JP6846812B2 - How to excavate a direct foundation board of an underground structure - Google Patents

How to excavate a direct foundation board of an underground structure Download PDF

Info

Publication number
JP6846812B2
JP6846812B2 JP2018080615A JP2018080615A JP6846812B2 JP 6846812 B2 JP6846812 B2 JP 6846812B2 JP 2018080615 A JP2018080615 A JP 2018080615A JP 2018080615 A JP2018080615 A JP 2018080615A JP 6846812 B2 JP6846812 B2 JP 6846812B2
Authority
JP
Japan
Prior art keywords
excavation
underground structure
subsidence
excavating
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018080615A
Other languages
Japanese (ja)
Other versions
JP2019190037A (en
Inventor
経一 山下
経一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Automatic Machine Co Ltd
Original Assignee
Koyo Automatic Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Automatic Machine Co Ltd filed Critical Koyo Automatic Machine Co Ltd
Priority to JP2018080615A priority Critical patent/JP6846812B2/en
Publication of JP2019190037A publication Critical patent/JP2019190037A/en
Application granted granted Critical
Publication of JP6846812B2 publication Critical patent/JP6846812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

本発明は地下式立体駐輪場、地下式立体駐車場、又は有害物質埋設施設等の地中構造物の底部の直下地盤を均等に掘削できる、地中構造物の直下地盤の掘削方法に関するものである。 The present invention relates to a method for excavating a direct basement board of an underground structure capable of evenly excavating a direct basement board at the bottom of an underground structure such as an underground multi-story bicycle parking lot, an underground multi-story parking lot, or a facility for burying harmful substances. ..

出願人は閉鎖形状を呈するコンクリート製の地中構造物の底部フレームに往復移動可能に係合した複数の掘削装置を使用した掘削方法を先に提案したと(特許文献1,2)。
さらに出願人は、地中構造物の水平性を維持しながら沈設するための複数の懸架式沈下制御装置を併用して、地中構造物の底部の直下地盤を掘削する工程と、地中構造物の上部に躯体を延長する工程とを並行して行いながら沈設する地中構造物の構築方法を先に提案した(特許文献3,4)。
沈下制御装置は、先端を地中構造物の躯体に接続したロープと、ロープを巻き取ったウインチと、複数の滑車を介してロープを係留するポストと、ロープの張力検知手段と、張力検知手段の検知情報に基づいてウインチを制御する制御部と、を具備している。
地中構造物の複数箇所に接続した複数のロープの張力が均等になるように、各ロープの繰出し量と、各掘削装置の移動速度を制御することで、高い水平性を保ちながら地中構造物を沈設するようにしたものである。
The applicant has previously proposed an excavation method using a plurality of excavating devices that are reciprocally engaged with the bottom frame of a concrete underground structure having a closed shape (Patent Documents 1 and 2).
Furthermore, the applicant uses a plurality of suspended subsidence control devices for subsidence while maintaining the levelness of the underground structure, and excavates the direct basement board at the bottom of the underground structure and the underground structure. We have previously proposed a method for constructing an underground structure that is sunk while performing the process of extending the skeleton on the upper part of the object in parallel (Patent Documents 3 and 4).
The sinking control device includes a rope whose tip is connected to the skeleton of an underground structure, a winch that winds the rope, a post that moored the rope via a plurality of pulleys, a rope tension detecting means, and a tension detecting means. It is provided with a control unit that controls the winch based on the detection information of the above.
By controlling the amount of feeding of each rope and the moving speed of each excavator so that the tensions of the multiple ropes connected to multiple points of the underground structure are equalized, the underground structure is maintained with high levelness. It is designed to lay things down.

さらに出願人は複数の沈下制御装置を用いずに地中構造物の水平性を維持しながら沈設する方法を先に提案した(特許文献5)。
この方法は、閉鎖形状を呈するコンクリート製の地中構造物の底部フレームが着床する作業孔の底部に高精度の水平基準面を予め形成しておき、この水平基準面を掘削開始面として複数の掘削装置で均等に掘削することで高い水平性を保ちながら地中構造物を沈設するようにしたものである。
Furthermore, the applicant has previously proposed a method of subsidence while maintaining the horizontality of the underground structure without using a plurality of subsidence control devices (Patent Document 5).
In this method, a high-precision horizontal reference plane is formed in advance at the bottom of the work hole on which the bottom frame of the concrete underground structure having a closed shape is landed, and a plurality of these horizontal reference planes are used as the excavation start plane. By excavating evenly with the excavation equipment of the above, the underground structure is sunk while maintaining high horizontality.

特開2011−17161号公報Japanese Unexamined Patent Publication No. 2011-17161 特開2011−52484号公報Japanese Unexamined Patent Publication No. 2011-52484 特開2006−144387号公報Japanese Unexamined Patent Publication No. 2006-144387 特開2010−150811号公報JP-A-2010-150811 特許第6043006号公報Japanese Patent No. 6043006

特許文献5に開示された地中構造物の構築方法にあっては、複数の沈下制御装置を省略できる利点があるものの、地中構造物の底部の直下地盤が常に均質地盤とは限らず、同一平面上における掘削予定地盤の硬度に差があったり、その一部に転石等が存在したりすると、掘削予定地盤を均等に掘削することが技術的に難しい。 The method for constructing an underground structure disclosed in Patent Document 5 has an advantage that a plurality of subsidence control devices can be omitted, but the direct ground ground at the bottom of the underground structure is not always homogeneous ground. If there is a difference in the hardness of the planned excavation ground on the same plane, or if there are boulders or the like in a part of the difference, it is technically difficult to evenly excavate the planned excavation ground.

本発明は以上の点に鑑みて成されたもので、その目的とするところは、地中構造物の底部の直下地盤の硬度が変化していても均等に掘削できると共に、複数の掘削装置の間に掘削差が生じたときに掘削量を修正できる、地中構造物の直下地盤の掘削方法を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to be able to excavate evenly even if the hardness of the direct base plate at the bottom of the underground structure is changed, and to excavate a plurality of excavators. It is an object of the present invention to provide a method for excavating a direct basement of an underground structure, which can correct the excavation amount when an excavation difference occurs between them.

本発明は、閉鎖形状を呈するコンクリート製の地中構造物の底部フレームに係合して自走可能な走行体と、走行体を走行させる走行駆動源と、走行体に鉛直軸を中心に回転可能に搭載した回転カッタと、回転カッタを回転駆動する掘削駆動源とを具備した複数の掘削装置と、複数地点における地中構造物の沈下量を電気的に検知する地中構造物の沈下検出手段と、地中構造物の沈下検出手段と電気的に接続し、前記複数の掘削装置の掘削と往復走行を個別に制御可能な制御部とを具備し、前記複数の掘削装置が底部フレームに沿って走行することで地中構造物の底部の直下地盤を均等に掘削する、地中構造物の直下地盤の掘削方法である。
前記制御部は少なくとも通常掘削モードと、硬質地盤掘削モードと、掘削差修正モードとの切り替えが可能である。
前記制御部は地中構造物の沈下検出手段を通じて入力された複数地点における地中構造物の沈下量差が予め設定した許容範囲内のときに通常掘削モードと判断して、前記複数の掘削装置の走行速度を等速に制御しつつ、複数の回転カッタの回転速度を等速に制御する。
前記制御部は前記複数の掘削装置の掘削駆動源または走行駆動源の電気的負荷が大きく変化したときに硬質地盤掘削モードと判断して、記複数の掘削装置の走行速度を等速に制御しつつ、電気的負荷の大きな掘削装置のみの回転カッタの回転速度を増速制御する。
前記制御部は地中構造物の沈下検出手段を通じて入力された複数地点における地中構造物の沈下量差が予め設定した許容範囲を越えたときに掘削差修正モードと判断して、沈下量の小さい区域に位置する掘削装置の回転カッタの回転速度を増速制御して地中構造物の沈下量を修正する
発明の他の形態において、前記制御部は前記複数の掘削装置の掘削駆動源または走行駆動源の電気的負荷が元の値に戻ると硬質地盤掘削モードを終了して通常掘削モードに切り替わる。
本発明の他の形態において、前記制御部は掘削差修正モードと判断したときに沈下量の小さい区域外に位置する掘削装置の走行を待機させ、地中構造物の沈下量のバラツキが解消されると、掘削差修正モードを終了して通常掘削モードに切り替わる。
本発明の他の形態において、地中構造物の沈下検出手段が地中構造物へ向けて配設した複数の測距センサで構成されている。
本発明の他の形態において、複数の掘削装置による地中構造物の底部の直下地盤を掘削する作業と並行して、地中構造物の内方地盤を掘削して地上へ排土する。
本発明の他の形態において、前記底部フレームを着地させて掘削開始面となる地中構造物の底部の直下地盤が予め水平基準面として形成されていてもよい。
In the present invention, a traveling body capable of self-propelling by engaging with a bottom frame of a concrete underground structure having a closed shape, a traveling drive source for traveling the traveling body, and a traveling body rotating about a vertical axis. Subsidence detection of underground structures by electrically detecting the amount of subsidence of underground structures at a plurality of points and a plurality of excavation devices equipped with a rotary cutter that can be mounted and an excavation drive source that rotationally drives the rotary cutter. The means is electrically connected to the subsidence detecting means of the underground structure, and is provided with a control unit capable of individually controlling the excavation and reciprocating travel of the plurality of excavation devices, and the plurality of excavation devices are attached to the bottom frame. This is a method of excavating a direct base plate of an underground structure, in which the direct base plate at the bottom of the underground structure is evenly excavated by traveling along the ground.
The control unit can at least switch between a normal excavation mode, a hard ground excavation mode, and an excavation difference correction mode.
The control unit determines that the normal excavation mode is in the normal excavation mode when the difference in the amount of subsidence of the underground structure at a plurality of points input through the subsidence detecting means of the underground structure is within a preset allowable range, and the plurality of excavation devices. While controlling the running speed of the above to a constant speed, the rotation speeds of a plurality of rotary cutters are controlled to a constant speed.
When the electrical load of the excavation drive source or the traveling drive source of the plurality of excavating devices changes significantly , the control unit determines that the hard ground excavation mode is used, and controls the traveling speeds of the plurality of excavating devices to a constant speed. At the same time, the rotation speed of the rotary cutter only for the excavator with a large electrical load is controlled to be accelerated.
The control unit determines that the excavation difference correction mode is set when the difference in the amount of subsidence of the underground structure at a plurality of points input through the subsidence detecting means of the underground structure exceeds a preset allowable range, and determines that the amount of subsidence is The rotation speed of the rotary cutter of the excavator located in a small area is controlled to be accelerated to correct the subsidence of the underground structure .
In another embodiment of the present invention, the control unit terminates the hard ground excavation mode and switches to the normal excavation mode when the electrical load of the excavation drive source or the traveling drive source of the plurality of excavation devices returns to the original value.
In another embodiment of the present invention, when the control unit determines that the excavation difference correction mode is set, the excavation device located outside the area where the subsidence amount is small is made to stand by, and the variation in the subsidence amount of the underground structure is eliminated. Then, the excavation difference correction mode is terminated and the mode is switched to the normal excavation mode.
In another embodiment of the present invention, the subsidence detecting means of the underground structure is composed of a plurality of distance measuring sensors arranged toward the underground structure.
In another embodiment of the present invention, in parallel with the work of excavating the direct ground ground at the bottom of the underground structure by a plurality of excavating devices, the inner ground of the underground structure is excavated and the soil is discharged to the ground.
In another embodiment of the present invention, a direct base plate at the bottom of the underground structure which is the starting surface for excavation by landing the bottom frame may be formed in advance as a horizontal reference surface.

本発明は、地中構造物の底部の直下地盤の硬度が変化していても複数の掘削装置で以て均等に掘削できると共に、複数の掘削装置の間に掘削差が生じたときには一部の掘削装置のみを稼働させて掘削量を修正できるので、従来の沈下制御装置を省略しても複数の掘削装置を制御することで地中構造物の高い水平性を保持したまま正確に沈設することができる。 According to the present invention, even if the hardness of the direct base plate at the bottom of the underground structure changes, it is possible to excavate evenly with a plurality of excavators, and when an excavation difference occurs between the plurality of excavators, a part of the excavation differences occur. Since only the excavation equipment can be operated to correct the excavation amount, even if the conventional subsidence control equipment is omitted, it is possible to accurately submerge the underground structure while maintaining high levelness by controlling multiple excavation equipment. Can be done.

地中構造物の縦断面図Longitudinal section of underground structure 地中構造物の底部の縦断面図Longitudinal section of the bottom of the underground structure 掘削装置を構成する回転カッタの斜視図Perspective view of the rotary cutter that constitutes the drilling device 制御部による掘削方法のモデル図Model diagram of excavation method by the control unit 地中構造物の施工方法の説明図で、(a)は作業孔の開削工程の説明図、(b)は底部フレームの設置工と地中構造物の構築工の説明図、(c)は環状空間の埋戻し工の説明図An explanatory diagram of the construction method of the underground structure, (a) is an explanatory diagram of the excavation process of the work hole, (b) is an explanatory diagram of the bottom frame installation work and the construction work of the underground structure, and (c) is an explanatory view. Explanatory drawing of backfilling work in an annular space 底部フレームの設置工の拡大説明図Enlarged explanatory view of the installation work of the bottom frame 型枠内にコンクリートを打設した地中構造物の底部の断面図Cross-sectional view of the bottom of an underground structure in which concrete is placed in the formwork 制御部による複数の掘削モードの説明図で、地中構造物の底部側から見た複数の掘削装置のモデル図An explanatory diagram of multiple excavation modes by the control unit, and a model diagram of multiple excavation devices viewed from the bottom side of the underground structure.

以下に図面を参照しながら本発明について詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

<1>地中構造物
図1,2を参照して説明すると、地中構造物10はその水平断面形状が例えば矩形、多角形、円形、楕円形等を呈するコンクリート製の函体である。地中構造物10の躯体厚や全体寸法は使途に応じて適宜選択する。
<1> Underground structure Explaining with reference to FIGS. 1 and 2, the underground structure 10 is a concrete box having a horizontal cross-sectional shape of, for example, a rectangle, a polygon, a circle, an ellipse, or the like. The skeleton thickness and overall dimensions of the underground structure 10 are appropriately selected according to the purpose of use.

<1.1>底部フレーム
地中構造物10の下端部には底部フレーム11が位置し、地中構造物10は底部フレーム11を介して直下地盤に接面して支持される。
本例では上下一対のフランジ12,13間をウェブ14で接続したH形鋼で底部フレーム11を構成する場合について説明する。
<1.1> Bottom frame The bottom frame 11 is located at the lower end of the underground structure 10, and the underground structure 10 is supported in contact with the direct base plate via the bottom frame 11.
In this example, a case where the bottom frame 11 is formed of H-shaped steel in which a pair of upper and lower flanges 12 and 13 are connected by a web 14 will be described.

<1.2>底部フレームの付帯設備
図2,6を参照して説明すると、上下フランジ12,13の内側内面には、掘削装置30を誘導する一対のガイドレール15,15が相対向して設けてある。
ウェブ14の内側内面の中央には、掘削装置30の自走反力を得るための直線歯車等の反力受け具16が連続して設けてある。
<1.2> Ancillary equipment of the bottom frame Explaining with reference to FIGS. 2 and 6, a pair of guide rails 15 and 15 for guiding the drilling device 30 face each other on the inner inner surface of the upper and lower flanges 12 and 13. It is provided.
A reaction force receiver 16 such as a linear gear for obtaining a self-propelled reaction force of the drilling device 30 is continuously provided in the center of the inner inner surface of the web 14.

<2>掘削装置
図2に例示した掘削装置30について説明すると、掘削装置30は、地中構造物10の下端部の直下地盤を掻き出し掘削する機能と、掘削土を地中構造物10の内側へ排出する機能を併有した自走式の装置である。
掘削装置30は、地中構造物10の下端部21のガイドレール15,15に係合して走行可能な走行体35と、走行体35の走行手段と、走行体35に搭載した回転カッタ31と、回転カッタ31の回転手段とを具備する。
複数の掘削装置30は地中構造物10の直線部を水平走行しながら地中構造物10の直下地盤を連続して掘削し、地中構造物10の角部の掘削を終えると走行方向を反転し、同一周期で往復走行を繰り返す。
<2> Excavation device Explaining the excavation device 30 illustrated in FIG. 2, the excavation device 30 has a function of scraping and excavating a direct base plate at the lower end of the underground structure 10 and excavating soil inside the underground structure 10. It is a self-propelled device that also has the function of discharging to.
The excavator 30 includes a traveling body 35 capable of engaging with guide rails 15 and 15 at the lower end 21 of the underground structure 10, traveling means of the traveling body 35, and a rotary cutter 31 mounted on the traveling body 35. And the rotating means of the rotating cutter 31.
The plurality of excavation devices 30 continuously excavate the direct base plate of the underground structure 10 while horizontally traveling on the straight portion of the underground structure 10, and when the excavation of the corner portion of the underground structure 10 is completed, the traveling direction is changed. It reverses and repeats reciprocating running in the same cycle.

<2.1>走行体
走行体35は回転カッタ31を搭載した状態で底部フレーム11に走行自在に係留させた水平架台である。
走行体35は複数の空転式ローラ36を有し、空転式ローラ36を介してガイドレール15,15と係合している。
走行体35は、モータ等の走行駆動源32と歯車状の走行輪33を具備している。
走行輪33は底部フレーム11の反力受け具16と噛合していて、走行体35に搭載した走行駆動源32の駆動を受けて走行輪33が正逆転することで底部フレーム11に沿って掘削装置30が往復走行する。
<2.1> Traveling body The traveling body 35 is a horizontal pedestal moored to the bottom frame 11 so as to be able to travel with the rotary cutter 31 mounted.
The traveling body 35 has a plurality of idling rollers 36, and is engaged with the guide rails 15 and 15 via the idling rollers 36.
The traveling body 35 includes a traveling drive source 32 such as a motor and a gear-shaped traveling wheel 33.
The traveling wheel 33 meshes with the reaction force receiver 16 of the bottom frame 11, and the traveling wheel 33 is driven by the traveling drive source 32 mounted on the traveling body 35 to rotate forward and reverse, thereby excavating along the bottom frame 11. The device 30 reciprocates.

<2.2>回転カッタ
回転カッタ31は、少なくとも走行体35を縦方向に貫通して軸支した回転軸31aと、回転軸に配設した板状の水平ロータ31bとを具備し、水平ロータ31bの周縁部と下面に複数の掘削ビット31c,31dを有する(図3)。
回転カッタ31は掘削装置30の往復走行の切り替えに伴い、走行体35に搭載したモータ等の掘削駆動源34の回転を受けて正逆転する。
回転カッタ31はその掘削半径を変更することで、地中構造物10の躯体幅を越えた拡張掘削が可能である。
<2.2> Rotation Cutter The rotation cutter 31 includes at least a rotation shaft 31a that vertically penetrates the traveling body 35 and supports the rotation shaft 31a, and a plate-shaped horizontal rotor 31b arranged on the rotation shaft. A plurality of drilling bits 31c and 31d are provided on the peripheral edge and the lower surface of 31b (FIG. 3).
The rotary cutter 31 reverses forward in response to the rotation of the drilling drive source 34 such as the motor mounted on the traveling body 35 as the reciprocating traveling of the drilling device 30 is switched.
By changing the excavation radius of the rotary cutter 31, extended excavation exceeding the skeleton width of the underground structure 10 is possible.

<3>地中構造物の沈下検出手段
図4を参照して説明すると、地中構造物10の上方には複数の測距センサ20が配設してあり、これら複数の測距センサ20を通じて地中構造物10の鉛直変位を電気的に計測して制御部60の沈下量監視部65へ送信可能になっている。
<3> Subsidence detection means for underground structure Explaining with reference to FIG. 4, a plurality of distance measuring sensors 20 are arranged above the underground structure 10, and through these plurality of distance measuring sensors 20. The vertical displacement of the underground structure 10 can be electrically measured and transmitted to the subsidence amount monitoring unit 65 of the control unit 60.

測距センサ20は光学式距離センサであり、地中構造物10の内側躯体に突設した反射板21に向けて赤外線、レーザ光等の光線を照射して、複数地点における地中構造物10の沈下量(鉛直変位量)を計測することが可能である。
複数の測距センサ20で計測するのは、制御部60で各掘削装置30の掘削量を正確に検出するためである。
The distance measuring sensor 20 is an optical distance sensor, which irradiates a reflecting plate 21 projecting from the inner skeleton of the underground structure 10 with light rays such as infrared rays and laser light to irradiate the underground structure 10 at a plurality of points. It is possible to measure the amount of sinking (vertical displacement) of.
The reason for measuring with the plurality of distance measuring sensors 20 is that the control unit 60 accurately detects the drilling amount of each drilling device 30.

測距センサ20の設置数や設置位置は地中構造物10の平面形状に応じて適宜選択する。
地中構造物10の平面形状が矩形を呈する場合は、地中構造物10の角部箇所の変位を計測し得るように4台の測距センサ20を配設するとよい。
測距センサ20の測定距離には限界があることから、地中構造物10の沈設深さに応じて反射板21の取付け高さを上位に変更することで高い測定精度を維持することができる。
The number and position of the distance measuring sensors 20 to be installed are appropriately selected according to the planar shape of the underground structure 10.
When the plane shape of the underground structure 10 has a rectangular shape, it is preferable to dispose four distance measuring sensors 20 so that the displacement of the corner portion of the underground structure 10 can be measured.
Since the measurement distance of the distance measuring sensor 20 is limited, high measurement accuracy can be maintained by changing the mounting height of the reflector 21 to a higher position according to the subsidence depth of the underground structure 10. ..

地中構造物10の沈下検出手段は例示した測距センサ20と反射板21に限定されず、要は地中構造物10の複数地点における沈下量を電気的に計測できる計測機器であれば適用が可能である。 The subsidence detecting means of the underground structure 10 is not limited to the above-exemplified distance measuring sensor 20 and the reflector 21, and the point is that it is applicable as long as it is a measuring device capable of electrically measuring the subsidence amount at a plurality of points of the underground structure 10. Is possible.

<4>制御部
図4を参照して説明すると、制御部60は複数の掘削装置30を掘削制御するためのCPU等を含む制御装置である。
複数の掘削装置30は制御部60の自動制御または手動制御により、地中構造物10の底部の直下地盤を均等に掘削することが可能である。
制御部60は少なくとも通常掘削モード61と、硬質地盤掘削モード62と、掘削差修正モード63とを有し、掘削状況に応じてこれら複数のモード61〜63の切り替えが可能である。各モード61〜63の詳細については後述する。
さらに制御部60は駆動源監視部64と、沈下量監視部65を有する
<4> Control unit Explaining with reference to FIG. 4, the control unit 60 is a control device including a CPU and the like for excavating and controlling a plurality of excavating devices 30.
The plurality of excavating devices 30 can evenly excavate the direct base plate at the bottom of the underground structure 10 by automatic control or manual control of the control unit 60.
The control unit 60 has at least a normal excavation mode 61, a hard ground excavation mode 62, and an excavation difference correction mode 63, and these plurality of modes 61 to 63 can be switched according to the excavation situation. Details of each mode 61 to 63 will be described later.
Further, the control unit 60 has a drive source monitoring unit 64 and a subsidence amount monitoring unit 65.

各掘削装置30を構成する走行駆動源32と掘削駆動源34は制御部60の駆動源監視部64と電気的に接続していて、制御部60は各掘削装置30における各駆動源32,34に対して掘削制御指令を発するだけでなく、各掘削装置30における各駆動源32,34の負荷変化を把握し、フィードバックさせた各駆動源32,34の負荷変化を基に各掘削装置30の掘削条件(回転カッタ31の回転速度等)を個別に制御し得るようになっている。 The traveling drive source 32 and the excavation drive source 34 constituting each excavation device 30 are electrically connected to the drive source monitoring unit 64 of the control unit 60, and the control unit 60 is the drive sources 32, 34 in each excavation device 30. In addition to issuing an excavation control command to each excavation device 30, the load change of each drive source 32,34 in each excavation device 30 is grasped, and the load change of each drive source 32, 34 is fed back to the excavation device 30. The excavation conditions (rotational speed of the rotary cutter 31, etc.) can be individually controlled.

複数の測距センサ20は制御部60の沈下量監視部65と電気的に接続していて、制御部60は複数の測距センサ20からの検知信号により地中構造物10の複数地点における沈下量を常時把握していて、フィードバックさせた測距センサ20の検知信号を基に各掘削装置30の掘削条件(回転カッタ31の回転速度等)を個別に制御し得るようになっている。 The plurality of distance measuring sensors 20 are electrically connected to the sinking amount monitoring unit 65 of the control unit 60, and the control unit 60 sinks at a plurality of points of the underground structure 10 by the detection signals from the plurality of distance measuring sensors 20. The amount is constantly grasped, and the excavation conditions (rotational speed of the rotary cutter 31, etc.) of each excavation device 30 can be individually controlled based on the detection signal of the distance measuring sensor 20 fed back.

[地中構造物の施工方法]
つぎに地中構造物10の構築方法について説明する。
[Construction method for underground structures]
Next, a method of constructing the underground structure 10 will be described.

<1>開削工と水平基準面の形成
図5(a)を参照して説明すると、地中構造物10の沈下予定の地盤40を開削してすり鉢状の作業孔41を形成する。
作業孔41はその地上部の横幅Lが底部の横幅Lより大きい寸法関係にあり、かつ作業孔41の底部の横幅Lが地中構造物10の横幅Lより大きい寸法関係にある。
作業孔41の深さHは地中構造物10の1スパン分程度の高さ(3〜6m程度)で十分である。
<1> Excavation work and formation of horizontal reference plane Explaining with reference to FIG. 5A, the ground 40 to be subsided of the underground structure 10 is excavated to form a mortar-shaped work hole 41.
The width L 1 of the above-ground portion of the work hole 41 has a dimensional relationship larger than the width L 2 of the bottom portion, and the width L 2 of the bottom portion of the work hole 41 has a dimensional relationship larger than the width L 3 of the underground structure 10. ..
The depth H of the work hole 41 is sufficient to be about one span of the underground structure 10 (about 3 to 6 m).

本例では底部フレーム11を着地させて掘削開始面となる地中構造物の底部の直下地盤を予め十分に締め固めて高精度の水平面として仕上げた水平基準面42として形成しておく形態について説明するが、掘削開始面は水平基準面42でなくともよい。 In this example, a mode is described in which the bottom frame 11 is landed and the direct base plate at the bottom of the underground structure serving as the excavation start surface is sufficiently compacted in advance to form a horizontal reference surface 42 finished as a high-precision horizontal plane. However, the excavation start surface does not have to be the horizontal reference surface 42.

<2>底部フレームの組立て
図5(b)と図6を参照して説明すると、作業孔41内にH鋼等の鋼材を吊り降ろし、各鋼材の水平レベルを確認しながら水平基準面42上に底部フレーム11を載置して閉鎖形状に組み立てる。
<2> Assembling the bottom frame Explaining with reference to FIGS. 5 (b) and 6, a steel material such as H steel is suspended in the work hole 41, and while checking the horizontal level of each steel material, it is on the horizontal reference surface 42. The bottom frame 11 is placed on the bottom frame and assembled into a closed shape.

<3>掘削装置の組付け
図2と図5(b)を参照して説明すると、作業孔41内において、水平に設置した底部フレーム11内側に間隔を隔てて複数の掘削装置30を組み付ける。
<3> Assembling the Excavation Device Explaining with reference to FIGS. 2 and 5B, a plurality of excavation devices 30 are assembled inside the bottom frame 11 installed horizontally in the work hole 41 at intervals.

<4>地中構造物の構築
図5(b)と図7を参照して地中構造物10の1スパン分の構築工程について説明する。
底部フレーム11の上フランジ12上に鉄筋50を組み立てると共に、相対向して型枠51を組み立てた後に、型枠51内へコンクリート53を打設して地中構造物10の躯体を構築する。型枠51はコンクリート53の硬化を待って解体撤去する。
コンクリート53の打設に伴い底部フレーム11への載荷重が増すが、これらの載荷重は底部フレーム11の下フランジ13を介して水平基準面42に分散して支持されるので、底部フレーム11の水平性は維持される。
<4> Construction of Underground Structure The construction process for one span of the underground structure 10 will be described with reference to FIGS. 5 (b) and 7.
After assembling the reinforcing bars 50 on the upper flange 12 of the bottom frame 11 and assembling the formwork 51 facing each other, the concrete 53 is cast into the formwork 51 to construct the skeleton of the underground structure 10. The formwork 51 is disassembled and removed after the concrete 53 has hardened.
The load on the bottom frame 11 increases with the placement of the concrete 53, but since these loads are distributed and supported on the horizontal reference surface 42 via the lower flange 13 of the bottom frame 11, the load on the bottom frame 11 is supported. Horizontality is maintained.

<5>環状空間の埋戻し
図5(c)に示すように、地中構造物10を間に挟んで作業孔41の空間が内外に二分され、地中構造物10の内部空間41aと、地中構造物10の外方の環状空間41bを形成する。
環状空間41bの全域に埋戻土43を投入して地表レベルまで埋め戻す。
<5> Backfilling of the annular space As shown in FIG. 5C, the space of the work hole 41 is divided into inside and outside with the underground structure 10 sandwiched between them, and the internal space 41a of the underground structure 10 and the internal space 41a of the underground structure 10 are divided. The outer annular space 41b of the underground structure 10 is formed.
The backfill soil 43 is put into the entire area of the annular space 41b and backfilled to the surface level.

<6>内方地盤の掘削と土砂の排出
地中構造物10の内方地盤43を公知の掘削装置材を用いて掘削する。
ここで掘削装置30の排土性をよくするため、地中構造物10の近傍を地中構造物10に沿って環状溝を掘削しておく。すなわち、掘削装置30で掘削する作業に先行して、溝底が地中構造物10の底部の直下地盤に対して下位に位置するように環状溝を予め掘削しておく。
地中構造物10の内方の掘削土砂は、クラムシェルバケット45やコンベア搬送、ダンプカー等の公知の排土手段により地上へ排出する。
<6> Excavation of inner ground and discharge of earth and sand The inner ground 43 of the underground structure 10 is excavated using a known excavation equipment material.
Here, in order to improve the soil texture of the excavator 30, an annular groove is excavated in the vicinity of the underground structure 10 along the underground structure 10. That is, prior to the work of excavating with the excavation device 30, the annular groove is excavated in advance so that the groove bottom is located below the direct base plate at the bottom of the underground structure 10.
The excavated earth and sand inside the underground structure 10 is discharged to the ground by known earth removal means such as a clam shell bucket 45, a conveyor conveyor, and a dump truck.

<7>直下地盤の掘削制御
複数の掘削装置30を往復移動させながら地中構造物10の底部の直下地盤を均等に掘削するが、直下地盤のが硬度が同一水平面上で同一であるとは限らない。
そのため、直下地盤の硬度が変化したり、複数の掘削装置30の掘削にバラツキを生じたりしたときに対応するため、制御部60は以下に説明する複数の掘削モード61〜63に切り替えながら掘削作業を行う。
図4,8を参照しながら制御部60による掘削方法について説明する。
<7> Excavation control of the direct base plate Evenly excavates the direct base plate at the bottom of the underground structure 10 while reciprocating a plurality of excavation devices 30, but the hardness of the direct base plate is the same on the same horizontal plane. Not exclusively.
Therefore, in order to deal with a change in the hardness of the direct base plate or a variation in the excavation of the plurality of excavation devices 30, the control unit 60 performs the excavation work while switching to the plurality of excavation modes 61 to 63 described below. I do.
The excavation method by the control unit 60 will be described with reference to FIGS. 4 and 8.

<7.1>通常掘削モード
複数の掘削装置30に大きな掘削負荷の差がなく、かつ複数の掘削装置30の掘削量の差が許容範囲内であるときは、制御部60は通常掘削モード61と判断して、各掘削装置30に対して通常の掘削制御を行う。
通常の掘削制御とは、すべての掘削装置30を同一の速度で走行すると共に、各掘削装置30の回転カッタ31が同一の回転速度で回転する制御を指す。
<7.1> Normal Drilling Mode When there is no large difference in drilling load between the plurality of drilling devices 30 and the difference in the drilling amount of the plurality of drilling devices 30 is within an allowable range, the control unit 60 is set to the normal drilling mode 61. Therefore, normal excavation control is performed for each excavation device 30.
Normal drilling control refers to control in which all drilling devices 30 travel at the same speed and the rotary cutter 31 of each drilling device 30 rotates at the same rotational speed.

図8を参照して通常掘削モード61を説明する。
地中構造物10の底部に配備し、反時計回り方向に向けと走行と時計回り方向に向けた走行を交互に繰り返す4台の掘削装置30A〜30Dの各走行速度をVa〜Vdとし、各回転カッタ31A〜31Dの回転速度をωa〜ωdとした場合、通常掘削モード61では4台の掘削装置30A〜30Dの走行速度Va〜Vdを等速に制御すると共に、すべての回転カッタ31A〜31Dの回転速度(回転数)ωa〜ωdを等速に制御する。
The normal excavation mode 61 will be described with reference to FIG.
The traveling speeds of the four excavating devices 30A to 30D, which are deployed at the bottom of the underground structure 10 and alternately repeat the traveling in the counterclockwise direction and the traveling and the clockwise direction, are set to Va to Vd. When the rotation speeds of the rotary cutters 31A to 31D are ωa to ωd, in the normal drilling mode 61, the traveling speeds Va to Vd of the four drilling devices 30A to 30D are controlled to be constant, and all the rotary cutters 31A to 31D are controlled. Rotation speed (rotation speed) ωa to ωd is controlled to a constant speed.

通常掘削モード61においては、すべての掘削装置30を等速で走行させながら単位時間当たりの掘削量を同一にして掘削できるので、地中構造物10の下端部の直下地盤を均等に掘削することができる。 In the normal excavation mode 61, since all the excavation devices 30 can be excavated at the same excavation amount per unit time while traveling at a constant speed, the direct base plate at the lower end of the underground structure 10 is excavated evenly. Can be done.

<7.2>硬質地盤掘削モード
地中構造物10の下端部の直下地盤の一部に硬質地盤や転石等が存在する場合がある。
このような現場では、硬質箇所に到達した掘削装置30の回転カッタ31の掘削抵抗や走行抵抗が増す。
制御部60は走行駆動源32や掘削駆動源34の電気的負荷の変化を常時監視していて、駆動源32,34の電気的負荷が予め設定した許容値を越えたときに、硬質地盤掘削モード62と判断する。硬質地盤掘削モード62に切り替わると、制御部60は掘削抵抗の大きな掘削装置30に対して回転カッタ31の回転速度を増速制御する。
回転カッタ31の回転速度を高めるのは硬質箇所の掘削を促進させるためである。
回転カッタ31の回転速度は例えば1〜2割程度高めれば十分であるが、具体的な回転カッタ31の回転速度は適宜が可能である。
<7.2> Hard ground excavation mode Hard ground, boulders, etc. may be present in a part of the direct ground at the lower end of the underground structure 10.
At such a site, the drilling resistance and running resistance of the rotary cutter 31 of the drilling device 30 that has reached a hard portion increase.
The control unit 60 constantly monitors changes in the electrical load of the traveling drive source 32 and the excavation drive source 34, and when the electrical load of the drive sources 32 and 34 exceeds a preset allowable value, hard ground excavation is performed. Judged as mode 62. When the mode is switched to the hard ground drilling mode 62, the control unit 60 increases and controls the rotation speed of the rotary cutter 31 with respect to the drilling device 30 having a large drilling resistance.
The reason for increasing the rotation speed of the rotary cutter 31 is to promote excavation of a hard portion.
It is sufficient to increase the rotation speed of the rotary cutter 31 by, for example, about 10 to 20%, but the specific rotation speed of the rotary cutter 31 can be appropriately increased.

図8を参照して硬質地盤掘削モード62を説明する。
4台の掘削装置30A〜30Dのうち、例えば掘削装置30Aを構成する回転カッタ31Aの回転抵抗、または走行抵抗が大きく変化した場合には、図4に示した制御部60が硬質地盤掘削モード62と判断し、抵抗の大きかった回転カッタ31Aのみの回転速度ωaを増速制御する。
このとき他の掘削装置30B〜30Dの回転速度ωb〜ωdは増速せずに通常速度で制御される。
The hard ground excavation mode 62 will be described with reference to FIG.
Of the four drilling devices 30A to 30D, for example, when the rotational resistance or running resistance of the rotary cutter 31A constituting the drilling device 30A changes significantly, the control unit 60 shown in FIG. 4 changes to the hard ground drilling mode 62. Therefore, the rotation speed ωa of only the rotation cutter 31A having a large resistance is controlled to be increased.
At this time, the rotation speeds ωb to ωd of the other drilling devices 30B to 30D are controlled at the normal speed without increasing the speed.

掘削装置30Aを構成する回転カッタ31Aの回転抵抗、または走行抵抗が元の値に戻ると、制御部60は硬質地盤掘削モード62を終了して通常掘削モード61に切り替わる。 When the rotational resistance or traveling resistance of the rotary cutter 31A constituting the excavation device 30A returns to the original value, the control unit 60 ends the hard ground excavation mode 62 and switches to the normal excavation mode 61.

このように、直下地盤の一部に硬質地盤や転石等が存在する場合には、硬質地盤掘削モード62に切り替えて、硬質箇所の掘削を促進できるので、地中構造物10の下端部の直下地盤を均等に掘削することができる。 In this way, when hard ground, boulders, etc. are present in a part of the direct ground, the hard ground excavation mode 62 can be switched to promote excavation of the hard part, so that the excavation of the hard part can be promoted, and thus directly under the lower end of the underground structure 10. The ground can be excavated evenly.

なお、硬質地盤掘削モード62の他の制御方法として、回転カッタ31の回転速度を変えずに複数の掘削装置30の走行速度を制御する方法が考えられる。
すなわち、掘削抵抗の大きな区間に位置する掘削装置30の走行速度を低速に制御する方法である。
複数の掘削装置30の走行速度を個別に制御する方法は理論的には成り立つが、実際には複数の掘削装置30間における掘削のバランスがとりにくいため、本発明では回転カッタ31Aの回転速度を制御対象としたものである。
As another control method of the hard ground excavation mode 62, a method of controlling the traveling speeds of the plurality of excavation devices 30 without changing the rotation speed of the rotary cutter 31 can be considered.
That is, it is a method of controlling the traveling speed of the excavation device 30 located in a section having a large excavation resistance to a low speed.
A method of individually controlling the traveling speeds of the plurality of excavating devices 30 is theoretically valid, but in reality, it is difficult to balance the excavation among the plurality of excavating devices 30, so in the present invention, the rotational speed of the rotary cutter 31A is determined. It is a control target.

<7.3>掘削差修正モード
理論的には上記した2つの掘削制御モード61,62で制御することで、直下地盤の掘削量を均等にして地中構造物10の高い水平性を保ったまま鉛直に沈設することができる。
種々の複合要因で複数の掘削装置30の掘削量にバラツキを生じたときにこの掘削差を解消するために制御部60は掘削差修正モード63を具備する。
<7.3> Excavation difference correction mode Theoretically, by controlling in the above two excavation control modes 61 and 62, the excavation amount of the direct base plate was made uniform and the high levelness of the underground structure 10 was maintained. It can be sunk vertically as it is.
The control unit 60 includes an excavation difference correction mode 63 in order to eliminate this excavation difference when the excavation amount of the plurality of excavation devices 30 varies due to various complex factors.

制御部60は複数の測距センサ20で計測した複数地点における地中構造物10の鉛直変位量に基づいて各掘削装置30の掘削量を検知して比較している。
各掘削装置30の掘削量の差が設定範囲を超えて大きくなったときには、制御部60は掘削差修正モード63と判断し、沈下量の小さい区域に位置する掘削装置30に対して掘削指令を発して沈下量を修正する。
The control unit 60 detects and compares the excavation amount of each excavation device 30 based on the vertical displacement amount of the underground structure 10 at a plurality of points measured by the plurality of distance measuring sensors 20.
When the difference in the excavation amount of each excavation device 30 becomes larger than the set range, the control unit 60 determines the excavation difference correction mode 63 and issues an excavation command to the excavation device 30 located in the area where the subsidence amount is small. Emit and correct the amount of subsidence.

図8を参照して掘削差修正モード63を説明する。
4台の掘削装置30A〜30Dのうち、例えば2台の掘削装置30A,30Dの掘削量が残りの2台の掘削装置30B,30Cの掘削量よりも小さいときは、地中構造物10のごく僅かな傾きとなって現れ、この小さな傾きは図4に示した測距センサ20を通じて制御部60へ送信される。
The excavation difference correction mode 63 will be described with reference to FIG.
Of the four excavation devices 30A to 30D, for example, when the excavation amount of the two excavation devices 30A and 30D is smaller than the excavation amount of the remaining two excavation devices 30B and 30C, the underground structure 10 is very small. It appears as a slight tilt, and this small tilt is transmitted to the control unit 60 through the distance measuring sensor 20 shown in FIG.

制御部60は、複数の掘削装置30A〜30Dにおける予め設定した掘削量の差(例えば5mm〜10mm差)に達したときは、掘削差修正モード63と判断する。
掘削差修正モード63では、沈下量の小さい区間に位置する掘削装置30A,30Dのみに対して掘削指令を発して、地中構造物10の沈下量の小さい区間を掘削する。
この間、他の掘削装置30B,30Cは走行せずに待機状態にある。
地中構造物10の沈下量の小さい区間を掘削することで地中構造物10の沈下量のバラツキが修正される。
When the control unit 60 reaches a preset difference in excavation amount (for example, a difference of 5 mm to 10 mm) in the plurality of excavation devices 30A to 30D, the control unit 60 determines the excavation difference correction mode 63.
In the excavation difference correction mode 63, an excavation command is issued only to the excavation devices 30A and 30D located in the section where the subsidence amount is small, and the section where the subsidence amount of the underground structure 10 is small is excavated.
During this time, the other drilling devices 30B and 30C are in a standby state without traveling.
By excavating a section where the subsidence amount of the underground structure 10 is small, the variation in the subsidence amount of the underground structure 10 is corrected.

地中構造物10の沈下量のバラツキが解消されると、掘削差修正モード63を終了して通常掘削モード61に切り替わる。 When the variation in the amount of subsidence of the underground structure 10 is eliminated, the excavation difference correction mode 63 is terminated and the mode is switched to the normal excavation mode 61.

<8>内方地盤の掘削と土砂の排出
図1を参照して地中構造物10の内方地盤43の掘削方法と排土について説明する。
地中構造物10の内方地盤43を公知の掘削装置を用いて掘削する。
ここで掘削装置30の排土性をよくするため、地中構造物10の近傍を地中構造物10に沿って環状溝を掘削しておく。すなわち、掘削装置30で掘削する際は、溝底が地中構造物10の底部の直下地盤に対して下位に位置するように環状溝を先行掘削することが望ましい。
地中構造物10の内方の掘削土砂は、クラムシェルバケット45やコンベア搬送、ダンプカー等の公知の排土手段により地上へ排出する。
<8> Excavation of the inner ground and discharge of earth and sand The excavation method and excretion of the inner ground 43 of the underground structure 10 will be described with reference to FIG.
The inner ground 43 of the underground structure 10 is excavated using a known excavator.
Here, in order to improve the soil texture of the excavator 30, an annular groove is excavated in the vicinity of the underground structure 10 along the underground structure 10. That is, when excavating with the excavation device 30, it is desirable to excavate the annular groove in advance so that the groove bottom is located below the direct base plate at the bottom of the underground structure 10.
The excavated earth and sand inside the underground structure 10 is discharged to the ground by known earth removal means such as a clam shell bucket 45, a conveyor conveyor, and a dump truck.

<9>地中構造物の延長
地中構造物10の沈下と並行して又は沈下後において、地中構造物10の上部に躯体を増設して延長する。
<9> Extension of underground structure In parallel with or after the subsidence of the underground structure 10, a skeleton is added to the upper part of the underground structure 10 to extend it.

<10>掘削装置の撤去
地中構造物10を所定の深度まで沈設したら、底部フレーム11から掘削装置30を撤去する。撤去した掘削装置30は再使用する。
<10> Removal of the drilling device After the underground structure 10 has been sunk to a predetermined depth, the drilling device 30 is removed from the bottom frame 11. The removed drilling device 30 will be reused.

10・・・・・地中構造物
11・・・・・底部フレーム
20・・・・・測距センサ
30・・・・・掘削装置
31・・・・・回転カッタ
31a・・・・回転カッタの回転軸
31b・・・・回転カッタの水平ロータ
31c・・・・回転カッタの掘削ビット
31d・・・・回転カッタの掘削ビット
40・・・・・地盤
41・・・・・作業孔
41a・・・・内部空間
41b・・・・環状空間
42・・・・・水平基準面
43・・・・・内方地盤
50・・・・・鉄筋
60・・・・・制御部
61・・・・・通常掘削モード
62・・・・・硬質地盤掘削モード
63・・・・・掘削差修正モード
64・・・・・駆動源監視部
65・・・・・沈下量監視部
10 ... Underground structure 11 ... Bottom frame 20 ... Distance measuring sensor 30 ... Excavator 31 ... Rotating cutter 31a ... Rotating cutter Rotating shaft 31b ・ ・ ・ ・ Horizontal rotor 31c of rotating cutter ・ ・ ・ ・ Excavation bit 31d of rotating cutter ・ ・ ・ ・ Excavation bit 40 of rotating cutter 40 ・ ・ ・ Ground 41 ・ ・ ・ ・ ・ Working hole 41a ・・ ・ ・ Internal space 41b ・ ・ ・ ・ Circular space 42 ・ ・ ・ Horizontal reference surface 43 ・ ・ ・ Inner ground 50 ・ ・ ・ Reinforcing bar 60 ・ ・ ・ ・ ・ Control unit 61 ・ ・ ・ ・・ Normal excavation mode 62 ・ ・ ・ ・ ・ Hard ground excavation mode 63 ・ ・ ・ ・ ・ Excavation difference correction mode 64 ・ ・ ・ ・ ・ Drive source monitoring unit 65 ・ ・ ・ ・ ・ Sinkage monitoring unit

Claims (6)

閉鎖形状を呈するコンクリート製の地中構造物の底部フレームに係合して自走可能な走行体と、走行体を走行させる走行駆動源と、走行体に鉛直軸を中心に回転可能に搭載した回転カッタと、回転カッタを回転駆動する掘削駆動源とを具備した複数の掘削装置と、複数地点における地中構造物の沈下量を電気的に検知する地中構造物の沈下検出手段と、地中構造物の沈下検出手段と電気的に接続し、前記複数の掘削装置の掘削と往復走行を個別に制御可能な制御部とを具備し、前記複数の掘削装置が底部フレームに沿って走行することで地中構造物の底部の直下地盤を均等に掘削する、地中構造物の直下地盤の掘削方法であって、
前記制御部は少なくとも通常掘削モードと、硬質地盤掘削モードと、掘削差修正モードとの切り替えが可能であり、
前記制御部は地中構造物の沈下検出手段を通じて入力された複数地点における地中構造物の沈下量差が予め設定した許容範囲内にあるときに通常掘削モードと判断して、前記複数の掘削装置の走行速度を等速に制御しつつ、複数の回転カッタの回転速度を等速に制御し、
前記制御部は前記複数の掘削装置の掘削駆動源または走行駆動源の電気的負荷が大きく変化したときに硬質地盤掘削モードと判断して、記複数の掘削装置の走行速度を等速に制御しつつ、電気的負荷の大きな掘削装置のみの回転カッタの回転速度を増速制御し、
前記制御部は地中構造物の沈下検出手段を通じて入力された複数地点における地中構造物の沈下量差が予め設定した許容範囲を越えたときに掘削差修正モードと判断して、沈下量の小さい区域に位置する掘削装置の回転カッタの回転速度を増速制御して地中構造物の沈下量を修正することを特徴とする、
地中構造物の直下地盤の掘削方法。
A traveling body capable of self-propelling by engaging with the bottom frame of a concrete underground structure having a closed shape, a traveling drive source for traveling the traveling body, and a traveling body rotatably mounted around a vertical axis. A plurality of excavation devices equipped with a rotary cutter and an excavation drive source for rotationally driving the rotary cutter, a subsidence detecting means for the underground structure that electrically detects the subsidence amount of the underground structure at a plurality of points, and a ground. It is provided with a control unit that is electrically connected to the subsidence detecting means of the medium structure and can individually control the excavation and the reciprocating travel of the plurality of excavation devices, and the plurality of excavation devices travel along the bottom frame. This is a method of excavating the direct base plate of the underground structure, which evenly excavates the direct base plate at the bottom of the underground structure.
The control unit can at least switch between a normal excavation mode, a hard ground excavation mode, and an excavation difference correction mode.
When the difference in the amount of subsidence of the underground structure at a plurality of points input through the subsidence detecting means of the underground structure is within a preset allowable range, the control unit determines that the normal excavation mode is used, and the plurality of excavations are performed. While controlling the running speed of the device at a constant speed, the rotation speed of multiple rotary cutters is controlled at a constant speed.
When the electrical load of the excavation drive source or the traveling drive source of the plurality of excavating devices changes significantly , the control unit determines that the hard ground excavation mode is used, and controls the traveling speeds of the plurality of excavating devices to a constant speed. While controlling the rotation speed of the rotary cutter only for excavators with a large electrical load,
The control unit determines that the excavation difference correction mode is set when the difference in the amount of subsidence of the underground structure at a plurality of points input through the subsidence detecting means of the underground structure exceeds a preset allowable range, and determines that the amount of subsidence is It is characterized in that the rotation speed of the rotation cutter of an excavator located in a small area is controlled to be accelerated to correct the subsidence amount of an underground structure.
A method of excavating a direct foundation board of an underground structure.
前記制御部は前記複数の掘削装置の掘削駆動源または走行駆動源の電気的負荷が元の値に戻ると硬質地盤掘削モードを終了して通常掘削モードに切り替わることを特徴とする、請求項1に記載の地中構造物の直下地盤の掘削方法。 The control unit is characterized in that switching to the plurality of rig completed usually excavation mode hard ground excavation mode when the electrical load is returned to the original value of the excavation drive source or drive source of claim 1 The method of excavating the direct foundation board of the underground structure described in. 前記制御部は掘削差修正モードと判断したときに沈下量の小さい区域外に位置する掘削装置の走行を待機させ、地中構造物の沈下量のバラツキが解消されると、掘削差修正モードを終了して通常掘削モードに切り替わることを特徴とする、請求項1に記載の地中構造物の直下地盤の掘削方法。 When the control unit determines that the excavation difference correction mode is set, the excavation device located outside the area where the subsidence amount is small is made to stand by, and when the variation in the subsidence amount of the underground structure is eliminated, the excavation difference correction mode is set. The method for excavating a direct foundation board of an underground structure according to claim 1, wherein the excavation mode is switched to the normal excavation mode after completion. 地中構造物の沈下検出手段が地中構造物へ向けて配設した複数の測距センサで構成されていることを特徴とする、請求項1に記載の地中構造物の直下地盤の掘削方法。 The excavation of a direct basement board of an underground structure according to claim 1, wherein the subsidence detecting means of the underground structure is composed of a plurality of distance measuring sensors arranged toward the underground structure. Method. 複数の掘削装置による地中構造物の底部の直下地盤を掘削する作業と並行して、地中構造物の内方地盤を掘削して地上へ排土することを特徴とする、請求項1乃至の何れか一項に記載の地中構造物の直下地盤の掘削方法。 Claims 1 to 1, characterized in that, in parallel with the work of excavating the direct ground ground at the bottom of the underground structure by a plurality of excavating devices, the inner ground of the underground structure is excavated and the soil is discharged to the ground. The method for excavating a direct ground ground of an underground structure according to any one of 4. 前記底部フレームを着地させて掘削開始面となる地中構造物の底部の直下地盤が予め水平基準面として形成されていることを特徴とする、請求項1乃至の何れか一項に記載の地中構造物の直下地盤の掘削方法。 The invention according to any one of claims 1 to 5 , wherein a direct base plate at the bottom of the underground structure which is the starting surface for excavation by landing the bottom frame is formed in advance as a horizontal reference surface. A method of excavating a direct foundation board of an underground structure.
JP2018080615A 2018-04-19 2018-04-19 How to excavate a direct foundation board of an underground structure Active JP6846812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018080615A JP6846812B2 (en) 2018-04-19 2018-04-19 How to excavate a direct foundation board of an underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080615A JP6846812B2 (en) 2018-04-19 2018-04-19 How to excavate a direct foundation board of an underground structure

Publications (2)

Publication Number Publication Date
JP2019190037A JP2019190037A (en) 2019-10-31
JP6846812B2 true JP6846812B2 (en) 2021-03-24

Family

ID=68389372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080615A Active JP6846812B2 (en) 2018-04-19 2018-04-19 How to excavate a direct foundation board of an underground structure

Country Status (1)

Country Link
JP (1) JP6846812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112854274A (en) * 2021-01-08 2021-05-28 广东省基础工程集团有限公司 Sinking-assisting construction method for open caisson

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037344B1 (en) * 1970-01-31 1975-12-02
NL8802176A (en) * 1988-09-02 1990-04-02 Darya Paye Jetty Co Ltd METHOD FOR PLACING A HOLLOW COLUMN ON A HARD WATER SOIL.
JP2006124942A (en) * 2004-10-26 2006-05-18 Koyo Autom Mach Co Ltd Excavating equipment for caisson
JP4558456B2 (en) * 2004-11-19 2010-10-06 光洋自動機株式会社 Caisson structure
JP6043006B1 (en) * 2016-03-18 2016-12-14 光洋自動機株式会社 Construction method of underground structure
JP2017218841A (en) * 2016-06-09 2017-12-14 鹿島建設株式会社 Submerging installation method for cylindrical body, and submerging installation support system

Also Published As

Publication number Publication date
JP2019190037A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
AU2019439324B2 (en) Wall sinking construction method
EP0201503B1 (en) Casting of structural walls
KR20060056221A (en) Structure of caisson
US8033751B2 (en) Gyro compensated inclinometer for cross slope control of concrete screed
KR102640695B1 (en) Auger type vertical drilling system with path correction device
JP6043006B1 (en) Construction method of underground structure
JP6846812B2 (en) How to excavate a direct foundation board of an underground structure
KR20060051500A (en) An excavator for caisson
WO2018166522A1 (en) Construction device for revetment and construction method therefor
CN104452804A (en) Full-face stirring and cutting wall construction machine
CN117107748A (en) Hole forming construction method for mechanical dry operation of anchor piles in sandstone areas
JPS6218690B2 (en)
CN204608826U (en) Tunneling boring stirs cutting and makes wall telephone
JP7049176B2 (en) Excavation method
JP2000291398A (en) Underground structure and construction method therefor
JP4069062B2 (en) Method of laying buried pipe and laying device used therefor
JP2000008369A (en) Earth retaining wall forming method in pit excavating construction method
JP2000008372A (en) Underground wall constructing method
CN111042107B (en) Large-size precast pile enclosure construction system and construction method
JP7082594B2 (en) How to build excavation jigs and earth retaining structures
JPS5919207B2 (en) Continuous underground wall excavation method and equipment
CN116695761A (en) Open caisson construction method for sewage treatment
JPS6213447B2 (en)
JPH0574673B2 (en)
JPH02108790A (en) Method and device of detecting horizontal displacement amount for excavator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6846812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250