JP6855936B2 - Soft magnetic alloy particles and electronic components - Google Patents

Soft magnetic alloy particles and electronic components Download PDF

Info

Publication number
JP6855936B2
JP6855936B2 JP2017107814A JP2017107814A JP6855936B2 JP 6855936 B2 JP6855936 B2 JP 6855936B2 JP 2017107814 A JP2017107814 A JP 2017107814A JP 2017107814 A JP2017107814 A JP 2017107814A JP 6855936 B2 JP6855936 B2 JP 6855936B2
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
alloy particles
present
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017107814A
Other languages
Japanese (ja)
Other versions
JP2018206835A (en
Inventor
明洋 原田
明洋 原田
明徳 大井
明徳 大井
英治 茂呂
英治 茂呂
真仁 小枝
真仁 小枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017107814A priority Critical patent/JP6855936B2/en
Publication of JP2018206835A publication Critical patent/JP2018206835A/en
Application granted granted Critical
Publication of JP6855936B2 publication Critical patent/JP6855936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軟磁性合金粒子および電子部品に関する。 The present invention relates to soft magnetic alloy particles and electronic components.

近年、主に電源回路で使用されるパワーインダクタの小型化、低背化および大容量化の要求が高まっている。そして、要求に応えるためにフェライトを用いた従来のインダクタに代わって、飽和磁束密度が高い軟磁性金属粉を用いたインダクタが提案されている。 In recent years, there has been an increasing demand for miniaturization, low profile and large capacity of power inductors mainly used in power supply circuits. Then, in order to meet the demand, an inductor using soft magnetic metal powder having a high saturation magnetic flux density has been proposed in place of the conventional inductor using ferrite.

しかし、軟磁性金属粉は絶縁性が低い。そのため、軟磁性金属粉を特に高周波領域用のインダクタに用いる場合には渦電流損失が増加し、透磁率μ´が低下してしまう。そのため、金属粒子間の絶縁性を高め、渦電流損失を低下させる方法が検討されてきた。なお、高周波領域とは周波数が数MHz程度の領域のことであり、透磁率μ´とは複素透磁率の実部のことである。 However, soft magnetic metal powder has low insulating properties. Therefore, when the soft magnetic metal powder is used as an inductor for a high frequency region, the eddy current loss increases and the magnetic permeability μ ′ decreases. Therefore, a method of improving the insulation between metal particles and reducing the eddy current loss has been studied. The high frequency region is a region having a frequency of about several MHz, and the magnetic permeability μ'is the real part of the complex magnetic permeability.

特許文献1には、周囲の少なくとも一部に酸化被膜が存在する軟磁性合金粒子が記載されている。しかし、特許文献1に記載の軟磁性合金粒子は酸化被膜を有するため硬度が上昇する。したがって、軟磁性合金粒子から成形体を作製する際に粒子が変形しにくく高密度化しにくい。また、成形時に必要な圧力も高くなるため、加工ひずみが大きくなってしまう。 Patent Document 1 describes soft magnetic alloy particles in which an oxide film is present at least in a part of the periphery. However, since the soft magnetic alloy particles described in Patent Document 1 have an oxide film, the hardness increases. Therefore, when the molded product is produced from the soft magnetic alloy particles, the particles are not easily deformed and the density is not easily increased. In addition, the pressure required for molding also increases, so that the processing strain increases.

特許文献2には、金属粒子間に存在する粒界層において、粒子内よりも高濃度なSiを含有する層が存在する金属磁性材料が記載されている。しかし、特許文献2に記載の金属磁性材料に熱処理を施すと、粒子内に存在するSiが粒子表面および粒界層に拡散してしまうため拡散粒子内部のSi濃度が低下し、透磁率が低下してしまう。 Patent Document 2 describes a metal magnetic material in which a layer containing Si having a higher concentration than that in the particles is present in the grain boundary layer existing between the metal particles. However, when the metal magnetic material described in Patent Document 2 is heat-treated, the Si existing in the particles diffuses to the particle surface and the grain boundary layer, so that the Si concentration inside the diffused particles decreases and the magnetic permeability decreases. Resulting in.

特開2013−153119号公報Japanese Unexamined Patent Publication No. 2013-153119 特開2016−143700号公報Japanese Unexamined Patent Publication No. 2016-143700

本発明は、絶縁性に優れ、しかも高周波領域での透磁率μ´が高い磁性部品用の軟磁性合金粒子を得ることを目的とする。 An object of the present invention is to obtain soft magnetic alloy particles for magnetic parts having excellent insulating properties and high magnetic permeability μ'in the high frequency region.

上記の目的を達成するために、本発明の軟磁性合金粒子は、
FeおよびNiを含む軟磁性合金粒子であって、
前記軟磁性合金粒子が、複数の結晶子と、前記結晶子同士の間にある結晶粒界と、からなり、
前記結晶粒界に高抵抗層が存在することを特徴とする。
In order to achieve the above object, the soft magnetic alloy particles of the present invention are used.
Soft magnetic alloy particles containing Fe and Ni.
The soft magnetic alloy particles are composed of a plurality of crystallites and grain boundaries between the crystallites.
It is characterized in that a high resistance layer is present at the grain boundaries.

本発明に係る軟磁性合金粒子は、上記の特徴を有することで磁性部品の比抵抗ρおよび高周波領域での透磁率μ´が向上する。なお、透磁率μ´とは複素透磁率の実部である。 The soft magnetic alloy particles according to the present invention have the above-mentioned characteristics, so that the specific resistance ρ of the magnetic component and the magnetic permeability μ'in the high frequency region are improved. The magnetic permeability μ'is the real part of the complex magnetic permeability.

本発明に係る軟磁性合金粒子は、さらにSiを含んでもよい。 The soft magnetic alloy particles according to the present invention may further contain Si.

本発明に係る軟磁性合金粒子は、前記高抵抗層がSiを含んでもよい。 In the soft magnetic alloy particles according to the present invention, the high resistance layer may contain Si.

本発明に係る軟磁性合金粒子は、さらにSiおよびMを含み、
前記MがCo,Cr,Mn,Ti,Zr,Hf,Nb,Ta,Mo,Al,Zn,S,NおよびOから選択される一種以上であってもよい。
The soft magnetic alloy particles according to the present invention further contain Si and M, and contain Si and M.
The M may be one or more selected from Co, Cr, Mn, Ti, Zr, Hf, Nb, Ta, Mo, Al, Zn, S, N and O.

本発明に係る軟磁性合金粒子は、さらにSiおよびCoを含んでもよい。 The soft magnetic alloy particles according to the present invention may further contain Si and Co.

本発明に係る磁性部品は、上記のいずれかに記載の軟磁性合金粒子を含む。 The magnetic component according to the present invention includes the soft magnetic alloy particles described in any of the above.

本実施形態に係る軟磁性合金粒子の概略図である。It is the schematic of the soft magnetic alloy particle which concerns on this embodiment. 本実施形態に係る軟磁性合金粒子の明視野像である。It is a bright field image of the soft magnetic alloy particle which concerns on this embodiment. 本実施形態に係る軟磁性合金粒子の暗視野像である。It is a dark field image of the soft magnetic alloy particle which concerns on this embodiment. 本実施形態に係る軟磁性合金粒子のSiマッピング画像である。It is a Si mapping image of the soft magnetic alloy particle which concerns on this embodiment. 本実施形態に係る軟磁性合金粒子のFeマッピング画像である。It is Fe mapping image of the soft magnetic alloy particle which concerns on this embodiment. 結晶粒界に高抵抗層が存在しない軟磁性合金粒子のSiマッピング画像である。It is a Si mapping image of a soft magnetic alloy particle which does not have a high resistance layer in a crystal grain boundary.

以下、本発明の好適な実施形態を図面に基づき説明するが、本発明の実施形態は下記の実施形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but embodiments of the present invention are not limited to the following embodiments.

本実施形態に係る軟磁性合金粒子2は図1に示すように複数の結晶子4および結晶子4同士の間に存在する結晶粒界4aからなり、結晶粒界4aに高抵抗層が存在することを特徴とする。 As shown in FIG. 1, the soft magnetic alloy particles 2 according to the present embodiment are composed of a plurality of crystallites 4 and crystal grain boundaries 4a existing between the crystallites 4, and a high resistance layer is present at the crystal grain boundaries 4a. It is characterized by that.

本実施形態に係る軟磁性合金粒子の平均粒子径には特に制限はないが、例えば1μm以上50μm以下である。 The average particle size of the soft magnetic alloy particles according to the present embodiment is not particularly limited, but is, for example, 1 μm or more and 50 μm or less.

軟磁性合金粒子2はFeおよびNiを含む。具体的には、本実施形態に係る軟磁性合金粒子2(特に結晶子4)は、Fe−Ni系,Fe−Ni−Si系,Fe−Ni−M系,Fe−Ni−Si−M系等のFeおよびNiを含む軟磁性合金からなる。なお、前記MはCo,Cr,Mn,Ti,Zr,Hf,Nb,Ta,Mo,Al,Zn,S,NおよびOから選択される一種以上である。軟磁性合金はFe−Ni−Si−M系の軟磁性合金からなることが好ましい。特にMがCoのみであるFe−Ni−Si−Co系の軟磁性合金からなることが最も好ましい。 The soft magnetic alloy particles 2 contain Fe and Ni. Specifically, the soft magnetic alloy particles 2 (particularly the crystallite 4) according to the present embodiment are Fe-Ni-based, Fe-Ni-Si-based, Fe-Ni-M-based, and Fe-Ni-Si-M-based. It is made of a soft magnetic alloy containing Fe and Ni. The M is one or more selected from Co, Cr, Mn, Ti, Zr, Hf, Nb, Ta, Mo, Al, Zn, S, N and O. The soft magnetic alloy is preferably made of a Fe—Ni—Si—M based soft magnetic alloy. In particular, it is most preferably made of a Fe—Ni—Si—Co-based soft magnetic alloy in which M is only Co.

なお、本願明細書では、例えばFe−Ni系の軟磁性合金という場合には、FeおよびNiのそれぞれの含有割合が軟磁性合金全体に対して1.0質量%以上であり、FeおよびNiの他に単独で1.0質量%以上含有している元素がない場合を指す。また、Fe−Ni−M系の軟磁性合金という場合には、Fe,Niおよび特定の種類のMのそれぞれの含有割合が軟磁性合金全体に対して1.0質量%以上であり、Fe,Niおよび前記特定の種類のMの他に単独で1.0質量%以上含有している元素がない場合を指す。その他の種類の軟磁性合金についても同様である。 In the specification of the present application, for example, in the case of an Fe—Ni-based soft magnetic alloy, the content ratios of Fe and Ni are 1.0% by mass or more with respect to the entire soft magnetic alloy, and Fe and Ni are used. It refers to the case where there is no other element containing 1.0% by mass or more alone. Further, in the case of a Fe—Ni—M-based soft magnetic alloy, the content ratios of Fe, Ni and a specific type of M are 1.0% by mass or more with respect to the entire soft magnetic alloy, and Fe, It refers to the case where there is no element containing 1.0% by mass or more alone in addition to Ni and the specific type of M. The same applies to other types of soft magnetic alloys.

高抵抗層とは、結晶子4と比較して抵抗が高い層のことである。高抵抗層に含まれる元素の種類には特に制限はない。例えば、Si,B,Nbが挙げられる。特に高抵抗層にSiが含まれることが好ましい。 The high resistance layer is a layer having a higher resistance than the crystallite 4. There is no particular limitation on the types of elements contained in the high resistance layer. For example, Si, B, Nb can be mentioned. In particular, it is preferable that the high resistance layer contains Si.

本実施形態に係る軟磁性合金粒子2におけるFeの含有割合には特に制限はない。好ましくは39.5質量%以上61.5質量%以下、さらに好ましくは40.0質量%以上53.5質量%以下である。 The content ratio of Fe in the soft magnetic alloy particles 2 according to the present embodiment is not particularly limited. It is preferably 39.5% by mass or more and 61.5% by mass or less, and more preferably 40.0% by mass or more and 53.5% by mass or less.

本実施形態に係る軟磁性合金粒子2におけるNiの含有割合には特に制限はない。好ましくは38.0質量%以上60.0質量%以下、さらに好ましくは40.0質量%以上55.0質量%以下である。 The content ratio of Ni in the soft magnetic alloy particles 2 according to the present embodiment is not particularly limited. It is preferably 38.0% by mass or more and 60.0% by mass or less, and more preferably 40.0% by mass or more and 55.0% by mass or less.

本実施形態に係る軟磁性合金粒子2におけるSiの含有割合には特に制限はない。高抵抗層にSiが含まれる場合、好ましくは0.5質量%以上10.0質量%以下、さらに好ましくは1.5質量%以上5.0質量%以下である。 The content ratio of Si in the soft magnetic alloy particles 2 according to the present embodiment is not particularly limited. When Si is contained in the high resistance layer, it is preferably 0.5% by mass or more and 10.0% by mass or less, and more preferably 1.5% by mass or more and 5.0% by mass or less.

本実施形態に係る軟磁性合金粒子2におけるBの含有割合には特に制限はない。例えば1.0質量%以下である。高抵抗層にSiおよびBが含まれる場合、SiおよびBの含有割合の合計が好ましくは0.5質量%以上10.0質量%以下、さらに好ましくは1.5質量%以上5.0質量%以下である。 The content ratio of B in the soft magnetic alloy particles 2 according to the present embodiment is not particularly limited. For example, it is 1.0% by mass or less. When the high resistance layer contains Si and B, the total content of Si and B is preferably 0.5% by mass or more and 10.0% by mass or less, and more preferably 1.5% by mass or more and 5.0% by mass or less. It is as follows.

本実施形態に係る軟磁性合金粒子2におけるNbの含有割合には特に制限はない。例えば5.0質量%以下である。また、高抵抗層にNbが含まれる場合には、Nbの含有割合が0.5質量%以上3.0質量%以下であることが好ましい。 The content ratio of Nb in the soft magnetic alloy particles 2 according to the present embodiment is not particularly limited. For example, it is 5.0% by mass or less. When Nb is contained in the high resistance layer, the content ratio of Nb is preferably 0.5% by mass or more and 3.0% by mass or less.

本実施形態に係る軟磁性合金粒子2における前記特定の種類のMの含有割合には特に制限はない。好ましくは、1.0質量%以上10.0質量%以下、さらに好ましくは1.0質量%以上5.0質量%以下である。 The content ratio of the specific type of M in the soft magnetic alloy particles 2 according to the present embodiment is not particularly limited. It is preferably 1.0% by mass or more and 10.0% by mass or less, and more preferably 1.0% by mass or more and 5.0% by mass or less.

本実施形態に係る軟磁性合金粒子2が複数の結晶子4および結晶子4同士の間に存在する結晶粒界4aからなることはTEMにより明視野像(BF像)および/または暗視野像(DF像)を観察することで確認することができる。図2に本実施形態に係る軟磁性合金粒子2の明視野像を示す。図3に本実施形態に係る軟磁性合金粒子2の暗視野像を示す。 The fact that the soft magnetic alloy particles 2 according to the present embodiment are composed of a plurality of crystallites 4 and crystal grain boundaries 4a existing between the crystallites 4 means that a brightfield image (BF image) and / or a darkfield image (BF image) and / or a darkfield image ( It can be confirmed by observing the DF image). FIG. 2 shows a bright field image of the soft magnetic alloy particles 2 according to the present embodiment. FIG. 3 shows a dark field image of the soft magnetic alloy particles 2 according to the present embodiment.

さらに、結晶粒界4aが高抵抗層を含むことはTEM−EDSを用いて元素マッピングを行うことで確認することができる。図4に本実施形態に係る軟磁性合金粒子2のSiマッピング画像を示す。図5に本実施形態に係る軟磁性合金粒子2のFeマッピング画像を示す。図2〜図5から結晶粒界4aにおいてSi濃度が高くFeの濃度が低い高抵抗層が存在することが確認できる。なお、図2〜図5は後述する実施例15の写真である。 Further, it can be confirmed by performing element mapping using TEM-EDS that the grain boundary 4a contains a high resistance layer. FIG. 4 shows a Si mapping image of the soft magnetic alloy particles 2 according to the present embodiment. FIG. 5 shows an Fe mapping image of the soft magnetic alloy particles 2 according to the present embodiment. From FIGS. 2 to 5, it can be confirmed that a high resistance layer having a high Si concentration and a low Fe concentration exists at the grain boundaries 4a. 2 to 5 are photographs of Example 15 described later.

なお、結晶粒界に高抵抗層が存在しない軟磁性合金粒子のSiマッピング画像を図6に示す。 FIG. 6 shows a Si mapping image of the soft magnetic alloy particles having no high resistance layer at the grain boundaries.

高抵抗層の存在割合には特に制限はない。軟磁性合金粒子2の断面において、高抵抗層の面積が、結晶粒界4aの面積に対して70%以上であることが好ましい。 There is no particular limitation on the abundance ratio of the high resistance layer. In the cross section of the soft magnetic alloy particles 2, the area of the high resistance layer is preferably 70% or more with respect to the area of the crystal grain boundaries 4a.

また、軟磁性合金粒子2の粒子表面2aにおける酸化被膜の存在割合は少ないことが好ましい。具体的には、断面を観察した場合において粒子表面2aの酸化被膜の厚さが5.0nm以下であることが好ましく、3.0nm以下であることが特に好ましい。 Further, it is preferable that the abundance ratio of the oxide film on the particle surface 2a of the soft magnetic alloy particles 2 is small. Specifically, when observing the cross section, the thickness of the oxide film on the particle surface 2a is preferably 5.0 nm or less, and particularly preferably 3.0 nm or less.

本実施形態に係る軟磁性合金粒子2は、結晶粒界4aに高抵抗層を含むことにより、粒子表面2aの酸化被膜が薄くても高い絶縁性を有し、比抵抗ρを向上させることができる。そして、粒子表面2aの酸化被膜が薄いことで軟磁性合金粒子2の硬度を低下させ、加工性を向上させることができる。その結果、軟磁性合金粒子2を圧粉磁芯等に加工する場合に圧粉磁芯の密度を向上させることができる。 By including the high resistance layer in the grain boundaries 4a, the soft magnetic alloy particles 2 according to the present embodiment have high insulating properties even if the oxide film on the particle surface 2a is thin, and can improve the specific resistance ρ. it can. Since the oxide film on the particle surface 2a is thin, the hardness of the soft magnetic alloy particles 2 can be lowered and the workability can be improved. As a result, when the soft magnetic alloy particles 2 are processed into a dust core or the like, the density of the powder core can be improved.

また、本実施形態に係る軟磁性合金粒子2の結晶粒界4aに高抵抗層が存在することにより、粒子表面2aの酸化被膜が薄くても軟磁性合金粒子2から得られる圧粉磁芯等の渦電流損失が小さくなる。そのため圧粉磁芯等の周波数特性も良好となり、高周波領域での透磁率μ´も向上する。さらに、軟磁性合金粒子2を圧粉磁芯等に加工する場合、結晶粒界4aに高抵抗層を含むことにより、加熱処理を行う工程で応力ひずみを緩和しつつ、結晶粒界4a内部に高抵抗層に含まれるSi等を残留させることができる。その結果、軟磁性合金粒子2から得られる圧粉磁芯において高周波領域における透磁率μ´を向上させやすくなる。 Further, since the high resistance layer is present at the crystal grain boundary 4a of the soft magnetic alloy particles 2 according to the present embodiment, a dust core or the like obtained from the soft magnetic alloy particles 2 can be obtained even if the oxide film on the particle surface 2a is thin. The eddy current loss of is small. Therefore, the frequency characteristics of the dust core and the like are also improved, and the magnetic permeability μ'in the high frequency region is also improved. Further, when the soft magnetic alloy particles 2 are processed into a dust core or the like, by including a high resistance layer in the grain boundaries 4a, the stress strain is relaxed in the process of performing the heat treatment, and the inside of the grain boundaries 4a is relaxed. Si and the like contained in the high resistance layer can remain. As a result, it becomes easy to improve the magnetic permeability μ'in the high frequency region in the dust core obtained from the soft magnetic alloy particles 2.

さらに、結晶粒界4a内部に高抵抗層を構成するSi等を残留させることができるため、加熱処理を行う工程で粒子表面2aにSi等の酸化被膜が形成されにくくなる。その結果、軟磁性合金粒子2を圧粉磁芯等に加工する場合に圧粉磁芯の密度を向上させることができる。 Further, since Si or the like forming the high resistance layer can remain inside the crystal grain boundary 4a, it becomes difficult for an oxide film such as Si or the like to be formed on the particle surface 2a in the step of performing the heat treatment. As a result, when the soft magnetic alloy particles 2 are processed into a dust core or the like, the density of the powder core can be improved.

本実施形態に係る軟磁性合金粉は、本実施形態に係る軟磁性合金粒子2を含む。本実施形態に係る軟磁性合金粉は本実施形態に係る軟磁性合金粒子2のみからなる必要はなく、結晶粒界に高抵抗層が含まれない軟磁性合金粒子が含まれていてもよい。本実施形態に係る軟磁性合金粉における軟磁性合金粒子2の含有割合は粒子数基準で90%以上であることが好ましい。 The soft magnetic alloy powder according to the present embodiment contains the soft magnetic alloy particles 2 according to the present embodiment. The soft magnetic alloy powder according to the present embodiment does not have to consist only of the soft magnetic alloy particles 2 according to the present embodiment, and may contain soft magnetic alloy particles having no high resistance layer at the grain boundaries. The content ratio of the soft magnetic alloy particles 2 in the soft magnetic alloy powder according to the present embodiment is preferably 90% or more based on the number of particles.

以下、本実施形態に係る軟磁性合金粒子からなる軟磁性合金粉の製造方法の一例について説明するが、本実施形態に係る軟磁性合金粉の製造方法は下記の方法に限定されない。 Hereinafter, an example of a method for producing a soft magnetic alloy powder composed of soft magnetic alloy particles according to the present embodiment will be described, but the method for producing a soft magnetic alloy powder according to the present embodiment is not limited to the following method.

まず、軟磁性合金粉の原料を準備する。準備する原料は金属等の単体でもよく、合金でもよい。原料の形態にも特に制限はない。例えば、インゴット、チャンク(塊)、またはショット(粒子)が挙げられる。 First, a raw material for soft magnetic alloy powder is prepared. The raw material to be prepared may be a simple substance such as metal or an alloy. There are no particular restrictions on the form of the raw material. For example, ingots, chunks, or shots (particles).

次に準備した原料を秤量して混合する。この際、最終的に目的とする組成の軟磁性合金粉が得られるように秤量する。そして、混合した原料を溶融、混合して融液を得る。溶融、混合に用いる器具に特に制限はない。例えばルツボ等が用いられる。 Next, the prepared raw materials are weighed and mixed. At this time, weigh the powder so that the soft magnetic alloy powder having the desired composition is finally obtained. Then, the mixed raw materials are melted and mixed to obtain a melt. There are no particular restrictions on the equipment used for melting and mixing. For example, a crucible or the like is used.

そして、融液から軟磁性合金粉を作製する。融液から軟磁性合金粉を作製する方法には特に制限はないが、例えば水アトマイズ法を用いることができる。具体的には、融液をノズル等で噴出させ、噴出した融液に高圧水流を衝突させて急冷することにより、軟磁性合金粉を作製することができる。 Then, a soft magnetic alloy powder is produced from the melt. The method for producing the soft magnetic alloy powder from the melt is not particularly limited, and for example, the water atomizing method can be used. Specifically, a soft magnetic alloy powder can be produced by ejecting a melt with a nozzle or the like and causing a high-pressure water stream to collide with the ejected melt to quench it.

次に、得られた軟磁性合金粉に熱処理を行う。この際に適切な熱処理条件で熱処理を行うことにより、結晶粒界に高抵抗層を偏析させることができる。 Next, the obtained soft magnetic alloy powder is heat-treated. At this time, by performing the heat treatment under appropriate heat treatment conditions, the high resistance layer can be segregated at the grain boundaries.

好ましい熱処理条件は目的とする軟磁性合金粉の組成により変化するが、通常は熱処理温度を300℃以上800℃未満、好ましくは500℃以上600℃以下とする。熱処理時間を10分以上3時間以下、好ましくは30分以上2時間以下とする。さらに、熱処理後の徐冷速度を通常は30℃/時間以上300℃/時間以下、好ましくは50℃/時間以上100℃/時間以下とする。また、熱処理雰囲気には特に制限はないが、通常は窒素、アルゴンなどの不活性ガス雰囲気とする。 Preferred heat treatment conditions vary depending on the composition of the target soft magnetic alloy powder, but usually the heat treatment temperature is 300 ° C. or higher and lower than 800 ° C., preferably 500 ° C. or higher and 600 ° C. or lower. The heat treatment time is 10 minutes or more and 3 hours or less, preferably 30 minutes or more and 2 hours or less. Further, the slow cooling rate after the heat treatment is usually 30 ° C./hour or more and 300 ° C./hour or less, preferably 50 ° C./hour or more and 100 ° C./hour or less. The heat treatment atmosphere is not particularly limited, but is usually an inert gas atmosphere such as nitrogen or argon.

熱処理温度が高く熱処理時間が長いほど結晶粒界に高抵抗層を偏析させやすくなる。しかし、熱処理温度が高すぎ、熱処理時間が長すぎる場合には高抵抗層を構成する元素が固溶しやすくなり、高抵抗層が偏析しにくくなる傾向にある。また、徐冷速度が遅いほど結晶粒界に高抵抗層が偏析しやすくなる傾向がある。しかし、徐冷速度が遅すぎる場合には高抵抗層を構成する元素が固溶しやすくなり、高抵抗層が偏析しにくくなる傾向にある。 The higher the heat treatment temperature and the longer the heat treatment time, the easier it is to segregate the high resistance layer at the grain boundaries. However, when the heat treatment temperature is too high and the heat treatment time is too long, the elements constituting the high resistance layer tend to dissolve easily, and the high resistance layer tends to be difficult to segregate. Further, the slower the slow cooling rate, the easier it is for the high resistance layer to segregate at the grain boundaries. However, if the slow cooling rate is too slow, the elements constituting the high resistance layer tend to dissolve easily, and the high resistance layer tends to be difficult to segregate.

以上の方法により本実施形態に係る軟磁性合金粒子からなる軟磁性合金粉を得ることができる。また、本実施形態に係る軟磁性合金粉に対して通常用いられる方法により圧粉磁芯を得ることができる。圧粉磁芯を得る方法には特に制限はない。 By the above method, a soft magnetic alloy powder composed of soft magnetic alloy particles according to the present embodiment can be obtained. Further, a powder magnetic core can be obtained by a method usually used for the soft magnetic alloy powder according to the present embodiment. There is no particular limitation on the method of obtaining the dust core.

また、本実施形態に係る電子部品は、本実施形態に係る軟磁性合金粒子を含む。軟磁性合金粒子は公知の方法により圧粉磁芯等に加工されて磁性体等に含まれる。また、電子部品の種類には特に制限はない。例えば、インダクタ、リアクトル、モータ等が挙げられる。 Further, the electronic component according to the present embodiment includes the soft magnetic alloy particles according to the present embodiment. The soft magnetic alloy particles are processed into a dust core or the like by a known method and are contained in the magnetic material or the like. In addition, there are no particular restrictions on the types of electronic components. For example, inductors, reactors, motors and the like can be mentioned.

以下、本発明を実施例および比較例を挙げてさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[軟磁性合金粉の調製]
まず、Fe−Ni合金、Fe単体、Ni単体、Co単体、Cr単体、Mn単体およびSi単体のインゴット、チャンク、またはショットを準備した。次にそれらを、表1に示す組成となるよう混合して、水アトマイズ装置内に配置されたルツボに収容した。次いで、不活性雰囲気中、ルツボ外部に設けたワークコイルを用いて、ルツボを高周波誘導により1500℃以上まで加熱し、ルツボ中のインゴット、チャンク又はショットを溶融、混合して融液を得た。
[Preparation of soft magnetic alloy powder]
First, ingots, chunks, or shots of Fe—Ni alloy, Fe alone, Ni alone, Co alone, Cr alone, Mn alone, and Si alone were prepared. They were then mixed to the composition shown in Table 1 and housed in a crucible placed in a water atomizer. Next, in an inert atmosphere, the crucible was heated to 1500 ° C. or higher by high-frequency induction using a work coil provided outside the crucible, and the ingot, chunk or shot in the crucible was melted and mixed to obtain a melt.

次いで、ルツボに設けられたノズルから、ルツボ内の融液を噴出すると同時に、噴出した融液に100MPaの高圧水流を衝突させて急冷することにより、表1に示す各実施例および比較例の元素からなる軟磁性合金粉を作製した。なお、全ての実施例および比較例で軟磁性合金粒子の平均粒子径は4.7μmとなった。 Next, the melt in the crucible is ejected from the nozzle provided in the crucible, and at the same time, a high-pressure water stream of 100 MPa is made to collide with the ejected melt to quench the mixture. A soft magnetic alloy powder made of the above was prepared. The average particle size of the soft magnetic alloy particles was 4.7 μm in all the examples and comparative examples.

さらに、得られた軟磁性合金粉に対して熱処理を施した。表1の全実施例および比較例1〜5では300℃以上800℃未満で10分間以上3時間以下、熱処理し、熱処理後の徐冷速度は30℃/時間以上300℃/時間以下とした。具体的な熱処理条件は各軟磁性合金粉の組成により異なる。なお、比較例6では、900℃で60分、熱処理を行い、熱処理後の徐冷速度は20℃/時間とした。 Further, the obtained soft magnetic alloy powder was heat-treated. In all Examples and Comparative Examples 1 to 5 in Table 1, heat treatment was performed at 300 ° C. or higher and lower than 800 ° C. for 10 minutes or more and 3 hours or less, and the slow cooling rate after the heat treatment was 30 ° C./hour or more and 300 ° C./hour or less. The specific heat treatment conditions differ depending on the composition of each soft magnetic alloy powder. In Comparative Example 6, the heat treatment was performed at 900 ° C. for 60 minutes, and the slow cooling rate after the heat treatment was set to 20 ° C./hour.

[圧粉磁芯の作製]
熱処理後の軟磁性合金粉に対し、バインダとしてのアクリル樹脂を添加し造粒粉を作製した。なお、各実施例および比較例の軟磁性合金成分に応じてアクリル樹脂の種類および添加量を適宜決定した。この造粒粉を用いて、外径13mm×内径6mm×高さ3mmであるトロイダル形状となるように、成形圧6ton/cmで成形した。 次に、大気雰囲気下で、成形体を400℃に保持して脱バインダした後、大気雰囲気下で、脱バインダ後の成形体を焼成温度700℃、焼成時間1時間の条件で焼成し、トロイダル形状の圧粉磁芯を得た。
[Making a dust core]
Acrylic resin as a binder was added to the soft magnetic alloy powder after the heat treatment to prepare a granulated powder. The type and amount of the acrylic resin added were appropriately determined according to the soft magnetic alloy components of each Example and Comparative Example. Using this granulated powder, molding was performed at a molding pressure of 6 ton / cm 2 so as to have a toroidal shape having an outer diameter of 13 mm, an inner diameter of 6 mm, and a height of 3 mm. Next, the molded product was held at 400 ° C. for debinder in an air atmosphere, and then the molded product after debinder was fired in an air atmosphere under the conditions of a firing temperature of 700 ° C. and a firing time of 1 hour toroidal. A powder magnetic core having a shape was obtained.

[各種評価]
(高抵抗層観察)
結晶粒界に高抵抗層が存在するか否か、および、高抵抗層に含まれる元素の種類は、TEM(日本電子製:JEM−2100F)を用いて圧粉磁芯を切断して得られる断面を観察し、かつ、EDSを用いて元素マッピング分析することで特定した。結果を表1に示す。なお、本実施例では、圧粉磁芯を切断して得られる断面において、少なくとも10個の軟磁性合金粒子を観察した。そして、結晶粒界に高抵抗層が存在する軟磁性合金粒子の個数を数え、結晶粒界に高抵抗層が存在する軟磁性合金粒子の割合が個数ベースで80%以上である場合に、当該軟磁性合金粒子に高抵抗層が存在するとした。
[Various evaluations]
(Observation of high resistance layer)
Whether or not a high resistance layer exists at the grain boundaries and the types of elements contained in the high resistance layer can be obtained by cutting the dust core using a TEM (JEOL Ltd .: JEM-2100F). It was identified by observing the cross section and performing element mapping analysis using EDS. The results are shown in Table 1. In this example, at least 10 soft magnetic alloy particles were observed in the cross section obtained by cutting the dust core. Then, the number of soft magnetic alloy particles having a high resistance layer at the crystal grain boundary is counted, and when the ratio of the soft magnetic alloy particles having a high resistance layer at the crystal grain boundary is 80% or more on a number basis, the relevant case is found. It is assumed that the soft magnetic alloy particles have a high resistance layer.

(粒子表面観察)
粒子表面に酸化被膜が形成されているか否かについて観察した。
(Observation of particle surface)
It was observed whether or not an oxide film was formed on the particle surface.

(密度測定)
密度はアルキメデス法により測定した。6.00g/cm以上を良好とした。
(Density measurement)
Density was measured by Archimedes' method. 6.00 g / cm 3 or more was considered good.

(比抵抗測定)
各実施例および比較例の圧粉磁芯における比抵抗は、圧粉磁芯の両面にIn−Ga電極を塗布した後、ウルトラハイレジスタンスメーター(ADVANTEST社製:R8340)を用いて測定した。結果を表1に示す。なお、本実施例では比抵抗1.0×10Ωm以上を良好とし、1.0×10Ωm以上をさらに良好とした。
(Measurement of resistivity)
The specific resistances of the dust cores of each example and the comparative example were measured using an ultra-high resistance meter (manufactured by ADVANTEST: R8340) after applying In-Ga electrodes to both surfaces of the dust core. The results are shown in Table 1. In this example, the specific resistance of 1.0 × 10 3 Ωm or more was set to be good, and 1.0 × 10 4 Ωm or more was set to be even better.

(透磁率の測定)
各実施例および比較例の圧粉磁芯について、周波数2MHzでの比透磁率μ´を測定した。比透磁率μ´の測定にはRFインピーダンスマテリアルアナライザー(アジレントテクノロジー社製:4991A)を用いた。結果を表1に示す。なお、本実施例では比透磁率μ´が30以上である場合を良好とし、40以上である場合をさらに良好とした。
(Measurement of magnetic permeability)
The relative magnetic permeability μ'at a frequency of 2 MHz was measured for the dust cores of each Example and Comparative Example. An RF impedance material analyzer (manufactured by Agilent Technologies: 4991A) was used to measure the relative permeability μ'. The results are shown in Table 1. In this example, the case where the relative magnetic permeability μ'is 30 or more is good, and the case where it is 40 or more is even better.

(ビッカース硬度の測定)
各実施例および比較例の圧粉磁芯について、超微小押し込み硬さ試験機(エリオニクス社製:ENT1100a)を用いてビッカース硬度を測定した。結果を表1に示す。圧粉磁芯の成形容易性の観点から、ビッカース硬度は低いほど好ましい。本実施例では、ビッカース硬度が250HV以下である場合を良好とし、180HV以下である場合をさらに良好とした。ただし、ビッカース硬度は250HV超であってもよい。
(Measurement of Vickers hardness)
The Vickers hardness of the dust cores of each Example and Comparative Example was measured using an ultrafine indentation hardness tester (manufactured by Elionix: ENT1100a). The results are shown in Table 1. From the viewpoint of ease of forming the dust core, the lower the Vickers hardness is, the more preferable. In this example, the case where the Vickers hardness is 250 HV or less is good, and the case where the Vickers hardness is 180 HV or less is further good. However, the Vickers hardness may be more than 250 HV.

Figure 0006855936
Figure 0006855936

FeおよびNiを含む軟磁性合金粉であり、高抵抗層が当該軟磁性合金粉の結晶粒界に存在する実施例では、比抵抗ρおよび透磁率μ´が良好であった。さらに、粒子表面の酸化被膜が薄い実施例ではビッカース硬度および密度も良好であった。 In the example of the soft magnetic alloy powder containing Fe and Ni and the high resistance layer was present at the grain boundaries of the soft magnetic alloy powder, the specific resistance ρ and the magnetic permeability μ ′ were good. Furthermore, the Vickers hardness and density were also good in the examples in which the oxide film on the particle surface was thin.

これに対し、高抵抗層が結晶粒界に存在しない比較例(比較例1〜6)では、比抵抗ρおよび/または透磁率μ´が悪化した。また、比較例のうち軟磁性合金成分としてSiを含む比較例1〜3および6では粒子表面にSiを含む厚い酸化被膜が存在した。 On the other hand, in Comparative Examples (Comparative Examples 1 to 6) in which the high resistance layer did not exist at the grain boundaries, the specific resistance ρ and / or the magnetic permeability μ ′ deteriorated. Further, in Comparative Examples 1 to 3 and 6 containing Si as a soft magnetic alloy component among the comparative examples, a thick oxide film containing Si was present on the particle surface.

粒子表面にSiを含む厚い酸化被膜が存在する比較例のうち、軟磁性合金粒子がNiを含むか、Siの含有量が比較的多い比較例2、3および6では比抵抗ρおよび/または透磁率μ´に加えてビッカース硬度および/または密度が劣る結果となった。軟磁性合金粒子がNiを含まず、Siの含有量も比較的少ない比較例1では、ビッカース硬度および密度は良好であったが比抵抗ρおよび透磁率μ´が劣る結果となった。 Among the comparative examples in which the thick oxide film containing Si is present on the particle surface, the specific resistance ρ and / or permeability in Comparative Examples 2, 3 and 6 in which the soft magnetic alloy particles contain Ni or the Si content is relatively high. In addition to the resistivity μ', the Vickers hardness and / or density was inferior. In Comparative Example 1, in which the soft magnetic alloy particles did not contain Ni and the Si content was relatively low, the Vickers hardness and density were good, but the specific resistance ρ and the magnetic permeability μ'were inferior.

軟磁性合金成分としてFeおよびNi以外の成分を含有しない比較例4では、高抵抗層が結晶粒界に存在しなかった。軟磁性合金成分としてSiを含まずCuを含む点以外は実施例2と同条件である比較例5では、高抵抗層が結晶粒界に存在しない代わりにCuからなる層が結晶粒界に存在していた。 In Comparative Example 4 in which the soft magnetic alloy component did not contain any components other than Fe and Ni, the high resistance layer did not exist at the grain boundaries. In Comparative Example 5, which has the same conditions as in Example 2 except that Si is not contained and Cu is contained as a soft magnetic alloy component, a layer made of Cu is present at the grain boundaries instead of the high resistance layer not being present at the grain boundaries. Was.

2・・・軟磁性合金粒子
2a・・・(軟磁性合金)粒子表面
4・・・結晶子
4a・・・結晶粒界
2 ... Soft magnetic alloy particles 2a ... (Soft magnetic alloy) particle surface 4 ... Crystallites 4a ... Crystal grain boundaries

Claims (8)

FeおよびNiを含む軟磁性合金粒子であって、
前記軟磁性合金粒子が、複数の結晶子と、前記結晶子同士の間にある結晶粒界と、からなり、
前記結晶粒界に高抵抗層が存在することを特徴とする軟磁性合金粒子。
Soft magnetic alloy particles containing Fe and Ni.
The soft magnetic alloy particles are composed of a plurality of crystallites and grain boundaries between the crystallites.
Soft magnetic alloy particles characterized by the presence of a high resistance layer at the grain boundaries.
さらにSiを含む請求項1に記載の軟磁性合金粒子。 The soft magnetic alloy particles according to claim 1, further containing Si. 前記高抵抗層がSiを含む請求項1または2に記載の軟磁性合金粒子。 The soft magnetic alloy particles according to claim 1 or 2, wherein the high resistance layer contains Si. さらにSiおよびMを含み、
前記MがCo,Cr,Mn,Ti,Zr,Hf,Nb,Ta,Mo,Al,Zn,S,NおよびOから選択される一種以上である請求項1〜3のいずれかに記載の軟磁性合金粒子。
Including Si and M
The soft according to any one of claims 1 to 3, wherein M is one or more selected from Co, Cr, Mn, Ti, Zr, Hf, Nb, Ta, Mo, Al, Zn, S, N and O. Magnetic alloy particles.
さらにSiおよびCoを含む請求項1〜4のいずれかに記載の軟磁性合金粒子。 The soft magnetic alloy particles according to any one of claims 1 to 4, further comprising Si and Co. 請求項1〜5のいずれかに記載の軟磁性合金粒子を含む磁性部品。 A magnetic component containing the soft magnetic alloy particles according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の軟磁性合金粒子からなる軟磁性合金粉。 A soft magnetic alloy powder comprising the soft magnetic alloy particles according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の軟磁性合金粒子を含む圧粉磁芯。 A dust core containing the soft magnetic alloy particles according to any one of claims 1 to 5.
JP2017107814A 2017-05-31 2017-05-31 Soft magnetic alloy particles and electronic components Active JP6855936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107814A JP6855936B2 (en) 2017-05-31 2017-05-31 Soft magnetic alloy particles and electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107814A JP6855936B2 (en) 2017-05-31 2017-05-31 Soft magnetic alloy particles and electronic components

Publications (2)

Publication Number Publication Date
JP2018206835A JP2018206835A (en) 2018-12-27
JP6855936B2 true JP6855936B2 (en) 2021-04-07

Family

ID=64957386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107814A Active JP6855936B2 (en) 2017-05-31 2017-05-31 Soft magnetic alloy particles and electronic components

Country Status (1)

Country Link
JP (1) JP6855936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115705944A (en) * 2021-08-06 2023-02-17 Tdk株式会社 Soft magnetic alloy powder, dust core, and coil component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258934A (en) * 1992-03-11 1993-10-08 Kenichi Suzuki Magnetic material and manufacturing method thereof
JPH07138693A (en) * 1993-11-12 1995-05-30 Daido Steel Co Ltd Production of sintered magnetic alloy
JP4209614B2 (en) * 2001-12-27 2009-01-14 Jfeミネラル株式会社 Ni-Fe alloy powder
EP2707883B1 (en) * 2011-05-09 2017-08-09 Metamagnetics Inc. Procedure for magnetic grain boundary engineered ferrite core materials
JP5974803B2 (en) * 2011-12-16 2016-08-23 Tdk株式会社 Soft magnetic alloy powder, green compact, dust core and magnetic element
JP5814169B2 (en) * 2012-03-29 2015-11-17 トヨタ自動車株式会社 Method for producing magnetic core powder
JP2016216818A (en) * 2015-05-14 2016-12-22 Tdk株式会社 Soft magnetic metal powder, and, soft magnetic metal dust core

Also Published As

Publication number Publication date
JP2018206835A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
KR102012959B1 (en) Powder made of iron-based metallic glass
JP4971886B2 (en) Soft magnetic powder, soft magnetic molded body, and production method thereof
JP6088192B2 (en) Manufacturing method of dust core
US8172956B2 (en) Sintered soft magnetic powder molded body
JP2014060183A (en) Soft magnetic material and method for manufacturing the same
JP6380769B2 (en) Soft magnetic metal powder and soft magnetic metal powder core.
JPWO2019065500A1 (en) Manufacturing method of dust core, dust core and inductor
JP2012160726A (en) Magnetic powder material, low-loss composite magnetic material containing magnetic powder material, and magnetic element containing low-loss composite magnetic material
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
CN111128504B (en) Soft magnetic alloy powder, dust core, magnetic component, and electronic device
WO2017119386A1 (en) Mn-Bi-BASED MAGNETIC POWDER, METHOD FOR PRODUCING SAME, COMPOUND FOR BOND MAGNET, BOND MAGNET, Mn-Bi-BASED METAL MAGNET AND METHOD FOR PRODUCING SAME
JP7025230B2 (en) Rare earth magnets and their manufacturing methods
JP6191855B2 (en) Soft magnetic metal powder and high frequency powder magnetic core
JP6855936B2 (en) Soft magnetic alloy particles and electronic components
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP4601907B2 (en) High frequency magnetic material powder, high frequency magnetic component using the same, and manufacturing method
JP6907716B2 (en) Multilayer inductor
JP6735209B2 (en) Flat powder and magnetic sheet used at high frequency
JP7358884B2 (en) Soft magnetic alloy particles and electronic components
JP7215044B2 (en) Method for producing RTB based sintered magnet
JP4218111B2 (en) Fe-Ni alloy powder and method for producing the same
JP2010111545A (en) Ferrite composition and inductor
JP2003347113A (en) Composite magnetic material and its manufacturing method
JP7052648B2 (en) Soft magnetic composition, core, and coiled electronic components
JP7128692B2 (en) Soft magnetic compositions, cores, and coil-type electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6855936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150