JP6857156B2 - Manufacturing method of substrate processing equipment, substrate holder and semiconductor equipment - Google Patents

Manufacturing method of substrate processing equipment, substrate holder and semiconductor equipment Download PDF

Info

Publication number
JP6857156B2
JP6857156B2 JP2018102179A JP2018102179A JP6857156B2 JP 6857156 B2 JP6857156 B2 JP 6857156B2 JP 2018102179 A JP2018102179 A JP 2018102179A JP 2018102179 A JP2018102179 A JP 2018102179A JP 6857156 B2 JP6857156 B2 JP 6857156B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating plate
substrate
region
held
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018102179A
Other languages
Japanese (ja)
Other versions
JP2019021910A (en
Inventor
哲也 小杉
哲也 小杉
村田 等
等 村田
慎吾 野原
慎吾 野原
敦士 平野
敦士 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to KR1020180077611A priority Critical patent/KR20190008101A/en
Priority to CN201810751851.8A priority patent/CN109256345B/en
Priority to US16/034,959 priority patent/US20190024232A1/en
Publication of JP2019021910A publication Critical patent/JP2019021910A/en
Priority to KR1020200134036A priority patent/KR20200121773A/en
Application granted granted Critical
Publication of JP6857156B2 publication Critical patent/JP6857156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、基板処理装置、基板保持具及び半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a substrate processing apparatus, a substrate holder, and a semiconductor apparatus.

基板処理装置の一例として、半導体製造装置があり、さらに半導体製造装置の一例として、縦型装置があることが知られている。縦型装置では、複数の基板を多段に基板保持具に保持した状態で処理室内に搬入し、基板を加熱した状態で処理室内に処理ガスを供給して基板上に膜を形成することが行われている(例えば、特許文献1参照)。 It is known that there is a semiconductor manufacturing apparatus as an example of a substrate processing apparatus, and there is a vertical type apparatus as an example of a semiconductor manufacturing apparatus. In a vertical device, a plurality of substrates are carried into a processing chamber while being held in multiple stages by a substrate holder, and a processing gas is supplied to the processing chamber while the substrates are heated to form a film on the substrates. (See, for example, Patent Document 1).

従来から、上述した加熱処理においてサーマルバジェット(熱履歴)の低減が要求され、急速昇温後の基板の面内温度偏差を低減するために、基板の下部に板状の断熱材(以後、断熱板という)を複数枚設置し、反応管の炉口部の断熱を行っている。 Conventionally, reduction of the thermal budget (heat history) has been required in the above-mentioned heat treatment, and in order to reduce the in-plane temperature deviation of the substrate after rapid temperature rise, a plate-shaped heat insulating material (hereinafter, heat insulating material) is provided at the lower part of the substrate. Multiple plates) are installed to insulate the furnace mouth of the reaction tube.

しかし、断熱板の枚数が少ないと基板保持具の下方に保持された基板の面内温度偏差が悪化し、断熱板の枚数が多いと基板保持具の下方に保持された基板の面内温度が安定する面内温度リカバリ時間が長くなってしまう。 However, if the number of heat insulating plates is small, the in-plane temperature deviation of the substrate held below the substrate holder deteriorates, and if the number of heat insulating plates is large, the in-plane temperature of the substrate held below the substrate holder becomes high. The stable in-plane temperature recovery time becomes long.

特開2014−067766号公報Japanese Unexamined Patent Publication No. 2014-07766

本発明の目的は、基板の面内温度偏差の低減と面内温度リカバリ時間の短縮との両立を図ることができる構成を提供することにある。 An object of the present invention is to provide a configuration capable of both reducing the in-plane temperature deviation of the substrate and shortening the in-plane temperature recovery time.

本発明の一態様によれば、
複数枚の基板及び断熱板を保持する基板保持具と、基板保持具が収容される反応管と、基板保持具に保持された基板を加熱する加熱部と、を有する構成であって、
基板保持具は、基板が保持される基板処理領域と断熱板が保持される断熱板領域に区別され、断熱板領域の上層部に該上層部以外の断熱板領域に保持される断熱板よりも反射率の高い断熱板が保持される構成が提供される。
According to one aspect of the invention
It has a configuration including a substrate holder for holding a plurality of substrates and a heat insulating plate, a reaction tube for accommodating the substrate holder, and a heating unit for heating the substrate held by the substrate holder.
The substrate holder is divided into a substrate processing region in which the substrate is held and a heat insulating plate region in which the heat insulating plate is held, and is more than a heat insulating plate held in a heat insulating plate region other than the upper layer portion in the upper layer portion of the heat insulating plate region. A configuration is provided in which a heat insulating plate having high reflectance is held.

本発明によれば、基板の面内温度偏差の低減と面内温度リカバリ時間の短縮との両立を図ることができる技術を提供することが可能となる。 According to the present invention, it is possible to provide a technique capable of both reducing the in-plane temperature deviation of the substrate and shortening the in-plane temperature recovery time.

本発明の一実施形態に係る基板処理装置を示す一部切断正面図である。It is a partially cut front view which shows the substrate processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る基板処理装置の正面断面図である。It is a front sectional view of the substrate processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る基板処理装置におけるコントローラのハードウェア構成を示す図である。It is a figure which shows the hardware composition of the controller in the substrate processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る基板保持具の断熱板領域周辺を示す図である。It is a figure which shows the periphery of the heat insulating plate region of the substrate holder which concerns on one Embodiment of this invention. 本発明の一実施形態に係る移載装置により基板保持具に基板を移載する動作を説明する図である。It is a figure explaining the operation of transferring a substrate to a substrate holder by the transfer apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る基板処理工程のフローチャートである。It is a flowchart of the substrate processing process which concerns on one Embodiment of this invention. 本発明の一実施形態に係る基板保持具の断熱板領域周辺の変形例を示す図である。It is a figure which shows the modification around the insulation plate region of the substrate holder which concerns on one Embodiment of this invention. 本発明の一実施形態に係る基板保持具の断熱板領域周辺の変形例を示す図である。It is a figure which shows the modification around the insulation plate region of the substrate holder which concerns on one Embodiment of this invention. 複数枚の断熱板を組み合わせて行った実験例を説明する図である。It is a figure explaining the experimental example which performed by combining a plurality of heat insulating plates. 図9の組み合わせでそれぞれ基板処理を行なった場合の実験結果を示す図であって、基板の保持位置と基板面内温度偏差の関係を示す図である。It is a figure which shows the experimental result when the substrate processing was performed by the combination of FIG. 9, and is the figure which shows the relationship between the holding position of a substrate, and the temperature deviation in the surface of a substrate. 図9の組み合わせでそれぞれ基板処理を行なった場合の実験結果を示す図であって、基板の保持位置と基板面内温度リカバリ時間の関係を示す図である。It is a figure which shows the experimental result when the substrate processing was performed by the combination of FIG. 9, and is the figure which shows the relationship between the holding position of a substrate, and the temperature recovery time in the substrate plane. 複数枚の断熱板を組み合わせて構成された断熱板領域であり、他の実験例で使用した断熱板領域を示す図である。It is a heat insulating plate region formed by combining a plurality of heat insulating plates, and is a figure which shows the heat insulating plate region used in other experimental examples. 図12で示す断熱部を用いたときの時間と基板の温度特性を示す図である。It is a figure which shows the time and the temperature characteristic of a substrate when the heat insulating part shown in FIG. 12 is used.

以下、本発明の一実施の形態を図面に即して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施の形態において、図1及び図2に示されているように、本発明に係る基板処理装置は、ICの製造方法における成膜工程を実施するバッチ式縦型装置として構成されている。 In the present embodiment, as shown in FIGS. 1 and 2, the substrate processing apparatus according to the present invention is configured as a batch type vertical apparatus that carries out a film forming step in a method for manufacturing an IC.

図1に示された基板処理装置10は、支持された縦形の反応管としてのプロセスチューブ11を備えており、プロセスチューブ11は互いに同心円に配置された外管としてのアウタチューブ12と内管としてのインナチューブ13とから構成されている。アウタチューブ12は石英(SiO2)が使用されて、上端が閉塞し下端が開口した円筒形状に一体成形されている。インナチューブ13は上下両端が開口した円筒形状に形成されている。インナチューブ13の筒中空部は後記する基板保持具としてのボート31が搬入される処理室14を形成しており、インナチューブ13の下端開口はボート31を出し入れするための炉口部15を構成している。後述するように、ボート31は複数枚の基板1(以後、ウエハともいう)を長く整列した状態で保持するように構成されている。したがって、インナチューブ13の内径は取り扱う基板1の最大外径(例えば、直径300mm)よりも大きくなるように設定されている。 The substrate processing apparatus 10 shown in FIG. 1 includes a process tube 11 as a supported vertical reaction tube, and the process tube 11 is an outer tube 12 as an outer tube and an inner tube arranged concentrically with each other. It is composed of the inner tube 13 of the above. Quartz (SiO 2 ) is used for the outer tube 12, and the outer tube 12 is integrally molded into a cylindrical shape with the upper end closed and the lower end open. The inner tube 13 is formed in a cylindrical shape with both upper and lower ends open. The hollow portion of the inner tube 13 forms a processing chamber 14 into which the boat 31 as a substrate holder, which will be described later, is carried in, and the lower end opening of the inner tube 13 constitutes a furnace port portion 15 for inserting and removing the boat 31. doing. As will be described later, the boat 31 is configured to hold a plurality of substrates 1 (hereinafter, also referred to as wafers) in a long aligned state. Therefore, the inner diameter of the inner tube 13 is set to be larger than the maximum outer diameter of the substrate 1 to be handled (for example, a diameter of 300 mm).

アウタチューブ12とインナチューブ13との間の下端部は、略円筒形状に構築された炉口フランジ部としてのマニホールド16によって気密封止されている。アウタチューブ12およびインナチューブ13の交換等のために、マニホールド16はアウタチューブ12およびインナチューブ13にそれぞれ着脱自在に取り付けられている。マニホールド16が基板処理装置10の筐体2に支持されることによって、プロセスチューブ11は垂直に据え付けられた状態になっている。以後、図ではプロセスチューブ11としてインナチューブ13を省略する場合もある。 The lower end portion between the outer tube 12 and the inner tube 13 is hermetically sealed by a manifold 16 as a furnace opening flange portion constructed in a substantially cylindrical shape. The manifold 16 is detachably attached to the outer tube 12 and the inner tube 13 for replacement of the outer tube 12 and the inner tube 13, respectively. Since the manifold 16 is supported by the housing 2 of the substrate processing device 10, the process tube 11 is in a vertically installed state. Hereinafter, in the figure, the inner tube 13 may be omitted as the process tube 11.

アウタチューブ12とインナチューブ13との隙間によって排気路17が、横断面形状が一定幅の円形リング形状に構成されている。図1に示されているように、マニホールド16の側壁の上部には排気管18の一端が接続されており、排気管18は排気路17の最下端部に通じた状態になっている。排気管18の他端には圧力コントローラ21によって制御される排気装置19が接続されており、排気管18の途中には圧力センサ20が接続されている。圧力コントローラ21は圧力センサ20からの測定結果に基づいて排気装置19をフィードバック制御するように構成されている。 The exhaust passage 17 is formed in a circular ring shape having a constant cross-sectional shape by the gap between the outer tube 12 and the inner tube 13. As shown in FIG. 1, one end of the exhaust pipe 18 is connected to the upper part of the side wall of the manifold 16, and the exhaust pipe 18 is in a state of being connected to the lowermost end portion of the exhaust passage 17. An exhaust device 19 controlled by a pressure controller 21 is connected to the other end of the exhaust pipe 18, and a pressure sensor 20 is connected in the middle of the exhaust pipe 18. The pressure controller 21 is configured to feedback control the exhaust device 19 based on the measurement result from the pressure sensor 20.

マニホールド16の下方にはガス導入管22がインナチューブ13の炉口部15に通じるように配設されており、ガス導入管22には原料ガス供給装置、反応ガス供給装置および不活性ガス供給装置(以下、ガス供給装置という。)23が接続されている。ガス供給装置23はガス流量コントローラ24によって制御されるように構成されている。ガス導入管22から炉口部15に導入されたガスは、インナチューブ13の処理室14内を流通して排気路17を通って排気管18によって排気される。 A gas introduction pipe 22 is arranged below the manifold 16 so as to communicate with the furnace port portion 15 of the inner tube 13, and the gas introduction pipe 22 has a raw material gas supply device, a reaction gas supply device, and an inert gas supply device. (Hereinafter referred to as a gas supply device) 23 is connected. The gas supply device 23 is configured to be controlled by the gas flow controller 24. The gas introduced from the gas introduction pipe 22 into the furnace port portion 15 flows through the processing chamber 14 of the inner tube 13 and is exhausted by the exhaust pipe 18 through the exhaust passage 17.

マニホールド16には下端開口を閉塞する蓋体としてのシールキャップ25が垂直方向下側から接するようになっている。シールキャップ25はマニホールド16の外径と略等しい円盤形状に構築されており、筐体2の待機室3に設備されたボートカバー37に保護されたボートエレベータ26によって垂直方向に昇降されるように構成されている。ボートエレベータ26はモータ駆動の送りねじ軸装置およびベローズ等によって構成されており、ボートエレベータ26のモータ27は駆動コントローラ28によって制御されるように構成されている。シールキャップ25の中心線上には回転軸30が配置されて回転自在に支持されており、回転軸30は駆動コントローラ28によって制御されるモータ29により回転駆動されるように構成されている。回転軸30の上端にはボート31が垂直に支持されている。 A seal cap 25 as a lid for closing the lower end opening comes into contact with the manifold 16 from the lower side in the vertical direction. The seal cap 25 is constructed in a disk shape substantially equal to the outer diameter of the manifold 16, and is vertically raised and lowered by a boat elevator 26 protected by a boat cover 37 installed in the waiting chamber 3 of the housing 2. It is configured. The boat elevator 26 is configured by a motor-driven feed screw shaft device, bellows, and the like, and the motor 27 of the boat elevator 26 is configured to be controlled by a drive controller 28. A rotary shaft 30 is arranged on the center line of the seal cap 25 and is rotatably supported, and the rotary shaft 30 is configured to be rotationally driven by a motor 29 controlled by a drive controller 28. A boat 31 is vertically supported at the upper end of the rotating shaft 30.

ボート31は上下で一対の端板32,33と、これらの間に垂直に架設された三本の保持部材34とを備えており、三本の保持部材34には多数の保持溝35が長手方向に等間隔に刻まれている。三本の保持部材34において同一の段に刻まれた保持溝35同士は、互いに対向して開口するようになっている。ボート31は三本の保持部材34の同一段の保持溝35間に基板1を挿入されることにより、複数枚の基板1を水平にかつ互いに中心を揃えた状態に整列させて保持するようになっている。また、三本の保持部材34の同一段の保持溝39間に断熱板120,122を挿入されることにより、複数枚の断熱板120,122を水平にかつ互いに中心を揃えた状態に整列させて保持するようになっている。 The boat 31 includes a pair of upper and lower end plates 32 and 33, and three holding members 34 vertically erected between them, and a large number of holding grooves 35 are longitudinally formed in the three holding members 34. Engraved at equal intervals in the direction. The holding grooves 35 carved in the same step in the three holding members 34 are opened so as to face each other. By inserting the substrate 1 between the holding grooves 35 of the same stage of the three holding members 34, the boat 31 holds the plurality of substrates 1 horizontally and aligned with each other. It has become. Further, by inserting the heat insulating plates 120 and 122 between the holding grooves 39 of the same stage of the three holding members 34, the plurality of heat insulating plates 120 and 122 are aligned horizontally and centered on each other. It is designed to hold.

つまり、ボート31は、複数枚の基板1が保持される端板32から端板38間の基板処理領域と、複数枚の断熱板120,122が保持される端板38から端板33間の断熱板領域とを区別するように構成され、基板処理領域の下方に断熱板領域が配置されるよう構成されている。端板38と端板33の間に保持される断熱板120,122により断熱部36が構成される。 That is, in the boat 31, the substrate processing area between the end plate 32 and the end plate 38 where the plurality of substrates 1 are held and the space between the end plate 38 and the end plate 33 where the plurality of heat insulating plates 120 and 122 are held. It is configured to distinguish it from the heat insulating plate area, and the heat insulating plate area is arranged below the substrate processing area. The heat insulating portion 36 is formed by the heat insulating plates 120 and 122 held between the end plate 38 and the end plate 33.

回転軸30はボート31をシールキャップ25の上面から持ち上げた状態に支持するように構成されている。断熱部36は、炉口部(炉口空間)15に設けられ、炉口部15を断熱するよう構成されている。 The rotating shaft 30 is configured to support the boat 31 in a state of being lifted from the upper surface of the seal cap 25. The heat insulating portion 36 is provided in the fire pit portion (fire pit space) 15 and is configured to insulate the fire harbor portion 15.

図2に示すように、プロセスチューブ11の外側には、加熱部としてのヒータユニット40が同心円に配置されて、筐体2に支持された状態で設置されている。これにより、ヒータユニット40は、ボート31に保持される基板処理領域内の基板1を加熱するよう構成される。ヒータユニット40はケース41を備えている。ケース41はステンレス鋼(SUS)が使用されて上端閉塞で下端開口の筒形状、好ましくは円筒形状に形成されている。ケース41の内径および全長はアウタチューブ12の外径および全長よりも大きく設定されている。 As shown in FIG. 2, on the outside of the process tube 11, heater units 40 as heating portions are concentrically arranged and installed in a state of being supported by the housing 2. As a result, the heater unit 40 is configured to heat the substrate 1 in the substrate processing region held by the boat 31. The heater unit 40 includes a case 41. Stainless steel (SUS) is used for the case 41, and the case 41 is formed in a cylindrical shape, preferably a cylindrical shape, in which the upper end is closed and the lower end is opened. The inner diameter and the total length of the case 41 are set to be larger than the outer diameter and the total length of the outer tube 12.

図2に示すように、ケース41内には本発明の一実施の形態である断熱構造体42が設置されている。本実施の形態に係る断熱構造体42は、筒形状好ましくは円筒形状に形成されており、その円筒体の側壁部43が複数層構造に形成されている。すなわち、断熱構造体42は側壁部43のうち外側に配置された側壁外層(以後、外層ともいう)45と、側壁部のうち内側に配置された側壁内層(以後、内層ともいう)44とを備え、外層45と内層44の間には、側壁部43を上下方向で複数のゾーン(領域)に隔離する仕切部105と、該仕切部と隣り合う仕切部の間に設けられる環状のダクトとして構成されるバッファ部としての環状バッファ106と、を備える。 As shown in FIG. 2, a heat insulating structure 42 according to an embodiment of the present invention is installed in the case 41. The heat insulating structure 42 according to the present embodiment is formed in a cylindrical shape, preferably in a cylindrical shape, and the side wall portion 43 of the cylindrical body is formed in a multi-layer structure. That is, the heat insulating structure 42 includes a side wall outer layer (hereinafter, also referred to as an outer layer) 45 arranged on the outer side of the side wall portion 43 and a side wall inner layer (hereinafter, also referred to as an inner layer) 44 arranged on the inner side of the side wall portion. As an annular duct provided between the outer layer 45 and the inner layer 44, a partition portion 105 that isolates the side wall portion 43 into a plurality of zones (regions) in the vertical direction and a partition portion adjacent to the partition portion. A circular buffer 106 as a configured buffer unit is provided.

また、図2に示すように、ケース41には、各ゾーンに拡散防止部としてのチェックダンパ104が設けられている。チェックダンパ104には、逆拡散防止体104aが設けられ、この逆拡散防止体104aの開閉により冷却エア90がガス導入路107を介してバッファ部106に供給されるように構成されている。図示しないガス源から冷却エア90が供給されないときには、この逆拡散防止体104aが蓋となり、内部空間(以後、空間ともいう)75の雰囲気が逆流しないように構成されている。この逆拡散防止体104aの開く圧力をゾーンに応じて変更するよう構成してもよい。また、外層45の外周面とケース41の内周面との間は、金属の熱膨張を吸収するブランケットとしての断熱布111が設けられている。 Further, as shown in FIG. 2, the case 41 is provided with a check damper 104 as a diffusion prevention unit in each zone. The check damper 104 is provided with a reverse diffusion preventive body 104a, and is configured so that the cooling air 90 is supplied to the buffer portion 106 via the gas introduction path 107 by opening and closing the reverse diffusion preventive body 104a. When the cooling air 90 is not supplied from a gas source (not shown), the reverse diffusion preventive body 104a serves as a lid so that the atmosphere of the internal space (hereinafter, also referred to as a space) 75 does not flow back. The opening pressure of the reverse diffusion prevention body 104a may be changed according to the zone. Further, a heat insulating cloth 111 as a blanket for absorbing thermal expansion of metal is provided between the outer peripheral surface of the outer layer 45 and the inner peripheral surface of the case 41.

そして、バッファ部106に供給された冷却エア90は、内層44内に設けられたガス供給流路108を流れ、該ガス供給流路108を含む供給経路の一部としての開口部としての開口穴110から冷却エア90を空間75に供給するように構成されている。尚、図2では、ガス供給系及び排気系が省略されている。 Then, the cooling air 90 supplied to the buffer portion 106 flows through the gas supply flow path 108 provided in the inner layer 44, and is an opening hole as an opening as a part of the supply path including the gas supply flow path 108. It is configured to supply the cooling air 90 from the 110 to the space 75. In FIG. 2, the gas supply system and the exhaust system are omitted.

図1および図2に示されているように、断熱構造体42の側壁部43の上端側には天井部としての天井壁部80が空間75を閉じるように被せられている。天井壁部80には空間75の雰囲気を排気する排気経路の一部としての排気孔81が環状に形成されており、排気孔81の上流側端である下端は内側空間75に通じている。排気孔81の下流側端は排気ダクト82に接続されている。 As shown in FIGS. 1 and 2, a ceiling wall portion 80 as a ceiling portion is covered on the upper end side of the side wall portion 43 of the heat insulating structure 42 so as to close the space 75. The ceiling wall portion 80 is formed with an exhaust hole 81 as a part of an exhaust path for exhausting the atmosphere of the space 75 in an annular shape, and the lower end of the exhaust hole 81 on the upstream side leads to the inner space 75. The downstream end of the exhaust hole 81 is connected to the exhaust duct 82.

図3に示すように、制御部としての制御用コンピュータであるコントローラ200は、CPU(Central Precessing Unit)201およびメモリ202などを含むコンピュータ本体203と、通信部としての通信IF(Inter face)204と、記憶部としての記憶装置205と、操作部としての表示・入力装置206とを有する。つまり、コントローラ200は一般的なコンピュータとしての構成部分を含んでいる。 As shown in FIG. 3, the controller 200, which is a control computer as a control unit, includes a computer main body 203 including a CPU (Central Pressing Unit) 201, a memory 202, and the like, and a communication IF (Inter face) 204 as a communication unit. It has a storage device 205 as a storage unit and a display / input device 206 as an operation unit. That is, the controller 200 includes a component as a general computer.

CPU201は、操作部の中枢を構成し、記憶装置205に記憶された制御プログラムを実行し、表示・入力装置206からの指示に従って、記憶装置205に記録されているレシピ(例えば、プロセス用レシピ)を実行する。尚、プロセス用レシピは、図6に示す後述するステップS1からステップS9までの温度制御を含むのは言うまでもない。 The CPU 201 constitutes the center of the operation unit, executes a control program stored in the storage device 205, and records a recipe (for example, a process recipe) in the storage device 205 according to an instruction from the display / input device 206. To execute. Needless to say, the recipe for the process includes temperature control from step S1 to step S9, which will be described later, shown in FIG.

また、一時記憶部としてのメモリ202は、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュメモリ、RAM(Random Access Memory)等であり、特に、RAMは、CPU201のワークエリアなどとして機能する。 The memory 202 as a temporary storage unit is a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), a flash memory, a RAM (Random Access Memory), and the like. Functions as such.

通信部204は、圧力コントローラ21、ガス流量コントローラ24、駆動コントローラ28、温度コントローラ64(これらをまとめてサブコントローラということもある)と電気的に接続されている。コントローラ200は、この通信部204を介してサブコントローラと各部品の動作に関するデータをやり取りすることができる。ここで、サブコントローラは、本体203を少なくとも有する構成であり、コントローラ200と同様な構成であってもよい。 The communication unit 204 is electrically connected to the pressure controller 21, the gas flow rate controller 24, the drive controller 28, and the temperature controller 64 (these may be collectively referred to as a sub controller). The controller 200 can exchange data regarding the operation of each component with the sub controller via the communication unit 204. Here, the sub-controller has a configuration having at least the main body 203, and may have a configuration similar to that of the controller 200.

本発明の実施形態において、コントローラ200を例に挙げて説明したが、これに限らず、通常のコンピュータシステムを用いて実現可能である。例えば、汎用コンピュータに、上述の処理を実行するためのプログラムを格納したUSB等の外部記録媒体207から当該プログラムをインストールすることにより、上述の処理を実行することもできる。また、通信回線、通信ネットワーク、通信システム等の通信IF204を用いてもよい。この場合、例えば、通信ネットワークの掲示板に当該プログラムを掲示し、これをネットワークを介して搬送波に重畳して提供してもよい。そして、このように提供されたプログラムを起動し、OS(Operating System)の制御下で、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行することができる。 In the embodiment of the present invention, the controller 200 has been described as an example, but the present invention is not limited to this, and can be realized by using a normal computer system. For example, the above-mentioned processing can be executed by installing the program from an external recording medium 207 such as USB that stores the program for executing the above-mentioned processing on a general-purpose computer. Further, a communication IF204 of a communication line, a communication network, a communication system, or the like may be used. In this case, for example, the program may be posted on a bulletin board of a communication network, and the program may be superposed on a carrier wave and provided via the network. Then, by starting the program provided in this way and executing it in the same manner as other application programs under the control of the OS (Operating System), the above-mentioned processing can be executed.

図4は、基板処理装置10の断熱部36(断熱板領域)周辺の拡大図である。尚、図4では、ガス供給系や排気系は省略してある。また、図4に示すように断熱板120,122は、後述する基板1がボート31に装填されるウエハチャージ(基板搬入)工程前に、予めボート31の下部に配置され、断熱板領域が形成される。 FIG. 4 is an enlarged view of the periphery of the heat insulating portion 36 (heat insulating plate region) of the substrate processing device 10. In FIG. 4, the gas supply system and the exhaust system are omitted. Further, as shown in FIG. 4, the heat insulating plates 120 and 122 are arranged in advance in the lower part of the boat 31 before the wafer charging (board loading) step in which the substrate 1 described later is loaded into the boat 31, and the heat insulating plate region is formed. Will be done.

ボート31の断熱板領域には、反射率の異なる複数枚の断熱板120,122が保持されている。断熱板120は、断熱板122と比較して反射率の高いものである。断熱板120は、少なくとも断熱板領域の最も一番上(最上端)に設けられるよう構成すればよい。また、本実施形態によれば、断熱板120は、断熱板領域の最上端に一枚または、断熱板領域の上端側に複数枚設けられることにより、断熱板領域の上層部を構成する。 A plurality of heat insulating plates 120 and 122 having different reflectances are held in the heat insulating plate region of the boat 31. The heat insulating plate 120 has a higher reflectance than the heat insulating plate 122. The heat insulating plate 120 may be configured to be provided at least at the top (top end) of the heat insulating plate region. Further, according to the present embodiment, one heat insulating plate 120 is provided at the uppermost end of the heat insulating plate region, or a plurality of heat insulating plates 120 are provided on the upper end side of the heat insulating plate region to form an upper layer portion of the heat insulating plate region.

また、断熱板122よりも反射率の高い複数枚の断熱板により上層部を形成する場合、反射率は同じでなくてもよく、更に、断熱板領域の最上端の断熱板の反射率が一番高く、最上端から下側に向けて設けられる断熱板の反射率が徐々に小さくなるように構成してもよい。また、断熱板領域の最上端の断熱板の反射率が一番高く、最上端から下側に向けて設けられる複数枚の断熱板の反射率が徐々に小さくなるように構成してもよい。 Further, when the upper layer portion is formed by a plurality of heat insulating plates having a reflectance higher than that of the heat insulating plate 122, the reflectances do not have to be the same, and the reflectance of the heat insulating plate at the uppermost end of the heat insulating plate region is one. It may be configured so that the reflectance of the heat insulating plate, which is the highest and is provided from the uppermost end to the lower side, gradually decreases. Further, the reflectance of the heat insulating plate at the uppermost end of the heat insulating plate region may be the highest, and the reflectance of the plurality of heat insulating plates provided from the uppermost end to the lower side may be gradually reduced.

図4に示すように、側面(側方)に発熱体56が配置される断熱板領域の高温部には、複数枚の断熱板120を配置することにより上層部を構成するのが好ましい。また、側面(側方)に発熱体56が配置されない断熱板領域の低温部には、断熱板122を配置することにより、下層部を構成するようにしてもよい。言い換えれば、図4に示すように、断熱板領域内の基板処理領域側に、断熱板領域内の炉口部15側に保持される断熱板122より反射率の高い断熱板120を配置することにより、上層部が形成されると共に、複数枚の断熱板122で下層部が形成される。 As shown in FIG. 4, it is preferable to form an upper layer portion by arranging a plurality of heat insulating plates 120 in the high temperature portion of the heat insulating plate region where the heating element 56 is arranged on the side surface (side). Further, the lower layer portion may be formed by arranging the heat insulating plate 122 in the low temperature portion of the heat insulating plate region where the heating element 56 is not arranged on the side surface (side). In other words, as shown in FIG. 4, a heat insulating plate 120 having a higher reflectance than the heat insulating plate 122 held on the furnace mouth portion 15 side in the heat insulating plate region is arranged on the substrate processing region side in the heat insulating plate region. As a result, the upper layer portion is formed, and the lower layer portion is formed by the plurality of heat insulating plates 122.

更に、言い換えれば、断熱板領域の上層部は、該上層部に保持される断熱板120の側面(側方)にヒータユニット40が配置される領域であり、断熱板領域の下層部は、該下層部に保持される断熱板122の側面(側方)にヒータユニット40が配置されない領域であるよう構成されている。すなわち、断熱板領域の上層部は、ヒータユニット40が上層部に保持される断熱板120の側面を水平に取り囲む領域であり、断熱板領域の下層部は、ヒータユニット40が下層部に保持される断熱板122の側面を水平に取り囲まない領域であるよう構成されている。 Further, in other words, the upper layer portion of the heat insulating plate region is a region where the heater unit 40 is arranged on the side surface (side) of the heat insulating plate 120 held by the upper layer portion, and the lower layer portion of the heat insulating plate region is the region. The heater unit 40 is not arranged on the side surface (side) of the heat insulating plate 122 held in the lower layer portion. That is, the upper layer portion of the heat insulating plate region is a region that horizontally surrounds the side surface of the heat insulating plate 120 in which the heater unit 40 is held in the upper layer portion, and the lower layer portion of the heat insulating plate region is the region in which the heater unit 40 is held in the lower layer portion. It is configured so as to be an area that does not horizontally surround the side surface of the heat insulating plate 122.

更に、図4において、断熱板120よりも反射率が低く、断熱板122より反射率が高い断熱板を、断熱板120により形成される上層部と断熱板122により形成される下層部の間に設け、断熱板領域を3層構造にしてもよい。 Further, in FIG. 4, a heat insulating plate having a lower reflectance than the heat insulating plate 120 and a higher reflectance than the heat insulating plate 122 is placed between the upper layer portion formed by the heat insulating plate 120 and the lower layer portion formed by the heat insulating plate 122. It may be provided and the heat insulating plate region may have a three-layer structure.

本実施形態によれば、ヒータユニット40(または発熱体56)は、処理室14を囲繞するように設けられており、基板1は側方から加熱される。このため、特に、処理室14下方の基板1の中心部が加熱され難く、又、温度が下がり易く、処理室14の昇温に時間が掛かり、リカバリ時間(温度安定時間)が長くなる傾向であったが、上述のように断熱板領域の上層部に反射率の高い断熱板120を配置することにより、低減することができた。 According to this embodiment, the heater unit 40 (or heating element 56) is provided so as to surround the processing chamber 14, and the substrate 1 is heated from the side. For this reason, in particular, the central portion of the substrate 1 below the processing chamber 14 is difficult to be heated, the temperature is likely to drop, it takes time to raise the temperature of the processing chamber 14, and the recovery time (temperature stabilization time) tends to be long. However, it could be reduced by arranging the heat insulating plate 120 having high reflectance in the upper layer portion of the heat insulating plate region as described above.

つまり、本実施形態によれば、断熱板領域の上端側に反射率の高い断熱板120を配置することにより上層部を形成すると、断熱板120を通過する放射エネルギーが減少し、ボート31の下方であって、断熱板領域上方の基板1中心部付近の受熱量を増加させることができる。これにより、処理室14下方の基板中心部の温度の低下によって発生する面内温度偏差を低減することが可能となる。 That is, according to the present embodiment, when the upper layer portion is formed by arranging the heat insulating plate 120 having high reflectance on the upper end side of the heat insulating plate region, the radiant energy passing through the heat insulating plate 120 is reduced, and the lower part of the boat 31. Therefore, the amount of heat received near the center of the substrate 1 above the heat insulating plate region can be increased. This makes it possible to reduce the in-plane temperature deviation caused by the decrease in the temperature of the central portion of the substrate below the processing chamber 14.

図5に示すように、移載装置125は、主に、基板1を載置して搬送する支持部としてのツイーザ126と、基板1を移載する位置を検出する検知部300と、ツイーザ126と検知部300とを作動させる機構部302から構成される。 As shown in FIG. 5, the transfer device 125 mainly includes a tweezers 126 as a support unit for mounting and transporting the substrate 1, a detection unit 300 for detecting the position where the substrate 1 is transferred, and the tweezers 126. It is composed of a mechanism unit 302 that operates the detection unit 300 and the detection unit 300.

機構部302は、移載装置125の台座として水平方向に回転自在に構成されている。 The mechanism unit 302 is configured to be rotatable in the horizontal direction as a pedestal of the transfer device 125.

ツイーザ126は、ツイーザ126の移動方向を固定する固定部304に装着され、固定部304が機構部302上を摺動し、ツイーザ126が移動される。また、機構部302が水平方向に回転されることで、ツイーザ126が回転される。ツイーザ126は、例えばU字形状を有しており、複数枚(本実施形態においては5枚)、垂直方向等間隔に水平に取り付けられている。 The tweezers 126 are attached to a fixing portion 304 that fixes the moving direction of the tweezers 126, the fixing portion 304 slides on the mechanism portion 302, and the tweezers 126 are moved. Further, the tweezers 126 are rotated by rotating the mechanism unit 302 in the horizontal direction. The tweezers 126 have, for example, a U-shape, and a plurality of tweezers 126 (five in this embodiment) are horizontally attached at equal intervals in the vertical direction.

すなわち、移載装置125の固定部304が、機構部302上を前後方向に摺動され、機構部302の回転によりツイーザ126が水平方向(後述する左右方向)に回転され、不図示の移載装置エレベータにより、移載装置125が上下方向に移動される。 That is, the fixed portion 304 of the transfer device 125 is slid in the front-rear direction on the mechanism portion 302, and the tweezers 126 are rotated in the horizontal direction (left-right direction described later) by the rotation of the mechanism portion 302, and the transfer is not shown. The transfer device 125 is moved in the vertical direction by the device elevator.

検知部300は、基板1の位置を光学的に検知するセンサであり、この検知された検知情報が位置情報として記憶装置205に記憶される。また、表示・入力装置206からの動作命令がコントローラ200に入力されるとともに、コントローラ200で得られたステータスや駆動コントローラ28で得られたエンコーダ値が記憶装置205に入力されて記憶される。このエンコーダ値は移載装置125及び移載装置エレベータの駆動モータが発生するパルス数であり、これによって移載装置125の移動距離(すなわち、ツイーザ126の移動距離)を検出しつつ動作制御を行うことができる。 The detection unit 300 is a sensor that optically detects the position of the substrate 1, and the detected detection information is stored in the storage device 205 as position information. Further, the operation command from the display / input device 206 is input to the controller 200, and the status obtained by the controller 200 and the encoder value obtained by the drive controller 28 are input to the storage device 205 and stored. This encoder value is the number of pulses generated by the drive motors of the transfer device 125 and the transfer device elevator, and the operation is controlled while detecting the movement distance of the transfer device 125 (that is, the movement distance of the tweezers 126). be able to.

コントローラ200は、記憶装置205に記憶された位置情報及びエンコーダ値に基づいて駆動コントローラ28に動作指示を与え、移載装置125や移載装置エレベータを動作させる。つまり、移載装置125は、図5に示すように、ボート31の基板処理領域の保持溝35の位置情報を取得し、ボート31の基板処理領域に基板1を移載するよう駆動コントローラ28により制御される。 The controller 200 gives an operation instruction to the drive controller 28 based on the position information and the encoder value stored in the storage device 205, and operates the transfer device 125 and the transfer device elevator. That is, as shown in FIG. 5, the transfer device 125 acquires the position information of the holding groove 35 in the board processing area of the boat 31 and uses the drive controller 28 to transfer the board 1 to the board processing area of the boat 31. Be controlled.

また、例えば後述する図9に示すような断熱板の種類や位置情報に関する情報と、ボート31の断熱板領域の保持溝35の位置情報に基づき、移載装置125により断熱板領域の上層部に断熱板120を移載させたり、断熱板領域の下層部に断熱板122を移載させたりするよう構成してもよい。 Further, for example, based on the information on the type and position information of the heat insulating plate as shown in FIG. 9 described later and the position information of the holding groove 35 in the heat insulating plate region of the boat 31, the transfer device 125 is used to move the heat insulating plate region to the upper layer. The heat insulating plate 120 may be transferred, or the heat insulating plate 122 may be transferred to the lower layer portion of the heat insulating plate region.

次に、上述の基板処理装置10を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成する処理(以下、成膜処理ともいう)のシーケンス例について説明する。 Next, a sequence example of a process of forming a film on a substrate (hereinafter, also referred to as a film forming process) as one step of a manufacturing process of a semiconductor device (device) using the above-mentioned substrate processing device 10 will be described.

以下、原料ガスとしてヘキサクロロジシラン(Si2Cl6、略称:HCDS)ガスを用い、反応ガスとしてアンモニア(NH3)ガスを用い、基板1上にシリコン窒化膜(Si34膜、以下、SiN膜ともいう)を形成する例について説明する。なお、以下の説明において、基板処理装置10を構成する各部の動作はコントローラ200及びサブコントローラにより制御される。 Hereinafter, hexachlorodisilane (Si 2 Cl 6 , abbreviated as HCDS) gas is used as a raw material gas, ammonia (NH 3 ) gas is used as a reaction gas, and a silicon nitride film (Si 3 N 4 film, hereinafter Si N) is used on the substrate 1. An example of forming a film) will be described. In the following description, the operation of each part constituting the substrate processing device 10 is controlled by the controller 200 and the sub-controller.

本実施形態における成膜処理では、処理室14の基板1に対してHCDSガスを供給する工程と、処理室14からHCDSガス(残留ガス)を除去する工程と、処理室14の基板1に対してNH3ガスを供給する工程と、処理室14からNH3ガス(残留ガス)を除去する工程と、を非同時に行うサイクルを所定回数(1回以上)行うことで、基板1上にSiN膜を形成する。 In the film forming process in the present embodiment, the steps of supplying HCDS gas to the substrate 1 of the processing chamber 14, the step of removing the HCDS gas (residual gas) from the processing chamber 14, and the substrate 1 of the processing chamber 14 a step of supplying NH 3 gas Te, removing the NH 3 gas (residual gas) from the processing chamber 14, the (one or more times) cycle a predetermined number of times of non-simultaneously by performing, SiN film on the substrate 1 To form.

また、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 Further, the use of the word "wafer" in the present specification is synonymous with the case of using the word "wafer".

(基板搬入:ステップS1)
駆動コントローラ28により移載装置125及び移載装置エレベータを動作させて、ボート31の基板処理領域に複数枚の基板1が保持されて装填(ウエハチャージ)される。尚、ボート31の断熱板領域には、既に、複数枚の断熱板120,122が保持されて装填されている。本実施例では、断熱板領域の下層部に断熱板122を、断熱板領域の上層部に下層部の断熱板122よりも反射率の高い断熱板120が保持されている。
(Board delivery: Step S1)
The transfer device 125 and the transfer device elevator are operated by the drive controller 28, and a plurality of substrates 1 are held and loaded (wafer charged) in the substrate processing area of the boat 31. A plurality of heat insulating plates 120 and 122 are already held and loaded in the heat insulating plate region of the boat 31. In this embodiment, the heat insulating plate 122 is held in the lower layer portion of the heat insulating plate region, and the heat insulating plate 120 having a higher reflectance than the heat insulating plate 122 in the lower layer portion is held in the upper layer portion of the heat insulating plate region.

そして、基板1と断熱板120,122が保持されたボート31は、駆動コントローラ28によりボートエレベータ26を動作させてプロセスチューブ11内に装入され、処理室14に搬入(ボートロード)される。このとき、シールキャップ25は、不図示のOリングを介してインナチューブ13の下端を気密に閉塞(シール)した状態となる。 Then, the boat 31 in which the substrate 1 and the heat insulating plates 120 and 122 are held is loaded into the process tube 11 by operating the boat elevator 26 by the drive controller 28, and is carried into the processing chamber 14 (boat load). At this time, the seal cap 25 is in a state of airtightly closing (sealing) the lower end of the inner tube 13 via an O-ring (not shown).

(圧力調整および温度調整:ステップS2)
処理室14が所定の圧力(真空度)となるように、圧力コントローラ21によって排気装置19が制御される。この際、処理室14の圧力は、圧力センサ20で測定され、この測定された圧力情報に基づき排気装置19が、フィードバック制御される。排気装置19は、少なくとも基板1に対する処理が終了するまでの間は常時作動させた状態を維持する。
(Pressure adjustment and temperature adjustment: step S2)
The exhaust device 19 is controlled by the pressure controller 21 so that the processing chamber 14 has a predetermined pressure (vacuum degree). At this time, the pressure in the processing chamber 14 is measured by the pressure sensor 20, and the exhaust device 19 is feedback-controlled based on the measured pressure information. The exhaust device 19 is always kept in an operating state at least until the processing on the substrate 1 is completed.

また、処理室14の基板1が所定の温度となるように、ヒータユニット40によって加熱される。この際、温度コントローラ64により処理室14が所定の温度分布となるように、熱電対65が検出した温度情報に基づきヒータユニット40への通電具合がフィードバック制御される。ヒータユニット40による処理室14の加熱は、少なくとも基板1に対する処理が終了するまでの間は継続して行われる。 Further, the substrate 1 of the processing chamber 14 is heated by the heater unit 40 so as to have a predetermined temperature. At this time, the temperature controller 64 feedback-controls the energization condition to the heater unit 40 based on the temperature information detected by the thermocouple 65 so that the processing chamber 14 has a predetermined temperature distribution. The heating of the processing chamber 14 by the heater unit 40 is continuously performed at least until the processing of the substrate 1 is completed.

また、モータ29によるボート31および基板1の回転を開始する。具体的には、駆動コントローラ28によりモータ29を回転させると、ボート31が回転されるに伴い、基板1が回転される。このモータ29の回転によるボート31および基板1の回転は、少なくとも、基板1に対する処理が終了するまでの間は継続して行われる。 Further, the rotation of the boat 31 and the substrate 1 by the motor 29 is started. Specifically, when the motor 29 is rotated by the drive controller 28, the substrate 1 is rotated as the boat 31 is rotated. The rotation of the boat 31 and the substrate 1 due to the rotation of the motor 29 is continuously performed at least until the processing for the substrate 1 is completed.

<成膜処理>
処理室14内の温度が予め設定された処理温度に安定すると、次の4つのステップ、すなわち、ステップS3〜S6を順次実行する。
<Film film processing>
When the temperature in the processing chamber 14 stabilizes at the preset processing temperature, the following four steps, that is, steps S3 to S6 are sequentially executed.

(原料ガス供給:ステップS3)
このステップでは、処理室14の基板1に対し、HCDSガスを供給する。
(Raw material gas supply: step S3)
In this step, HCDS gas is supplied to the substrate 1 of the processing chamber 14.

このステップでは、ガス導入管22から処理室14に導入されたHCDSガスが、ガス流量コントローラ24によって流量制御され、インナチューブ13の処理室14を流通して排気路17を通って排気管18から排気される。このとき、同時に、ガス導入管22内へN2ガスを流す。N2ガスは、ガス流量コントローラ24により流量調整され、HCDSガスと一緒に処理室14へ供給され、排気管18から排気される。基板1に対してHCDSガスを供給することにより、基板1の最表面上に、第1の層として、例えば1原子層未満から数原子層の厚さのシリコン(Si)含有層が形成される。 In this step, the HCDS gas introduced from the gas introduction pipe 22 into the processing chamber 14 is flow-controlled by the gas flow rate controller 24, flows through the processing chamber 14 of the inner tube 13, passes through the exhaust passage 17, and is transmitted from the exhaust pipe 18. It is exhausted. At this time, at the same time, N 2 gas is flowed into the gas introduction pipe 22. The flow rate of the N 2 gas is adjusted by the gas flow rate controller 24, is supplied to the processing chamber 14 together with the HCDS gas, and is exhausted from the exhaust pipe 18. By supplying HCDS gas to the substrate 1, a silicon (Si) -containing layer having a thickness of less than one atomic layer to several atomic layers is formed as a first layer on the outermost surface of the substrate 1. ..

(パージガス供給:ステップS4)
第1の層が形成された後、HCDSガスの供給を停止する。このとき、排気装置19により処理室14を真空排気し、処理室14に残留する未反応もしくは第1の層の形成に寄与した後のHCDSガスを処理室14から排出する。このとき、N2ガスの処理室14への供給を維持する。N2ガスはパージガスとして作用し、これにより、処理室14に残留するガスを処理室14から排出する効果を高めることができる。
(Purge gas supply: step S4)
After the first layer is formed, the supply of HCDS gas is stopped. At this time, the processing chamber 14 is evacuated by the exhaust device 19, and the unreacted HCDS gas remaining in the processing chamber 14 or after contributing to the formation of the first layer is discharged from the processing chamber 14. At this time, the supply of N 2 gas to the processing chamber 14 is maintained. The N 2 gas acts as a purge gas, which can enhance the effect of discharging the gas remaining in the processing chamber 14 from the processing chamber 14.

(反応ガス供給:ステップS5)
ステップS4が終了した後、処理室14の基板1、すなわち、基板1上に形成された第1の層に対してNH3ガスを供給する。NH3ガスは熱で活性化されて基板1に対して供給されることとなる。
(Reaction gas supply: step S5)
After the step S4 is completed, NH 3 gas is supplied to the substrate 1 of the processing chamber 14, that is, the first layer formed on the substrate 1. The NH 3 gas is activated by heat and supplied to the substrate 1.

このステップでは、ガス導入管22から処理室14に導入されたNH3ガスが、ガス流量コントローラ24によって流量制御され、インナチューブ13の処理室14を流通して排気路17を通って排気管18から排気される。このとき、同時に、ガス導入管22内へN2ガスを流す。N2ガスは、ガス流量コントローラ24により流量調整され、NH3ガスと一緒に処理室14へ供給され、排気管18から排気される。このとき、基板1に対してNH3ガスが供給されることとなる。基板1に対して供給されたNH3ガスは、ステップS3で基板1上に形成された第1の層、すなわちSi含有層の少なくとも一部と反応する。これにより第1の層は、ノンプラズマで熱的に窒化され、第2の層、すなわち、シリコン窒化層(SiN層)へと変化させられる(改質される)。 In this step, the NH 3 gas introduced from the gas introduction pipe 22 into the processing chamber 14 is flow-controlled by the gas flow rate controller 24, flows through the processing chamber 14 of the inner tube 13, passes through the exhaust passage 17, and is exhaust pipe 18. Is exhausted from. At this time, at the same time, N 2 gas is flowed into the gas introduction pipe 22. The flow rate of the N 2 gas is adjusted by the gas flow rate controller 24 , is supplied to the processing chamber 14 together with the NH 3 gas, and is exhausted from the exhaust pipe 18. At this time, NH 3 gas is supplied to the substrate 1. The NH 3 gas supplied to the substrate 1 reacts with at least a part of the first layer formed on the substrate 1, that is, the Si-containing layer in step S3. As a result, the first layer is thermally nitrided by non-plasma and changed (modified) into a second layer, that is, a silicon nitride layer (SiN layer).

(パージガス供給:ステップS6)
第2の層が形成された後、NH3ガスの供給を停止する。そして、ステップS4と同様の処理手順により、処理室14に残留する未反応もしくは第2の層の形成に寄与した後のNH3ガスや反応副生成物を処理室14から排出する。このとき、処理室14に残留するガス等を完全に排出しなくてもよい点は、ステップS4と同様である。
(Purge gas supply: step S6)
After the second layer is formed, the supply of NH 3 gas is stopped. Then, by the same treatment procedure as in step S4, NH 3 gas and reaction by-products remaining in the treatment chamber 14 after contributing to the formation of the unreacted or second layer are discharged from the treatment chamber 14. At this time, the point that the gas or the like remaining in the processing chamber 14 does not have to be completely discharged is the same as in step S4.

(所定回数実施:ステップS7)
上述した4つのステップを非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回)行うことにより、基板1上に、所定膜厚のSiN膜を形成することができる。なお、上述のサイクルを1回行う際に形成される第2の層(SiN層)の厚さを所定の膜厚よりも小さくし、第2の層(SiN層)を積層することで形成されるSiN膜の膜厚が所定の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
(Implementation a predetermined number of times: Step S7)
A SiN film having a predetermined film thickness can be formed on the substrate 1 by performing the above-mentioned four steps non-simultaneously, that is, by performing a predetermined number of cycles (n times) without synchronizing. The thickness of the second layer (SiN layer) formed when the above cycle is performed once is made smaller than a predetermined film thickness, and the second layer (SiN layer) is laminated. It is preferable to repeat the above cycle a plurality of times until the film thickness of the SiN film reaches a predetermined film thickness.

(パージおよび大気圧復帰:ステップS8)
成膜処理が完了した後、ガス導入管22からN2ガスを処理室14へ供給し、排気管18から排気する。N2ガスはパージガスとして作用する。これにより、処理室14がパージされ、処理室14に残留するガスや反応副生成物が処理室14から除去される(パージ)。同時に、冷却ガスとしての冷却エア90がチェックダンパ104を介してガス導入路107に供給される。供給された冷却エア90はバッファ部106内で一時的に溜められ、複数個の開口穴110からガス供給流路108を介して空間75に吹出す。そして、開口穴110から空間75に吹き出した冷却エア90は排気孔81および排気ダクト82によって排気される。その後、処理室14の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室14の圧力が常圧に復帰される(大気圧復帰)。
(Purge and return to atmospheric pressure: step S8)
After the film forming process is completed, N 2 gas is supplied from the gas introduction pipe 22 to the processing chamber 14 and exhausted from the exhaust pipe 18. The N 2 gas acts as a purge gas. As a result, the treatment chamber 14 is purged, and the gas and reaction by-products remaining in the treatment chamber 14 are removed from the treatment chamber 14 (purge). At the same time, the cooling air 90 as the cooling gas is supplied to the gas introduction path 107 via the check damper 104. The supplied cooling air 90 is temporarily stored in the buffer unit 106 and blown out from the plurality of opening holes 110 into the space 75 via the gas supply flow path 108. Then, the cooling air 90 blown out from the opening hole 110 into the space 75 is exhausted by the exhaust hole 81 and the exhaust duct 82. After that, the atmosphere of the treatment chamber 14 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 14 is restored to the normal pressure (return to atmospheric pressure).

(基板搬出:ステップS9)
駆動コントローラ28によりボートエレベータ26を下降させることによりシールキャップ25が下降され、プロセスチューブ11の下端が開口される。そして、処理済の基板1が、ボート31に支持された状態で、プロセスチューブ11の下端からプロセスチューブ11の外部に搬出される(ボートアンロード)。処理済の基板1は、ボート31より取出される(ウエハディスチャージ)。
(Board removal: Step S9)
By lowering the boat elevator 26 by the drive controller 28, the seal cap 25 is lowered and the lower end of the process tube 11 is opened. Then, the processed substrate 1 is carried out from the lower end of the process tube 11 to the outside of the process tube 11 in a state of being supported by the boat 31 (boat unloading). The processed substrate 1 is taken out from the boat 31 (wafer discharge).

ここで、基板1をボート31に装填する(ウエハチャージ)前に所定の断熱板をボート31に装填する工程(準備工程)を半導体装置(デバイス)の製造工程の一工程に含むようにしてもよい。 Here, a step (preparation step) of loading a predetermined heat insulating plate into the boat 31 before loading the substrate 1 into the boat 31 (wafer charge) may be included in one step of the manufacturing step of the semiconductor device (device).

以下に、本実施形態の断熱部36の変形例について図7及び図8に基づいて説明する。 Hereinafter, a modified example of the heat insulating portion 36 of the present embodiment will be described with reference to FIGS. 7 and 8.

<変形例1>
図7は、変形例1に係る断熱部46(断熱板領域)周辺の拡大図である。
変形例1に係る断熱部46は、基板面内温度リカバリ時間を重視したい場合に用いる。
<Modification example 1>
FIG. 7 is an enlarged view of the periphery of the heat insulating portion 46 (heat insulating plate region) according to the first modification.
The heat insulating portion 46 according to the first modification is used when it is desired to emphasize the in-plane temperature recovery time of the substrate.

変形例1に係る断熱部46は、上述した断熱板120と同じ材質(同じ反射率)であって、断熱板120よりも厚さ(熱容量)の小さい複数枚の断熱板124で構成される。つまり、断熱板領域に上述した断熱板120と同様に反射率が高く、上述した断熱板120よりも厚さの小さい断熱板124を配置する。 The heat insulating portion 46 according to the first modification is composed of a plurality of heat insulating plates 124 which are made of the same material (same reflectance) as the heat insulating plate 120 described above and have a thickness (heat capacity) smaller than that of the heat insulating plate 120. That is, a heat insulating plate 124 having a high reflectance and a thickness smaller than that of the heat insulating plate 120 described above is arranged in the heat insulating plate region.

断熱板124の厚さの合計は、上述した実施形態の断熱部36の断熱板120と断熱板122の組み合わせの厚さの合計の半分程となっている。つまり、断熱板の厚さの影響を反射率で補うことで面内温度偏差は上述した実施形態の断熱部36と同等を維持しながら、基板の面内温度リカバリ時間を45%程度短縮可能とすることができる。 The total thickness of the heat insulating plate 124 is about half of the total thickness of the combination of the heat insulating plate 120 and the heat insulating plate 122 of the heat insulating portion 36 of the above-described embodiment. That is, by compensating for the influence of the thickness of the heat insulating plate with the reflectance, the in-plane temperature deviation of the substrate can be shortened by about 45% while maintaining the same level as the heat insulating portion 36 of the above-described embodiment. can do.

<変形例2>
図8は、変形例2に係る断熱部66(断熱板領域)周辺の拡大図である。
変形例2は、基板面内温度偏差を重視したい場合に用いる。
<Modification 2>
FIG. 8 is an enlarged view of the periphery of the heat insulating portion 66 (insulating plate region) according to the modified example 2.
Modification 2 is used when it is desired to emphasize the in-plane temperature deviation of the substrate.

変形例2に係る断熱部66は、厚さと反射率の異なる断熱板を組み合わせて用いる。具体的には、側面に発熱体56が配置される断熱板領域には、側面に発熱体56が配置されない断熱板領域の断熱板122に比べて厚さが小さく反射率の高い複数枚の断熱板124を配置することにより上層部を構成する。また、図4と同様に、側面に発熱体56が配置されない断熱板領域には、断熱板122を配置することにより、下層部を構成するようにしてもよい。 The heat insulating portion 66 according to the second modification uses a combination of heat insulating plates having different thicknesses and reflectances. Specifically, in the heat insulating plate region where the heating element 56 is arranged on the side surface, a plurality of heat insulating plates having a smaller thickness and higher reflectance than the heat insulating plate 122 in the heat insulating plate region where the heating element 56 is not arranged on the side surface. The upper layer portion is formed by arranging the plate 124. Further, as in FIG. 4, the lower layer portion may be formed by arranging the heat insulating plate 122 in the heat insulating plate region where the heating element 56 is not arranged on the side surface.

つまり、本実施形態によれば、基板処理領域側に保持される断熱板124の厚さを、基板処理領域の反対側に保持される断熱板122の厚さよりも小さくすると共に、基板処理領域側に保持される断熱板124の反射率を、基板処理領域の反対側に保持される断熱板122の反射率よりも高くすることにより、断熱板124を通過する放射エネルギーが減少し、ボート31の下方であって、断熱板領域上方の基板1中心部付近の受熱量を増加させることができる。 That is, according to the present embodiment, the thickness of the heat insulating plate 124 held on the substrate processing region side is made smaller than the thickness of the heat insulating plate 122 held on the opposite side of the substrate processing region, and the substrate processing region side. By making the reflectance of the heat insulating plate 124 held on the board higher than the reflectance of the heat insulating plate 122 held on the opposite side of the substrate processing area, the radiant energy passing through the heat insulating plate 124 is reduced, and the radiant energy of the boat 31 is reduced. It is possible to increase the amount of heat received in the vicinity of the center of the substrate 1 which is lower and above the heat insulating plate region.

また、図8によれば、断熱板領域において、反射率の高い断熱板124の枚数は、反射率の低い断熱板122の枚数よりも多く配置されている。また、断熱板領域において、厚さが薄い断熱板124の枚数が、厚さの大きい断熱板122の枚数よりも多く配置されている。 Further, according to FIG. 8, in the heat insulating plate region, the number of heat insulating plates 124 having high reflectance is larger than the number of heat insulating plates 122 having low reflectance. Further, in the heat insulating plate region, the number of the heat insulating plates 124 having a thin thickness is larger than the number of the heat insulating plates 122 having a large thickness.

また、図8によれば、断熱板領域内の基板処理領域側に保持される断熱板124間の距離が基板処理領域の反対側に保持される断熱板122間の距離(間隔)よりも狭くなるよう配置されている。 Further, according to FIG. 8, the distance between the heat insulating plates 124 held on the substrate processing region side in the heat insulating plate region is narrower than the distance (interval) between the heat insulating plates 122 held on the opposite side of the substrate processing region. It is arranged so as to be.

このように、断熱板122より厚さが小さく反射率が高い断熱板領域の断熱板124間の間隔を断熱板122間の間隔よりも小さくすることにより、上層部を形成する断熱板124の枚数を断熱板122の枚数よりも増やすことで更に基板中心付近の受熱量が上述した実施形態の断熱部36を用いた場合よりも増加し、基板面内温度偏差の低減及び基板面内温度リカバリ時間の短縮が可能となる。 In this way, the number of heat insulating plates 124 forming the upper layer portion is formed by making the distance between the heat insulating plates 124 in the heat insulating plate region, which is smaller in thickness and higher in reflectance than the heat insulating plate 122, smaller than the distance between the heat insulating plates 122. By increasing the number of heat insulating plates 122 to more than the number of heat insulating plates 122, the amount of heat received near the center of the substrate is further increased as compared with the case where the heat insulating portion 36 of the above-described embodiment is used, the temperature deviation in the substrate surface is reduced, and the temperature recovery time in the substrate surface is reduced. Can be shortened.

以下、図9〜図11に実験例を説明するが、本発明はこれらの実験例により限定されるものではない。 Experimental examples will be described below with reference to FIGS. 9 to 11, but the present invention is not limited to these experimental examples.

<実験例>
図9に示すように、比較例では、断熱部として4mmの断熱板122を13枚用いた。また、実施例1では、図4に示す上述した本実施形態に係る断熱部36を用いて、具体的には、断熱板領域に4mmの断熱板120を8枚配設し上層部を形成し、断熱板領域に4mmの断熱板122を5枚配設し、下層部を形成した。また、実施例2では、図7に示す変形例1に係る断熱部46を用いて、断熱板領域に2mmの断熱板124を13枚配設した。また、実施例3では、図8に示す変形例2に係る断熱部66を用いて、断熱板領域に2mmの断熱板124を16枚配設し上層部を形成し、断熱板領域に4mmの断熱板122を5枚配設し、下層部を形成した。
<Experimental example>
As shown in FIG. 9, in the comparative example, 13 4 mm heat insulating plates 122 were used as the heat insulating portion. Further, in the first embodiment, using the heat insulating portion 36 according to the above-described embodiment shown in FIG. 4, specifically, eight 4 mm heat insulating plates 120 are arranged in the heat insulating plate region to form an upper layer portion. , Five 4 mm heat insulating plates 122 were arranged in the heat insulating plate region to form a lower layer portion. Further, in Example 2, 13 2 mm heat insulating plates 124 were arranged in the heat insulating plate region by using the heat insulating portion 46 according to the modified example 1 shown in FIG. 7. Further, in the third embodiment, using the heat insulating portion 66 according to the modified example 2 shown in FIG. 8, 16 heat insulating plates 124 of 2 mm are arranged in the heat insulating plate region to form an upper layer portion, and the heat insulating plate region is 4 mm. Five heat insulating plates 122 were arranged to form a lower layer portion.

図9に示す反射率「大」の断熱板120,124は、例えば、80%以上の光や熱を反射するように構成されており、反射率「中」の断熱板122は、例えば、40%程度の光や熱を反射するように構成されている。 The heat insulating plates 120 and 124 having a "large" reflectance shown in FIG. 9 are configured to reflect, for example, 80% or more of light and heat, and the heat insulating plates 122 having a "medium" reflectance are, for example, 40. It is configured to reflect about% light and heat.

図10は、図9に示す実施例1〜実施例3と比較例における断熱部を用いて、上述した基板処理工程を行った場合の炉内温度800℃での基板1のボート31の保持位置と基板面内温度偏差の関係を示した図である。図10に示されるように、実施例1と実施例3のように反射率の異なる断熱板を組み合わせて用いることで、ボート31下方の基板の面内温度偏差ΔTを比較例の断熱部を用いた場合の2分の1から3分の1程度まで改善できることが確認された。また、実施例2の薄く反射率の高い断熱板を用いることにより、ボート31下方の基板の面内温度偏差ΔTを比較例の断熱部を用いた場合の2分の1程度まで改善でき、基板処理領域を大きくすることができることが確認された。つまり、基板処理領域のピッチ拡大による成膜均一性の向上等の効果を得ることができることが確認された。 FIG. 10 shows the holding position of the boat 31 of the substrate 1 at a furnace temperature of 800 ° C. when the above-mentioned substrate processing step is performed using the heat insulating portions in Examples 1 to 3 and Comparative Example shown in FIG. It is a figure which showed the relationship of the temperature deviation in the substrate surface. As shown in FIG. 10, by using a combination of heat insulating plates having different reflectances as in Example 1 and Example 3, the in-plane temperature deviation ΔT of the substrate below the boat 31 is used as the heat insulating portion of the comparative example. It was confirmed that it could be improved from one-half to one-third of the case where it was present. Further, by using the thin and highly reflective heat insulating plate of Example 2, the in-plane temperature deviation ΔT of the substrate below the boat 31 can be improved to about half of that when the heat insulating portion of the comparative example is used, and the substrate can be improved. It was confirmed that the processing area could be increased. That is, it was confirmed that the effect of improving the film formation uniformity by expanding the pitch of the substrate processing region can be obtained.

図11は、図9に示す実施例1〜実施例3と比較例における断熱部を用いて、上述した基板処理工程を行った場合の炉内温度を800℃に昇温後の基板1のボート31の保持位置と基板面内温度リカバリ時間との関係を示す図である。 FIG. 11 shows a boat of the substrate 1 after raising the temperature inside the furnace to 800 ° C. when the above-mentioned substrate processing step is performed using the heat insulating portions of Examples 1 to 3 and Comparative Example shown in FIG. It is a figure which shows the relationship between the holding position of 31 and the temperature recovery time in surface of a substrate.

図11に示されるように、実施例2の薄く反射率の高い断熱板や、実施例1,3の反射率の異なる断熱板を組み合わせて用いることにより、ボート31下方に配置された基板の面内温度リカバリ時間が比較例の断熱部を用いた場合と比べて最大45%短縮され、処理に要する時間が短縮されることが確認された。 As shown in FIG. 11, by using the thin and highly reflective heat insulating plate of Example 2 and the heat insulating plate having different reflectances of Examples 1 and 3 in combination, the surface of the substrate arranged below the boat 31 is used. It was confirmed that the internal temperature recovery time was shortened by up to 45% as compared with the case where the heat insulating portion of the comparative example was used, and the time required for the treatment was shortened.

<他の実験例>
以下、図12及び図13により他の実施例について説明する。装置構成については同じであるため説明は省略し、ボート31の断熱板領域(断熱部)に特化して説明する。図12に示すように、AからDの4パターンについて温度測定を行った。ここで、図では、断熱板が9枚となっているが、実施例1等に合せて13枚としてもよく、この枚数に限定されないのは言うまでもない。尚、断熱部において上述の実施例と異なる点は、熱や光を吸収する黒色の断熱板(黒色断熱板)128を用いる点である。この他の実施例では、断熱材の最適な配置、材質、厚み(熱容量)を検討した。ここで、断熱板128は、断熱板122,124と比較して、厚さ1mm〜4mmで数%〜十数%程度の光や熱を反射するように構成される。例えば、室温では、断熱板128の反射率が厚さ4mmで2〜3%程度であり、厚さ2mmで約8%、厚さ1mmで約18%である。また、断熱板128は、熱放射率が、600℃以上で70%程度となり、1000℃以上で80%程度となることが分かっている。
<Other experimental examples>
Hereinafter, other examples will be described with reference to FIGS. 12 and 13. Since the device configuration is the same, the description thereof will be omitted, and the description will be made specifically for the heat insulating plate region (heat insulating portion) of the boat 31. As shown in FIG. 12, the temperature was measured for four patterns A to D. Here, in the figure, the number of heat insulating plates is 9, but it may be 13 in accordance with the first embodiment, and it goes without saying that the number is not limited to this. The heat insulating portion differs from the above-described embodiment in that a black heat insulating plate (black heat insulating plate) 128 that absorbs heat and light is used. In other examples, the optimum arrangement, material, and thickness (heat capacity) of the heat insulating material were examined. Here, the heat insulating plate 128 is configured to reflect light or heat of about several% to ten and several percent with a thickness of 1 mm to 4 mm as compared with the heat insulating plates 122 and 124. For example, at room temperature, the reflectance of the heat insulating plate 128 is about 2 to 3% at a thickness of 4 mm, about 8% at a thickness of 2 mm, and about 18% at a thickness of 1 mm. Further, it is known that the heat insulating plate 128 has a heat emissivity of about 70% at 600 ° C. or higher and about 80% at 1000 ° C. or higher.

図12に示すように、パターンAでは、断熱部として2mmの断熱板124と4mmの黒色断熱板128を(1枚毎に)交互に配置することにより形成し、パターンBでは、断熱板領域に4mmの黒色断熱板128を複数枚(ここでは4枚)配設し、断熱板領域に2mmの断熱板124を複数枚(ここでは5枚)配設し形成した。パターンCでは、上述の実施例2と同様に、断熱板領域に2mmの断熱板124を9枚配設し、パターンDは、上述の比較例と同様の断熱板122を9枚配設した。 As shown in FIG. 12, in the pattern A, the 2 mm heat insulating plate 124 and the 4 mm black heat insulating plate 128 are alternately arranged (for each sheet) as the heat insulating portion, and in the pattern B, the heat insulating plate region is formed. A plurality of 4 mm black heat insulating plates 128 (here, 4) were arranged, and a plurality of 2 mm heat insulating plates 124 (here, 5) were arranged and formed in the heat insulating plate region. In the pattern C, nine 2 mm heat insulating plates 124 were arranged in the heat insulating plate region as in the second embodiment, and in the pattern D, nine heat insulating plates 122 similar to the above comparative example were arranged.

なお、パターンBでは、黒色断熱板128が配設された領域を上層部とし、断熱板124が配設された領域を下層部としてもよい。また、各パターン(パターンA〜パターンD)において、側面(側方)に発熱体56が配置される断熱板領域の高温部を上層部とし、側面(側方)に発熱体56が配置されない断熱板領域の低温部を下層部とする構成としてもよい。 In the pattern B, the region where the black heat insulating plate 128 is arranged may be the upper layer portion, and the region where the heat insulating plate 124 is arranged may be the lower layer portion. Further, in each pattern (Pattern A to Pattern D), the high temperature portion of the heat insulating plate region where the heating element 56 is arranged on the side surface (side) is set as the upper layer portion, and the heat insulating body 56 is not arranged on the side surface (side). The low temperature portion of the plate region may be the lower layer portion.

図13は、図12に示すパターンAからパターンDにおける断熱部を用いて、N2雰囲気で炉内圧力400Paを維持しつつ、初期温度を炉内温度400℃とし、目標温度を炉内温度740℃としたときの基板1の温度依存性の解析結果の例を示すものである。縦軸が基板温度(℃)、横軸が時間(秒)である。ここで、基板温度は、基板1面内の平均温度である。なお、基板1の位置は、ボート31の保持部材34に刻設された保持溝35のうち、断熱板領域に一番近い保持溝35(スロット1ともいう)から5番目に近い保持溝35(スロット5)の間の所定位置であり、本実施例では、ボート31の保持部材34に刻設された保持溝35のうち、最も断熱板領域に近いスロット1である。 In FIG. 13, the initial temperature is set to the furnace temperature of 400 ° C. and the target temperature is set to the furnace temperature of 740 ° C. while maintaining the furnace pressure of 400 Pa in the N2 atmosphere by using the heat insulating portions in the patterns A to D shown in FIG. An example of the analysis result of the temperature dependence of the substrate 1 is shown. The vertical axis is the substrate temperature (° C) and the horizontal axis is the time (seconds). Here, the substrate temperature is the average temperature within one surface of the substrate. The position of the substrate 1 is the holding groove 35 (also referred to as slot 1) that is the fifth closest to the holding groove 35 (also referred to as slot 1) closest to the heat insulating plate region among the holding grooves 35 carved in the holding member 34 of the boat 31. It is a predetermined position between the slots 5), and in this embodiment, it is the slot 1 closest to the heat insulating plate region among the holding grooves 35 carved in the holding member 34 of the boat 31.

図13において、上述の実施例2に相当するパターンCと上述の比較例に相当するパターンDを比較すると、パターンCでは、断熱材の厚みを小さくした高反射率断熱材124の方が炉内温度を高温に保持すると共に、昇温時間が早いことが分かる。 In FIG. 13, when the pattern C corresponding to the above-mentioned Example 2 and the pattern D corresponding to the above-mentioned comparative example are compared, in the pattern C, the high-reflectance heat insulating material 124 in which the thickness of the heat insulating material is reduced is in the furnace. It can be seen that the temperature is kept high and the temperature rise time is short.

次に図13において、パターンCと、該パターンCから高反射率石英の上部分(断熱板領域の最上部から断熱板4枚分)を輻射熱の吸収が高い黒色断熱材を用いたものに変更した断熱板128に変更したパターンBとを比較すると、断熱板領域の上部で効率よく輻射を吸収するため基板1の温度をより早くより高温にすることができることがわかる。つまり、黒色断熱板128を利用することにより、断熱板領域の上部で蓄熱することができ、熱逃げが生じにくく、基板処理領域の下部に近いところであっても基板1を効率よく加熱することができるためである。 Next, in FIG. 13, the pattern C and the upper part of the high-reflectance quartz (four heat insulating plates from the top of the heat insulating plate region) from the pattern C are changed to those using a black heat insulating material having high absorption of radiant heat. Comparing with the pattern B changed to the heat insulating plate 128, it can be seen that the temperature of the substrate 1 can be raised faster and higher because the radiation is efficiently absorbed in the upper part of the heat insulating plate region. That is, by using the black heat insulating plate 128, heat can be stored in the upper part of the heat insulating plate region, heat escape is less likely to occur, and the substrate 1 can be efficiently heated even near the lower part of the substrate processing region. Because it can be done.

更に図13において、パターンBと、高反射率の断熱材の間に黒色断熱材を挟み込んだパターンAの構造とを比較すると昇温時間と高温保持能力が高くなった。断熱板領域で効率よく輻射を吸収するため基板1の温度をより早くより高温にすることができることがわかる。言い換えると、パターンBの場合、黒色断熱板128が断熱板領域の上部にしかないため、断熱板領域の下部の熱逃げを抑制することができない。一方、パターンAでは、断熱板124と黒色断熱板128を1枚ずつ交互に配置することにより断熱板領域全体での熱逃げを抑制することができる。さらに、パターンAは、黒色断熱板128の室温近くでは反射率が低く、高温になるにつれて熱放射率が上昇する特性が、断熱板領域全体で最も効率良く影響しているので、昇温時間と高温保持能力を向上させることができているといえる。 Further, in FIG. 13, when the structure of the pattern B and the structure of the pattern A in which the black heat insulating material is sandwiched between the heat insulating materials having high reflectance are compared, the temperature rising time and the high temperature holding ability are higher. It can be seen that the temperature of the substrate 1 can be raised faster and higher because the radiation is efficiently absorbed in the heat insulating plate region. In other words, in the case of the pattern B, since the black heat insulating plate 128 is only in the upper part of the heat insulating plate region, it is not possible to suppress the heat escape in the lower part of the heat insulating plate region. On the other hand, in the pattern A, heat escape in the entire heat insulating plate region can be suppressed by alternately arranging the heat insulating plates 124 and the black heat insulating plates 128 one by one. Further, in the pattern A, the reflectance of the black heat insulating plate 128 is low near room temperature, and the heat emissivity increases as the temperature rises, which most efficiently affects the entire heat insulating plate region. It can be said that the high temperature holding capacity can be improved.

図13に示すように、断熱板124と黒色断熱板128を1枚ずつ交互に配置するパターンAでは、目標温度の740℃で保持することができることが分かる。更に、昇温時間に関しても初期温度400℃から700℃までの昇温時間をパターンBより短くすることができる。また、パターンC及びパターンDが、基板温度700℃に到達できなかったのに対して、パターンA及びパターンBは、基板温度700℃に到達している。 As shown in FIG. 13, it can be seen that in the pattern A in which the heat insulating plates 124 and the black heat insulating plates 128 are alternately arranged one by one, the temperature can be maintained at the target temperature of 740 ° C. Further, regarding the temperature rise time, the temperature rise time from the initial temperature of 400 ° C. to 700 ° C. can be made shorter than that of the pattern B. Further, the pattern C and the pattern D could not reach the substrate temperature of 700 ° C., whereas the patterns A and the pattern B reached the substrate temperature of 700 ° C.

このように、本実施形態によれば、光や熱の輻射を吸収できる断熱部材(本実施例では黒色断熱材)128を用いることにより、断熱板領域(炉口部)から熱逃げを抑制し、効率よく基板処理領域下部の基板1に熱を供給することができる。つまり、反射率の高い断熱板124と黒色断熱材128を組み合わせることで、基板1の昇温時間及び目標温度での保持時間を制御することができる。 As described above, according to the present embodiment, by using the heat insulating member (black heat insulating material in this embodiment) 128 capable of absorbing light and heat radiation, heat escape from the heat insulating plate region (fireplace portion) is suppressed. It is possible to efficiently supply heat to the substrate 1 below the substrate processing region. That is, by combining the heat insulating plate 124 having high reflectance and the black heat insulating material 128, it is possible to control the temperature rising time of the substrate 1 and the holding time at the target temperature.

本実施形態によれば、基板保持具は、基板が保持される基板処理領域と断熱板が保持される断熱板領域に区別され、断熱板領域において、反射率の大きい断熱板と光を吸収する黒色断熱板が適宜組合せられ、保持されるよう構成されている。特に、断熱板領域において、反射率の大きい断熱板と光を吸収する黒色断熱板が交互に保持されるよう構成されているので、処理基板の目標温度までの昇温時間及び目標温度の保持を精度よく制御することができる。 According to the present embodiment, the substrate holder is divided into a substrate processing region in which the substrate is held and a heat insulating plate region in which the heat insulating plate is held, and in the heat insulating plate region, the heat insulating plate having high reflectance and light are absorbed. The black heat insulating plate is appropriately combined and configured to be held. In particular, in the heat insulating plate region, the heat insulating plate having high reflectance and the black heat insulating plate that absorbs light are alternately held, so that the temperature rise time to the target temperature of the processing substrate and the holding of the target temperature can be maintained. It can be controlled with high accuracy.

また、本実施形態によれば、光や熱の輻射を吸収できる黒色断熱材128を用いることにより、断熱板領域(炉口部)から熱逃げを抑制し、効率よく基板処理領域下部の基板1に熱を供給することができ、目標温度(例えば、740℃)までの到達時間(昇温時間)を改善することができる。更に、黒色断熱板128の高温になるにつれて熱放射率が大きくなる特性と反射率が大きい断熱板と適宜組合せることにより、目標温度(例えば、740℃)での保持時間を維持させることができる。 Further, according to the present embodiment, by using the black heat insulating material 128 capable of absorbing light and heat radiation, heat escape from the heat insulating plate region (furnace mouth portion) is suppressed, and the substrate 1 in the lower part of the substrate processing region is efficiently used. It is possible to supply heat to the target temperature (for example, 740 ° C.) and improve the time to reach the target temperature (heating time). Further, the holding time at the target temperature (for example, 740 ° C.) can be maintained by appropriately combining the black heat insulating plate 128 with the characteristic that the heat emissivity increases as the temperature rises and the heat insulating plate having a large reflectance. ..

以上、本発明の実施形態について具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The embodiment of the present invention has been specifically described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.

例えば、断熱板領域の熱履歴を抑える為に断熱材領域の温度を意図的に下げたい場合などもある。その場合は意図的に断熱板の熱容量をあげる、もしくは反射率の悪い材料を選択することで断熱材領域の温度コントロールが可能である。 For example, there may be a case where the temperature of the heat insulating material region is intentionally lowered in order to suppress the heat history of the heat insulating plate region. In that case, the temperature of the heat insulating material region can be controlled by intentionally increasing the heat capacity of the heat insulating plate or selecting a material having poor reflectance.

例えば、上述の実施形態では、ボート31の基板処理領域に基板1を載置し、ボート31の断熱板領域に複数枚の断熱板120〜124を載置する構成について説明したが、これに限らず、ボート31の下方に断熱板120〜124を保持する断熱板保持具をボート31とは別体で設ける構成にも適用することができる。 For example, in the above-described embodiment, the configuration in which the substrate 1 is placed in the substrate processing region of the boat 31 and a plurality of heat insulating plates 120 to 124 are placed in the heat insulating plate region of the boat 31 has been described, but the present invention is limited to this. However, it can also be applied to a configuration in which a heat insulating plate holder for holding the heat insulating plates 120 to 124 below the boat 31 is provided separately from the boat 31.

また、上述の実施形態では、SiN膜を形成する例について説明したが、膜種は特に限定されない。例えば、シリコン酸化膜(SiO膜)、金属酸化膜等の酸化膜等の種々の膜種に適用することができる。 Further, in the above-described embodiment, an example of forming a SiN film has been described, but the film type is not particularly limited. For example, it can be applied to various film types such as an oxide film such as a silicon oxide film (SiO film) and a metal oxide film.

また、上述の実施形態では、基板処理装置について説明したが、半導体製造装置全般に適用することができる。また、半導体製造装置に限らずLCD(Liquid Crystal Display)装置のようなガラス基板を処理する装置にも適用することができる。 Further, in the above-described embodiment, the substrate processing apparatus has been described, but it can be applied to all semiconductor manufacturing apparatus. Further, it can be applied not only to a semiconductor manufacturing apparatus but also to an apparatus for processing a glass substrate such as an LCD (Liquid Crystal Display) apparatus.

1 基板(ウエハ)、10 基板処理装置、11 プロセスチューブ(反応管)、14 処理室、31 ボート(基板保持具)、36,46,66 断熱部、40 ヒータユニット(加熱部)、56 発熱体、120,122,124,128 断熱板、200 コントローラ 1 Substrate (wafer), 10 Substrate processing equipment, 11 Process tube (reaction tube), 14 Processing chamber, 31 Boat (board holder), 36,46,66 Insulation part, 40 Heater unit (heating part), 56 Heating element , 120, 122, 124, 128 insulation plate, 200 controller

Claims (11)

複数枚の基板及び断熱板を保持する基板保持具と、前記基板保持具が収容される反応管と、前記基板保持具に保持された基板を加熱する加熱部と、を有する基板処理装置であって、
前記基板保持具は、前記基板が保持される基板処理領域と前記断熱板が保持される断熱板領域に区別され、前記断熱板領域の上層部に該上層部以外の断熱板領域に保持される断熱板よりも反射率の高い断熱板が保持されるよう構成され、
前記断熱板領域の上層部には、少なくとも一つの熱や光を吸収する黒色断熱板が設けられるよう構成されている基板処理装置。
It is a substrate processing apparatus having a substrate holder for holding a plurality of substrates and a heat insulating plate, a reaction tube for accommodating the substrate holder, and a heating unit for heating the substrate held by the substrate holder. hand,
The substrate holder is divided into a substrate processing region in which the substrate is held and a heat insulating plate region in which the heat insulating plate is held, and is held in an upper layer portion of the heat insulating plate region in a heat insulating plate region other than the upper layer portion. It is configured to hold a heat insulating board that is more reflective than the heat insulating board,
A substrate processing apparatus configured to be provided with a black heat insulating plate that absorbs at least one heat or light in the upper layer portion of the heat insulating plate region.
前記基板保持具は、前記断熱板領域の上層部に該上層部以外の前記断熱板領域に保持される断熱板よりも厚さの小さい断熱板を有するよう構成される請求項1記載の基板処理装置。 The substrate treatment according to claim 1, wherein the substrate holder is configured to have a heat insulating plate having a thickness smaller than that of the heat insulating plate held in the heat insulating plate region other than the upper layer portion in the upper layer portion of the heat insulating plate region. apparatus. 前記基板保持具は、前記断熱板領域の上層部に保持される断熱板の断熱板間の距離が、該上層部以外の前記断熱板領域に保持される断熱板の断熱板間の距離よりも狭くなるよう構成される請求項1記載の基板処理装置。 In the substrate holder, the distance between the heat insulating plates of the heat insulating plate held in the upper layer portion of the heat insulating plate region is larger than the distance between the heat insulating plates of the heat insulating plate held in the heat insulating plate region other than the upper layer portion. The substrate processing apparatus according to claim 1, which is configured to be narrow. 前記基板保持具は、前記断熱板領域において、反射率が高い断熱板の枚数は反射率が低い断熱板の枚数よりも多く設けられる請求項記載の基板処理装置。 Said substrate holder, said in insulating plate area, the reflectance is high heat insulating plate number of the substrate processing apparatus according to claim 1, wherein provided more than the number of low reflectivity insulation board. 前記基板保持具は、前記断熱板領域において、厚さが小さい断熱板の枚数は厚さが大きい断熱板の枚数よりも多く設けられる請求項記載の基板処理装置。 The substrate processing apparatus according to claim 2 , wherein the substrate holder is provided in the heat insulating plate region in a larger number of heat insulating plates having a small thickness than the number of heat insulating plates having a large thickness. 前記断熱板領域の上層部は、前記断熱板の側面に前記加熱部が配置される領域であり、前記断熱板領域の下層部は、前記断熱板の側面に前記加熱部が配置されない領域であるよう構成されている請求項1記載の基板処理装置。 The upper layer portion of the heat insulating plate region is a region where the heating portion is arranged on the side surface of the heat insulating plate, and the lower layer portion of the heat insulating plate region is a region where the heating portion is not arranged on the side surface of the heat insulating plate. The substrate processing apparatus according to claim 1, which is configured as described above. 前記基板保持具は、前記断熱板領域の下層部、熱や光を吸収する黒色断熱板が設けられる請求項1記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the substrate holder is provided with a black heat insulating plate that absorbs heat and light in a lower layer portion of the heat insulating plate region. 複数枚の基板及び断熱板を保持する基板保持具を有する基板処理装置であって、
前記基板保持具は、前記基板が保持される基板処理領域と前記断熱板が保持される断熱板領域に区別され、前記断熱板領域の上層部に該上層部以外の断熱板領域に保持される断熱板よりも反射率が高く、厚さの小さい断熱板を有し、
前記上層部以外の断熱板領域に保持される前記厚さが大きい断熱板は黒色断熱板で構成されている基板処理装置。
A substrate processing device having a substrate holder for holding a plurality of substrates and a heat insulating plate.
The substrate holder is divided into a substrate processing region in which the substrate is held and a heat insulating plate region in which the heat insulating plate is held, and is held in an upper layer portion of the heat insulating plate region in a heat insulating plate region other than the upper layer portion. It has a heat insulating plate that has higher reflectance and a smaller thickness than the heat insulating plate.
The large-thick heat insulating plate held in the heat insulating plate region other than the upper layer portion is a substrate processing apparatus composed of a black heat insulating plate.
前記基板保持具は、前記断熱板領域の少なくとも一部において、前記反射率の大きい断熱板と前記黒色断熱板が交互に保持されるよう構成されている請求項記載の基板処理装置。 Said substrate holder, said at least part of the heat insulating plate region, a substrate processing apparatus according to claim 1, wherein said black insulating plate with large heat insulating plate of the reflectance is configured to be held alternately. 基板が保持される基板処理領域と複数の断熱板が保持される断熱板領域に区別され、前記断熱板領域の上層部に該上層部以外の断熱板領域に保持される断熱板よりも反射率の高い断熱板が保持されるよう構成され、
前記断熱板領域の上層部には、少なくとも一つの熱や光を吸収する黒色断熱板が設けられるよう構成されている基板保持具。
It is divided into a substrate processing area where the substrate is held and a heat insulating plate area where a plurality of heat insulating plates are held, and the reflectance of the upper layer portion of the heat insulating plate region is higher than that of the heat insulating plate held in the heat insulating plate region other than the upper layer portion. Constructed to hold a high insulation plate,
A substrate holder configured to be provided with a black heat insulating plate that absorbs at least one heat or light in the upper layer portion of the heat insulating plate region.
基板が保持される基板処理領域と複数の断熱板が保持される断熱板領域に区別され、前記断熱板領域の上層部に該上層部以外の断熱板領域に保持される断熱板よりも反射率の高い断熱板が保持されるよう構成される基板保持具であって、前記断熱板領域の上層部には、少なくとも一つの熱や光を吸収する黒色断熱板が設けられる基板保持具に、複数枚の前記基板を保持させる工程と、
複数枚の前記基板を保持した前記基板保持具を反応管内に装入する工程と、
前記反応管内の前記基板を加熱しつつ、前記基板を処理する工程と、
を有する半導体装置の製造方法。
It is divided into a substrate processing area where the substrate is held and a heat insulating plate area where a plurality of heat insulating plates are held, and the reflectance of the upper layer portion of the heat insulating plate region is higher than that of the heat insulating plate held in the heat insulating plate region other than the upper layer portion. a is a high heat insulating plate of the holding so that constituted the substrate holder, wherein the upper portion of the heat insulating plate region, at least one of heat and the substrate holder black insulation plate is provided to absorb light, more The process of holding the said substrate and
A step of charging the substrate holder holding a plurality of the substrates into the reaction tube, and
A step of processing the substrate while heating the substrate in the reaction tube,
A method for manufacturing a semiconductor device having.
JP2018102179A 2017-07-14 2018-05-29 Manufacturing method of substrate processing equipment, substrate holder and semiconductor equipment Active JP6857156B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180077611A KR20190008101A (en) 2017-07-14 2018-07-04 Substrate processing apparatus, substrate retainer and method of manufacturing semiconductor device
CN201810751851.8A CN109256345B (en) 2017-07-14 2018-07-10 Substrate processing apparatus, substrate holder, and method for manufacturing semiconductor device
US16/034,959 US20190024232A1 (en) 2017-07-14 2018-07-13 Substrate processing apparatus and substrate retainer
KR1020200134036A KR20200121773A (en) 2017-07-14 2020-10-16 Substrate processing apparatus, substrate retainer and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138211 2017-07-14
JP2017138211 2017-07-14

Publications (2)

Publication Number Publication Date
JP2019021910A JP2019021910A (en) 2019-02-07
JP6857156B2 true JP6857156B2 (en) 2021-04-14

Family

ID=65354522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018102179A Active JP6857156B2 (en) 2017-07-14 2018-05-29 Manufacturing method of substrate processing equipment, substrate holder and semiconductor equipment

Country Status (2)

Country Link
JP (1) JP6857156B2 (en)
KR (1) KR20200121773A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7071546B2 (en) 2019-02-08 2022-05-19 愛三工業株式会社 Evaporative fuel processing equipment
KR20220103156A (en) * 2020-03-19 2022-07-21 가부시키가이샤 코쿠사이 엘렉트릭 Substrate processing apparatus, thermal insulation material assembly, and method of manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291670A (en) * 2000-04-10 2001-10-19 Hitachi Kokusai Electric Inc Semiconductor manufacturing apparatus
JP4700300B2 (en) * 2004-07-12 2011-06-15 株式会社日立国際電気 Heat treatment equipment
JP2006111913A (en) * 2004-10-13 2006-04-27 Sharp Corp Substrate holder, substrate carrying method and film deposition system
JP2007134518A (en) * 2005-11-10 2007-05-31 Hitachi Kokusai Electric Inc Heat treatment apparatus
JP6080451B2 (en) 2012-09-25 2017-02-15 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and thermocouple support
JP2015010724A (en) * 2013-06-26 2015-01-19 イビデン株式会社 Heat absorber, heat collection receiver, and solar heat power generation device

Also Published As

Publication number Publication date
JP2019021910A (en) 2019-02-07
KR20200121773A (en) 2020-10-26

Similar Documents

Publication Publication Date Title
KR101849998B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and program
CN109256345B (en) Substrate processing apparatus, substrate holder, and method for manufacturing semiconductor device
TWI645172B (en) Manufacturing method of temperature sensor, substrate processing device, semiconductor device and temperature control method
JP6605398B2 (en) Substrate processing apparatus, semiconductor manufacturing method, and program
JP6815526B2 (en) Manufacturing method for substrate processing equipment, heater equipment, and semiconductor equipment
JP6764514B2 (en) Manufacturing method for substrate processing equipment, reaction vessels and semiconductor equipment
JP6857156B2 (en) Manufacturing method of substrate processing equipment, substrate holder and semiconductor equipment
US20180087709A1 (en) Substrate processing apparatus and heat insulating pipe structure
TWI783238B (en) Heat insulating structure, substrate processing apparatus, and manufacturing method of semiconductor device
JP7034324B2 (en) Manufacturing method of board temperature sensor, temperature control system, board processing device and semiconductor device
WO2021187277A1 (en) Substrate treatment apparatus, heat insulation material assembly, and method for manufacturing semiconductor device
WO2020066829A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP7229266B2 (en) SUBSTRATE PROCESSING APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND PROGRAM
JP2006093411A (en) Board processor
JP7285276B2 (en) Cooling method, semiconductor device manufacturing method, and processing apparatus
CN110010526B (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP2005093911A (en) Substrate processing apparatus
JP2004319695A (en) Substrate treatment equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210319

R150 Certificate of patent or registration of utility model

Ref document number: 6857156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250