according to the fourth embodiment of the present invention will be described in detail. The cylinder unit 1a according to the first embodiment described above has a configuration including a pressurizing space 4a and a movable cylinder portion 6a, but as shown in FIG. 7, the cylinder unit 1d according to the present embodiment has a configuration. , The pressurizing space 4d and the movable cylinder portion 6d are provided in a plurality of sets, more specifically, two sets. The configuration is not limited to two sets, and may be configured to include three or more sets. Other configurations are the same as those of the cylinder unit 1a and the transport device 2a described above. The cylinder unit 1d according to the present embodiment can also form a pump device, a mixing device, and the like, as in the case of the cylinder unit 1a described above.

次に、本発明の第5実施形態に係る筒ユニット1e及び搬送装置2eについて、詳細に例示説明する。前述した第4実施形態に係る筒ユニット1dにおいては、複数の可動筒部6dは、それぞれ、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の全長に亘って周方向に回転しないように形成されていたが、図8に示すように、本実施形態では、複数の可動筒部6eは、それぞれ、その外周面及び内周面における前記非円形状(略正三角形状)をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成されている。より具体的には、本実施形態では、複数の可動筒部6eにおける前記非円形状をなす断面形状は、それぞれ、軸方向の位置の変化に対して一定の割合で周方向に回転している。本実施形態では、複数の可動筒部6eのそれぞれにおいて、軸方向の両端部間の回転角θは、60°となっている。その他の構成は、前述した筒ユニット1d及び搬送装置2dの場合と同一の構成となっている。なお、回転角θは、例えば30°など、任意の角度に変更が可能である。本実施形態に係る筒ユニット1eによっても、前述した筒ユニット1dの場合と同様に、ポンプ装置や混合装置等を構成することができる。なお、本実施形態では、内筒3eは、前述したような周方向のねじれを伴う形状に成形された、例えば押出し成形品等の成形品である。しかしながら、内筒3eは、このように周方向のねじれを伴う形状に成形された成形品に限られない。すなわち、周方向のねじれを伴わない形状に成形された成形品からなる内筒3eを、ねじって配置した構成としてもよい。 Next, the cylinder unit 1e and the transfer device 2e according to the fifth embodiment of the present invention will be described in detail. In the tubular unit 1d according to the fourth embodiment described above, each of the plurality of movable tubular portions 6d has a non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof in the circumferential direction over the entire length in the axial direction. However, as shown in FIG. 8, in the present embodiment, the plurality of movable tubular portions 6e have the non-circular shape (substantially regular triangular shape) on the outer peripheral surface and the inner peripheral surface, respectively. ) Is formed so as to rotate in the circumferential direction in response to a change in the axial position. More specifically, in the present embodiment, the non-circular cross-sectional shapes of the plurality of movable cylinder portions 6e are rotated in the circumferential direction at a constant rate with respect to the change in the axial position. .. In the present embodiment, in each of the plurality of movable cylinder portions 6e, the rotation angle θ between both ends in the axial direction is 60 °. Other configurations are the same as those of the cylinder unit 1d and the transport device 2d described above. The rotation angle θ can be changed to any angle such as 30 °. The cylinder unit 1e according to the present embodiment can also configure a pump device, a mixing device, and the like, as in the case of the cylinder unit 1d described above. In the present embodiment, the inner cylinder 3e is a molded product such as an extruded product, which is molded into a shape accompanied by a twist in the circumferential direction as described above. However, the inner cylinder 3e is not limited to the molded product formed into a shape with a twist in the circumferential direction. That is, the inner cylinder 3e made of a molded product formed into a shape that is not twisted in the circumferential direction may be arranged by twisting.

次に、本発明の第6実施形態に係る筒ユニット1f及び搬送装置2fについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット1aは、外筒5aの内周面及び外周面の断面形状が略正三角形状をなしていたが、図9に示すように、本実施形態に係る筒ユニット1fは、外筒5fの内周面における加圧空間4fに接する部分の断面形状が円形状をなしている。また、外筒5fの外周面の断面形状も円形状をなしている。本実施形態では、外筒5fは、円筒状の外周部材10fと、リング状をなす一対の支持部材11fと、を備えている。外周部材10fと一対の支持部材11fとは互いに流体密に接合されている。なお、外周部材10fと一対の支持部材11fとを一体に成形した単一の成形部品によって外筒5fを構成してもよい。一対の支持部材11fは内周面の断面形状が略正三角形状をなしており、全周に亘って内筒3fの両端部(不動筒部7f)の外周面に流体密に接合されている。その他の構成は、前述した筒ユニット1a及び搬送装置2aの場合と同一の構成となっている。本実施形態に係る筒ユニット1fによっても、前述した筒ユニット1aの場合と同様に、ポンプ装置や混合装置等を構成することができる。本実施形態において、可動筒部6fの軸方向中間部を支持する支持部を外筒5fに設けてもよい。例えば、そのような支持部を可動筒部6fの底面側に設けることで、被搬送物の重みによる可動筒部6fのたるみの発生を抑制することができる。また、そのような支持部を例えば全周に亘って連続又は間欠的に設けることで、可動筒部6fの軸方向中間部の収縮変形時における軸方向と直交する断面形状を所望の形状に保持する構成としてもよい。 Next, the cylinder unit 1f and the transfer device 2f according to the sixth embodiment of the present invention will be described in detail. In the cylinder unit 1a according to the first embodiment described above, the cross-sectional shapes of the inner peripheral surface and the outer peripheral surface of the outer cylinder 5a have a substantially regular triangular shape, but as shown in FIG. 9, the cylinder according to the present embodiment. The unit 1f has a circular cross-sectional shape of a portion of the inner peripheral surface of the outer cylinder 5f that is in contact with the pressurized space 4f. Further, the cross-sectional shape of the outer peripheral surface of the outer cylinder 5f is also circular. In the present embodiment, the outer cylinder 5f includes a cylindrical outer peripheral member 10f and a pair of ring-shaped support members 11f. The outer peripheral member 10f and the pair of support members 11f are fluidly tightly joined to each other. The outer cylinder 5f may be formed by a single molded component obtained by integrally molding the outer peripheral member 10f and the pair of support members 11f. The pair of support members 11f have a substantially regular triangular cross-sectional shape on the inner peripheral surface, and are fluid-tightly joined to the outer peripheral surfaces of both ends (immovable cylinder portion 7f) of the inner cylinder 3f over the entire circumference. .. Other configurations are the same as those of the cylinder unit 1a and the transport device 2a described above. The cylinder unit 1f according to the present embodiment can also configure a pump device, a mixing device, and the like, as in the case of the cylinder unit 1a described above. In the present embodiment, the outer cylinder 5f may be provided with a support portion that supports the axially intermediate portion of the movable cylinder portion 6f. For example, by providing such a support portion on the bottom surface side of the movable cylinder portion 6f, it is possible to suppress the occurrence of slack in the movable cylinder portion 6f due to the weight of the object to be transported. Further, by providing such a support portion continuously or intermittently over the entire circumference, for example, the cross-sectional shape orthogonal to the axial direction at the time of contraction deformation of the axial intermediate portion of the movable cylinder portion 6f is maintained in a desired shape. It may be configured to be

次に、本発明の第7実施形態に係る筒ユニット1g及び搬送装置2gについて、詳細に例示説明する。前述した第6実施形態に係る筒ユニット1fにおいては、可動筒部6fは、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の全長に亘って周方向に回転しないように形成されていたが、本実施形態では、図10に示すように、可動筒部6gは、その外周面及び内周面における前記非円形状(略正三角形状)をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成されている。より具体的には、本実施形態では、前記非円形状をなす断面形状は、軸方向の位置の変化に対して一定の割合で周方向に回転している。本実施形態では、可動筒部6gの軸方向の両端部間の回転角θは、60°となっている。なお、一対の支持部材11g間の回転角も同様の60°となっている。また、回転角θは、例えば30°など、任意の角度に変更が可能である。また、可動筒部6gは、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の位置の変化に対して一定でない割合で周方向に回転するように形成されていてもよい。その他の構成は、前述した筒ユニット1f及び搬送装置2fの場合と同一の構成となっている。本実施形態に係る筒ユニット1gによっても、前述した筒ユニット1fの場合と同様に、ポンプ装置や混合装置等を構成することができる。また、本実施形態のような周方向の回転を含む構成によれば、被搬送物を搬送する際の混合効率等を高めることができる。 Next, 1 g of the cylinder unit and 2 g of the transport device according to the seventh embodiment of the present invention will be described in detail. In the tubular unit 1f according to the sixth embodiment described above, the movable tubular portion 6f has a non-circular cross-sectional shape on its outer peripheral surface and inner peripheral surface so as not to rotate in the circumferential direction over the entire length in the axial direction. However, in the present embodiment, as shown in FIG. 10, the movable tubular portion 6g has a cross-sectional shape having the non-circular shape (substantially regular triangular shape) on the outer peripheral surface and the inner peripheral surface in the axial direction. It is formed so as to rotate in the circumferential direction according to the change in the position of. More specifically, in the present embodiment, the non-circular cross-sectional shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position. In the present embodiment, the rotation angle θ between both ends of the movable cylinder portion 6g in the axial direction is 60 °. The rotation angle between the pair of support members 11g is also 60 °. Further, the rotation angle θ can be changed to an arbitrary angle such as 30 °. Further, even if the movable cylinder portion 6g is formed so that the non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface rotates in the circumferential direction at a rate that is not constant with respect to the change in the axial position. Good. Other configurations are the same as those of the cylinder unit 1f and the transport device 2f described above. With the cylinder unit 1g according to the present embodiment, a pump device, a mixing device, and the like can be configured as in the case of the cylinder unit 1f described above. Further, according to the configuration including rotation in the circumferential direction as in the present embodiment, it is possible to improve the mixing efficiency and the like when transporting the object to be transported.

次に、本発明の第8実施形態に係る筒ユニット1h及び搬送装置2hについて、詳細に例示説明する。前述した第6実施形態に係る筒ユニット1fは、加圧空間4f及び可動筒部6fを1組備えた構成となっていたが、図11に示すように、本実施形態に係る筒ユニット1hは、加圧空間4h及び可動筒部6hを複数組、より具体的には2組備える構成となっている。なお、2組に限らず、3組以上備える構成としてもよい。その他の構成は、前述した筒ユニット1f及び搬送装置2fの場合と同一の構成となっている。本実施形態に係る筒ユニット1hによっても、前述した筒ユニット1fの場合と同様に、ポンプ装置や混合装置等を構成することができる。 Next, the cylinder unit 1h and the transport device 2h according to the eighth embodiment of the present invention will be described in detail. The cylinder unit 1f according to the sixth embodiment described above has a configuration including one set of a pressurized space 4f and a movable cylinder portion 6f, but as shown in FIG. 11, the cylinder unit 1h according to the present embodiment has a configuration. , The pressurizing space 4h and the movable cylinder portion 6h are provided in a plurality of sets, more specifically, two sets. The configuration is not limited to two sets, and may be configured to include three or more sets. Other configurations are the same as those of the cylinder unit 1f and the transport device 2f described above. The cylinder unit 1h according to the present embodiment can also form a pump device, a mixing device, and the like, as in the case of the cylinder unit 1f described above.

次に、本発明の第9実施形態に係る筒ユニット1i及び搬送装置2iについて、詳細に例示説明する。前述した第8実施形態に係る筒ユニット1hは、複数の可動筒部6hは、それぞれ、その外周面及び内周面における前記非円形状をなす断面形状が軸方向の全長に亘って周方向に回転しないように形成されていたが、図12に示すように、本実施形態では、複数の可動筒部6iは、それぞれ、その外周面及び内周面における前記非円形状(略正三角形状)をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成されている。より具体的には、本実施形態では、複数の可動筒部6iにおける前記非円形状をなす断面形状は、それぞれ、軸方向の位置の変化に対して一定の割合で周方向に回転している。本実施形態では、複数の可動筒部6iのそれぞれにおいて、軸方向の両端部間の回転角θは、60°となっている。その他の構成は、前述した筒ユニット1h及び搬送装置2hの場合と同一の構成となっている。なお、隣り合う一対の支持部材11i間の回転角も同様の60°となっている。また、回転角θは、例えば30°など、任意の角度に変更が可能である。本実施形態に係る筒ユニット1iによっても、前述した筒ユニット1hの場合と同様に、ポンプ装置や混合装置等を構成することができる。 Next, the cylinder unit 1i and the transfer device 2i according to the ninth embodiment of the present invention will be described in detail. In the tubular unit 1h according to the eighth embodiment described above, the plurality of movable tubular portions 6h each have a non-circular cross-sectional shape on the outer peripheral surface and the inner peripheral surface thereof in the circumferential direction over the entire length in the axial direction. Although it was formed so as not to rotate, as shown in FIG. 12, in the present embodiment, the plurality of movable cylinder portions 6i have the non-circular shape (substantially regular triangular shape) on the outer peripheral surface and the inner peripheral surface, respectively. The cross-sectional shape is formed so as to rotate in the circumferential direction in response to a change in the axial position. More specifically, in the present embodiment, the non-circular cross-sectional shapes of the plurality of movable cylinder portions 6i are rotated in the circumferential direction at a constant rate with respect to the change in the axial position. .. In the present embodiment, in each of the plurality of movable cylinder portions 6i, the rotation angle θ between both ends in the axial direction is 60 °. Other configurations are the same as those in the case of the cylinder unit 1h and the transport device 2h described above. The rotation angle between the pair of adjacent support members 11i is also 60 °. Further, the rotation angle θ can be changed to an arbitrary angle such as 30 °. The cylinder unit 1i according to the present embodiment can also configure a pump device, a mixing device, and the like, as in the case of the cylinder unit 1h described above.

次に、本発明の第10実施形態に係る筒ユニット1j及び搬送装置2jについて、詳細に例示説明する。前述した第1実施形態に係る筒ユニット1aにおいては、可動筒部6aは、その外周面及び内周面における軸方向と直交する断面形状が軸方向の全長に亘って一定の略正三角形状をなすように形成されていたが、図13に示すように、本実施形態では、可動筒部6jは、その外周面及び内周面における軸方向と直交する断面形状が軸方向の全長に亘って一定の星形形状をなすように形成されている。その他の構成は、前述した筒ユニット1a及び搬送装置2aの場合と同一の構成となっている。本実施形態に係る筒ユニット1jによっても、前述した筒ユニット1aの場合と同様に、ポンプ装置や混合装置等を構成することができる。なお、本実施形態の筒ユニット1jにおいても、図6に示した第3実施形態に係る筒ユニット1cの場合と同様に、可動筒部6jを、その外周面及び内周面における星形形状をなす断面形状が軸方向の位置の変化に応じて周方向に回転するように形成した構成としてもよい。この場合、可動筒部6jの軸方向の両端部間の回転角θは、45°とするのが好ましい。また、本実施形態の筒ユニット1jにおいても、図7〜8に示した例の場合のように、種々の変更が可能であることはいうまでもない。 Next, the cylinder unit 1j and the transport device 2j according to the tenth embodiment of the present invention will be described in detail. In the tubular unit 1a according to the first embodiment described above, the movable tubular portion 6a has a substantially regular triangular shape in which the cross-sectional shape orthogonal to the axial direction on the outer peripheral surface and the inner peripheral surface is constant over the entire length in the axial direction. However, as shown in FIG. 13, in the present embodiment, the movable tubular portion 6j has a cross-sectional shape orthogonal to the axial direction on the outer peripheral surface and the inner peripheral surface over the entire length in the axial direction. It is formed to form a constant star shape. Other configurations are the same as those of the cylinder unit 1a and the transport device 2a described above. The cylinder unit 1j according to the present embodiment can also configure a pump device, a mixing device, and the like, as in the case of the cylinder unit 1a described above. In the tubular unit 1j of the present embodiment, as in the case of the tubular unit 1c according to the third embodiment shown in FIG. 6, the movable tubular portion 6j has a star shape on its outer peripheral surface and inner peripheral surface. The cross-sectional shape may be formed so as to rotate in the circumferential direction in response to a change in the axial position. In this case, the rotation angle θ between both ends of the movable cylinder portion 6j in the axial direction is preferably 45 °. Further, it goes without saying that the tubular unit 1j of the present embodiment can be changed in various ways as in the case of the examples shown in FIGS. 7 to 8.

以上、本発明の様々な実施形態について説明したが、前述したところは本発明の実施形態の一例を示したにすぎず、発明の要旨を逸脱しない限り、種々の変更を加えてよいことは言うまでもない。 Although various embodiments of the present invention have been described above, it goes without saying that the above description is merely an example of the embodiments of the present invention, and various modifications may be made as long as the gist of the invention is not deviated. No.

(実施例)
本発明の実施例として、図1に示した筒ユニット1aを用いた、図3に示したポンプ装置を製作し、粉体の搬送実験を行った。ポンプ装置の寸法及び作動条件は、以下のとおりであった。
・内筒2aの内周面の周長:100.6mm
・内筒2aの厚み:1.1mm
・可動筒部6aの軸方向の長さ(筒ユニット1個当たりの長さ):25mm
・動作周期(加圧媒体の供給・排出の周期):20ms
・加圧媒体:空気
(Example)
As an example of the present invention, the pump device shown in FIG. 3 was manufactured using the cylinder unit 1a shown in FIG. 1, and a powder transfer experiment was conducted. The dimensions and operating conditions of the pump device were as follows.
-Perimeter of the inner peripheral surface of the inner cylinder 2a: 100.6 mm
-Thickness of inner cylinder 2a: 1.1 mm
-Axial length of movable cylinder 6a (length per cylinder unit): 25 mm
-Operation cycle (cycle of supply / discharge of pressurized medium): 20 ms
・ Pressurized medium: air

上記の条件でポンプ装置を作動させることにより、80g/sという粉体の優れた搬送速度を実現できることが確認された。この搬送速度は、本発明による内筒の安定した弾性変形(膨張変形)の実現によってもたらされたものと推測される。 It was confirmed that by operating the pump device under the above conditions, an excellent transfer speed of powder of 80 g / s can be realized. It is presumed that this transport speed was brought about by the realization of stable elastic deformation (expansion deformation) of the inner cylinder according to the present invention.

1a〜1j 筒ユニット
2a〜2j 搬送装置
3a〜3c、3e、3f、3j 内筒
4a、4b、4d、4f、4h 加圧空間
5a〜5c、5f 外筒
6a〜6j 可動筒部
7a、7f 不動筒部
8a 周溝
9a 圧力制御部
10f 外周部材
11f、11g、11i 支持部材
O1、O2 中心軸線
T 管体
V 逆止弁
θ 回転角
1a to 1j Cylinder unit 2a to 2j Conveyor device 3a to 3c, 3e, 3f, 3j Inner cylinder 4a, 4b, 4d, 4f, 4h Pressurized space 5a to 5c, 5f Outer cylinder 6a to 6j Movable cylinder 7a, 7f Immovable Cylinder 8a Circumferential groove 9a Pressure control 10f Outer peripheral members 11f, 11g, 11i Support members O1, O2 Central axis T Tube V Check valve θ Rotation angle

Claims (15)

弾性変形可能であるとともに筒状をなす、内筒と、
前記内筒の外周面との間に、該外周面と接し、加圧媒体の供給・排出に伴い前記内筒を弾性変形させて膨張・収縮する、加圧空間を形成する、外筒と、を備え、
前記内筒は、前記加圧空間に接する軸方向の長さ部分である、可動筒部を有し、
前記可動筒部は、その外周面及び内周面の少なくとも一方における前記軸方向と直交する断面形状が非円形状をなすように形成されており、
前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に応じて周方向に回転するように形成されていることを特徴とする、筒ユニット。
An inner cylinder that is elastically deformable and has a tubular shape,
An outer cylinder that is in contact with the outer peripheral surface of the inner cylinder to form a pressure space that elastically deforms the inner cylinder to expand and contract with the supply and discharge of the pressurizing medium. With
The inner cylinder has a movable cylinder portion which is an axially long portion in contact with the pressurized space.
The movable cylinder portion is formed so that the cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface forms a non-circular shape.
The movable cylinder portion is a cylinder unit characterized in that the non-circular cross-sectional shape is formed so as to rotate in the circumferential direction in response to a change in the axial position.
弾性変形可能であるとともに筒状をなす、内筒と、
前記内筒の外周面との間に、該外周面と接し、加圧媒体の供給・排出に伴い前記内筒を弾性変形させて膨張・収縮する、加圧空間を形成する、外筒と、を備え、
前記内筒は、前記加圧空間に接する軸方向の長さ部分である、可動筒部を有し、
前記可動筒部は、その外周面及び内周面の少なくとも一方における前記軸方向と直交する断面形状が非円形状をなすように形成されており、
前記外筒は、その中心軸線に直交する方向に曲げ変形可能であることを特徴とする、筒ユニット。
An inner cylinder that is elastically deformable and has a tubular shape,
An outer cylinder that is in contact with the outer peripheral surface of the inner cylinder to form a pressure space that elastically deforms the inner cylinder to expand and contract with the supply and discharge of the pressurizing medium. With
The inner cylinder has a movable cylinder portion which is an axially long portion in contact with the pressurized space.
The movable cylinder portion is formed so that the cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface forms a non-circular shape.
The outer cylinder is a cylinder unit characterized in that it can be bent and deformed in a direction orthogonal to its central axis.
弾性変形可能であるとともに筒状をなす、内筒と、
前記内筒の外周面との間に、該外周面と接し、加圧媒体の供給・排出に伴い前記内筒を弾性変形させて膨張・収縮する、加圧空間を形成する、外筒と、を備え、
前記内筒は、前記加圧空間に接する軸方向の長さ部分である、可動筒部を有し、
前記可動筒部は、その外周面及び内周面の少なくとも一方における前記軸方向と直交する断面形状が非円形状をなすように形成されており、
前記外筒の内周面と前記可動筒部の外周面とは、前記軸方向と直交する断面形状が、互いに前記軸方向の全長に亘って相似形状をなしていることを特徴とする、筒ユニット。
An inner cylinder that is elastically deformable and has a tubular shape,
An outer cylinder that is in contact with the outer peripheral surface of the inner cylinder to form a pressure space that elastically deforms the inner cylinder to expand and contract with the supply and discharge of the pressurizing medium. With
The inner cylinder has a movable cylinder portion which is an axially long portion in contact with the pressurized space.
The movable cylinder portion is formed so that the cross-sectional shape orthogonal to the axial direction on at least one of the outer peripheral surface and the inner peripheral surface forms a non-circular shape.
The inner peripheral surface of the outer cylinder and the outer peripheral surface of the movable cylinder portion are characterized in that the cross-sectional shapes orthogonal to the axial direction are similar to each other over the entire length in the axial direction. unit.
前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の全長に亘って一定の非円形状をなすように形成されている、請求項のいずれか一項に記載の筒ユニット。 The movable cylinder portion according to any one of claims 1 to 3 , wherein the non-circular cross-sectional shape is formed so as to form a constant non-circular shape over the entire length in the axial direction. Cylinder unit. 前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の全長に亘って一定の大きさとなるように形成されている、請求項のいずれか一項に記載の筒ユニット。 The cylinder according to any one of claims 1 to 4 , wherein the movable cylinder portion is formed so that the cross-sectional shape forming the non-circular shape has a constant size over the entire length in the axial direction. unit. 前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に応じて周方向に回転するように形成されている、請求項のいずれか一項に記載の筒ユニット。 The movable cylinder portion according to any one of claims 2 to 5 , wherein the non-circular cross-sectional shape is formed so as to rotate in the circumferential direction in response to a change in the axial position. Cylinder unit. 前記可動筒部は、前記非円形状をなす断面形状が、前記軸方向の位置の変化に対して一定の割合で周方向に回転するように形成されている、請求項1〜のいずれか一項に記載の筒ユニット。 Any of claims 1 to 6 , wherein the movable cylinder portion is formed so that the cross-sectional shape forming the non-circular shape rotates in the circumferential direction at a constant rate with respect to the change in the axial position. The cylinder unit described in item 1. 前記加圧空間及び前記可動筒部を複数組備える、請求項1〜のいずれか一項に記載の筒ユニット。 The cylinder unit according to any one of claims 1 to 7 , further comprising a plurality of sets of the pressure space and the movable cylinder portion. 前記非円形状は、略三角形状である、請求項1〜のいずれか一項に記載の筒ユニット。 The tubular unit according to any one of claims 1 to 8 , wherein the non-circular shape is substantially triangular. 前記略三角形状は、略正三角形状である、請求項に記載の筒ユニット。 The tubular unit according to claim 9 , wherein the substantially triangular shape is a substantially regular triangular shape. 前記非円形状は、星形形状である、請求項1〜のいずれか一項に記載の筒ユニット。 The tubular unit according to any one of claims 1 to 8 , wherein the non-circular shape is a star shape. 前記内筒は押出し成形品である、請求項1〜11のいずれか一項に記載の筒ユニット。 The cylinder unit according to any one of claims 1 to 11 , wherein the inner cylinder is an extruded product. 前記外筒は、その中心軸線に直交する方向に曲げ変形可能である、請求項及び12のいずれか一項に記載の筒ユニット。 The cylinder unit according to any one of claims 1 and 3 to 12 , wherein the outer cylinder can be bent and deformed in a direction orthogonal to the central axis thereof. 前記外筒の内周面と前記可動筒部の外周面とは、前記軸方向と直交する断面形状が、互いに前記軸方向の全長に亘って相似形状をなしている、請求項1〜及び13のいずれか一項に記載の筒ユニット。 Wherein the outer cylinder inner peripheral surface and the outer peripheral surface of the movable cylinder portion of the cross-sectional shape perpendicular to the axial direction, and has a similar shape over the entire length of the shaft directions, claim 1-2 and The cylinder unit according to any one of 4 to 13. 請求項1〜14のいずれか一項に記載の筒ユニットと、
前記筒ユニットにおける前記加圧媒体の供給・排出を制御する、圧力制御部と、を備えることを特徴とする、搬送装置。
The cylinder unit according to any one of claims 1 to 14, and the cylinder unit.
A transport device including a pressure control unit that controls supply / discharge of the pressure medium in the cylinder unit.
JP2016237120A 2016-09-21 2016-12-06 Cylinder unit and transfer device Active JP6860193B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016237120A JP6860193B2 (en) 2016-12-06 2016-12-06 Cylinder unit and transfer device
US16/335,404 US10975973B2 (en) 2016-09-21 2017-09-21 Tube unit and transport apparatus
PCT/JP2017/034165 WO2018056378A1 (en) 2016-09-21 2017-09-21 Tube unit and transport device
CN201780058403.3A CN109790834B (en) 2016-09-21 2017-09-21 Cartridge unit and conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237120A JP6860193B2 (en) 2016-12-06 2016-12-06 Cylinder unit and transfer device

Publications (2)

Publication Number Publication Date
JP2018091288A JP2018091288A (en) 2018-06-14
JP6860193B2 true JP6860193B2 (en) 2021-04-14

Family

ID=62565806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237120A Active JP6860193B2 (en) 2016-09-21 2016-12-06 Cylinder unit and transfer device

Country Status (1)

Country Link
JP (1) JP6860193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220580B2 (en) * 2019-02-08 2023-02-10 東京エレクトロン株式会社 Tubing body and pump device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002184A (en) * 1998-06-16 2000-01-07 Kurita Mach Mfg Co Ltd Pump unit and pump
JP5416672B2 (en) * 2010-09-28 2014-02-12 株式会社コガネイ Chemical supply device

Also Published As

Publication number Publication date
JP2018091288A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
US9127791B2 (en) Lubricated elastically biased stretch hoses
US7878773B2 (en) Dynamically tensioned peristaltic tubing pump
US9771956B2 (en) Actuator, actuator apparatus, and method of driving actuator
JP6860193B2 (en) Cylinder unit and transfer device
TWI649497B (en) Mobile body transport device
KR101804675B1 (en) Soft robot actuator unit and soft robot having the same
TW201813803A (en) Screw to be used in an extruder and extruder
US11821412B2 (en) Contractile device for use as an actuator, pump or compressor
WO2008102817A1 (en) Functional thin tube device
CN102322463B (en) Connecting structure between main support pipes and oblique tensile pipes of inflating and extending truss structure
US20070283803A1 (en) Bellows arrangement
JP6840380B2 (en) Cylinder unit and transfer device
KR20140034070A (en) Bellows pump
JP6727506B2 (en) Tube
WO2018056378A1 (en) Tube unit and transport device
CN109790834B (en) Cartridge unit and conveying device
CN108061021B (en) Flexible pump chamber bag with rigid support
RU2748340C2 (en) Balloon assembly and corresponding system and method of hole alignment
CN107155339A (en) Feed rod for viscous material pump that is static or can moving
CN107110153A (en) uniaxial eccentric screw pump
CN105637223A (en) Spiral pump and manufacturing method therefor
JP2007062939A (en) Method for manufacturing belt having projection, and belt molding device
KR20150135938A (en) Air Dummy With Air Compartment
JP6852863B2 (en) Pump unit and pump
US2930326A (en) Pump construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210319

R150 Certificate of patent or registration of utility model

Ref document number: 6860193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250